abb drives for hvac

ACH180 drives
Quick installation and start-up guide

Safety instructions

\triangleWARNING! Obey these instructions. If you ignore them, injury or death, or damage
to the equivonent can occur. If you are not a aualified electrical professional, do
not do electrical installation ormaintenance work.

Do not do work on the drive, motor cable, motor, or control cables when the drive is
connected to the input power. Before you start the work, isolate the drive from all connected to the input power. Before you start, the work, isolate the drive from all
dangerous voltage sources and make sure that it is safe to start the work. Always wait for 5 minutes after disconnecting the input power to let the intermediate circuit capacitors discharge.
Do not do work on the drive when a rotating permanent magnet motor is connected to it.
A rotating permanent magnet motor energizes the drive, including its input and output
terminals.

1. Unpack the delivery

Keep the drive in its
debris and moisture.
Make sure that all of the items are present and that there are no signs of damage:
installation accessories (mounting template, cable clamps, screws, etc)
safety instructions
user interface wide sticker sheet (residual voltage warning)
user interface guide (under the drive front cover)

2. Reform the capacitors

the drive has not been powered up for a year or more, you must reform the DC link
capacitors. The manufacturing date is on the type designation label. Refer to Capacito
che

3. Select the cables and fuses

Input power cable: ABB recommends to use symmetrical shielded cable (VFD cable) for the best EMC performance.
Motor cable: Use symmetrical shielded cable (VFD cable) for the best EMC
performance. Symmetrical shielded cable also reduces bearing currents, wear, and
tress on motor insulation. Power cable types: For IEC installations, use copper or aluminum cables (if
permitted). In North America, use only copper cables.
Current rating: max. load current.
Voltage rating: min. 600 V AC .
Voitage rating: min. 600 VAC .
emperature rating: For IEC installations, select a cable rated for at least $70^{\circ} \mathrm{C}$ North America, select a cable rated for at least $75^{\circ} \mathrm{C}$ ($\left(167^{\circ} \mathrm{F}\right)$)
Size: Refer to Fuses and typical power cable sizes for the typical cable sizes and to Terminal data for the power cables for the maximum cable sizes.
Select the control cables. Use double-shielded twisted-pair cable for analog signals. Use
double-shielded or single-shielded cable for the digital, relay and I/O signals. Do not ru 24 V and $115 / 230 \mathrm{~V}$ signals in the same cable

Protect the drive an

4. Examine the installation site

The drive is inten type as standard.

Examine the site where you will install the drive. Make sure that
The installation site is sufficiently ventilated and hot air does not recirculate.
There is sufficient free space around the drive for cooling, maintenance, and operation.
Refer to Free space requirements.
The ambient conditions meet the specifications. Refer to Ambient conditions. The installation surface is as close to vertical as possible and strong enough to suppor
the weight of the drive. Refer to Dimensions and weights. The materials behind above and below the drive are not flammable.
There are no sources of strong magnetic fields such as high-current single-core
conductors or contactor coils near the drive. A strong magnetic field can cause

5. Install the drive

You can install the driv
Install frame RO drives vertically. RO drives do not have a cooling fan.
You can install drives with frame sizes R1...R4 tilted by up to 90 degrees, from vertical to fully horizontal orientation.
Do not install the drive upside down.
To install the drive with screws

Make marks onto the surface for the mounting holes. Use the mounting Drill the holes for the mounting screws. If
necessary, install suitable plugs or anchors into the holes.
Install the mounting screws into the holes. Refer to Dimensions and weights for the maximum screw diameter. Leave a gap between
surface.

To install the drive to a DIN installation rail

Use the integrated lock to install frames R3 and R4 to a DIN installation rail:
Push and hold the locking button down.
3. Put the top tabs of the drive onto the top edge of the DIN rail

Put the drive against the bottom edge of the DIN rail.
Release the locking button.
Move the locking part to the right.
ectly installed

Note: For UL/CSA installations: Warning label 3AXD50001058098 (included in the delivery)
must be adhered near the drive and clearly visible.
6. Measure the insulation resistance

Drive: Do not do voltage tolerance or insulation resistance tests on the drive as testing can
damage the drive.
Input power cable: Before you connect the input power cable to the drive, measure its
insulation resistance according to local regulations.
Motor and motor cable:
drive output terminals $\mathrm{T} 1 / \mathrm{U}, \mathrm{T} 2 / \mathrm{V}$ and $\mathrm{T} 3 / \mathrm{W}$.
Use a voltage of 1000 VDC to measure the
insulation resistance between each phase insulation resistance between each phase
conductor and the protective earth conductor. Th insulation resistance of an ABB motor must be more than 100 Mohm (at $25^{\circ} \mathrm{C}\left[77^{\circ} \mathrm{F}\right]$). For the
insulation resistance of other motors, refer to the insulation resistance of other
manufacturer's instructions.
Note: Moisture inside the motor reduces the
insulation resistance. If you think that there is insulation resistance. If you think that there is

7. Make sure that the drive is compatible with the grounding
system
You can install all drive types to a symmetrically grounded TN-S System (center-grounded
wye). The drivi is delivered with the EMC and dAR screws installed. The material of the screws
Dlastic or
 EMC scre
circuit).

Screw label	Factory default		
		\quad	Grounding systems
:---:			

8. Connect the power cables

Connection diagram (shielded cables)

2. Disconnecting device. requires two PE conductors, if the cross-sectional areae of the PE conductor is less than
$10 \mathrm{~mm}^{2} \mathrm{Cu}$ or $16 \mathrm{~mm}^{2}$ Al. For example, you can use the cable shield in addition to the $10 \mathrm{~mm}^{2} \mathrm{Cu}$ or $16 \mathrm{~mm}^{2}$ Al. For example, you can use the cable shield in addition to the
fourth conductor. fourth conductor
Use a separate grounding cable or a cable with a separate PE conductor for the line side,
if the conductivity of the fourth conductor or shield does not meet the requirements for if the conductivity
the PE conductor.
Use a separate grounding cable if the conductivity of the shield is not sufficient, or if
there is no symmetrically constructed PE conductor in the cable.
360° grounding of the cable shield is required for the motor cable and brake resistor
Brake resistor and resistor cable (optional, for frames R2...R4 only).

- Connection procedure (shielded cables)

For the tightening torques, refer to Terminal data for the power cables. Attach the residual vo
language to the drive.
. Install the grounding plate.
Strip the motor cable.
Ground the motor cable s
clamp for 360° grounding
Twist the motor cable shield into a bundle and mark with yellow-green insulation tape. Install a cable lug and connect the shield to the grounding terminal. terminals $T 1 / L T 2 / V$ and $T 3 / W$
Frames R2...R4: If you use a brake resistor, connect the resistor cable to terminals R-and UDC. Use a
shielded cable and ground the shield under the shielded cabbe and ground the shield
grounding clamp for 360° grounding.
. Frames R2...R4: Make sure that the R - and UDC+ do not connect cables to the terminals.
. Strip the input power cable.
10. If the input power cable has a shield, twist the If the input power cable has a shield, twist the shield
into a bundle, mark it and connect it to the grounding into a but.

1. Connect the PE conductor of the input power cable to conductor.

9. Connect the control cables

Connection procedure
Do the connections according to the default control connections of the HVAC default macro
Keep the signal wire pairs twisted as near to the terminals as possible to prevent inductive.
coupling. The tightening torque for the terminal connections is $0.5 \ldots 0.6 \mathrm{~N} \cdot \mathrm{~m}(4.4 \ldots 5.3 \mathrm{lbf}$.in
. Install the grounding plate.
3. Strip a part of the outer shield of the control cable for Use a 360° grounding clamp to connect the outer shield to the grounding plate.
5. Strip the control cable conductors. For stranded
(multi-wire) conductors, install ferrules at the bare conductor ends.
6. Connect the conductors to the correct control terminals. Insert the conductor into a push-in
terminal. To release, push the open/close button the way down firmly with a flathead screwdriver. Connect the shields of the twisted pairs and
grounding wires to the SCREEN terminal.
.. Mechanically attach the control cables on the outside
Default I/O connections (HVAC default)

- Embedded fieldbus connection

Connect the fieldbus to the EIA-485 Modbus RTU terminal which is on the front of the drive. To configure Modbus RTU communication with the embedded fieldbus:
Connect the fieldbus cables and the necessary $1 / O$ signals.
2. Use the jumpers to set the termination and bias settings.
Power up the drive and set the necessary parameters.

A connection example is shown below.

1) The devices at the ends of the fieldbus must have termination set to ON . All other devices
2) Aust have termination set to OFF.

Connect the shields only to the grounding terminal in the automation controller.
3) Connect the DGND conductor to the signal ground reference terminal in the automation
10. Start up the drive

\triangle
WARNING! Before you start up the drive, make sure that the installation is
WARNING! Before you start up the drive, make sure that the
completed. Make sure also that it is safe to start the motor.
from other machinery, if there is a risk of damage or injury.
For information on the user interface, refer to the ACH18O User interface guide

(3AXD50000955909 [English]).

Power up the drive.
. Set the unit (international or US).
Go to Motor data view.

- AsynM: Asynchronous motor

PMSM: Permanent magnet synchronous motor
Set the motor control mode:
Scalar: Frequency reference. Do not use this mode for
permanent magnet syn
Use this mode when:

- The number of motors can change.
drive current.
Vector: Speed reference. This is suitable for most cases. The
drive does an automatic standstill ID run when the drive
started for the first time.
sta
5e
Press the Auto/Hand key to start the motor and check the
direction of rotation. If the direction is incorrect you can - change the Motor phase order setting, or

8. Go to Motor control view.
9. Set the start and stop mode.
10. Set the acceleration and deceleration times.
11. Set the maximum and minimum frequencies (or speeds).
12. Tune the drive parameters to the application. You can also use the Assistant control pane
(ACH-AP-..) or the Drive Composer PC tool.

Warnings and faults

 WARNING! If you activate the automatic fault reset or automatic restart functions
of the drive control program, make sure that no dangerous situations can occur.
These functions reset the drive automatically and continue operation after a fault These functions reset the drive automatically and continue operation after a fault
or supply break. If these functions are activated, the installation must be clearly marked as defined in IEC/EN $61800-5-1$, subclause 6.5 .3 , for example, "THIS
MACHINE STARTS AUOMATICALY"

Code	Description
2310	Overcurrent. The output current is more than the internal limit. This can be caused by an earth fault or phase loss.
2330	Earth leakage. A load unbalance that is typically caused by an earth fault in the motor or the motor cable.
2340	Short circuit. There is a short circuit in the motor or the motor cable.
3130	Input phase loss. The intermediate DC circuit voltage oscillates.
3181	Wiring or earth fault. The input and motor cable connections are incorrect.
3210	DC link overvoltage. There is an overvoltage in the intermediate DC circuit.
3220	DC link undervoltage. There is an undervoltage in the intermediate DC circuit
3381	Output phase loss. All three phases are not connected to the motor.
5091	Safe torque off. The Safe torque off (STO) function is on.
6681	EFB communication loss. Break in embedded fieldbus commun
AFF6	Identification run. The motor ID run occurs at the next start.
FA81	Safe torque off 1: Safe torque off circuit 1 is broken.
FA82	Safe torque off 2 : Safe torque off circuit 2 is broken.

List cof most commonly used parameters

ar. No.	Name	Settings/Range (default value in bold)
Group 99 Motor data		
99.03	Motor type	[O]Asynchronous motor, [1]Permanent magnet motor, [3]PMaSynRM
99.04	Motor control mode	[0]Vector, [1]Scalar
99.06	Motor nominal current	depends on rating
99.07	Motor nominal voltage	depends on rating
99.08	Motor nominal frequency	depends on rating
99.09	Motor nominal speed	depends on rating
99.10	Motor nominal power	depends on rating
99.11	Motor nominal $\cos \varphi$	$0.00 \ldots 1.00$
99.12	Motor nominal torque	depends on rating
99.16	Motor phase order	[0]UVW, [1]UWV
Group 01 Actual values (read-only)		
1.01	Motor speed used	-30000.00 ... 30000.00 rpm
1.06	Output frequency	$-500.00 \ldots 500.00 \mathrm{~Hz}$
1.07	Motor current	$0.00 \ldots 30000.00 \mathrm{~A}$
1.10	Motor torque	-1600.00\% ...1600.00\%
1.11	DC voltage	$0.00 \ldots 2000.00 \mathrm{~V}$
1.13	Output voltage	$0 . . .2000 \mathrm{~V}$

\[

\]

$$
\begin{array}{|c|c|c}
5.02 & \text { Run-time counter } & 0 \ldots 65535 \text { days } \\
\hline 5.11 & \text { Inverter temperature } & -40.0 \ldots 160.0 \% \\
\hline \text { Group 10 Standard DI, RO } & \\
\hline
\end{array}
$$

Group 11 Standard DI, RO	
1106	DO1 output sourc

DI5/Al1 configuration

Group 12 Standard Al		
12.15	All unit selection	$[2] \mathrm{V},[10] \mathrm{mA}$
12.17	Al1 min	$0.000 \ldots 11.000 \mathrm{~V}$ or $0.000 \ldots 22.000 \mathrm{~mA}, 0.000 \mathrm{~V}$ or

		0.000 mA
12.18	Al1 max	$0.000 \ldots 11.000 \mathrm{~V}$ or $0.000 \ldots 22.000 \mathrm{~mA}, 10.000 \mathrm{~V}$ or 20.000 mA

		20.000 mA
12.19	All scaled at Al1 min	$-32768.000 \ldots 32767.000,0.000$

12.20	Al1 scaled at Al1 m
12.25	Al2 unit selection

12.27	Al2 min	$[2] \mathrm{V},[10] \mathrm{mA}$
12.28	Al2 \max	$0.000 \ldots 11.000 \mathrm{~V}$ or $0.000 \ldots 22.000 \mathrm{~mA}, 0 \mathrm{~V}$ or 4 m

12.29	Al2 scaled at Al2 min			
1230	$-32768.0000 \ldots$ or $0 \ldots 2767.020000 \mathrm{~mA}$,		12.30	Al2 scaled at A
:---:	:---:			
Group 13 Standard AO				

up	AO	
13.12	AO1 source	[3]Output frequency, [4]Motor current
13.15	A01 unit selection	[2]V, [10]mA
13.17	AO1 source min	-32768.0 ... 32767.0, 0.0
13.18	A01 source max	-32768.0 ... 32767.0, 50.0
13.19	AO1 out at AO1 src min	$0.000 \ldots 11.000 \mathrm{~V}$ or $0.000 \ldots 22.000 \mathrm{~mA}, 0.000 \mathrm{~mA}$ or

13.19	A01 out at AO1 src min	$0.000 \ldots 11.000 \mathrm{~V}$ or $0.000 \ldots 22.000 \mathrm{~mA}, 0.000 \mathrm{~mA}$ or 0.000 V
13.20	A01 out at AO1 src max	$0.000 \ldots . .11 .000 \mathrm{~V}$ or $0.000 \ldots 22.000 \mathrm{~mA}, 20.000 \mathrm{~mA}$ or 10.000 V

Group 19 Operation mode	
19.11	Ext1/Ext2 selectio

Group 20 Start/stop/direction

20.01	Ext1 commands	[0]Not selected, [1] In1 Start, [2]]ln1 Start; $\ln 2$ Dir, [3]ln1 Start fwd;In2 Start rev, [4]In1P Start;In2 Stop,[5]ln1P Start;In2 Stop; In3 Dir, [6]In1P Start fwd; In2P Start rev; In3 Stop, [11]Control panel, [14]Embedded fieldbus
20.03	Ext1 in1 source	[0]Always off, [2]D11, [3]DI2, [4]DI3, [5]DI4, [6]D15
20.04	Ext1 in2 source	[0]Always off,[2]D11, [3]DI2, [4]D13, [5]D14, [6]D15
20.05	Ext1 in3 source	[0]Always off, [2]D11, [3]D12, [4]D13, [5]D14, [6]DI5
20.06	Ext2 commands	[0]Not selected, [1]] 1 1 Start, [2] ln1 Start; In2 Dir, [3]ln 1 Start fwd;In2 Start rev, [4]In1P Start;In2 Stop,[5]ln1P Start; In2 Stop; In3 Dir, [6]ln1P Start fwd;In2P Start rev;In3 Stop, [11]Control panel, [14]Embedded fieldbus
20.08	Ext2 in1 source	[0]Always off, [2]D11, [3]D12, [4]D13, [5]D14, [6]D15
20.09	Ext2 in2 source	[0]Always off, [2]D11, [3]DD2, [4]D13, [5]D14, [6]D15
20.10	Ext2 in3 source	[0]Always off, [2]D11, [3]D12, [4]D13, [5]DI4, [6]D15
20.21	Direction	[0]Request, [1] Forward, [2]Reverse
Group 21 Start/stop mode		
21.01	Start mode	[0]Fast, [1]Const time, [2]Automatic
21.02	Magnetization time	$0 \ldots 10000 \mathrm{~ms}, 500 \mathrm{~ms}$
21.03	Stop mode	[0]Coast, [1] Ramp, [2] Torque limit
21.19	Scalar start mode	[0]Normal, [1]Const time, [2]Automatic, [3]Torque Boost, [4]Automatic+boost [5]Flying start [6]Flying start+boost

Group 22 Speed reference selection		
22.11	Ext1 Speed ref1	$\begin{array}{l}{[1] \text { Al1 scaled, [2]AI2 scaled, [8]EFB ref1, [9]EFB ref2, }} \\ {[16] P I D}\end{array}$

22.18	Ext2 speed ref1	$\begin{array}{l}\text { [16]PID } \\ \text { refzero, [1] [1]III scaled, [2]Al2 scaled, [8]EFB ref1, [9]EFB } \\ \text { res }\end{array}$

 [0]Disabled, [1]]Enabled (init at stop/power-up),
[2]Enabled (resume always),
[3]Enabled (init to actual) [2]Enabled (resume a/ways),
[4]Enabled (resume/init to actual)
$-32768.00 \quad 32767.00 .0 .00$

22.72 Motor potentiometer

	initial value	
22.73	$\begin{array}{l}\text { Motor potentiometer up } \\ \text { source }\end{array}$	[0]Not used, $[2] \mathrm{D} 11,[3] \mathrm{DI2},[4] \mathrm{D} 13,[5] \mathrm{D} 14,[6] \mathrm{D} 15$

22.75	$\begin{array}{l}\text { Mown source } \\ \text { Motor potentiometer } \\ \text { ramp time }\end{array}$	$0.0 .0 . .3600 .0 \mathrm{~s}, \mathbf{4 0 . 0} \mathbf{~ s}$
22.76	$\begin{array}{l}\text { Motor potentiometer } \\ \text { min value }\end{array}$	$-32768.00 \ldots . .32767 .00,-50.00$
22.77	Motor potentiometer	$-32768.00 \ldots . .32767 .00,50.00$

Group 23 Speed reference ramp				
23.12	Acceleration time 1	$0.000 \ldots 1800.000 \mathrm{~s}, 20.000 \mathrm{~s}$		

23.13	Deceleration time 1	$0.000 \ldots 1800.000 \mathrm{~s}, 20.000 \mathrm{~s}$				
Group 28 Frequency reference chain						
28.11	Ext1 frequency ref1	$[1] A 11$ scaled, $[2] \mathrm{Al2}$ scaled, [8]EFB ref1, [9]EFB ref2,				$\begin{array}{l}{[16] \text { PID }}\end{array}$
:---:	:---	:---				
28.15	Ext2 frequency ref1	$\left.\begin{array}{l}\text { [1]Zero, [1]Al1 scaled, [2]Al2 scaled, [8]EFB ref1, [9]EFB } \\ \text { ref2, } \\ \hline\end{array} \mathrm{l} 16\right]$ PID	,			

28.72	Freq acceleration time 1	$0.000 \ldots 1800.000 \mathrm{~s}, \mathbf{3 0 . 0 0 0} \mathbf{~ s}$
28.73	Freq deceleration time 1	$0.000 \ldots 1800.000 \mathrm{~s}, \mathbf{3 0 . 0 0 0} \mathrm{~s}$

30.11	Minimum speed	$-30000.00 \ldots 30000.00 \mathrm{rpm}, 0.00 \mathrm{rpm}$
3012	and	

| 30.12 | Maximum speed | $-30000.00 \ldots 30000000 \mathrm{rm}, \mathbf{1 0 0}, 1500.00 \mathrm{rpm}$ |
| :--- | :--- | :--- | :--- |
| 30.13 | Minimum frequency | $-500000 \ldots 500.00 \mathrm{~Hz}, \mathbf{0 . 0 0} \mathrm{~Hz}$ |

30.14	Maximum frequency	$-500.00 \ldots 50.00 \mathrm{~Hz}, 0.00 \mathrm{~Hz}$
30.17	Maximum frequency	$-500.00 \ldots 500.00 \mathrm{~Hz}, 50.00 \mathrm{~Hz}$
3017		

Group 31 Fault functions

31.11	Fault reset selection	$[0]$ not used, $[2] D 11,[3] D 12,[4] \mathrm{D} 13,[5] \mathrm{D} 14,[6] \mathrm{D} 15$
Group 40 Process PID		

| Group 40 Process PID set 1 | |
| :---: | :--- | :--- |
| 40.07 | $\begin{array}{l}\text { Process PID operation } \\ \text { mode }\end{array}$ |
| $[0]$ Off, $[1]$ On, [2]On when drive running | |

	mode	
40.08	Set 1 feedback 1 source	[8]Al1 percent, [9]Al2 percent
40.16	Set 1 setpoint 1 source	[2]Internal setpoint [11Al1

40.16	set 1 setpoint 1 source	[2]Internal setpoint, [111AAl1 percent, [12]AII2 percent
40.24	Set 1 internal setpoint 0	$-200000.00 \ldots 200000.00,0.00$

Related documents
Ecodesign information (EU

[^0]Or opyright 2024 ABB. All rights reserved.

Par. No.	Par. Name	Settings/Range (default value in bold)
40.31	Set 1 deviation inversion	[0]Not inverted (Ref - Fbk), [1] liverted (Fbk - Ref)
40.32	Set 1 gain	$0.01 \ldots 100.00,1.00$
40.33	Set 1 integration time	0.0 ... $9999.0 \mathrm{~s}, 10.0 \mathrm{~s}$
Group 45 Energy efficiency		
45.11	Energy optimizer	[0]Disable, [1] Enable
Group 58 Embedded fieldbus		
58.01	Protocol enable	[0]None, [1]ModbusRTU, [2]BACnet MSTP, [5] 2 , [7]GP1

Type 0-04S...	Input current		Output ratings									
	$\begin{array}{\|c} \hline \text { No } \\ \text { chok } \\ \text { e } \end{array}$	$\begin{gathered} \begin{array}{c} \text { With } \\ \text { chok } \\ \text { e } \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Max. } \\ \text { curre } \\ \text { nt } \end{array}$	Nominal use			Light-duty use			Heavy-duty use		
	${ }_{1}$	1	$I_{\text {max }}$	I_{n}		${ }_{\text {n }}$	Ld		Ld	/rd		Hd
	A	A	A	A	kW	hp	A	kW	hp	A	kW	hp
1-phase $U_{\mathrm{n}}=200 \ldots 240 \mathrm{~V}$												
O2A4-1	5.0	3.3	3.2	2.4	0.37	0.5	2.4	0.37	0.5	1.8	0.25	0.33
03A7-1	6.9	4.8	4.3	3.7	0.55	0.75	3.5	0.55	0.75	2.4	0.37	0.5
04A8-1	9.0	6.2	6.7	4.8	0.75	1.0	4.6	0.75	1.0	3.5	0.55	0.75
06A9-1	12.6	9.2	8.1	6.9	1.1	1.5	6.6	1.1	1.5	4.5	0.75	1.0
07A8-1	17.3	12.0	11.9	7.8	1.5	2.0	7.5	1.5	2.0	6.6	1.1	1.5
09A8-1	21.8	17.0	13.5	9.8	2.2	3.0	9.3	2.2	3.0	7.5	1.5	2.0
12A2-1	23.9	21.1	17.6	12.2	3.0	3.0	11.6	3.0	3.0	9.3	2.2	3.0
02A4-2	3.4	2.4	3.2	2.4	0.37	0.5	2.3	0.37	0.5	1.8	0.25	0.33
03A7-2	4.5	3.7	4.3	3.7	0.55	0.75	3.5	0.55	0.75	2.3	0.37	0.5
04A8-2	5.7	4.8	6.7	4.8	0.75	1.0	4.6	0.75	1.0	3.2	0.55	0.75
06A9-2	7.1	6.9	8.3	6.9	1.1	1.5	6.6	1.1	1.5	4.6	0.75	1.0
07A8-2	8.9	7.8	11.9	7.8	1.5	2.0	7.4	1.5	2.0	6.6	1.1	1.5
09A8-2	12.9	9.8	13.3	9.8	2.2	$2.0+$	9.3	2.2	$2.0+$	7.4	1.5	2.0
15A6-2	19.1	15.6	19.3	15.6	3.0	4.0	14.6	3.0	4.0	9.3	2.2	3.0
17A5-2	21.2	17.5	26.3	17.5	4.0	5.0	16.7	4.0	5.0	14.6	3.0	4.0
25AO-2	27.2	25.0	30.1	25.0	5.5	7.5	24.2	5.5	7.5	16.7	4.0	5.0
033A-2	35.0	32.0	43.6	32.0	7.5	10.0	30.8	7.5	10.0	24.2	5.5	7.5
048A-2	48.0	48.0	55.4	48.0	11.0	15.0	46.2	11.0	15.0	30.8	7.5	10.0
055A-2	48.0	48.0	55.4	55.0	11.0	20.0	50.2	11.0	20.0	44.0	11.0	15.0
3-phase $U_{\mathrm{n}}=380 \ldots 415 \mathrm{~V}$												
01A8-4	2.8	1.5	2.2	1.8	0.55	-	1.7	0.55	-	1.2	0.37	-
O2A6-4	3.6	1.9	3.2	2.6	0.75	-	2.5	0.75	-	1.8	0.55	-
03A3-4	4.6	2.5	4.3	3.3	1.1	-	3.1	1.1	-	2.4	0.75	-
04AO-4	6.3	3.3	5.9	4.0	1.5	-	3.5	1.5	-	3.3	1.1	-
05A6-4	9.0	4.6	7.2	5.6	2.2	-	5.3	2.2		4.0	1.5	
07A2-4	12.0	6.0	10.0	7.2	3.0	-	6.8	3.0	-	5.6	2.2	
09A4-4	13.0	8.0	13.0	9.4	4.0	-	8.9	4.0	-	7.2	3.0	-
12A6-4	17.4	12.6	16.9	12.6	5.5	-	12.0	5.5	-	9.4	4.0	-
17AO-4	25.2	17.0	22.7	17.0	7.5	-	16.2	7.5	-	12.6	5.5	-
25AO-4	31.8	25.0	30.6	25.0	11.0	-	23.8	11.0	-	17.0	7.5	-
033A-4	40.9	32.0	45.0	32.0	15.0	-	30.5	15.0	-	25.0	11.0	-
038A-4	49.0	38.0	57.6	38.0	18.5	-	36.0	18.5	-	32.0	15.0	-
045A-4	55.7	45.0	68.4	45.0	22.0	-	42.0	22.0	-	38.0	18.5	
050A-4	55.7	50.0	81.0	50.0	22.0	-	48.0	22.0	-	45.0	22.0	-
01A8-4	1.9	1.3	2.2	1.6	-	0.75	1.6	-	0.75	1.1	-	0.5
O2A6-4	2.4	1.6	3.3	2.1	-	1.0	2.1	-	1.0	1.6	-	0.75
03A3-4	3.5	2.1	4.3	3.0	-	1.5	3.0	-	1.5	2.1	-	1.0
04AO-4	4.6	2.8	5.9	3.5	-	2.0	3.5	-	2.0	3.0	-	1.5
05A6-4	6.9	3.8	7.2	4.8	-	3.0	4.8	-	3.0	3.5	-	2.0
07A2-4	9.2	5.0	10.0	6.0	-	3.0	6.0	-	3.0	4.8	-	3.0
09A4-4	10.3	6.7	13.0	7.6	-	5.0	7.6	-	5.0	6.3	-	3.0
12A6-4	14.8	11.0	16.9	11.0	-	7.5	11.0	-	7.5	7.6	-	5.0
17A0-4	20.3	14.0	22.7	14.0	-	10.0	14.0	-	10.0	11.0	-	7.5
25AO-4	26.6	21.0	30.6	21.0	-	15.0	21.0	-	15.0	14.0	-	10.0
033A-4	33.9	27.0	45.0	27.0	-	20.0	27.0	-	20.0	21.0	-	15.0
038A-4	41.3	34.0	57.6	34.0	-	25.0	34.0	-	25.0	27.0	-	20.0
045A-4	46.9	40.0	68.4	40.0	-	30.0	40.0	-	30.0	34.0	-	25.0
050A-4	46.9	42.0	81.0	42.0	-	30.0	42.0	-	30.0	42.0	-	30.0

In frequency is less than 9 Hz .
$\begin{array}{ll}I_{n} & \text { Nominal output current. Maximum continuous rms output current (no overload). } \\ I_{L d} & \text { Continuous rss output current. Allows } 10 \% \text { overload for } 1 \text { mininute every } 10 \text { minutes } \\ I_{H d} & \text { Continuous rms output current. Allows } 50 \% \text { overlod }\end{array}$

P_{n} Typical motor power in nominal use (no overload)
$P_{L d}$ Typical motor power in light-duty use (10\% overload)
$P_{H d}$ Typical motor power heavy-duty use (50% overload)
The kilowatt ratings are applicable to most IEC 4
are applicable to most NEMA 4-pole motors.

Fuses and typical power cable sizes

$\begin{aligned} & \text { Type } \\ & \text { ACH18 } \\ & \text { O-04x- } \end{aligned}$	Fuses			$\begin{aligned} & \text { Cable conductor } \\ & \text { sizes (Cu) } \\ & \hline \end{aligned}$		$\begin{gathered} \text { Frame } \\ \text { size } \end{gathered}$
	gG	gR	ULClass $\mathrm{T}^{1 \text { 12) }}$ 344			
	Bussmann type	$\begin{gathered} \text { Bussmann } \\ \text { type } \end{gathered}$	Bussmann/ Edison type	mm^{2}	AWG	
1-phase $U_{\mathrm{n}}=230 \mathrm{~V}$ (range $200 \ldots 240 \mathrm{~V}$)						
2A4-1	C10G10	FWP-32G14F	JJN-6	1.5	16	R0
03A7-1	C10G16	FWP-32G14F	JJ-10	1.5	16	RO
04A8-1	C10G16	FWP-40G14F	JJN-15	1.5	16	RO
06A9-1	C10G20	FWP-50G14F	JJS-70	$3 \times 1.5+1.5$	16	R1
07A8-1	C10G25	FWP-50G14F	JJN-25	$3 \times 2.5+2.5$	14	R1
09A8-1	C14G40	FWP-50G14F	JJN-35	$3 \times 2.5+2.5$	14	R1
12A2-1	C14G40	FWP-63G22F	JJN-35	$3 \times 2.5+2.5$	14	R2
3-phase $U_{\mathrm{n}}=230 \mathrm{~V}$ (range $200 \ldots 240 \mathrm{~V}$)						
02A4-2	C10G6	FWP-25614F	JJN-6	1.5	16	R0
03A7-2	C10G8	FWP-32G14F	JJN-10	1.5	16	R0
04A8-2	C10G16	FWP-32G14F	JJN-10	1.5	16	R0
06A9-2	C10G16	FWP-50G14F	JJN-15	$3 \times 1.5+1.5$	16	R1
07A8-2	C10G20	FWP-50G14F	JJN-20	$3 \times 2.5+2.5$	14	R1
09A8-2	C10G25	FWP-50G14F	JJN-20	$3 \times 2.5+2.5$	14	R1
15A6-2	C10G32	FWP-50G14F	JJ-30	$3 \times 6+6$	10	R2
17A5-2	C10G32	FWP-50G14F	JJN-35	3×6+6	10	R2
25AO-2	C22G50	FWP-80G22F	JJN-40	$3 \times 6+6$	10	R3
033A-2	C22G63	FWP-100G22F	JJN-50	$3 \times 10+10$	8	R3
048A-2	C22G100	FWP-150A	JJN-100	3×25+16	4	R4
055A-2	C22G100	FWP-150A	JJN-100	3×25+16	4	R4
3-phase $U_{\mathrm{n}}=400 \mathrm{~V}$ (range $380 \ldots 415 \mathrm{~V}$) or 460 V (range $440 \ldots 480 \mathrm{~V}$)						
01A8-4	C10G4	FWP-20G14F	JJS-6	1.5	16	R0
02A6-4	C10G6	FWP-20G14F	JJS-6	1.5	16	RO
03A3-4	C10G10	FWP-20G14F	JJS-10	1.5	16	R0
04AO-4	C10G10	FWP-25614F	JJS-10	$3 \times 1.5+1.5$	16	R1
05A6-4	C10G16	FWP-25614F	JJS-20	$3 \times 1.5+1.5$	16	R1
07A2-4	C10G20	FWP-32G14F	JJs-20	$3 \times 2.5+2.5$	14	R1
09A4-4	C10G25	FWP-32G14F	JJS-25	$3 \times 2.5+2.5$	14	R1
12A6-4	C14G32	FWP-50G14F	JJS-30	$3 \times 2.5+2.5$	14	R2
17AO-4	C14G40	FWP-50G14F	JJS-35	$3 \times 6+6$	10	R2
25AO-4	C22G50	FWP-80G22F	JJS-40	$3 \times 6+6$	10	R3
033A-4	C22G63	FWP-100G22F	JJS-60	$3 \times 10+10$	8	R3
038A-4	C22G80	FWP-125A	JJS-70	$3 \times 10+10$	8	R4
045A-4	C22G100	FWP-150A	JJS-70	$3 \times 16+16$	6	R4
050A-4	C22G100	FWP-150A	JJS-70	3×25+16	4	R4

1) The recommended branch protection fuses must be used to maintain the IEC/EN/

UL 61800-5-1 listing.
2) The drive is suitable for use on a circuit capable of delivering not more than 100000
symmetrical amperes (rms) at 480 V (480 V drives) or 240 V (240 V drives) maximum when protected by the fuses given in this table
3) As an alternative to Class T furses, you can use Class Jor Class CF fuses of the same voltage
and current tating for branch circuit trotection of 3--hase drives.
4) Refer to Alternate Fuses MMS and 4) Refer to Alternate Fuses, MMPs and Circuit Breakers for ABE Drives (3 AXD 5000064015
[Enğish]) for additional UL fuses and circuit breakers that can be used as branch circuit
protection.

Terminal data for the power cables

Frame size	L1, L2, L3, T1/U, T2/V, T3/W, R-, R+/UDC+, UDC-						PE			
	$\begin{gathered} \hline \text { Min. Wire size } \\ \text { (solid/ } \\ \text { stranded) } \end{gathered}$		$\begin{gathered} \text { Max. wire size } \\ \text { (solid// } \\ \text { stranded) } \end{gathered}$		Tighteningtorque		Max. wire size(solid/stranded)		Tighteningtorque	
	mm ${ }^{2}$	AWG	mm^{2}	AWG	$\mathrm{N} \cdot \mathrm{m}$	Ibf.in	mm^{2}	AWG	N.m	lbf.in
RO	0.2/0.2	18	6/4	10	0.5...0.6	5	6/4	10	1.2	10.6
R1 ... R2	0.2/0.2	18	6/6	10	0.5...0.6	5	6/4	10	1.2	10.6
R3	0.5/0.5	20	10/6	8/10	1.2...1.5	11..13	16/16	6	1.2	10.6
R4	0.5/0.5	20	25/16	4/6	2.5...3.7	22... 32	16/16	6	1.2	10.6

Free space requirements

 Note: Frame size RO requires 50 mm free space
$<40^{\circ} \mathrm{C}$, Ro frames can be installed side-by-side.
Dimensions and weights

 Ambient conditions

Requirement	During operation (installed for stationary use)			
Installation site	$0 \ldots 2000 \mathrm{~m}(0 \ldots 6562 \mathrm{ft})$		Installation site	$\begin{array}{l}0 \ldots 2000 \\ \text { Derating: }\end{array}$
:---	:---			
altitude				

Derating:
The output current must be derated 1% for each 100 m (330 ft) above $1000 \mathrm{~m}(3281 \mathrm{ft})$.

see derating in hardware manual (3AXD50000955862 [English]) \begin{tabular}{ll}
temperature \& See derating in hardware mane

\hline Relative humidity \& < 95% (IEC $60068-2-78$) without condensation

\hline

\hline Contamination levels \& No conductive dust permitted.

\hline Shock or free fall \& Not permitted
\end{tabular}

Markings The applicable

CG @ ©

Safe torque off (STO)
The drive has a a Safe torque off function (STO) in accordance with IEC/EN 61800-5-2. It can be
used, for example, as the final actuator deevie of safety circuits that stop the drive in case of
dang danger (such as an emergency stop circuit)
When activated, the STO function disables the control voltage of the power semiconductors
of the drive output stage, thus preventing the drive from generating the torque required to
. rotate the motor. The control progrant generates an an indication asting tefine torque by earequired to
If the motor is running when safe torque off is activated it 31.22 . If the motor is running when Safe torque off it activated. it ocoasts to a stop . Closing t the
activation switch deactivates the STO. Any faults generated must be reset before restarting.
The STO function has a redundant architecture, that is, both channels must be used in the
safety function implementation. The safety data given is calculated for redundant use, and
does not apply if both channels are not used. 4. WARNING! The STO function do

Notes:
If stopping by coasting is not acceptable, stop the drive and machinery using the
appropriate stop mode before activating the STO.

Wiring

The safety contacts must open/close within 200 ms of each other Double-shielded twisted-pair rable is recommended for the connection. The maximum length
of the cabing between the switch and the drive control unit is $300 \mathrm{~m}(1000 \mathrm{ft}$). Ground the
shield of the cable at the control unit only - Validation

To ensure the safe operation of a safety function, a validation test is required. The test must
be carried out by a competent person with adequate expertise and knowledge of the safety lunction. The etest procedurures and reportt must be bo ocumented and and sioned bye this person.
fualidation instructions of the STO function can be found in the drive hardware manual.

Technical data

Minimum voltage at S 1 and S 2 to be interpreted as " 1 ": 13 V DC
STO reaction time (shortest detectable break): 1 ms
STO response time: 5 ms (typical), 10 ms (maximum)
Fault detection time: Channels in different states for
Fault reaction time: Fault detection time +10 ms
STO fault indication (parameter 31.22) delay: $<500 \mathrm{~ms}$
STO warning indication (parameter 31.22) delay: $<1000 \mathrm{~m}$
Safety integrity level (EN 62061). SII
Safety integrity level (EN 62061): SIL 3
Performance level (EN ISO 13849-1): PLe
The drive STO is a type A safety component as defined in IEC 61508-2.
For the full safety data, exact failure rates and failure modes of the STO function, refer to the
drive hardware manual.
Declaration of conformity

[^1]The terminals do no
specified wire size.

[^0]: Original instreacio Rev B

[^1]: The minimum specified wire
 capacity at maximum load.
 Cla

