

Preface

Preface
Introduction

The H5U series Programmable Logic Controller (PLC), a new generation of small-sized PLC developed
by Inovance, supports EtherCAT bus communication and features powerful motion control and
distributed I/O control functions. It allows process encapsulation and reuse using the FB/FC function,
as well as multi-layer network communication through the RS485, CAN, Ethernet, and EtherCAT
interfaces.

Easy series small- and medium-sized PLCs are available in eight models, covering the demands of
automation equipment requiring small footprint, multi-axis motion control, accurate temperature
control, and easy networking.

This guide describes the basic knowledge, quick start guide, communication, motion control, and high-
speed counter of H5U and Easy series PLCs.

Related Manuals
Data Code Doc Name Description

19011419 H5U Series Programmable Logic
Controller User Guide

Describes installation and wiring of H5U series
programmable logic controller.

PS00006444 Easy Series Programmable Logic
Controller User Guide

Describes installation and wiring of Easy series
programmable logic controller.

19012250 H5U&Easy Series Programmable Logic
Controller Instruction Guide

Describes basic instructions and examples of H5U&Easy
series programmable logic controller.

Revision
Date Version Revision

May 2023 A11

Added the BYTE variable and section 3.3.7 "Defining
Specific Unions."

Added section 3.11.5 "Encrypting Function Blocks
(FB) or Functions (FC)".

Added section 3.12 "Folder" for program blocks,
function blocks (FBs), and functions (FCs).

Added local extension modules GL20-2SCOM and
GL20-2S485 (see section 5.2.2.3.7 "Communication
Modules").

Added section 5.4 "GR10-EC-6SW Branch Module"
and section 5.5 "GS20-ECT-8L Module."

Added the H5U series PLC PROFINET communication
function (see section 11.1 "Overview").

Corrected details of the earlier version.

January 2023 A10
Added local modules.

Corrected details of the earlier version.

-1-

Preface

Date Version Revision

November 2022 A09

Added the LiteST programming language.

Added section 10.3.4 "EtherNet/IP Slave Application
Example" and section 10.3.1.4 "Exporting EDS Files".

Added section 6.3.2 "Free Protocol Cancellation
(SerialSR Instruction)."

Added section 6.7 "Modifying Serial Port
Parameters."

Added models of extension modules supported by
Easy series host and running cases of all modules.

Added extension modules and use methods of GL20-
RTU-ECT coupler.

Corrected details of the earlier version.

September 2022 A08

Added the EIP function.

Added use methods of IP variables.

Added Easy series functions.

Corrected details of the earlier version.

August 2021 A07

Added the method of setting the FB default.

Added graphic block functions of quickly increasing
or decreasing label numbers and implementing
incremental paste.

Added the function of packing and decompressing
project archives.

Added the function of uploading and downloading
Updown files.

Added the function of setting axis settings
parameters by instructions.

Added the function of dragging the motion control
axis.

Added the function of disabling the EtherCAT slave
station by instructions.

Corrected details of the earlier version.
May 2021 A06 Kept the material versions consistent.

March 2021 A03

Added chapter 16 "Electronic Cam."

Added chapter 15 "Bus Encoder Axes."

Added chapter 17 "Offline Commissioning."

Added chapter 18 "Memory Management."

Corrected details of the earlier version.

August 2020 A02

Optimized the function of binding structure variables
to soft elements.

Added the function of setting IP addresses using
system variables.

Added the function of binding array variables to soft
elements.

Corrected details of the earlier version.

-2-

Preface

Date Version Revision

May 2020 A01

Added hard limit processing and the function of
automatically starting the EtherCAT slave station,
and updated the software UI.

Added the interpolation function and axis group
configuration.

Added the Down file download and login functions.

Updated motion control axis fault codes.

February 2020 A00 First release

Note
This guide is applicable to AutoShop V4.4.0.0 and PCB software V5.0.0.0 and later version.

Document Acquisition

This guide is not delivered with the product, but an electronic PDF version is available. To obtain it,
visit

● www.inovance.com, click Downloads, search for the keyword, and download the guide.
● Scan the QR code on the controller using your mobile phone to obtain a complete set of product

manuals.

Warranty

For faults or damage that occur during normal use within the warranty period, Inovance provides free
repair service. (For details about the warranty period of the equipment, see the order list.) When
warranty expires, maintenance fee will be charged by Inovance.

Within the warranty period, maintenance fee will be charged by Inovance for the following damage:

● Damage caused by improper operation
● Damage caused by fire, flood, or abnormal voltage
● Damage caused by use beyond the intended scope of application
● Damage caused by use under unintended working conditions
● Secondary damage caused by force majeure events (such as natural disaster, earthquake, and

lightning stroke)

The maintenance fee is charged according to the latest Price List of Inovance if not otherwise agreed
upon.

For details, see the Product Warranty Card.

-3-

www.inovance.com

-4-

TTaabbllee ooff CCoonntteennttss
Preface.. 1

1 Overview ... 20

1.1 Introduction .20
1.1.1 Product Introduction . 20

1.1.2 Software Introduction . 20

1.1.3 Networking Schemes. 20

1.2 Obtaining and Installing the Software. .22
1.2.1 How to Obtain. 22

1.2.2 Installation Environment Requirements . 22

1.2.3 Installing the Software . 23

1.2.4 Uninstalling the Software . 26

1.3 Software Interface. .27

2 Quick Start. 29

2.1 Overview .29

2.2 Communication Connection .29
2.2.1 Overview . 29

2.2.2 Ethernet Connection . 29

2.2.3 USB Connection . 35

2.3 Programming Process .37

2.4 Programming Example .38
2.4.1 Example Requirements. 38

2.4.2 Creating a Project . 38

2.4.3 Connecting to Target PLC . 39

2.4.4 (Optional) Configuring Hardware. 39

2.4.5 Programming and Compiling. 40

2.4.6 (Optional) Logging In to PLC. 41

2.4.7 Downloading Program . 42

2.4.8 HMI Monitoring . 42

2.5 Switching PLC Working Modes .43

2.6 Modifying Program Online. .43

2.7 Setting Program Scan Cycles. .44

2.8 Setting EtherCAT Task Cycles .45

2.9 Packing and Decompressing Project Archives .46

Table of Contents

-5-

2.10 Logging in to PLC .49
2.10.1 Overview . 49

2.10.2 Logging In to and Logging Out of PLC . 49

2.10.3 Managing Login Password . 50

2.11 Trace Monitor Variables .52
2.11.1 Overview . 52

2.11.2 Adding Trace Monitor Variables . 52

2.11.3 Importing or Exporting Trace Data . 56

3 Programming Basics.. 58

3.1 Overview .58

3.2 Elements .58
3.2.1 Bit Elements. 58

3.2.2 Word Elements . 59

3.2.3 Special Elements . 60

3.2.4 Bit-based Operation on Word Elements . 60

3.3 Variables .61
3.3.1 Custom Variables. 61

3.3.2 Defining Variables . 61

3.3.3 Defining Arrays . 63

3.3.4 Defining Structures . 64

3.3.5 Defining IP Variables . 64

3.3.6 Defining Strings . 65

3.3.7 Defining Specific Unions. 66

3.3.8 Using Variables . 67

3.4 Binding Variables to Addresses .67
3.4.1 Overview . 67

3.4.2 Variable Property. 68

3.4.3 Binding Basic Variables to Soft Elements . 68

3.4.4 Binding Array Variables to Soft Elements . 69

3.4.5 Binding Structure Variables to Soft Elements. 69

3.4.6 Binding Specific Union Variables to Soft Elements . 72

3.5 Using Variables as Array Subscripts .73
3.5.1 Rules of Use . 73

3.5.2 Programming Example . 74

3.6 Pointer Type Variables .78
3.6.1 Definition of Pointer Type Variables . 78

3.6.2 Obtaining Directing Addresses of Pointer Type Variables . 79

Table of Contents

-6-

3.6.3 Operations on PT Pointer Addresses . 79

3.6.4 Indirect Addressing Operations on Pointer Type Variables . 81

3.6.5 Use Example . 81

3.7 System Variables .82
3.7.1 Overview . 82

3.7.2 System Variable Categories . 82

3.7.3 _SYS_CAN for CAN Interface Running Information. 82

3.7.4 _SYS_COM for Serial Port Running Information . 84

3.7.5 _SYS_COM_SAVE for Serial Port Parameter Settings. 88

3.7.6 _SYS_ECAT_Master for Operation Status . 88

3.7.7 _SYS_ECAT_Slave for Operation Status . 90

3.7.8 _SYS_EncAxis for Encoder Axis Information . 91

3.7.9 _SYS_Ethernet for Ethernet Information . 93

3.7.10 _EthIPScanner for Status Information. 94

3.7.11 _SYS_INFO PLC for Operation Information . 94

3.7.12 _SYS_MC_Axis for Motion Control Axis Information . 99

3.7.13 _sGROUPAXIS_INFO for Status of Coordinate Axes within Axis Group . 102

3.7.14 _sMCGROUP_INFO for Axis Group Status. 103

3.7.15 _sGROUPPOS_INFO for Target Positions of Coordinate Axes within Axis Group 106

3.8 Timer . 107
3.8.1 Overview . 107

3.8.2 Pulse Timer - TPR . 107

3.8.3 Connection Delay Timer - TONR . 108

3.8.4 Off Delay Timer - TOFR . 109

3.8.5 Accumulation Timer - TACR . 110

3.9 Graphical Block Instructions . 112
3.9.1 Instruction Composition. 112

3.9.2 Programming. 112

3.9.3 Labeling Function . 113

3.10 Subprograms . 117
3.10.1 Overview . 117

3.10.1.1 Subprogram Overview . 117

3.10.1.2 Subprogram Execution Mechanism . 117

3.10.2 General Subprogram Application . 118

3.10.2.1 Creating a General Subprogram . 118

3.10.2.2 Calling a General Subprogram . 119

3.10.3 Encrypted Subprogram Application . 120

3.10.3.1 Encrypting a General Subprogram . 120

Table of Contents

-7-

3.10.3.2 Calling an Encrypted Subprogram . 121

3.10.4 Interrupt Subprogram Application . 122

3.10.4.1 External Interrupt Subprogram . 122

3.10.4.2 Timed Interrupt Subprogram . 122

3.10.4.3 Comparison Interrupt Subprogram . 123

3.11 Function Blocks and Functions (FB/FC). 123
3.11.1 Function Blocks (FB) . 123

3.11.2 Functions (FC). 130

3.11.3 Authorization Function Block . 133

3.11.4 FB Initial Values . 134

3.11.5 Encrypting FB or FC . 138

3.12 Folder . 140

4 Programming Languages .. 146

4.1 Programming Language (LiteST) . 146
4.1.1 Overview . 146

4.1.2 Expressions. 146

4.1.3 Variables . 147

4.1.4 Constants . 148

4.1.5 FB, FC, Subprogram, and Interrupt . 148

4.1.6 Intelligent Input and Prompts . 148

4.1.6.1 Quick Input . 148

4.1.6.2 Mouse Hover Prompt . 149

4.1.7 Syntax Instructions . 149

4.1.7.1 Overview . 149

4.1.7.2 Assignment Instructions . 150

4.1.7.3 Function Block Calls . 151

4.1.7.4 IF. 151

4.1.7.5 CASE . 152

4.1.7.6 WHILE. 154

4.1.7.7 REPEAT . 154

4.1.7.8 FOR . 155

4.1.7.9 EXIT . 156

4.1.7.10 CONTINUE . 156

4.1.7.11 RETURN. 157

4.1.7.12 Comments . 157

4.1.8 PLC Instructions Supported by LiteST . 158

4.1.8.1 Basic Axis Control Instructions . 158

4.1.8.2 Cam and Gear Instructions . 158

Table of Contents

-8-

4.1.8.3 Encoder Instructions . 159

4.1.8.4 Communication Instructions . 159

4.1.8.5 Timer Instructions . 159

4.1.8.6 Interrupt Instructions . 160

4.1.8.7 Operation Instructions . 160

4.1.8.8 Other Instructions. 161

4.1.8.9 Instruction Examples. 161

4.1.9 Exception Protection and Handling . 162

4.1.9.1 Division-by-zero Protection . 162

4.1.9.2 Array Out-of-bounds . 163

4.1.9.3 Infinite Loop . 163

4.1.9.4 Array Subscript Considerations . 164

4.2 Programming Language (LD). 164

4.3 Programming Language (SFC) . 164

5 Extension Modules .. 165

5.1 H5U Local Extension Modules. 165
5.1.1 Overview . 165

5.1.2 Configuring Hardware . 165

5.1.3 Configuring Extension Modules. 166

5.1.3.1 DI Modules . 166

5.1.3.2 DO Modules . 168

5.1.3.3 AI Modules . 170

5.1.3.4 AO Modules . 172

5.1.3.5 Temperature Detection Modules . 174

5.2 Easy Local Extension Modules and Extension Cards . 177
5.2.1 System Variables . 177

5.2.1.1 System Variables of Extension Modules . 177

5.2.1.2 System Variables of Extension Cards . 177

5.2.2 Local Extension Modules . 178

5.2.2.1 Overview . 178

5.2.2.2 Configuring Hardware. 179

5.2.2.3 Configuring Extension Modules . 180

5.2.3 Extension Cards . 195

5.2.3.1 Overview . 195

5.2.3.2 Configuring Extension Cards . 195

5.2.4 Application Examples . 198

5.3 GL20-RTU-ECT Local Extension Module . 199
5.3.1 Overview . 199

Table of Contents

-9-

5.3.2 Configuring Extension Modules. 199

5.4 GR10-EC-6SW Branch Module . 203
5.4.1 Overview . 203

5.4.2 Adding the Branch Module and Its Slave . 204

5.4.3 Deleting the Branch Module and Its Slave . 206

5.5 GS20-ECT-8L Module. 207
5.5.1 Overview . 207

5.5.2 Configuring the GS20-ECT-8L Module . 207

5.5.3 Fault Diagnosis . 215

5.5.3.1 EtherCAT Diagnosis . 215

5.5.3.2 IO-Link Diagnosis . 215

5.5.4 Object List . 216

5.5.4.1 Process Data . 216

5.5.4.2 EtherCAT Object Dictionary Data (CoE Object) . 219

5.5.4.3 Configuration Data for Process Data Communication . 224

5.5.4.4 IO-Link Slave Configuration Data. 229

5.6 Basic Operations of Local Modules . 230
5.6.1 Scanning Local Modules Automatically (Easy) . 230

5.6.2 Disabling Local Modules. 232

5.6.3 Enabling Local Modules . 233

6 Serial Communication. 235

6.1 Overview . 235

6.2 Serial Communication Network. 235

6.3 Free Protocol Configuration. 236
6.3.1 Free Protocol Configuration . 236

6.3.2 Free Protocol Cancellation (SerialSR Instruction). 237

6.4 Master Configuration. 238
6.4.1 Modbus-RTU or Modbus-ASCII Master . 238

6.4.2 Modbus Master Configuration Table. 239

6.4.3 Modbus-RTU Slave Disable . 241

6.5 Slave Configuration . 242
6.5.1 Modbus-RTU or Modbus-ASCII Slave . 242

6.5.2 Parameters and Addresses . 243

6.6 Example of Modbus-RTU Communication Application . 244

6.7 Modifying Serial Port Parameters. 246
6.7.1 Modifying COM Port Parameters. 246

Table of Contents

-10-

6.7.2 Modifying Slave Address Parameters . 248

7 Ethernet Communication.. 249

7.1 Overview . 249

7.2 Hardware Ports . 249

7.3 IP Address Settings. 249

7.4 Master Configuration. 251
7.4.1 Modbus-TCP Master . 251

7.4.2 Modbus Master Configuration Table. 252

7.4.3 Modbus-TCP Slave Disable . 254

7.5 Slave Configuration References. 255
7.5.1 Modbus-TCP Slave . 255

7.5.2 Parameters and Addresses . 256

7.6 Example of Modbus-TCP Communication Application. 256

8 CAN Communication .. 262

8.1 Overview . 262

8.2 Hardware Ports . 262

8.3 CAN Network. 263
8.3.1 CAN Communication Networking . 263

8.3.2 Relationship Between CAN Communication Distance and Baud Rate . 263

8.3.3 CAN Port System Variables . 263

8.4 CANlink Communication. 264
8.4.1 CANlink3.0 Communication Principles . 264

8.4.2 CANlink Configuration. 265

8.4.3 AC Drive Communication Example . 274

8.4.4 CANlink Indicator. 279

8.4.5 CANlink Communication Troubleshooting . 279

8.5 CANopen Communication . 280
8.5.1 CANopen Communication Protocol . 280

8.5.2 CANopen Axis Control Instruction List . 280

8.5.3 CANopen Terminology . 281

8.5.4 CANopen Indicator . 281

8.5.5 CANopen Configuration . 282

8.5.5.1 Master Configuration. 282

8.5.5.2 Slave Configuration . 289

8.5.5.3 PDO Enable . 293

8.5.5.4 PDO Mapping Edit. 294

Table of Contents

-11-

8.5.5.5 PDO Property Settings . 294

8.5.5.6 Service Data Object (SDO). 295

8.5.5.7 Online Commissioning . 296

8.5.5.8 I/O Mapping. 298

8.5.5.9 Device Information. 299

8.5.6 CANopen Communication Troubleshooting . 299

8.5.6.1 General Troubleshooting Steps . 299

8.5.6.2 Fault Code List . 300

9 EtherCAT Communication .. 303

9.1 Overview . 303

9.2 Master Configuration. 303
9.2.1 Importing Device Description (XML) . 303

9.2.2 Scanning Devices. 305

9.2.3 Master Configuration . 307

9.2.4 Start/Stop, Disable, and Enable . 307

9.2.5 Master Status Monitoring. 309

9.2.6 Summary of System Variables . 311

9.3 Slave Configuration . 312
9.3.1 General Settings. 312

9.3.2 Process Data . 315

9.3.3 Startup Parameters . 318

9.3.4 I/O Function Mapping . 319

9.3.5 Start/Stop, Disable, and Enable . 324

9.3.6 Disabling Slaves Using Instructions. 325

9.3.7 System Variables . 327

9.4 Faults and Diagnosis . 328
9.4.1 Learning Faults . 328

9.4.2 Fault Codes. 329

10 EtherNet/IP Communication .. 331

10.1 Overview. 331

10.2 Technical Specifications. 331
10.2.1 EtherNet/IP Transmission Specifications. 331

10.2.2 EtherNet/IP Communication Specifications . 332

10.2.3 Quick Reference Table of EtherNet/IP Solutions . 333

10.2.4 EtherNet/IP Solution Selection Example . 334

10.3 Class 1 Communication . 335
10.3.1 Master Configuration. 335

Table of Contents

-12-

10.3.1.1 EtherNet General Settings . 335

10.3.1.2 EtherNet/IP Device IP Settings . 336

10.3.1.3 Adding EtherNet/IP Slaves . 337

10.3.1.4 Exporting EDS Files . 338

10.3.2 Slave Configuration . 341

10.3.2.1 General Settings . 341

10.3.2.2 Connection Settings . 343

10.3.2.3 Configuring I/O Variable Mapping. 345

10.3.3 EtherNet/IP Master Application Example . 346

10.3.4 EtherNet/IP Slave Application Example . 347

10.3.5 Tag Communication . 349

10.3.5.1 Configuring Producer Tag Data . 349

10.3.5.2 EtherNet/IP Consumer Tag Connection . 350

10.3.5.3 Setting Tag Data Set . 352

10.3.6 Tag Communication Example . 353

10.4 Service Message Tag Communication . 354
10.4.1 Configuring Service Message Tags on Server . 354

10.4.2 Configuring Service Message Tags on Client. 355

10.4.3 Application Example . 356

11 PROFINET Communication .. 358

11.1 Overview. 358

11.2 Configuration Process . 360
11.2.1 TIA Portal Configuration . 360

11.2.2 AutoShop Configuration . 362

11.3 Enable and Disable . 365

12 Motion Control . 367

12.1 Introduction to Motion Control Axes . 367
12.1.1 Overview . 367

12.1.2 PLCOpen State Machine. 370

12.1.3 Axis Units. 371

12.1.4 Axis Configuration Parameters . 372

12.1.5 Axis System Variables . 373

12.1.6 List of Axis Control Instructions . 376

12.2 Setting Motion Control Axes . 377
12.2.1 Creating a Project . 377

12.2.2 Creating Project Configuration . 378

12.2.3 Setting Axis Parameters . 384

Table of Contents

-13-

12.2.3.1 Bus Servo Axis . 384

12.2.3.2 Local Pulse Axis . 385

12.2.4 Writing a Program. 386

12.2.5 Downloading a Project . 391

12.2.6 Basic Motions . 393

12.2.6.1 Pre-conditions . 393

12.2.6.2 PLC Program Control . 393

12.2.6.3 Online Commissioning. 397

12.3 Configuring Motion Control Axes . 398
12.3.1 Bus Servo Axis versus Local Pulse Axis . 398

12.3.2 Basic Settings . 399

12.3.3 Mode/Parameter Settings . 402

12.3.3.1 Configuration Interface . 402

12.3.3.2 Encoder Mode . 403

12.3.3.3 Mode Setting. 404

12.3.3.4 Software Limits . 406

12.3.3.5 Deceleration upon Axis Fault . 406

12.3.3.6 Following Error . 406

12.3.3.7 Axis Speed Setting . 406

12.3.3.8 Torque Setting. 406

12.3.3.9 Probe Setting . 407

12.3.3.10 Output Setting. 407

12.3.3.11 Not Entering ErrorStop State upon a Limit Activation . 407

12.3.3.12 Hardware Limit Logic . 407

12.3.4 Homing . 408

12.4 Online Monitoring. 409

12.5 Axis Control Functions. 412
12.5.1 Overview . 412

12.5.2 Online Commissioning . 412

12.5.3 Instruction Control Rules. 418

12.5.4 Limit Handling . 418

12.5.5 Positioning Curve . 418

12.6 Dragging Motion Control Axes . 421

12.7 Modifying Axis Configuration Parameters Using Instructions . 422

12.8 Fault Categories. 426

13 High-speed Counter .. 427

13.1 Introduction to High-speed Counter Axes . 427

Table of Contents

-14-

13.2 Creating Counter Axes . 427

13.3 Counter Axis User Unit and Conversion . 427

13.4 Setting Working Modes . 431
13.4.1 Linear Mode. 431

13.4.2 Rotary Mode . 433

13.5 Setting Counter Parameters . 434
13.5.1 Overview . 434

13.5.2 Count Modes . 434

13.5.2.1 Overview. 434

13.5.2.2 Phase A/B Mode . 435

13.5.2.3 CW or CCW Mode . 436

13.5.2.4 Pulse+Direction Mode. 437

13.5.2.5 Single-phase Count . 437

13.5.3 Probe Terminal Settings . 437

13.5.4 Preset Terminal Settings . 438

13.5.5 Comparison Output Terminal Settings . 438

13.6 Counter Axis Instruction Application (H5U). 439
13.6.1 Overview . 439

13.6.2 Axis Position Count and Speed Measurement Instructions . 439

13.6.3 Axis Position Preset Instructions . 440

13.6.4 Probe Instructions . 440

13.6.5 Comparison Instructions . 442

13.6.6 High-speed Hardware Comparison Output. 444

13.6.7 Comparison Interruption. 446

13.7 Counter Axis Instruction Application (Easy) . 448
13.7.1 Overview . 448

13.7.2 Axis Position Count and Speed Measurement Instructions . 448

13.7.3 Axis Position Preset Instructions . 449

13.7.4 Probe Instructions . 449

13.7.5 Comparison Instructions . 451

13.7.6 High-speed Hardware Comparison Output. 453

13.7.7 Comparison Interruption. 455

13.7.8 Setting the Gear Ratio of the Axis . 457

13.7.9 Setting the Linear/Rotary Mode of the Axis . 457

14 Interpolation Function.. 459

14.1 Introduction to the Interpolation Function. 459
14.1.1 Overview . 459

Table of Contents

-15-

14.1.2 List of Axis Group Control Instructions . 460

14.1.3 Configuration Interface . 460

14.2 Interpolation Operations . 463
14.2.1 Overview . 463

14.2.2 Creating an Axis Group . 464

14.2.3 Enabling an Axis Group. 465

14.2.4 Linear Interpolation . 466

14.2.5 Circular Interpolation . 467

14.2.6 Axis Group Stop . 468

14.2.7 Axis Group Pause. 469

14.2.8 Single-axis Motion. 470

14.2.9 Setting the Current Position. 472

14.2.10 Reading the Current Status . 473

14.2.11 Resetting Axis Group Faults . 474

14.2.12 Homing . 475

14.3 Buffer and Transition . 477
14.3.1 Overview . 477

14.3.2 Interrupt+No Transition . 478

14.3.3 Buffer+No Transition . 478

14.3.4 Previous Velocity+No Transition . 479

14.3.5 Additional Angle Transition . 480

14.4 Methods of Handling Single-Axis Configuration Parameters in Interpolation 480

14.5 System Variables . 481
14.5.1 _sGROUPAXIS_INFO for Status of Coordinate Axes within Axis Group . 481

14.5.2 _sMCGROUP_INFO for Axis Group Status. 482

14.5.3 _sGROUPPOS_INFO for Target Positions of Coordinate Axes within Axis Group 485

14.6 Fault Codes . 486

15 Bus Encoder Axes .. 489

15.1 Introduction to Bus Encoder Axes . 489

15.2 Software Configuration. 489
15.2.1 Basic Settings . 489

15.2.2 Unit Conversion . 491

15.2.3 Mode/Parameter Settings . 493

15.2.3.1 Configuration Interface . 493

15.2.3.2 Selection of Linear or Rotary Mode . 493

15.2.3.3 Counter Mode Selection . 495

15.2.3.4 Frequency Sampling Period. 496

Table of Contents

-16-

15.2.3.5 Input Filter Time . 496

15.2.3.6 Input Terminal Function Selection. 496

15.2.3.7 Output Terminal Function Selection . 497

15.3 System Variables . 498

15.4 Function Demonstration . 500
15.4.1 Establishing the Configuration . 500

15.4.2 Counter Enabling . 501

15.4.3 Counter Presetting . 503

15.4.4 Probe Function. 504

15.4.5 One-dimensional Comparison Output . 507

15.4.6 Two-dimensional Comparison Output . 510

15.4.7 DO Terminal Control . 512

15.4.8 Obtaining Axis Status . 512

16 Electronic Cam ... 514

16.1 Introduction to Electronic Cam. 514

16.2 Software Configuration. 514
16.2.1 Overview . 514

16.2.2 Cam Node Settings. 514

16.2.3 Cam Curve Settings . 515

16.2.4 Import and Export. 516

16.2.5 Uploading Cam Tables . 516

16.2.6 Calling System Variables and Instructions. 516

16.3 System Variables . 516
16.3.1 Cam Nodes. 516

16.3.2 Cam Tables . 517

16.3.3 Cam Contact Nodes . 518

16.4 State Machines . 519

16.5 Electronic Cam Operations. 520
16.5.1 Gear Operation. 520

16.5.2 Cam Operation. 523

16.5.3 Cam Tables . 526

16.5.3.1 Introduction to Cam Tables. 526

16.5.3.2 Cam Table Specifications . 527

16.5.3.3 Cam Table Data Flow . 527

16.5.3.4 Creating Cam Tables. 528

16.5.3.5 Switching Cam Tables . 529

16.5.3.6 Modifying Cam Table Data . 529

Table of Contents

-17-

16.5.3.7 Saving Cam Tables. 532

16.5.4 Master Axis Phase Compensation . 532

16.5.5 Motion Superimposition . 533

16.5.6 Methods of Handling Single-Axis Configuration Parameters in Cam or Gear. 534

17 Offline Commissioning.. 535

17.1 Overview. 535

17.2 Starting Offline Commissioning . 536

17.3 Motion Control Axes in Offline Commissioning. 538

17.4 Simulation Commissioning with InoTouchPad . 539
17.4.1 Overview . 539

17.4.2 PLC Configuration. 539

17.4.3 HMI Configuration. 539

17.4.4 Starting Commissioning. 540

18 Memory Management.. 541

18.1 Overview. 541

18.2 Memory Management of Customized Variable Tables. 541
18.2.1 Expanding and Collapsing Complex Type Variables . 541

18.2.2 Monitoring Variables . 541

18.2.3 Reading and Writing Memory Data . 542

18.2.4 Synchronizing and Clearing Data. 542

18.2.5 Saving and Loading Data. 543

18.2.6 Editing Initial Values and Comments of Variables . 544

18.2.7 Switching and Displaying Number Systems . 544

18.3 Memory Management of Soft Elements. 544
18.3.1 Operation Interface . 544

18.3.2 Data Operation. 545

18.3.3 Bit Comments. 547

18.3.4 Rules of Editing Data Types . 547

18.4 Function Demonstration . 547

19 Fault Diagnosis . 549

19.1 Diagnosis Through the Panel . 549
19.1.1 Indicators . 549

19.1.2 MFK Key. 549

19.1.2.1 Overview. 549

19.1.2.2 Restoring the Factory Default IP Address . 550

19.1.2.3 Writing User Programs Through SD Cards . 550

Table of Contents

-18-

19.1.2.4 LED Display of the CPU Module . 550

19.2 Diagnosis Through Software . 551
19.2.1 Obtaining Basic PLC Information. 551

19.2.2 Viewing Operation Logs . 551

19.3 Fault Codes . 552

20 Appendix . 597

20.1 Modbus Protocol. 597
20.1.1 Modbus Message Description . 597

20.1.2 Modbus-RTU Message Frame. 597

20.1.3 Modbus-ASCII Message Frame . 597

20.1.4 Modbus-TCP Message Frame. 598

20.1.5 Function Code Definitions. 599

20.1.5.1 Modbus Data Model. 599

20.1.5.2 Function Code List . 599

20.1.5.3 Function Code Explanation . 599

20.1.6 Exception Code List . 604

20.2 Firmware Programming and Upgrade . 604
20.2.1 Firmware Programming . 604

20.2.2 Firmware Upgrade . 605

20.2.2.1 Firmware Upgrade Through Ethernet . 605

20.2.2.2 Firmware Upgrade Through SD Cards . 606

20.3 Applying the Function of Download File Generation . 609
20.3.1 Generating Down Files . 609

20.3.1.1 Overview. 609

20.3.1.2 Generating Down Files . 610

20.3.1.3 Upgrading Down Files Through SD Cards . 611

20.3.1.4 Downloading Down Files Through AutoShop . 611

20.3.1.5 Compatibility . 612

20.3.2 Generating Updown Files . 612

20.3.2.1 Overview. 612

20.3.2.2 Generating Updown Files . 612

20.3.2.3 Opening Updown Files. 613

20.3.2.4 Uploading and Downloading Updown Files Through HMI. 614

20.3.2.5 Uploading and Downloading Updown Files Through AutoShop 615

20.3.2.6 Uploading and Downloading Updown Files Through SD Cards 616

20.4 Applying Customized Variables in Communication. 616
20.4.1 Overview . 616

Table of Contents

-19-

20.4.2 Example Project Requirements . 617

20.4.3 PLC Programming. 617

20.4.3.1 Accessing Customized Variables Through HMI Tag Communication 617

20.4.3.2 Accessing Customized Variables Through Mapping Address . 618

20.4.4 HMI Configuration. 619

20.4.4.1 Accessing Customized Variables Through HMI Tag Communication 619

20.4.4.2 Accessing Customized Variables Through Mapping Address . 623

20.4.5 Example Running Results . 625

Table of Contents

Overview

-20-

1 Overview

1.1 Introduction

1.1.1 Product Introduction

The H5U series PLC, a new generation of small-sized PLC developed by Inovance, supports EtherCAT
bus communication and features powerful motion control and distributed I/O control functions. It
allows process encapsulation and reuse using the FB/FC function, and multi-layer network
communication through the RS485, CAN, Ethernet, and EtherCAT interfaces.

Easy series small- and medium-sized PLCs are available in eight models, covering the demands of
automation equipment requiring small footprint, multi-axis motion control, accurate temperature
control, and easy networking.

1.1.2 Software Introduction

AutoShop is programming configuration software provided by Inovance for small-sized PLCs. It
provides a friendly programming and commissioning environment and supports various and powerful
communication and control functions. AutoShop supports various programming languages, such as
the ladder diagram (LD), sequential function chart (SFC), and structured text (LiteST).

AutoShop has the following features:

● Flexible communication mode: This feature allows AutoShop to communicate with PLC through
COM, USB, and Ethernet. It enables the remote operation and remote collaborative commissioning
functions for users, greatly facilitating users.

● Powerful network support: This feature enables the Modbus standard communication function
based on configuration and supports CANopen communication configuration and Inovance CANlink
communication configuration, greatly reducing difficulties and improving the working efficiency.

● Powerful motion control function: AutoShop has abundant motion control instructions and
supports many functions such as the G codes, axis positioning, electronic cam, and flying shear/
chasing shear.

● Convenient and diverse commissioning methods: AutoShop supports various functions such as
motion profile graphics, monitoring, online modification, oscilloscope, and fault diagnosis,
facilitating user commissioning and localization.

● Powerful intellectual property protection function: Functions such as upload password, download
password, identifier, and upload forbidding help to effectively protect the intellectual property.

1.1.3 Networking Schemes

H5U series networking scheme

H5U provides the EtherCAT, CAN, Ethernet, and RS485 interfaces to implement multi-level network
communication and meet requirements of multiple scenarios. It is equipped with four high-speed

Overview

-21-

inputs, four medium-speed inputs, and four high-speed outputs, which can realize 4-axis pulse output
and 4-axis encoder counting.

The following figure shows a typical application topology.

Easy series networking scheme

Two Easy series models are used as an example to introduce the typical application topology, as
shown in the following figures.

Figure 1-1 Easy523 series application topology

Overview

-22-

Figure 1-2 Easy320 series application topology

1.2 Obtaining and Installing the Software

1.2.1 How to Obtain

AutoShop programming software is provided for free. To obtain it, visit www.inovance.com, search for
the keyword, and download the guide.

Note
As Inovance constantly improves its products and documentation, it is recommended that you update your soft-
ware versions and consult the latest reference materials when needed to facilitate your application design.

1.2.2 Installation Environment Requirements

The following table lists the items required for a PC where AutoShop programming software is
installed.

Item Requirement

Operating system Windows 7 or 10, 64-bit is recommended

Primary frequency of CPU 4 GHz or above
Memory 4 GB or above
Hard drive More than 5 GB

http://www.inovance.cn

Overview

-23-

1.2.3 Installing the Software

To install AutoShop, you can download the software installation package of the latest version at www.
inovance.com, and the installation UI of the latest version shall prevail. AutoShop V4.8.1.0 is installed
on Windows 10 as an example.

1. Decompress the "AutoShop V4.8.1.0 Setup.zip" package.
2. Double-click "AutoShop V4.8.1.0 Setup.exe." In the "Select language" dialog box, select a language

and click "OK".
3. Click "Next".

4. Click "Browse". In the dialog box, select an installation path and click "Next". In general, the default
path is used.

Overview

-24-

5. Click "Browse". In the dialog box, select an installation path for the program shortcut and click
"Next". In general, the default path is used.

6. Click "Next".

Overview

-25-

7. Click "Install".

The following figure shows the installation progress.

Overview

-26-

8. Click "Finish."

1.2.4 Uninstalling the Software

AutoShop V4.6.5.0 is uninstalled on Windows 10 as an example.

Overview

-27-

1. Click on the desktop. On the start menu that is displayed, click to access the "Windows
setting" page.

2. Click "Apps & Features" as shown below.

3. On the "Apps & Features" page, click "AutoShop Vx.x.x.x" and then "Uninstall".
4. Click "Uninstall". The "AutoShop uninstall wizard" dialog box is displayed.
5. Click "Yes". After the software is uninstalled, click OK.

1.3 Software Interface

The main screen of AutoShop programming software consists of the menu bar, toolbar, engineering
management section, program editing section, and toolbox, as shown in the following figure.

Overview

-28-

No. UI Description

① Menu bar and
toolbar

Programming software operation menus, containing settings of programming,
commissioning, and communication, and shortcut modes of file management and
programming commissioning tools.

② Program editing
section

Compiling application programs for users

③ Tool kit Set of instructions supported by the slave station and select PLC in a project. Tool
kits are classified into ladder diagram ones and ST ones and can be switched to each
other. The two types only differ in instructions supported in the instruction sets.

④ Engineering
management

Including parameter management, variable management, program management,
and configuration management of the PLC project.

Quick Start

-29-

2 Quick Start

2.1 Overview

This section provides a simple programming example and general functions used in the programming
commissioning process for you to quickly master programming and commissioning. It is quite helpful
to beginners.

2.2 Communication Connection

2.2.1 Overview

An PLC communicates with the PC where AutoShop is located through USB or Ethernet connection to
upload, download, monitor, and commission the program.

For example, H5U communicates with the PC through Ethernet, achieving multi-point connection or
point-to-point connection in hub-based, switch-based, or direction connection mode, as shown in the
following figure.

2.2.2 Ethernet Connection

When connecting a PC to an PLC through Ethernet connection, you may need to connect to the target
PLC and change the PLC IP address and device name.

Connecting to the target PLC

To connect a PC to an PLC through Ethernet connection, you need to select the PLC with the specified
IP address.

● If the IP address of the PLC is provided, configure the communication type and IP address of the
PLC and then connect to the target PLC.

1. Connect the PC to the PLC using a network cable.

2. Double-click on the desktop of the PC to start the AutoShop programming software.
3. Choose "Tools" > "Communication Settings" in the menu bar or click in the toolbar. The

"Communication Settings" dialog box is displayed.

Quick Start

-30-

4. Set parameters in the "Communication Settings" dialog box.

■ Set "Communication type" to "Ethernet".
■ Set "Device IP" to the actual IP address of the PLC.

Quick Start

-31-

Note
To test the network connection between the PC and the PLC, click "PING".

5. Click "Test" to check whether the target PLC is connected successfully.

■ H5U: When LEDs of the connected H5U display 0 alternatively, the H5U is connected
successfully.

■ Easy: When the RUN indicator of the connected Easy flashes, the Easy is connected
successfully.

6. Click "OK" to connect to the target PLC.

Then, the IP address of the PLC is displayed in the toolbar and you can download, upload,
monitor, or modify the PLC program online.

Quick Start

-32-

● If the IP address of the PLC is not provided,
you can search for the target PLC.

1. Connect the PC to the PLC using a network cable.

2. Double-click on the desktop of the PC to start the AutoShop programming software.
3. Choose "Tools" > "Communication Settings" in the menu bar or click in the toolbar. The

"Communication Settings" dialog box is displayed.

4. Set "Communication type" to "Ethernet", and click "Search" to search for the PLC connected in
the LAN.

■ In switch-based connection mode, you can only search for the PLC in the same segment of the
PC.

■ In direct connection mode, you can search for the PLC in the same segment or a different
segment of the PC.

Quick Start

-33-

5. Select the IP address row in the search result and click "Test" to check whether the PLC is
connected successfully.

■ H5U: When LEDs of the connected H5U display 0 alternatively, the H5U is connected
successfully.

■ Easy: When the RUN indicator of the connected Easy flashes, the Easy is connected
successfully.

Note
To test the network connection between the PC and the PLC, click "PING".

6. Click "OK" to connect to the target PLC.

Then, the IP address of the PLC is displayed in the toolbar and you can download, upload,
monitor, or modify the PLC program online.

Quick Start

-34-

Changing the PLC IP address and device name

You can change the IP address or the PLC as needed or change the device name of the PLC for
differentiation.

1. After connecting to the target PLC, click "Modify IP/Name" in the "Communication Settings" dialog
box. The "Modify IP/Name" dialog box is displayed.

2. Set "IP Address", "Subnet mask", and "Default gateway" in the "New IP Address" section, and click
"Modify IP". In the dialog box that is displayed, click "OK". The new IP address takes effect after the
PLC is powered on again.

Note
When the new PCB software (V3.0.0.0) is used with an old AutoShop background (V4.0.0.0 or earlier version), the fol-
lowing situation will occur:

When you modify the IP in the communication settings, even if the software prompts success, the IP may not be suc-
cessfully modified.

3. In the "Device Name" section, set "Device name" as needed and click "Modify device name". In the
dialog box that is displayed, click "OK".

Quick Start

-35-

2.2.3 USB Connection

When connecting a PC to an PLC through USB connection, you may need to connect to the target PLC
and change the PLC IP address and device name.

Connecting to the target PLC

1. Connect the PC to the PLC using a USB cable.

2. Double-click on the desktop of the PC to start the AutoShop programming software.
3. Choose "Tools" > "Communication Settings" in the menu bar or click in the toolbar. The

"Communication Settings" dialog box is displayed.

4. Set "Communication type" to "USB" and click "Test" to check whether the target PLC is connected
successfully.

● H5U: When LEDs of the connected H5U display 0 alternatively, the H5U is connected successfully.
● Easy: When the RUN indicator of the connected Easy flashes, the Easy is connected successfully.

Quick Start

-36-

If AutoShop V4.0.0.0 is used with an old PCB software (V3.0.0.0 or earlier versions), clicking "Test" will not initiate
connection to the H5U device. In this case, upgrade the PLC software.

5. Click "OK" to connect to the target PLC.
Then, you can download, upload, monitor, or modify the PLC program online.

Changing the PLC IP address and device name

You can change the IP address or the PLC as needed or change the device name of the PLC for
differentiation.

1. After connecting to the target PLC, click "Modify IP/Name" in the "Communication Settings" dialog
box. The "Modify IP/Name" dialog box is displayed.

Quick Start

-37-

2. Set "IP Address", "Subnet mask", and "Default gateway" in the "New IP Address" section, and click
"Modify IP". In the dialog box that is displayed, click "OK". The new IP address takes effect after the
PLC is powered on again.

Note
When the new PCB software (V3.0.0.0) is used with an old AutoShop background (V4.0.0.0 or earlier version), the fol-
lowing situation will occur:

When you modify the IP in the communication settings, even if the software prompts success, the IP may not be suc-
cessfully modified.

3. In the "Device Name" section, set "Device name" as needed and click "Modify device name". In the
dialog box that is displayed, click "OK".

2.3 Programming Process

A typical user program flowchart of the H5U series PLC is compiled and commissioned as an example,
as shown in the following figure.

Note
* If only the H5U host is used, skip the "Hardware configuration" step. If connected to a PLC without a login pass-
word, skip the "Login PLC" step.

Quick Start

-38-

2.4 Programming Example

2.4.1 Example Requirements

Compile and commission the next marquee program based on the following requirements:

Using a 16-output module, PLC program shifts one bit rightwards from Y20 every 1s. When the output
reaches Y27, the PLC program returns the output to Y20 for a new cycle, which is monitored through
HMI.

2.4.2 Creating a Project

1. Double-click the AutoShop shortcut icon on the desktop.
2. Choose "File" > "New Project" in the menu bar or click in the toolbar. In the dialog box that is

displayed, choose an editor type from the "Editor" drop-down list, and set "Series and models" to
"H5U".

3. Set "Project name" and "Save path", and click "OK" to create a project. Then, the main screen of the
project is displayed.

Quick Start

-39-

2.4.3 Connecting to Target PLC

This section takes the Ethernet connection between the PC and PLC as an example. For details about
how to connect to the target PLC, see "Connecting to the target PLC" in “2.2.2 Ethernet Connection” on
page 29.

2.4.4 (Optional) Configuring Hardware

If the local extension module is installed for the H5U host, perform the steps in this section. Otherwise,
skip this section.

1. In the "Project Manager" tree, unfold "Config" and double-click "Module Config". The "Module
Config" page is displayed.

2. Double-click the modules under "Module" on the right of the page based on the installation
sequence to add the corresponding modules.

Quick Start

-40-

3. Double-click an added module and configure the channel mapping element corresponding to the
module channel.

4. Click "OK".

2.4.5 Programming and Compiling

1. In the "Project Manager" tree, unfold "Programming" and double-click "MAIN" to compile the
marquee program.

Quick Start

-41-

2. In the toolbar, click or for compiling.

● : Compile the opened program.

● : Compile the overall project.

After compiling is completed, the compilation information is displayed at the bottom of the main
screen.

2.4.6 (Optional) Logging In to PLC

In case of Ethernet connection between a PC and a PLC with the login password set, to modify, upload,
download, or verify the program online, perform the steps in this section. Otherwise, skip this section.

1. In the toolbar, click . The "User Login" page is displayed.

2. Enter the PLC login password in the "Login password" text box and click "Log on".

Quick Start

-42-

Note
For more details about logging in to the PLC, see section "2.10 Logging in to PLC".

2.4.7 Downloading Program

1. Choose "PLC" > "Download" in the menu bar or click in the toolbar to download the program.

● If the PLC is in the running state, perform operations to access the prompt dialog box and click
"OK", as shown in the following figure: Proceed to Step 2.

● If the PLC is in the stopped state: Proceed to Step 3.

2. Upon download completion, click "OK" in the dialog box to switch the PLC to the running state.

3. Upon download completion, click in the toolbar to switch the PLC to the running state.

Note
When the new PCB software (V3.0.0.0) is used with an old AutoShop background (V4.0.0.0 or earlier version), the fol-
lowing situation will occur:

If the PLC is not configured with a login password, projects downloaded through the new background cannot be up-
loaded through the old background.

2.4.8 HMI Monitoring

You can monitor the execution of the marquee program through the HMI.

1. Create a project, connection, or variable and view the configuration screen on the HMI side. For
details, see XX Series HMI Quick Start.

2. When running the PLC program, you can monitor the marquee status change on the HMI
configuration screen.

Quick Start

-43-

2.5 Switching PLC Working Modes

An PLC can work in RUN or STOP mode.

● RUN: The PLC detects input at the X point, scans and calculates the user program, refreshes
elements, and enables output and communication at the Y point.

● STOP: The PLC stops scanning of the program and output at the Y point, and disables the
communication function.

PLC working modes can be switched in either of the following two ways:

● Toggle the "RUN/STOP" switch on the PLC.

● In the toolbar, click to run the PLC or click to stop the PLC.

2.6 Modifying Program Online

After the mode is enabled, online editing of the program does not affect the running PLC. Therefore,
the program can be edited without the need of stopping the PLC, facilitating program commissioning.

Quick Start

-44-

● Program modification does not support:

● Adding or deleting program files
● Renaming program files
● Modifying program file properties
● Encrypting or decrypting subprograms

● Modifying configuration is not supported.
● Global variables:

● Adding or deleting variables is supported.
● Modifying names or comments of variables is supported, but modifying other features is not supported.

● FB/FC local variables:

● Adding, modifying, or deleting IN/INOUT/OUT type variables is not supported.
● Adding or deleting Var type variables is supported.
● Var variables added before the current online modification cycle: Modifying names or comments of Var type

variables is supported, but modifying other features is not supported.
● Var variables added during the current online modification cycle: Modifying any features of Var variables is

supported.

● Do not power off the system within 5s to 10s after successful online modification and download of the program.
Otherwise, program errors may occur.

1. Choose "PLC" > "Online Edit Mode" in the menu bar or click in the toolbar to enable the online
modification mode. At the same time, the software enters the monitoring mode.
In online modification mode, if the running program is different from the program in the PLC, the
"Failed to enter online modification mode!" prompt dialog box is displayed. In this case, you need to
check whether the program is started correctly.

2. Click to compile the program online as required.

3. Click to download the modified program to the running PLC. The PLC does not stop running
during the operation.
Information shown in the following figure is displayed in the lower part of the main screen. Then, the
PLC runs with the modified program.

2.7 Setting Program Scan Cycles

You can select the constant scan cycle or the non-constant scan cycle.

● When the constant scan cycle is selected, the program runs by the specified scan cycle. If the actual
running time is less than or equal to the set scan cycle, the PLC scans the program based on the set
value. If the actual running time is greater than the set scan cycle, the PLC scans the program based
on the actual running time.

● When the non-constant scan cycle is selected, the PLC automatically adjusts the scan cycle based
on the running time of the program.

Quick Start

-45-

1. In the "Project Manager" tree, right-click "Function block" and select "Block Properties". The "Block
Properties" dialog box is displayed.

2. Set "Watchdog" and "Constant scan period".

● ① Watchdog: indicates the maximum scan cycle of the program. When the running time of the
program is greater than the value, the PLC reports an error and stops running.

● ② Constant scan period: When the check box is selected, the constant scan cycle mode is
selected and the scan cycle equals to the value. Otherwise, the scan cycle equals to the actual
running time.

3. Click "OK" and download the program to the PLC. The settings take effect immediately.

2.8 Setting EtherCAT Task Cycles

You can set EtherCAT task cycles as needed.
One program scan cycle contains the program execution, EtherCAT task, and EtherCAT axis instruction
data exchange. When program scanning is idle, the scan cycle also contains the idle task. The priority
of the EtherCAT task is the highest so that the EtherCAT task can interrupt execution of other tasks.

The following figure shows the relationship between the EtherCAT task cycle and the program scan
cycle.

1. In the "Project Manager" tree, unfold "Config" and double-click "EtherCAT". The "General Settings"
page is displayed.

Quick Start

-46-

2. Set the cycle time of the EtherCAT task to a value ranging from 1000 μs to 9000 μs.
3. (Optional) In monitoring mode, click the "Status" tab. On the "EtherCAT task monitoring" page that

is displayed, obtain communication information.
4. Click "OK" and download the program to the PLC. The settings take effect immediately.

2.9 Packing and Decompressing Project Archives

A project archive is an .hclib file consisting of the current project, EDS file, library file, and third-party
EtherCAT device XML file. The current project cannot be a temporary project, and the library file used
in the program is packed by default. To provide your project for other users, you only need to pack the
project archive into an .hclib file and send it to the target user. The user then decompresses the file
and directly compiles and downloads the project archive, without the need of sending the EDS file, li-
brary file, or third-party XML file.

Packing a project archive

1. In the menu bar, choose "File" > "Pack Project Archives". The "Packaging project archives" dialog
box is displayed.

Quick Start

-47-

2. Select the files to be packed (library files used in the program are automatically selected), and click
"PACK" to save the .hclib file.

Decompressing a project archive

Prerequisites: An .hclib file is prepared.

1. In the menu bar, choose "File" > "Decompress Project Archives". The "Open" dialog box is displayed.
2. Select and open the .hclib file to be decompressed. The "Decompression of project archives" dialog

box is displayed.

Quick Start

-48-

3. Set "Decompression to the following folder".
By default, the project archive is decompressed into the folder with the project archive name in the
folder where the .hclib file is located. If the storage folder does not exist, it is automatically created.
You can also click "..." to select a target folder for decompression.

4. Select required files (all selected y default), click "DECOMPRESSION", and import the third-party
EtherCAT device XML file, EDS file, and library file.

Quick Start

-49-

2.10 Logging in to PLC

2.10.1 Overview

Only PLCs with a login password set need to use this function.

The login function protects the intellectual property of customers and prevents the PLC program from
unauthorized modification.

The following table lists the number of login users, login password, and login permissions.

Item Description

Number of login users
Only one user can log in to the PLC at a time. Other users can log in
only after the user logs out. Otherwise, a login failure is prompted.

Login password A login password contains up to eight characters in ANSI C mode.

Login permissions

Upload and download[1] A permission password is required.

Modifying the program online A permission password is required.

RTC A permission password is required.

Changing the IP address A permission password is required.

Clearing the PLC program
storage space

A permission password is required.

Verifying the program A permission password is required.

Note
[1]: Upload and download refer to the upload and download of user programs and configuration data through the
AutoShop programming software.

2.10.2 Logging In to and Logging Out of PLC

Logging in to PLC

Prerequisites: The PC is properly connected to the PLC, and the PLC is online.

1. In the toolbar, click . The "User Login" page is displayed.

Quick Start

-50-

2. Enter the PLC login password in the "Login password" text box and click "Log on" to log in to the
PLC.
After successful login, the login button turns gray and the logout button turns red.

Note
After a user logs in to the PLC, other users attempting to log in to the PLC will receive a pop-up prompt saying that
the PLC is being used and rejects the login request. Only after the current user logs out can other users log in to the
PLC.

Logging out of PLC

Prerequisites: The PC is properly connected to the PLC, and the PLC runs properly.

In the toolbar, click to log out of the PLC.

After successful logout, the login button turns blue and the logout button turns gray.

2.10.3 Managing Login Password

The password used to log in to the PLC can be set, changed, or deleted.

Note
1. The password is saved in memory. When you re-open the project and re-connect to the PLC, you need to log in

again.
2. When generating a Down file, you can opt for the login password. If no password is set, you do not need to enter

a password.
3. A password can only contain some characters in the ANSI character set, including uppercase and lowercase

letters, numbers, and some special characters such as parenthesis (()), comma (,), exclamatory mark (!), and
atmark (@).

4. When you opt for the login password, some functions, such as IP address modification, PLC scan, and login
password modification, will exit the login status. After opting for the login password, you need to log in again.

Quick Start

-51-

Setting PLC login password

When no login password is set for the PLC, you can set a PLC login password.

Prerequisites: The PC is properly connected to the PLC, and the PLC is online.

1. In the menu bar, choose "PLC" > "Set/Modify Login PLC Password". The "Modify login password"
dialog box is displayed.

2. Enter the new password in the "New password" and "Confirm password" text boxes, and click "OK"
to set the PLC login password.

Changing PLC login password

When a login password is set for the PLC, you can change the PLC login password.

Prerequisites: The PC is properly connected to the PLC, and the PLC is online.

1. In the menu bar, choose "PLC" > "Set/Modify Login PLC Password". The "Modify login password"
dialog box is displayed.

2. Enter the old password in the "Old password" text box and the new password in the "New
password" and "Confirm password" text boxes, and click "OK" to change the PLC login password.

Deleting PLC login password

When a login password is set for the PLC, you can delete the PLC login password.

Quick Start

-52-

Prerequisites: The PC is properly connected to the PLC, and the PLC is online.

1. In the menu bar, choose "PLC" > "Delete Login PLC Password". The "Remove login password" dialog
box is displayed.

2. Enter the PLC login password in the "Login password" text box and click "OK" to delete the PLC login
password.

2.11 Trace Monitor Variables

2.11.1 Overview

Like a digital sampling oscilloscope, the Trace function can record historical values of variables. When
the Trace function is enabled, AutoShop starts to save the data records containing time, and you can
continuously monitor variable changes on the Trace page to facilitate program commissioning.

2.11.2 Adding Trace Monitor Variables

This section introduces how to add Trace monitor variables by capturing changes of the D100, D200,
and TEST variables.

Procedure

1. In the "Project Manager" tree, right-click "Trace" and select "New" to create a Trace monitor view.

Note
Right-click the newly created monitor chart and select "Delete" to delete the monitor chart, or select "Rename" to
rename the monitor chart.

2. Double-click the new Trace monitor view to access the Trace page.

Quick Start

-53-

3. Click "Add Var". The "Add Var" dialog box is displayed.

Parameter Name Description

Associated Tasks Indicates a variable used to select a monitor for sampling in main tasks or EtherCAT
tasks.

Select "Chief Executive" or "Ethercat Task" from the drop-down list.

Trigger Sampling
Enables

Indicates the function switch to trigger sampling enabling, which is valid upon checked.

Quick Start

-54-

Parameter Name Description

Trigger mode Indicates the mode to trigger sampling.

Select "Greater than", "Less than", "Not equal to", "Equal to", "Greater than or equal to",
or "Less than or equal to" from the drop-down list.

Trigger value Indicates that triggering stops when the trigger variable meets the trigger mode and
trigger value conditions.

Variable type Indicates the data type of a trigger variable.

Select "BOOL", "INT", "DINT", or "REAL" from the drop-down list.

Number of samples Indicates the number of sampling points before trigger stops when trigger conditions are
met.

Trigger variable Indicates a trigger object.

Recording
conditions

Indicates a BOOL variable of recording conditions to start tracking. This parameter can
be left empty.

Variable Settings Indicates the variable name of the monitor, corresponding variable data type, and
graphic color on the Trace monitor view.

Note: Up to six variables are supported.

4. Set "Associated Tasks" to "Chief Executive" and set the D100, D200, and TEST variables to be
captured as an example. Set other parameters according to the preceding table, and click "Save" to
save the variable settings.
View variable information in the toolbox on the right.

Parameter Name Description

Color Indicates the legend color of a variable on the Trace view.

Variable Name Indicates the name of a variable.
Time1 Indicates the value and time of the point corresponding to ruler 1.

Time2 Indicates the value and time of the point corresponding to ruler 2.

Difference Indicates the value and time difference between the points corresponding to the two
rulers.

5. After configuring the variables, right-click on the Trace view and select "Download Tracking".

Quick Start

-55-

The following table lists the shortcut menus.

Parameter Name Description

Download Tracking Indicates to download the set tracking variables and start tracking.

Start Indicates to start the original variables to continue to track data acquisition after tracking
variables are stopped.

Stop Tracing Indicates to stop data acquisition after tracking starts.

Restore View Indicates to restore the initial acquisition speed and data interval after you use the
mouse roller to zoom in or out and translate the view.

Single channel/
Multichannel

Indicates variable collection for a single coordinate system or multiple coordinate
systems.

Save Indicates to save all collected data in the tracking stopped state.

Load Indicates to load the saved file of collected data.

After tracking is downloaded, you can start to monitor variables.

Quick Start

-56-

Note
● In Trace mode, the horizontal and vertical coordinates of the chart automatically adapt to variable values. You

can adjust the coordinates by scrolling the mouse wheel. Specifically, directly scroll the mouse wheel to zoom in
or out the horizontal coordinate, and scroll the mouse wheel while holding down the Ctrl key to zoom in or out
the vertical coordinate.

● In Monitor mode, you can drag the rulers to view the data of specific points, or drag the curve back and forth to
view the data of key points. During this process, the Trace monitor chart stops scrolling, but data is still being
collected. To restore to automatic scrolling mode, right-click the Trace monitor chart and select "Restore View".

● For other operations to the Trace monitor chart, see the preceding table of shortcut menus.

Trace monitor example

When M0 is set to TRUE, Trace sampling starts. When D0 is greater than value 2 of "Trigger value",
sampling stops after 51 data entries are sampled. D0 and D1 are tracking variables.

2.11.3 Importing or Exporting Trace Data

Exporting Trace data

Prerequisite: Data acquisition is stopped, that is, tracking is stopped.

Right-click on the Trace monitor view and select "Save" to save data to the corresponding folder.

Quick Start

-57-

Importing Trace data

Prerequisite:

● A Trace data file is prepared.
● Data acquisition is stopped, that is, tracking is stopped.

Right-click on the Trace monitor view and select "Load". In the dialog box that is displayed, select a
Trace data file to load data to the Trace monitor view.

Programming Basics

-58-

3 Programming Basics

3.1 Overview

The variable memory structure for programming contains soft elements, customized variables, and
system variables.
The following figure shows the corresponding rules of use.

3.2 Elements

3.2.1 Bit Elements

The PLC supports bit elements. The following table describes the specific type, range, number of
points, and description of bit elements.

Type Range Number of Points Data Type Description
X X0 to X1777 1024 points, octal BOOL Input

Y Y0 to Y1777 1024 points, octal BOOL Output

M M0 to M7999 8000 points BOOL M0 to M999 not retained
upon power failure, M1000
to M7999 retained upon
power failure

Programming Basics

-59-

Type Range Number of Points Data Type Description
S S0 to S4095 4096 points BOOL S0 to S999 not retained

upon power failure, S1000
to S4095 retained upon
power failure

B B0 to B32767 32768 points BOOL B0 to B999 not retained
upon power failure, B1000
to B32767 retained upon
power failure

3.2.2 Word Elements

The PLC supports word elements. The following table describes the specific type, range, number of
points, and description of word elements.

Type Range Number of
Points

Data Type Description

D D0 to D7999 8000 points BOOL/INT/DINT/REAL
D0 to D999 not retained upon power
failure, D1000 to D7999 retained upon
power failure

R R0 to R32767 32768 points BOOL/INT/DINT/REAL
R0 to R999 not retained upon power
failure, R1000 to R32767 retained upon
power failure

W W0 to W32767 32768 points BOOL/INT/DINT/REAL
W0 to W999 not retained upon power
failure, W1000 to W32767 retained
upon power failure

Example

1. Word element used as a 16-bit integer
Use the 16-bit assignment instruction to assign the value 100 to the word element D100, which
occupies D100.

2. Word element used as a 32-bit integer
Use the 32-bit assignment instruction to assign the value 100 to the word element D100, which
occupies occupy D100 (low-order) and D101 (high-order).

3. Word element used as a floating-point number
Use the floating-point instruction to assign the value 100 to the word element D100, which occupies
D100 and D101.

Programming Basics

-60-

3.2.3 Special Elements

The PLC supports special elements. The following table describes the specific type, range, and descrip-
tion of special elements.

Type Function Range Number of
Points

Description

SBR Subprogram label SBR0 to SBR1023 1024

Used by the CALL
instruction. Subprograms
can be set as common
subprograms or encrypted
subprograms, which share
the capacity of the system
program area.

L Jump label L0 to L1023 1024 points Used in combination with
the CJ and LBL instructions

I

External interrupt - 4
Interrupt label, X port rising
edge, falling edge, rising
and falling edge

Timer interrupt - 4 Timing duration (ms)

Compare interrupt - 16
Limited by the number of
internal encoder axes
(high-speed counters)

K Decimal
K-32,768 to K32,767 (16-bit), K-
2,147,483,648 to K2,147,483,647
(32-bit)

- -

H Hexadecimal
H0000 to HFFFF (16-bit),
H00000000 to HFFFFFFFF (32-bit) - -

E
Floating-point
number, real
number

–3.402823e+38 to –1.175495e-38, 0,
+1.175495e-38 to +3.402823e+38 -

Up to 7 decimal significant
digits for a single-precision
floating-point number (the
excess will be
automatically rounded off)

Character Character, string - -
Used as instruction
parameters

A single-precision floating-point number has a maximum of 7 significant decimal digits. If the 9-bit
binary floating-point number 1234567.89 is transferred to the destination location D0, the actual value
of D0 is 1234567.9. The precision is reduced.

3.2.4 Bit-based Operation on Word Elements

Bit-based operations on word elements can be implemented by using a dot (.). For example, writing
D0.8 during programming indicates an operation on the 8th bit of the D0 word element.

Programming Basics

-61-

Example:

The bits of the word element are counted from the 0th bit. When the 8th bit of D0 is 0, the output M0 is
OFF; when the 8th bit of D0 is 1, the output M0 is ON.

3.3 Variables

3.3.1 Custom Variables

In a PLC programming system, in addition to using direct addresses, such as the X, Y, M, D, R and other
elements, for programming, you can also use variables without specific storage addresses for program-
ming to implement the required control logic, or the complete control process of the application ob-
ject, so as to facilitate code compiling and improve the readability of the code.

Table 3–1 Supported custom variables

Type Capacity Data Type Description

Pointer 4096 points (32-bit) BOOL/INT/DINT/REAL
Pointer Variable

Not retained upon power failure

BOOL

2 MB (8-bit)

BOOL/INT/DINT/REAL/IP/STRING/
BYTE variable

BOOL/INT/DINT/REAL/IP/STRING/
BYTE array

BOOL/INT/DINT/REAL/IP/STRING/
BYTE compound structure

256 KB data retained upon power failure

Other data not retained power failure

INT
DINT
REAL
IP
STRING
BYTE

3.3.2 Defining Variables

The PLC supports custom variables. You can define a global variable and directly use the variable name
during programming. Abide by the following rules when naming a global variable:

● It contains only letters, digits, Chinese characters, and underscores (_) and does not start with a
digit or underscore (_).

● It is not the same as the name of an element, constant, standard data type, instruction,
subprogram, or interrupt subprogram.

● It cannot be keywords such as ARRAY, TRUE, FALSE, ON, OFF, and NULL.

Variable Data Types

Structures and arrays are supported. The following table lists the supported data types.

Table 3–2 Variable data types

Data Type Description

BOOL Boolean
INT Single-word integer

Programming Basics

-62-

Data Type Description
DINT Double word integer

REAL Real number
STRING String type

IP IP
BYTE Byte

Defining Global Variables

"Global Variable" in the project management window is used for variable management, allowing you
to add, delete, and edit variables.

1. Add a variable table and variables. Right-click "Global Variable" and choose "New Global Variable
Table" to create a global variable table.

2. Double-click the variable table to go to the variable editing interface.

● Edit a variable: Double-click the text box to edit or click the drop-down box to select.
● Add a variable: Right-click and choose "Insert Row(&I)".
● Delete a variable: Right-click the row to be deleted and choose "Delete Row(&L)".

Parameter Name Description

Variable Name Custom variable name. You can directly use the
variable name for programming.

Type The data types include BOOL, INT, DINT, REAL, IP,
STRING, and BYTE variables, BOOL, INT, DINT, REAL,
IP, STRING, and BYTE arrays, and BOOL, INT, DINT,
REAL, IP, STRING, and BYTE structures.

If the data type is an array, you can set the type and
length of the array variable in the displayed dialog
box. If the data type is a pre-defined structure, you can
define a structure variable.

Initial Value You can assign an initial value to a variable. For arrays
and structures, the initial value of each element can be
specified individually.

Programming Basics

-63-

Parameter Name Description

Power Down Hold "Power Down Hold" can be set to "Non Retained" or
"Retained". The specified initial value is valid only
when this parameter is set to "Non Retained".

Network Public This parameter can be set to "Private", "Public", or
"In/Out". For structure, specific union, structure array,
and specific union array variables, this parameter
must be set to "Private".

When this parameter is set to "Public", a label
configuration file named "LabelConfig.xml" will be
generated in the "InteractiveFile" folder under the
project directory after project compiling. Importing
this configuration file into third-party software enables
label communication.

3.3.3 Defining Arrays

During user programming, if the data type is set to "ARRAY", an array can be defined.

1. Select the type and length of the array variable in the displayed dialog box and click "OK" to define
an array.

2. Click "+" next to the array variable to edit the initial values and comments of member variables.

When an array is used in an instruction, if the array subscript is not specified, the access starts from the
first element of the array. If the array subscript is specified, the access starts from the element
specified by the subscript.

The following are two examples.

Programming Basics

-64-

● Assign Array_0[0]–Array_0[9] to D0–D9.

● Assign Array_0[2]–Array_0[3] to D0–D1.

3.3.4 Defining Structures

To define a structure variable, you need to define the data structure of the structure in advance.
Right-click "Structure" under "Global Variable", choose "New Data Structure", and enter a structure
name. The structure is defined. When defining a variable in the variable table, you can select this
structure as the data type of the variable to define the variable as a structure variable.

After the structure and member variables are created, you can select "Stru" in the "Data Type" column
to define a structure variable.

Click the "Initial Value" column of the structure variable to set the initial values of structure variable
members.

3.3.5 Defining IP Variables

You can define IP variables in the variable table or program. An IP variable occupies 32 bits, and the
default value is "192.168.1.0".

● Select "IP" from the "Type" drop-down list.

Programming Basics

-65-

● Use an IP variable in the ST program, and assign a value to the IP variable by using single quotation
marks.

3.3.6 Defining Strings

You can define string variables in the variable table or program.

● Select "STRING" from the "Type" drop-down list of the variable table, and set the length of the
string in the displayed dialog box.
The default length is 128 bytes and the maximum length is 256 bytes. The last byte is the terminator
by default.

Programming Basics

-66-

● Use a string variable in the ST program, and assign a value to the string variable by using single
quotation marks.

3.3.7 Defining Specific Unions

A specific union is similar to a structure in that they both are collections of different types of elements.
The difference lies in the fact that each member of a structure has its own independent storage space,
while the members of a specific union share the same memory space (which is why a specific union is
called a union). This will inevitably cause the members to overwrite each other, resulting in data loss.
Therefore, the ideal application scenario for a specific union is when its members are not used
simultaneously, but rather one after another.

You can define specific union variables in the variable table or program. There are three types of
specific union variables: _uBOOL8_UNION_DUT, _uBOOL16_UNION_DUT, and _uBOOL32_UNION_
DUT, corresponding to lengths of 1 byte, 2 bytes, and 4 bytes, respectively.

● Select the required specific union variable type from the "Type" drop-down list of the variable
table.

Take _uBOOL32_UNION_DUT as an example. Create a variable in the variable table, and select
"_uBOOL32_UNION_DUT" from the "Type" drop-down list.

Programming Basics

-67-

● In a program, you can access different members of a specific union variable by using the dot
operator ("."). This allows you to parse variables in different scenarios.

3.3.8 Using Variables

After a variable is defined, you can directly use the variable name for programming without assigning
elements.

● When a common variable is used, directly use the variable name during programming.
● When an array variable is used, use "[Number]" to indicate an array element during programming.

The number starts from 0.
● When a structure variable is used, use "Structure variable name.Member variable" to indicate a

structure member during ST programming.
● When an IP or string variable is used, use a value enclosed in a pair of single quotation marks

('Value') to indicate the value of the variable.

For BYTE, INT, and DINT variables and arrays, you can perform bit operations using the syntax
"variable_name.bit_number" in programming. For details, see “3.2.4 Bit-based Operation on Word
Elements” on page 60.

3.4 Binding Variables to Addresses

3.4.1 Overview

Customized variables can be bound to soft element addresses so that customized variable addresses
are associated with soft element addresses.
You only need to enter the target address in the address column in the variable table and compile the
project. Then the software will automatically generate an address for the customized variable.

Programming Basics

-68-

3.4.2 Variable Property

A customized variable turns retentive or non-retentive at power failure according to the bound soft
element.
As shown in the following figure, M1 is in the area of retention at power failure, so Test_1 is retentive at
power failure after being bound to it; D100 is in the area of non-retention at power failure, so Test_2 is
non-retentive at power failure after being bound to it.

The variable automatically turns retentive or non-retentive at power failure after being bound to an
element.

3.4.3 Binding Basic Variables to Soft Elements

● A BOOL variable consists of one bit and can be bound only to a bit element. An INT variable consists
of 16 bits and can be bound to one word element. A DINT or REAL variable consists of 32 bits and
can be bound to two consecutive word elements.

● A BYTE variable consists of eight bits, and a word element consists of 16 bits. Therefore, a BYTE
variable occupies only the low-order 8 bits of a word element upon binding.

● An IP variable consists of 32 bits, occupying two consecutive word elements.
● A STRING variable consists of a customized number of bytes, such as two bytes. For example, if the

variable consists of five bytes, it occupies six bytes. After it is bound to soft element D0, it occupies
D0, D1, and D2.

Programming Basics

-69-

3.4.4 Binding Array Variables to Soft Elements

To bind an array variable to a soft element, enter the address to be mapped in the address column in
the variable table.

● A word variable occupies a specified number of word elements based on the variable type. One INT
variable occupies one 16-bit element, while a REAL or DINT variable or an IP variable occupies two
16-bit elements.

● Each member of a BYTE array variable occupies half a word element. For example, when a BYTE[5]
variable is bound to D0, the first member is bound to the low-order 8 bits of D0 and the second
member is bound to the high-order 8 bits of D0. Other elements are bound like this in sequence.

● Each member of a STRING array variable contains two bytes and occupies word elements in
sequence.

● A BOOL variable occupies a specified number of bit elements.
● An array variable can be only bound to soft elements of corresponding types. That is, word

variables can be only bound to word elements and bit variables can be only bound to bit elements.

For example, if a BOOL array variable is defined as Array_0 to be bound to the M0 element and the
length is 10, the variable occupies elements M0 to M9. If an INT array variable is defined as Array_1 to
be bound to the D0 element and the length is 10, the variable occupies elements D0 to D9.

3.4.5 Binding Structure Variables to Soft Elements

AutoShop earlier than V4.0.0.0 does not allow to bind the structure to soft elements. This section
describes how to bind a project customized by AutoShop earlier than V4.0.0.0 to a variable after
AutoShop is upgraded to V4.0.0.0, and how to bind a project customized by AutoShop 4.0.0.0 or later to
a soft element.

When binding a structure variable to a soft element, enter a word element address to be mapped in
the address column in the variable table, and click "Compile". AutoShop will automatically generate
the address of the structure member. The address assignment rules are as follows:

1. An INT variable occupies one 16-bit element, while a REAL or DINT variable occupies two 16-bit
elements.

2. Multiple consecutive BOOL variables are considered to occupy one 16-bit element as a whole, and
are assigned with an address in sequence from bit 0 of the 16-bit element. Multiple non-consecutive
BOOL variables are considered to occupy one 16-bit element separately.

3. Arrays and structure variables occupy one 16-bit element as a whole.

For example, the Stru_0 variable of the Stru type is defined and the D1000 element is bound.

No. Member Variable Name Data Type

1 member_1 BOOL
2 member_2 INT[2]
3 member_3 BOOL[2]
4 member_4 DINT
5 member_5 REAL
6 member_6 INT
7 member_7 BOOL

Programming Basics

-70-

● Stru_0.member_1//The type is BOOL, so D1000.0 is bound.
● Stru_0.member_2//The type is INT array, so D1001 and D1002 are bound.
● Stru_0.member_3//The type is BOOL array, so D1003.0 and D1003.1 are bound.
● Stru_0.member_4//The type is DINT, so D1004 is bound.
● Stru_0.member_5//The type is REAL, so D1006 is bound.
● Stru_0.member_6//The type is INT, so D1008 is bound.
● Stru_0.member_7//The type is BOOL, so D1009.0 is bound.

1. To bind a project customized by AutoShop 4.0.0.0 and later, enter the address to be mapped in the
address column in the variable table.

Compile the project. An address will be automatically generated. Then, double-click the initial value
of the corresponding structure variable in the variable table to view the mapping address of each
member in the structure and set the variable input value.

Programming Basics

-71-

2. The address assignment policy for projects customized by AutoShop earlier than V4.0.0.0 is different.
To bind a structure variable for such a project, upgrade the address assignment policy.
The procedure is as follows: Open the project, switch to the variable table page, click "PLC" in the
menu bar, and select "Upgrade Address Assignment Policy".

Note
The upgrade can result in change to the original addresses that are automatically assigned. If the monitoring varia-
ble table is used for communication with the HMI, the information of the monitoring variable table needs to be up-
dated to the HMI. If the element binding method is used, the addresses will not be affected.

Programming Basics

-72-

After the upgrade, the method of binding a structure variable to a soft element is the same as that
later than AutoShop 4.0.0.0. For details, see the preceding procedure.

3.4.6 Binding Specific Union Variables to Soft Elements

Specific union variables are classified into three types, and specific union members obtain addresses
at a fixed offset.

● A uBOOL8_UNION_DUT variable consists of eight bits and occupies the low-order 8 bits of a word
element. Members of the variable are bound to soft elements in sequence based on the offset.

● A uBOOL16_UNION_DUT variable consists of 16 bits and occupies one word element. Members of
the variable are bound to soft elements in sequence based on the offset.

● A uBOOL32_UNION_DUT variable consists of 32 bits and occupies two consecutive word elements.
Members of the variable are bound to soft elements in sequence based on the offset. For example,
the member var_1 is bound to soft element D0. The address offset of other BOOL array members is
0, so the initial address ab[0] is bound to D0.0, ab[15] to D0.15, and ab[31] to D1.15. The address
offset of INT array members is 0, so the initial address ai[0] is bound to D0 and ai[1] to D1. The
address offset of BYTE array members is 0, so the initial address abyte[0] is bound to D0, abyte[1] to
D0.8, and so on.

The offset is 0 for byte0, 8 bits for byte1, 16 bites for byte2, and 24 bits for byte 3. Therefore, the
members are bound to D0, D0.8, D1, and D1.8 in sequence.

The offset is 0 for i0 and 16 bits for i1. Therefore, the members are bound to D0 and D1 in sequence.

Programming Basics

-73-

The offset is 0 for the floating-point number variable f0. Therefore, the variable is bound to the D0
and D1 elements. The offset is 0 for the DINT variable. Therefore, the variable is bound to the D0
and D1 elements.

3.5 Using Variables as Array Subscripts

3.5.1 Rules of Use

Only one variable can be used as the subscript in the variable group.

The format is defined as array[index] or stru[index].var. In the format, array indicates an array or a
structure array, index, var, and i are variables, and stru indicates the structure.

Basic combination types

● Array variables only support bit variable arrays, word variable arrays, doubleword variable arrays,
and float point variable arrays, but not pointer variables.

● Index variables, as array subscript variables, support single-word INT variable (16-bit) and
doubleword DINT variable (32-bit), but not soft elements or other variables such as bit variables,
float point variables, or pointer variables. A specified element of an array or a specified member of
the structure can be used as an index variable, such as array[index[5]] and array[stru.index]. An
array element with a variable sub-index or an array member of the structure cannot be used as
index variables, such as array[index[i]] and array[stru[i].index].

Complex combination types

● Array elements can be used as operands of instructions, with the index variable at the end, such as
array[index], stru. Array[index], stru1[3].stru2. Array[index], and stru1.stru2.stru3. array[index].

● Members of structure arrays can be used as operands of instructions, with the index variable in the
middle, such as stru[index].var, stru1[index].stru2.var, and stru1.stru2[5].stru3[index].array[3].

● Structure arrays containing two or more variables are not supported, such as stru[index1].array
[index2].

● Two-dimension or multi-dimension arrays are not supported, such as array[index1][index2].

Programming Basics

-74-

Note
● Operands of the ZSET/ZRST instructions do not support arrays that use variables as subscripts.
● Operands of the PTxxx instructions do not support arrays that use variables as subscripts.
● Operands of the SFC instructions do not support arrays that use variables as subscripts.
● For operands (array type operands) of instructions (such as the BMOV instruction for batch assignment) that use

multiple consecutive variables, variables in the arr[index] format can be used, but elements of a structure array
in the stru[index].var format must not be used (because they are not consecutive). If jump assignment is
required, a loop instruction must be used to achieve batch jump assignment.

● This function is mainly used in operands of single-cycle instructions and is not recommended for operands of
multi-cycle instructions. If it is necessary to use this function in operands of multi-cycle instructions, logic and
timing must be strictly controlled. In case of poor timing control, abnormal execution or conflict may occur upon
value switchover (such as the pulse output instruction axis).

3.5.2 Programming Example

Example 1

The program for assigning a value for an element in an array is shown in the following figure.

After startup, value 123 is assigned for i16arr[1]. Then, M300 assigns value 321 for the next array
element upon each trigger. The following figure shows the result upon startup.

Result upon the first trigger by M300

Programming Basics

-75-

Result after multiple triggers by M300

Example 2

The program for operating a member variable of a structure array is shown in the following figure.

After a trigger by M400, stru_arr[2].b_enable is set and stru_arr[4].b_enable is controlled based on the
status of stru_arr[2].b_enable.

Programming Basics

-76-

The following figure defines the structure.

Example 3

The program for using a variable as the array subscript for FB parameters is shown in the following
figure.

Programming Basics

-77-

FB program

After a trigger by M500, value 321 is assigned for i16arr[3] and then for i16arr[5] after FB calculation.
The FB program adds 1 to the input parameter value and then assigns the new value for the output.

Programming Basics

-78-

3.6 Pointer Type Variables

3.6.1 Definition of Pointer Type Variables

Pointer type variables can be used as addresses of pointer storage soft elements or array variables.
During programming, pointer type variables can be used for indirect addressing or indexed addressing.
H5U and Easy series PLCs do not support the V and Z soft element functions.
In the variable table, after the variable name is defined and POINTER is selected as the data type, a
pointer type variable is defined. The initial value of the pointer variable is NULL, indicating a null
pointer, and the pointer variable is non-retentive upon a power failure.

Pointer type variables allow address operations and indirect addressing operations. Instruction of
pointer address operations specify the address operations of pointers. The following table lists the
instruction of pointer address operations. These instructions can be run to obtain addresses, realize
offsets for pointer addresses, and compare pointer addresses.

Table 3–3 Instructions of pointer address operations

Instruction Description
PTGET Obtaining pointer addresses

PTINC Pointer variable address incremented by 1
PTDEC Pointer variable address decremented by 1
PTADD Adding offsets for pointer variable addresses

PTSUB Deducting offsets for pointer variable addresses

PT>, PT>=, PT<, PT<=, PT=, and PT<> PT variable contact comparison
PTMOV Pointer variable mutual assignment

For other instructions, when pointer type variables are used, indirect addressing operations are
performed on pointer type variables, indicating the operations on the values of soft elements or array
variables directed by the pointer type variables. Indirect addressing operations on pointer type
variables are indicated by "*Pointer type variable" during programming.

Example

● Address operations on pointer type variables

Programming Basics

-79-

● Indirect addressing operations on pointer type variables

Note
In programming, in addition to the instructions for pointer address operations in the preceding table, if other in-
structions use a pointer type variable, the programming software automatically adds an asterisk (*) before the varia-
ble. Alternatively, users can enter asterisk (*) manually.

3.6.2 Obtaining Directing Addresses of Pointer Type Variables

Directing addresses of pointer type variables can be obtained by the pointer variable assignment in-
struction (PTGET).

Example

When the instruction energy flow is effective, the pointer type variable PT0 directs to D10. That is, PT0
obtains the address of the D10 soft element.

Pointer type variables can direct to bit elements (X, Y, M, S, and B), word elements (D, R, and W), and
customized array variables.

3.6.3 Operations on PT Pointer Addresses

After pointer addresses of pointer type variables are obtained, they can be added or deducted to speci-
fy the element offset of pointer type variables.

Example 1

When the instruction energy flow is effective, one soft element offset is added for the PT0 pointer
address of the pointer type variable. For example, PT0 originally directed to D10 and then directs to
D11 after the PTINC instruction is executed. After PTINC execution, the system automatically adds one
offset based on the element or array variable type directed by the pointer type variable.

Current PT0 Pointer PT0 Pointer After PTINC Execution
D10 D11
M200 M201
diVal[3] diVal[4]

Programming Basics

-80-

Example 2

When the instruction energy flow is effective, one soft element offset is deducted for the PT0 pointer
address of the pointer type variable. For example, PT0 originally directed to D10 and then directs to D9
after the PTDEC instruction is executed. After PTDEC execution, the system automatically deducts one
offset based on the element or array variable type directed by the pointer type variable.

Current PT0 Pointer PT0 Pointer After PTDEC Execution
D10 D9
M200 M199
diVal[3] diVal[2]

Example 3

When the energy flow of instruction (1) is effective, five soft element offsets are added for the PT0
pointer address of the pointer type variable and assigned to PT10. For example, PT0 originally directed
to D10 and then PT10 directs to D15 after execution of instruction (1). When the energy flow of
instruction (2) is effective, five soft element offsets are added for the PT0 pointer address and assigned
to PT0. For example, PT0 originally directed to D10 and then directs to D15 after execution of
instruction (2).

Current PT0 Pointer Pointer After Execution of Instruction (1) PT0 Pointer After
Execution of Instruction (2)PT10 Pointer PT0 Pointer

D10 D15 D10 D15
M200 M205 M200 M205
diVal[3] diVal[8] diVal[3] diVal[8]

Example 4

When the energy flow of instruction (1) is effective, two soft element offsets are deducted for the PT0
pointer address of the pointer type variable and assigned to PT10. For example, PT0 originally directed
to D10 and then PT10 directs to D8 after execution of instruction (1). When the energy flow of
instruction (2) is effective, two soft element offsets are deducted for the PT0 pointer address and
assigned to PT0. For example, PT0 originally directed to D10 and then directs to D8 after execution of
instruction (2).

Current PT0 Pointer Pointer After Execution of Instruction (1) PT0 Pointer After
Execution of Instruction (2)PT10 Pointer PT0 Pointer

D10 D8 D10 D8
M200 M198 M200 M198
diVal[3] diVal[1] diVal[3] diVal[1]

Programming Basics

-81-

Note
In all the preceding examples of pointer address operations, the PTGET instruction must be used to obtain the
pointer address first. When PT points to an array variable, pay attention to boundary checking when executing ad-
dress operation instructions.

Example 5

The PT> instruction determines whether the PT0 pointer address of the pointer type variable is greater
than D20. If the PT0 pointer directs to D21, the output M0 is ON. Similar inspections such as PT>=, PT<,
PT<=, PT=, and PT<> can determine the directions of PT pointers.

3.6.4 Indirect Addressing Operations on Pointer Type Variables

After you obtain an address for a pointer type variable by running address operation instructions, the
address can be used in instructions, indicating the indirect addressing operation on the soft element or
array variable directed by the pointer variable.

Example

When the instruction energy flow is effective, the soft element directed by the PT0 pointer of the
pointer type variable is added to D100. For example, if PT0 directs to D10, the instruction execution
result is D200 = D10 + D100.

Note
To indirectly represent a specified soft element using a pointer type variable, an effective pointer address must be
obtained by using a pointer address operation instruction first.

3.6.5 Use Example

This section uses a pointer type soft component as an example. The component cycles the value of
D220 to the first 10 elements starting from D200 every 1 second.

Programming Basics

-82-

Note
After a value is assigned to the address pointed to by the pointer, the pointer address is incremented by 1. There-
fore, the value for the pointer address monitored by AutoShop in this program is inconsistent with the displayed
data.

3.7 System Variables

3.7.1 Overview

This section describes the PLC operation status using system variables, such as the device model,
version number, serial port information, and Ethernet and CAN communication status.

3.7.2 System Variable Categories

SysVar (System Variable Category) Description

_SYS_CAN CAN communication information, such as the station No., baud rate, and online
state of the slave station

_SYS_COM Serial communication information, such as the station No., baud rate, and online
state of the slave station

_SYS_ECAT_Master EtherCAT master station status
_SYS_ECAT_SLAVE EtherCAT slave station status
_EthIPScanner EtherNet/IP system variable information

_SYS_ENCODER_AXIS Data structure of the external encoder axis
_SYS_ETHERNET Ethernet communication information, such as the IP address, MAC address, online

state, and error diagnosis.

_SYS_INFO PLC system information, such as the firmware version, real-time clock (RTC),
module diagnosis, and system logs.

_SYS_MC_AXIS Data structure of the motion control axis
_sGROUPAXIS_INFO Status of a coordinate axis in the axis group

_sMCGROUP_INFO Axis group status

_sGROUPPOS_INFO Target position of a coordinate axis in the axis group

3.7.3 _SYS_CAN for CAN Interface Running Information

Table 3–4 _CAN interface information
Name Data Type Description R/W Comparison with H3U

_CAN.BaudRate INT Baud rate (kbps) R D8285

_CAN.LoadRate INT Load rate (%) R D8240

_CAN.RxPerSec INT Received frames per second (FPS) R D8290

_CAN.TxPerSec INT Sent FPS R D8291-D8290
_CAN.RxErrCnt INT Receive error counter R High-order 8 bits of

D8989

Programming Basics

-83-

Name Data Type Description R/W Comparison with H3U

_CAN.TxErrCnt INT Send error counter R Low-order 8 bits of
D8989

_CAN.Protocol INT Communication protocol. 0: CANlink;
1: CANopen

R D8280

Table 3–5 _CANLink interface information
Name Data Type Description R/W Comparison with

H3U
_CANLink.Address INT Station No. or address R D8284

_CANLink.Heartbeat INT Heartbeat time (ms) R D8282

_CANLink.NetworkStart BOOL Network startup R M8290

_CANLink.SyncTrigger BOOL Sync triggering R M8291

_CANLink.SyncWrErr INT Synchronous write error code R D8307

_CANLink.ConfigErr INT Configuration error code R D8308

_CANLink.NodeState[0] INT Local station status (=2: online; ≠2:
offline)

R D7800

_CANLink.NodeState[1] INT 1# station status (=2: online; ≠2: offline) R D7801

_CANLink.Online[0] DINT Station status on the CANlink
configuration monitoring page of
AutoShop, with one bit indicating a
station

R D8241

_CANLink.Online[1] DINT Station status on the CANlink
configuration monitoring page of
AutoShop, with one bit indicating a
station

R D8242

Table 3–6 _CANOpen interface information

Name Data Type Description R/W Comparison with
H3U

_CANOpen.NodeID INT Node ID R D8284

_CANOpen.NodeState
[0]

INT Local station status (=5: online; ≠5:
offline)

R D7800

_CANOpen.NodeState
[1]

INT 1# station status (=5: online; ≠5: offline) R D7801

_CANOpen.EMCY.
NodeID

INT Emergency event node ID R

_CANOpen.EMCY.
ErrorCode

INT Emergency event error code R

_CANOpen.Debug _sCOP_DEBUG Commissioning information R

_CANOpen.Debug.
NodeID

INT Commissioning information R

_CANOpen.Debug.State INT Commissioning information R

_CANOpen.Debug.Index INT Commissioning information R

_CANOpen.Debug.
SubIndexAndSize

INT Commissioning information R

_CANOpen.Debug.Data INT[4] Commissioning information R

_CANOpen.Debug.Data
[0]

INT Commissioning information R

Programming Basics

-84-

Name Data Type Description R/W Comparison with
H3U

_CANOpen.Debug.Data
[1]

INT Commissioning information R

_CANOpen.Debug.Data
[2]

INT Commissioning information R

_CANOpen.Debug.Data
[3]

INT Commissioning information R

_CANOpen.ConfigError.
NodeID

INT Configuration error node ID R D8287

_CANOpen.ConfigError.
ConfigIndex

INT Configuration No. R D8288

_CANOpen.ConfigError.
ErrorCode

DINT Fault code R D8254 and D8255

Program example

Determination on the online status of slave stations

3.7.4 _SYS_COM for Serial Port Running Information

Table 3–7 _COM serial port information

Name Data Type Description R/W Comparison with H3U

_COM.BaudRate DINT Baud rate (bps) R Bit4 to bit7 of D8120

_COM.DataBits INT Data bit R Bit0 of D8120
_COM.Parity INT Parity bit R Bit1 and bit2 of D8120

_COM.StopBits INT Stop bit R Bit3 of D8120

_COM.Interface INT Physical interface R -

The preceding table lists configuration information of the COM port. Each serial port corresponds to a
separate system variable. _COM corresponds to COM0, and _COM1 to _COM15 correspond to COM1 to
COM15 respectively.

Table 3–8 Modbus-based _MbMst master station (serial port) information

Name Data Type Description R/W Comparison with H3U

_MbMst.Port INT Serial port number R -

_MbMst.Timeout INT Timeout interval (ms) R D8129*10

_MbMst.Enable BOOL Enabled R -

_MbMst.Activate BOOL Activated R -

_MbMst.Busy BOOL Busy R -

_MbMst.Error BOOL Error R M8129

_MbMst.ResponseTime INT Response time (ms) R -

Programming Basics

-85-

The preceding table lists Modbus-based information about serial ports of the master station. Each
serial port corresponds to a separate system variable. _MbMst corresponds to COM0, and _MbMst1 to
_MbMst15 correspond to COM1 to COM15 respectively.

Table 3–9 Modbus-based _MbMstEx master station (serial port) extension information

Name Data Type Description R/W Comparison with H3U

_MbMstEx.
SlvDisableSetFlag

DINT Whether to disable slave
stations

R/W -

_MbMstEx.SlvDisable BOOL[256] Slave station disabled R/W -

_MbMstEx.SlvDisable[0] BOOL - R/W -

_MbMstEx.SlvDisable[1] BOOL - R/W -

_MbMstEx.SlvDisable[...] BOOL - R/W -

_MbMstEx.SlvDisable[255] BOOL - R/W -

_MbMstEx.RetryTimes INT Number of retries (Modbus
instructions)

R/W -

The preceding table lists Modbus-based extension information about serial ports of the master station.
Each serial port corresponds to a separate system variable. _MbMstEx corresponds to COM0, and
_MbMstEx1 to _MbMstEx15 correspond to COM1 to COM15 respectively.

Table 3–10 Modbus-based _MbSlv slave station (serial port) information

Name Data Type Description R/W Comparison with H3U

_MbSlv.Port INT Serial port number R -

_MbSlv.SlaveAddress INT Slave address R D8121

_MbSlv.Connected BOOL Connected state R -

The preceding table lists Modbus-based information about serial ports of the slave station. Each serial
port corresponds to a separate system variable. _MbSlv corresponds to COM0, and _MbSlv1 to
_MbSlv15 correspond to COM1 to COM15 respectively.

Table 3–11 Free protocol-based _SerialSR serial port information

Name Data Type Description R/W Comparison with
H3U

_SerialSR.port INT Serial port/Port number R -

_SerialSR.states INT Operation status R -

_SerialSR.sent INT Number of sent bytes R -

_SerialSR.received INT Number of received bytes R -

_SerialSR.mutexF DINT Interlock flag R -

_SerialSR.trigger DINT Trigger flag R -

_SerialSR.errorid DINT Error information R -

_SerialSR.timeout DINT Timeout interval (ms) R D8129*10

Table 3–12 Sendbuf to send buffer data
Name Data Type Description R/W Comparison with

H3U
_SerialSR.sendlen DINT Number of sent bytes R -

_SerialSR.sendbuf INT[256] Transmission buffer R -

_SerialSR.sendbuf[0] INT - R -

_SerialSR.sendbuf[1] INT - R -

Programming Basics

-86-

Name Data Type Description R/W Comparison with
H3U

_SerialSR.sendbuf[2] INT - R -

_SerialSR.sendbuf[...] INT - R -

_SerialSR.sendbuf[254] INT - R -

_SerialSR.sendbuf[255] INT - R -

Table 3–13 Recvbuf to receive buffer data
Name Data Type Description R/W Comparison with

H3U
_SerialSR.recvlen DINT Number of received bytes R -

_SerialSR.recvbuf INT[256] Reception buffer R -

_SerialSR.recvbuf[0] INT - R -

_SerialSR.recvbuf[1] INT - R -

_SerialSR.recvbuf[2] INT - R -

_SerialSR.recvbuf[...] INT - R -

_SerialSR.recvbuf[254] INT - R -

_SerialSR.recvbuf[255] INT - R -

Table 3–14 Free protocol-based instruction configuration for a serial port

Name Data Type Description R/W Comparison with
H3U

_SerialSR.abort INT Serial port free protocol
canceled

R/W -

_SerialSR.startchar_en INT Reception start character
enable (0 to 4)

R/W -

_SerialSR.startchar BYTE[4] Reception start character R/W -

_SerialSR.startchar[0] BYTE - R/W -

_SerialSR.startchar[1] BYTE - R/W -

_SerialSR.startchar[2] BYTE - R/W -

_SerialSR.startchar[3] BYTE - R/W -

_SerialSR.endchar_en INT Reception end character
enable (0 to 4)

R/W -

_SerialSR.endchar BYTE[4] Reception end character R/W -

_SerialSR.endchar[0] BYTE - R/W -

_SerialSR.endchar[1] BYTE - R/W -

_SerialSR.endchar[2] BYTE - R/W -

_SerialSR.endchar[3] BYTE - R/W -

_SerialSR.Bytetimeout_en BOOL Idle interrupted frame
reception enable

R/W

_SerialSR.Bytetimeout INT Duration for judging idle
interrupted frame reception
(ms)

R/W

The preceding table lists free protocol-based instruction configuration for a serial port. Each serial port
corresponds to a separate system variable. _SerialSR corresponds to COM0, and _SerialSR1 to
_SerialSR15 correspond to COM1 to COM15 respectively.

Programming Basics

-87-

Program example

1. COM configuration information

2. SerialSR instruction sending

Programming Basics

-88-

3.7.5 _SYS_COM_SAVE for Serial Port Parameter Settings

Table 3–15 _COMSet serial port parameter settings

Name Data Type Description R/W Comparison with H3U

_COMSet.SetFlag DINT Parameter setting
enable flag

R/W -

_COMSet.BaudRate DINT Baud rate (bps) R/W -

_COMSet.DataBits INT Data bit R/W -

_COMSet.Parity INT Parity bit R/W -

_COMSet.StopBits INT Stop bit R/W -

_COMSet.Interface INT Physical interface R/W -

_COMSet.Protocol INT Communication
protocol

R/W -

The preceding table lists parameter settings of the COM port. Each serial port corresponds to a
separate system variable. _COMSet corresponds to COM0, and _COM1Set to _COM15Set correspond to
COM1 to COM15 respectively.

Table 3–16 _COMProtocolSet serial port parameter settings

Name Data Type Description R/W Comparison with H3U

_COMProtocolSet.port INT Serial port number R -

_COMProtocolSet.
AddressSetFlag

INT Whether to set the slave
station number or
address

R/W -

_COMProtocolSet.
Address

INT Slave station number or
address

R/W -

The preceding table lists protocol-based parameter settings of the COM port. Each serial port
corresponds to a separate system variable. _COMProtocolSet corresponds to COM0, and
_COM1ProtocolSet to _COM15ProtocolSet correspond to COM1 to COM15 respectively.

3.7.6 _SYS_ECAT_Master for Operation Status
Table 3–17 EtherCAT master station information

Name Data Type Description R/W

_ECATMaster.bMasterRunState BOOL Operation status of the master station (ON:
running; OFF: stopped)

R

_ECATMaster.bLinkState BOOL Connection status of the master station (ON:
normal; OFF: LAN cable disconnected)

R

_ECATMaster.bHeartBeat BOOL EtherCAT task heartbeat R

_ECATMaster.dMaxCycleTime DINT Maximum cycle time (μs) R

_ECATMaster.dMinCycleTime DINT Minimum cycle time (μs) R

_ECATMaster.dCycleTime DINT Cycle time (μs) R

_ECATMaster.dMaxExeTime DINT Maximum execution time (μs) R

_ECATMaster.dMinExeTime DINT Minimum execution time (μs) R

_ECATMaster.dExeTime DINT Execution time (μs) R

_ECATMaster.dtx_frames DINT Total number of sent frames R

_ECATMaster.drx_frames DINT Total number of received frames R

_ECATMaster.dtx_frame_rates DINT Frame sending rate (frame/s) R

Programming Basics

-89-

Name Data Type Description R/W

_ECATMaster.drx_frame_rates DINT Frame receiving rate (frame/s) R

_ECATMaster.dtx_bytes_rate DINT Byte sending rate (byte/s) R

_ECATMaster.drx_bytes_rate DINT Byte receiving rate (byte/s) R

_ECATMaster.dloss_frames DINT Number of lost EtherCAT frames R

_ECATMaster.bResetTime BOOL Execution time and cycle time for resetting R/W

_ECATMaster.bStartMaster BOOL Master station startup (When it is set to ON, the
EtherCAT master station is restarted and then the
value automatically turns to OFF.)

R/W

_ECATMaster.bStopMaster BOOL Master station stop (When it is set to ON, the
EtherCAT master station is stopped and then the
value automatically turns to OFF.)

R/W

_ECATMaster.bClearFrameCounter BOOL Frame sending and receiving counter upon
resetting

R/W

_ECATMaster.iSlavesState INT Online status of all slave stations (1: All slave
stations are online; 0: Some slave stations are
offline.)

R

_ECATMaster.dLibVersion DINT EtherCAT library version R

_ECATMaster.dMstVersion DINT EtherCAT master station version R

_ECATMaster.dDriveVersion DINT Version of the EtherCAT network adapter driver R

_ECATMaster.dtx_error_cnt DINT Number of EtherCAT sending errors R

_ECATMaster.drx_timeout_cnt DINT Number of frame receiving timeout events by
EtherCAT

R

_ECATMaster.drx_corrupt_cnt DINT Number of invalid frame receiving events by
EtherCAT

R

_ECATMaster.drx_unmach_cnt DINT Number of mismatched frame receiving events by
EtherCAT

R

_ECATMaster.dRxPDOLength DINT Total number of PDOs received by EtherCAT R

_ECATMaster.dTxPDOLength DINT Total number of PDOs sent by EtherCAT R

_ECATMaster.dConfigureState DINT EtherCAT configuration status R

_ECATMaster.dDelay DINT EtherCAT synchronization regulator R

The preceding table lists information about the EtherCAT master station, such as the master station
operation status and maximum cycle time.

Program example

1. Monitoring on the EtherCAT master station status

2. Restartup of the EtherCAT master station

Programming Basics

-90-

Note
The instruction enable is edge-triggered.

3.7.7 _SYS_ECAT_Slave for Operation Status
Table 3–18 EtherCAT slave station information

Name Data Type Description R/W

_ECATSlave
_sECTSLV_INFO
[125]

Operation status of the EtherCAT slave station -

_ECATSlave[0] _sECTSLV_INFO - -

_ECATSlave[0].bSlaveRunState BOOL
Operation status of the slave station (ON:
running; OFF: stopped) R

_ECATSlave[0].bSetAliasState BOOL Status of slave station alias writing (ON: busy) R

_ECATSlave[0].bSetAliasError BOOL Failure of slave station alias writing R

_ECATSlave[0].bSetAlias BOOL
Setting of the slave station alias, valid on the
rising edge (used for commissioning on the
AutoShop configuration page)

R/W

_ECATSlave[0].wALState INT Status of the EtherCAT state machine (1/2/4/8) R
_ECATSlave[0].wAlCode INT Fault Codes R
_ECATSlave[0].wActAlias INT Actual station alias R

_ECATSlave[0].wTarAlias INT
Station alias to be written (used for
commissioning on the AutoShop configuration
page)

R/W

_ECATSlave[0].wStationAddress INT Actual station name R

Note
_ECATSlave is an array. For example, [0] represents configuration address 0.

Program example

Monitoring on the EtherCAT slave station status

Programming Basics

-91-

3.7.8 _SYS_EncAxis for Encoder Axis Information
Table 3–19 EncAxis encoder axis information

Name Data Type Description R/W

_EncAxis[0] _sENC_AXIS - R

_EncAxis[0].Axis INT Axis No. R

_EncAxis[0].Reserced0 INT Reserved R

_EncAxis[0].Unit REAL Unit R

_EncAxis[0].UpperPosition REAL Upper limit position R

_EncAxis[0].LowerPosition REAL Lower limit position R

_EncAxis[0].Position REAL Position R

_EncAxis[0].Velocity REAL Speed R

_EncAxis[0].Reserced1 DINT[2] Reserved R

_EncAxis[0].Reserced1[0] DINT - R

_EncAxis[0].Reserced1[1] DINT - R

Table 3–20 EncAxis[0].Counter counter information
Name Data Type Description R/W

_EncAxis[0].Counter _sENC_CNT Counter R

_EncAxis[0].Counter.ID INT Counter ID R

_EncAxis[0].Counter.DecodeMode INT Decoding mode R

_EncAxis[0].Counter.Source INT Signal source R

_EncAxis[0].Counter.CountMode INT Count mode R

_EncAxis[0].Counter.ControlWord INT Control word R

_EncAxis[0].Counter.StatusWord INT Status word R

_EncAxis[0].Counter.CountValue DINT Count value R

_EncAxis[0].Counter.Frequency REAL Frequency R

Table 3–21 EncAxis[0].Reset reset information

Name Data Type Description R/W

_EncAxis[0].Reset _sENC_RST Reset R

_EncAxis[0].Reset.Pin INT Reset pin R

_EncAxis[0].Reset.Edge INT Reset edge R

Table 3–22 EncAxis[0].Preset preset information

Name Data Type Description R/W

_EncAxis[0].Preset _sENC_PRESET Resetting R

_EncAxis[0].Preset.Pin INT Preset pin R

_EncAxis[0].Preset.Edge INT Preset edge R

_EncAxis[0].Preset.Value DINT Preset value R

_EncAxis[0].Preset.Position REAL Preset position R

Programming Basics

-92-

Table 3–23 EncAxis[0].Probe probe information

Name Data Type Description R/W

_EncAxis[0].Probe _sENC_PROBE[2] Probe R

_EncAxis[0].Probe[0] _sENC_PROBE R

_EncAxis[0].Probe[0].Pin INT Pin R

_EncAxis[0].Probe[0].Edge INT Probe edge R

_EncAxis[0].Probe[0].PositiveValue DINT Probe rising edge R

_EncAxis[0].Probe[0].NegativeValue DINT Probe falling edge R

_EncAxis[0].Probe[0].PositivePosition REAL Probe rising edge
position

R

_EncAxis[0].Probe[0].NegativePosition REAL Probe falling edge
position

R

_EncAxis[0].Probe[1] _sENC_PROBE R

_EncAxis[0].Probe[1].Pin INT Pin R

_EncAxis[0].Probe[1].Edge INT Probe edge R

_EncAxis[0].Probe[1].PositiveValue DINT Probe rising edge R

_EncAxis[0].Probe[1].NegativeValue DINT Probe falling edge R

_EncAxis[0].Probe[1].PositivePosition REAL Probe rising edge
position

R

_EncAxis[0].Probe[1].NegativePosition REAL Probe falling edge
position

R

Table 3–24 EncAxis[0].Match comparison interruption

Name Data Type Description R/W

_EncAxis[0].Match _sENC_MATCH[2] Compare R

_EncAxis[0].Match[0] _sENC_MATCH R

_EncAxis[0].Match[0].Value DINT Value R

_EncAxis[0].Match[0].Position REAL Position R

_EncAxis[0].Match[0].Enable BOOL Enable R

_EncAxis[0].Match[0].InterruptEnable BOOL Interruption enable R

_EncAxis[0].Match[0].OutputEnable BOOL Output enable R

_EncAxis[0].Match[0].InterruptMap INT Interruption association R

_EncAxis[0].Match[0].OutputPin INT Output pin R

_EncAxis[0].Match[0].OutputMode INT Output mode R

_EncAxis[0].Match[0].OutputWidth REAL Output width R

_EncAxis[0].Match[1] _sENC_MATCH R

_EncAxis[0].Match[1].Value DINT Value R

_EncAxis[0].Match[1].Position REAL Position R

_EncAxis[0].Match[1].Enable BOOL Enable R

_EncAxis[0].Match[1].InterruptEnable BOOL Interruption enable R

_EncAxis[0].Match[1].OutputEnable BOOL Output enable R

_EncAxis[0].Match[1].InterruptMap INT Interruption association R

_EncAxis[0].Match[1].OutputPin INT Output pin R

_EncAxis[0].Match[1].OutputMode INT Output mode R

_EncAxis[0].Match[1].OutputWidth REAL Output width R

Programming Basics

-93-

3.7.9 _SYS_Ethernet for Ethernet Information
Table 3–25 Ethernet network port information

Name Data Type Description R/W

_Ethernet.MACAddress INT[3] Physical address R

_Ethernet.MACAddress[0] INT - R

_Ethernet.MACAddress[1] INT - R

_Ethernet.MACAddress[2] INT - R

_Ethernet.IPAddress DINT Local IP address R/W
_Ethernet.Mask DINT Subnet mask R/W
_Ethernet.Gateway DINT Gateway R/W

IPCommand INT IP command R/W

The preceding variable table lists local information such as the IP address and MAC addresses.

Table 3–26 Modbus-TCP-based MbTcpMst master station information

Name Data Type Description R/W

_MbTcpMst[0] _sMB_TCP_MST - R

_MbTcpMst[0].IPAddress DINT IP address of a slave
station

R

_MbTcpMst[0].Port INT Port number of a slave
station

R

_MbTcpMst[0].Timeout INT Timeout interval (ms) R

_MbTcpMst[0].Number INT Configuration number R

_MbTcpMst[0].Enable BOOL Enabled R

_MbTcpMst[0].Connected BOOL Connected state R

_MbTcpMst[0].Busy BOOL Busy R

_MbTcpMst[0].Error BOOL Error R

_MbTcpMst[0].ResponseTime INT Response time (ms) R

_MbTcpMst[...] _sMB_TCP_MST - R

The preceding table lists Modbus-TCP-based information about Ethernet of the master station.

Table 3–27 Modbus-TCP-based MbTcpMst slave station information

Name Data Type Description R/W

_MbTcpSlv.Port INT Port number R

_MbTcpSlv.SlaveAddress INT Slave address R

_MbTcpSlv.Connected BOOL Connected state R

_MbTcpSlv.Connections INT Number of connections R

_MbTcpSlv.IPAddress DINT[32] List of client IP addresses R

_MbTcpSlv.IPAddress[0] DINT - R

_MbTcpSlv.IPAddress[1] DINT - R

_MbTcpSlv.IPAddress[2] DINT - R

_MbTcpSlv.IPAddress[...] DINT - R

_MbTcpSlv.IPAddress[30] DINT - R

_MbTcpSlv.IPAddress[31] DINT - R

The preceding table lists ModbusTCP-based information about the client linked to the PLC slave
station.

Programming Basics

-94-

3.7.10 _EthIPScanner for Status Information
Table 3–28 EIP system variable information

Name Data Type Description R/W

EthIPScanner[0].Instance DINT Label instance ID R

EthIPScanner[0].Connected DINT Connecting status

1: Initializing

2: Invalid network path

3: No response

4: Response error

5: Timeout

6: Connection closed

R

EthIPScanner[0].GeneralStatus INT General error state R

EthIPScanner[0].ExtendedStatus INT Extended error state R

EthIPScanner [0].Reserved DINT[6] Reserved field R R
...
EthIPScanner[255].Instance DINT Label instance ID R

EthIPScanner[255].Connected DINT Connecting status

1: Initializing

2: Invalid network path

3: No response

4: Response error

5: Timeout

6: Connection closed

R

EthIPScanner[255].GeneralStatus INT General error state R

EthIPScanner[255].ExtendedStatus INT Extended error state R

EthIPScanner [255].Reserved DINT[6] Reserved field R R

Note
● EthIPScanner[n-1] represents the tag data with instance value n, and EthIPScanner[n-1].Instance has a value of

n. The array subscript corresponds one-to-one with Instance, with a difference of 1.
● To determine that "the tag with instance value n has normal communication", the system variable EthIPScanner

[n-1] must meet the following conditions:

● CLASS1 type tag: Connected==1 && GeneralStatus==0 && ExtendedStatus==0
● CLASS3 type tag: Connected==104 && GeneralStatus==0 && ExtendedStatus==0
● UCMM type tag: Connected==100 && GeneralStatus==0 && ExtendedStatus==0

3.7.11 _SYS_INFO PLC for Operation Information

Table 3–29 Device information (DevInfo)

Name Data Type Description R/W Comparison with
H3U

_DevInfo.Device INT Device model ID R -

_DevInfo.Vender INT Manufacturer ID R -

_DevInfo.HWVersion DINT Hardware version R -

_DevInfo.SWVersion DINT Software version R D8100 and D8101

Programming Basics

-95-

Name Data Type Description R/W Comparison with
H3U

_DevInfo.FPGAVersion DINT FPGA version R D8104 and D8105
_DevInfo.NSTDVersion DINT Customized version R -

The preceding table lists the PLC device information.

Table 3–30 OSM system monitor

Name Data Type Description R/W
_OSM.CPU INT CPU usage R

_OSM.Memory INT Memory usage R

The preceding table lists the CPU and memory usage for CPU performance diagnosis.

Table 3–31 User program information

Name Data Type Description R/W Comparison with
H3U

_Program.TotalSize DINT Total program capacity R

_Program.UsedSize DINT Program capacity used R

_Program.Interval DINT Program task cycle (μs) R

_Program.CurPeriod DINT Current program task cycle
(μs)

R D8010

_Program.MinPeriod DINT Minimum program task cycle
(μs)

R D8011

_Program.MaxPeriod DINT Maximum program task cycle
(μs)

R D8012

_Program.CurRunTime DINT Current program running time
(μs)

R

_Program.MinRunTime DINT Minimum program running
time (μs)

R

_Program.MaxRunTime DINT Maximum program running
time (μs)

R

_Program.AveRunTime DINT Average program running time
(μs)

R

_Program.Reset BOOL Reset cycle time R/W

The preceding table lists the execution cycle of the program and task, which can be used to judge the
program execution logic complexity.

Table 3–32 List of current errors (CurErrLst)

Name Data Type Description R/W
_CurErrLst.Quantity INT Number of current errors R

_CurErrLst.ErrorInfo _sERR_INFO[32] List of current errors R

_CurErrLst.ErrorInfo[0] _sERR_INFO R

_CurErrLst.ErrorInfo[0].ErrorCode INT Fault code R

_CurErrLst.ErrorInfo[0].ComponentID INT Component ID R

_CurErrLst.ErrorInfo[0].Location DINT Error position R

_CurErrLst.ErrorInfo[0].Timestamp DINT Timestamp, indicating the number of
seconds from 00:00:00 on January 1,
1970 to the error generation time

R

Programming Basics

-96-

Name Data Type Description R/W

_CurErrLst.ErrorInfo[1] _sERR_INFO R

_CurErrLst.ErrorInfo[1].ErrorCode INT Fault code R

_CurErrLst.ErrorInfo[1].ComponentID INT Component ID R

_CurErrLst.ErrorInfo[1].Location DINT Error position R

_CurErrLst.ErrorInfo[1].Timestamp DINT Timestamp, indicating the number of
seconds from 00:00:00 on January 1,
1970 to the error generation time

R

CurErrLst.ErrorInfo[...]
_CurErrLst.ErrorInfo[30] _sERR_INFO R

_CurErrLst.ErrorInfo[30].ErrorCode INT Fault code R

_CurErrLst.ErrorInfo[30].ComponentID INT Component ID R

_CurErrLst.ErrorInfo[30].Location DINT Error position R

_CurErrLst.ErrorInfo[30].Timestamp DINT Timestamp, indicating the number of
seconds from 00:00:00 on January 1,
1970 to the error generation time

R

_CurErrLst.ErrorInfo[31] _sERR_INFO R

_CurErrLst.ErrorInfo[31].ErrorCode INT Fault code R

_CurErrLst.ErrorInfo[31].ComponentID INT Component ID R

_CurErrLst.ErrorInfo[31].Location DINT Error position R

_CurErrLst.ErrorInfo[31].Timestamp DINT Timestamp, indicating the number of
seconds from 00:00:00 on January 1,
1970 to the error generation time

R

The preceding table lists PLC error logs, up to 32 records. You can check details in the AutoShop fault
record. For details about error codes, see “19.3 Fault Codes” on page 552.

Table 3–33 DateTime RTC
Name Data Type Description R/W Comparison

with H3U
_DateTime.Second INT Second, ranging from 0 to 60, in which 60 is

the leap second
R D8013

_DateTime.Minute INT Minute, ranging from 0 to 59 R D8014

_DateTime.Hour INT Hour, ranging from 0 to 23 R D8015

_DateTime.Day INT Day in a month, ranging from 1 to 31 R D8016

_DateTime.Month INT Month, ranging from 1 to 12 R D8017

_DateTime.Year INT Year R D8018
_DateTime.WeekDay INT Day of a week, ranging from 0 to 6, in which

0 indicates Sunday and 1 indicates Monday
R D8019

_DateTime.YearDay INT Number of the day counted from January 1
of each year, ranging from 0 to 365, in
which 0 indicates January 1

R

_DateTime.Timestamp DINT Total number of seconds from 00:00:00 on
January 1, 1970 to the current time

R

The preceding table lists RTC information.

Programming Basics

-97-

Table 3–34 ExtSlt local extension module diagnosis information

Name Data Type Description R/W

_ExtSlt[0] _sEXT_SLT R

_ExtSlt[0].ConfigModule INT Module type of the AutoShop configuration R

_ExtSlt[0].MountedModule INT Type of the installed electrical module R

_ExtSlt[0].LogicVersion DINT Version of the logic device (module version) R

_ExtSlt[0].SWVersion DINT Software version (module version) R

_ExtSlt[0].Error BOOL Error status (ON: failed; OFF: normal) R

_ExtSlt[1] _sEXT_SLT R

_ExtSlt[1].ConfigModule INT Configuration module type R

_ExtSlt[1].MountedModule INT Installed module type R

_ExtSlt[1].LogicVersion DINT Version of the logic device R

_ExtSlt[1].SWVersion DINT Software version R

_ExtSlt[1].Error BOOL Error R

_ExtSlt[...] _sEXT_SLT

_ExtSlt[15] _sEXT_SLT R

_ExtSlt[15].ConfigModule INT Configuration module type R

_ExtSlt[15].MountedModule INT Installed module type R

_ExtSlt[15].LogicVersion DINT Version of the logic device R

_ExtSlt[15].SWVersion DINT Software version R

_ExtSlt[15].Error BOOL Error R

Table 3–35 M8000/D8000 element

Name Data Type Description R/W
M8000 BOOL ON during running of the user program R

M8001 BOOL Negated M8000 state R

M8002 BOOL ON in the first operation cycle of the user program R

M8003 BOOL Negated M8002 state R

M8011 BOOL Oscillating clock with a cycle of 10 ms R

M8012 BOOL Oscillating clock with a cycle of 100 ms R

M8013 BOOL Oscillating clock with a cycle of 1s R

M8014 BOOL Oscillating clock with a cycle of 1 min R

M8020 BOOL Zero flag R

M8021 BOOL Borrow flag R

M8022 BOOL Carry flag R

M8029 BOOL Multi-cycle instruction execution completion flag,
applicable to the RAMP, SORT, and SORT2 instructions

R

M8040 BOOL SFC STL status transition disable R
M8161 BOOL OFF: 16-bit mode; ON: 8-bit mode;

Bit processing mode for ASCII/HEX/CCD/LRC/CRC/RS

R

M8163 BOOL Switchover flag of BINDA instruction output characters
(retained or switched to 0000h)

R

M8165 BOOL SORT2 instruction descending sort enable flag R

M8168 BOOL SMOV instruction data format, including OFF-BCD and ON-
HEX

R

M8333 BOOL Flag indicating all BKCMP instruction matrix comparison
results are 1

R

Programming Basics

-98-

Name Data Type Description R/W
D8066 INT Critical errors in user programs and instructions (triggered,

not reset)
R

D8067 INT Minor errors in user programs and instructions (triggered,
not reset)

R

The preceding table lists information about M8000/D8000 components. A small number of such
components are reserved.

Program example

RTC monitoring table

Programming Basics

-99-

3.7.12 _SYS_MC_Axis for Motion Control Axis Information
Table 3–36 McAxis axis operation status

Name Data Type Description R/W

_McAxis[0] _sMCAXIS_INFO - -

_McAxis[0].bPowerState BOOL Axis enable state R

_McAxis[0].bDebugState BOOL Axis commissioning state R

_McAxis[0].fSetPosition REAL Position setting R

_McAxis[0].fSetVelocity REAL Speed reference R

_McAxis[0].fSet_Acc_Dec REAL Acceleration/Deceleration rate reference R

_McAxis[0].fSetTorque REAL Torque reference R

_McAxis[0].fActPosition REAL Current position R

_McAxis[0].fActVelocity REAL Current speed R

_McAxis[0].fAct_Acc_Dec REAL Current acceleration/deceleration rate R

_McAxis[0].fActTorque REAL Current torque R

_McAxis[0].wPLCOpenState INT PLCOpen state machine

0: PowerOff

1: ErrorStop

2: Stopping

3: StandStill

4: DiscreteMotion

5: ContinuousMotion

7: Homing

8: SynchronizedMotion

R

_McAxis[0].wConfigState INT Configuration status

0: Init (axis in the initialization state)

1: Configure finish (configuration reading
completed)

2: Sync finish (synchronized with EtherCAT tasks)

3: Wait Communication (communication with
the servo drive established)

4: Slave ready (initialization completed for the
servo drive controlled by axes)

5: Axis ready (communication established)

R

_McAxis[0].wAxisError INT Axis fault[Note] R

_McAxis[0].wServoError INT Drive fault[Note] R

_McAxis[0].bEnterDebug BOOL Monitoring mode (online commissioning mode
of AutoShop axes)

R/W

_McAxis[0].bPowerOn BOOL Enabled (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].bStop BOOL Stopped (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].bReset BOOL Reset (online commissioning mode of AutoShop
axes)

R/W

_McAxis[0].bJogP BOOL Jog+ (online commissioning mode of AutoShop
axes)

R/W

Programming Basics

-100-

Name Data Type Description R/W

_McAxis[0].bJogN BOOL Jog- (online commissioning mode of AutoShop
axes)

R/W

_McAxis[0].bHome BOOL Homing (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].bSetPos BOOL Current position setting (online commissioning
mode of AutoShop axes)

R/W

_McAxis[0].bAbsPos BOOL Absolute positioning (online commissioning
mode of AutoShop axes)

R/W

_McAxis[0].bRevPos BOOL Reciprocating (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].bRelPos BOOL Relative positioning (online commissioning
mode of AutoShop axes)

R/W

_McAxis[0].bVelocity BOOL Continuous motion (online commissioning mode
of AutoShop axes)

R/W

_McAxis[0].bTorque BOOL Torque mode (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].wDebugMotionType INT Commissioning motion type (online
commissioning mode of AutoShop axes)

R/W

_McAxis[0].fJogVelocity REAL Jog speed (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fPositionOffser REAL Homing offset (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fPresetPosition REAL Reset position (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fTarPosition1 REAL Target position 1 (online commissioning mode
of AutoShop axes)

R/W

_McAxis[0].fTarVelocity1 REAL Target speed 1 (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fTarAcceleration1 REAL Target acceleration rate 1 (online commissioning
mode of AutoShop axes)

R/W

_McAxis[0].fTarDecelaration1 REAL Target deceleration rate 1 (online
commissioning mode of AutoShop axes)

R/W

_McAxis[0].wCurveType1 INT Curve type 1 (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fTarPosition2 REAL Target position 2 (online commissioning mode
of AutoShop axes)

R/W

_McAxis[0].fTarVelocity2 REAL Target speed 2 (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fTarAcceleration2 REAL Target acceleration rate 2 (online commissioning
mode of AutoShop axes)

R/W

_McAxis[0].fTarDecelaration2 REAL Target deceleration rate 2 (online
commissioning mode of AutoShop axes)

R/W

_McAxis[0].wCurveType2 INT Curve type 2 (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].dUnused DINT Reserved R

_McAxis[0].fTarTorque REAL Target torque (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].fTarTorqueSlop REAL Torque slope (online commissioning mode of
AutoShop axes)

R/W

_McAxis[0].wControlWord INT Control word R

Programming Basics

-101-

Name Data Type Description R/W

_McAxis[0].wStatusword INT Status word R

_McAxis[0].dSetPosition DINT Target position R

_McAxis[0].dActPosition DINT Current position R

_McAxis[0].dSetVelocity DINT Speed reference R

_McAxis[0].dActVelocity DINT Current speed R

_McAxis[0].dSetTorque INT Torque reference R

_McAxis[0].dActTorque INT Current torque R

_McAxis[0].dDO DINT Digital output R

_McAxis[0].dDI DINT Digital input R

_McAxis[0].wModesOfOperation INT Control mode

6: Homing mode

8: Synchronous position mode

10: Synchronous torque mode

R

_McAxis[0].
wModesOfOperationDisplay

INT Current control mode

6: Homing mode

8: Synchronous position mode

10: Synchronous torque mode

R

_McAxis[0].wTouchFunction INT Touch probe function R

_McAxis[0].wTouchStatus INT Touch probe status R

_McAxis[0].dTouch1PPos DINT Touch probe 1 positive edge R

_McAxis[0].dTouch2PPos DINT Touch probe 2 positive edge R

_McAxis[0].dTouch1NPos DINT Touch probe 1 falling edge R

_McAxis[0].dTouch2NPos DINT Touch probe 2 negative edge R

_McAxis[0].wErrorCode INT Fault type[Note] R

_McAxis[0].wAxisRingPos INT Axis configuration position R

_McAxis[0].wAxisID INT Axis ID R

_McAxis[0].fUnits REAL Axis gear ratio R

_McAxis[0].bMotionState BOOL Motion status, indicating whether an axis is in
motion

R

_McAxis[0].bphlimit BOOL Positive limit input status of hardware R

_McAxis[0].bnhlimit BOOL Negative limit input status of hardware R

_McAxis[0].bhomestate BOOL Home switch input status of hardware R

_McAxis[0].bpslimit BOOL Software positive limit reached or not R

_McAxis[0].bnslimit BOOL Software negative limit reached or not R

_McAxis[0].dLocialAxisSetPos DINT Local pulse axis position setting R

_McAxis[...] _sMCAXIS_INFO - R

[Note]: For details about axis faults and drive faults, see “12.8 Fault Categories” on page 426.

Programming Basics

-102-

Program example

3.7.13 _sGROUPAXIS_INFO for Status of Coordinate Axes within Axis Group

Name Type Description

wAxisID INT16 Axis ID

wState INT16

The status of an axis' PLCOpen state machine

0: PowerOff

1: ErrorStop

2: Stopping

3: StandStill

4: DiscreteMotion

5: ContinuousMotion

7: Homing

8: SynchronizedMotion

wErrorCode INT16 The fault code of an axis
fsetpos REAL Position reference
factpos REAL Feedback position

fsetvel REAL Velocity reference

factvel REAL Feedback velocity

This system variable exists in the axis group _sMCGROUP_INFO and is used to represent the state of
individual axes within the axis group.

Programming Basics

-103-

For example, write the position reference of the X-axis into the D3000 in the PLC:

3.7.14 _sMCGROUP_INFO for Axis Group Status

Name Type Description

wRingPos INT16 Axis group number

wGroupID INT16 Axis number

Programming Basics

-104-

Name Type Description
wState INT16 Axis group status

0: Init

The axis configuration in the axis group is not completed.

1: Disabled

Not all axes in the axis group are enabled.

2: Single Stop

An axis in the axis group calls the instruction MC_Gtop.

3: Single Homing

An axis in the axis group calls the instruction MC_Home.

4: Single motion

An axis in the axis group calls single-axis motion instructions such as MC_
MoveAbsolute.

5: ErrorStop

An axis in the axis group is in a fault state.

6: StandStill

All axes in the axis group are in the StandStill state.

7: Stopping

The instruction MC_GroupStop is called.

8: Synchronous Motion

A linear interpolation or circular interpolation instruction is called.

wErrorCode INT16 Fault code
bMotionState BOOL Motion status

FALSE: Not in motion

TRUE: In motion
bHaltValid BOOL Halt status

FALSE: Halt not applied

TRUE: Halt applied

wBufNum INT16 The number of buffered curves
sAxis_x _sGROUPAXIS_INFO The status of the X-axis
sAxis_y _sGROUPAXIS_INFO The status of the Y-axis
sAxis_z _sGROUPAXIS_INFO The status of the Z-axis
sAxis_a _sGROUPAXIS_INFO The status of the auxiliary axis

fSetvel REAL Velocity reference

In linear interpolation mode, it indicates the interpolation velocity of a
space straight line.

In circular interpolation mode, it indicates the linear velocity of a circular
arc.

fSetacc_dec REAL Acceleration/deceleration reference

Indicates the change rate of setvel.

fSetvel_buf REAL The velocity reference of a buffered curve

In linear interpolation mode, it indicates the interpolation velocity of a
space straight line.

In circular interpolation mode, it indicates the linear velocity of a circular
arc.

Programming Basics

-105-

Name Type Description

fSetacc_dec_buf REAL The acceleration/deceleration reference of a buffered curve

Indicates the change rate of fSetvel_buf

fSetdis REAL Distance reference

In linear interpolation mode, it indicates the distance at which a space
straight line moves after the instruction is executed.

In circular interpolation mode, it indicates the length of a circular arc in
which the circular arc moves after the instruction is executed.

fLeftdis REAL Left distance

In linear interpolation mode, it indicates the left distance for this section
of a space straight line after the instruction is executed.

In circular interpolation mode, it indicates the length of a space circular
arc left after the instruction is executed.

fCenter_x REAL The coordinates of point X at the center of a circular arc during circular
interpolation

fCenter_y REAL The coordinates of point Y at the center of a circular arc during circular
interpolation

fCenter_z REAL The coordinates of point Z at the center of a circular arc during circular
interpolation

fRadius REAL The radius of a circular arc during circular interpolation

fStartAng REAL The start angle during circular interpolation

fSetAng REAL The motion angle during circular interpolation

This system variable is used to indicate the status of the entire axis group:

For example, write the X-axis coordinates of the center of an axis group to D3010:

Programming Basics

-106-

3.7.15 _sGROUPPOS_INFO for Target Positions of Coordinate Axes within Axis

Group

Name Type Description
px REAL The position of the X-axis
py REAL The position of the Y-axis
pz REAL The position of the Z-axis
pa REAL The position of the auxiliary axis

This structure sets the target position of a circular arc as an input parameter to the MC_MoveCircular.

1. Create a global variable
2. Assign values to the global variable

3. Call the instruction MC_MoveCircular

Programming Basics

-107-

3.8 Timer

3.8.1 Overview

H5U supports four types of timers with the reset function, including the pulse timer (TPR), connection
delay timer (TONR), off delay timer (TOFR), and accumulation timer. For details, see the IEC61131-3
standard.
The time base of the timers is 1 ms, and the timer count value and state are updated when the timer
instruction is executed. The program supports a maximum of 4096 timer instructions. The instruction
parameters of these four types of timers are the same, which are listed as follows:

Table 3–37 Timer instruction parameters

Name Definition Data Type Description
IN Instruction execution input / Start input
PT Input variable DINT Delay time
R Input variable BOOL Reset input

Q Output variable BOOL Timer output

ET Output variable DINT Current timing time

Timer timing

3.8.2 Pulse Timer - TPR

When the IN input of the timer instruction changes from OFF to ON, the timer starts timing and the
output Q turns ON. At this time, no matter how the IN input flow changes, Q remains ON for the time
period specified by PT. When the timing duration reaches the time period specified by PT, Q changes
to OFF.

During timing of the timer, ET outputs the current timing duration. After the timing duration reaches
the value specified by PT, if the IN input flow is ON, the ET value is retained; if the IN input flow is OFF,
the ET value becomes 0.

Programming Basics

-108-

During timing, if the reset input R changes from OFF to ON, the timing duration of the TPR timer is
reset to 0, and the output Q turns OFF. After the reset input R turns OFF, if the IN input flow is active,
the timer resumes timing.

Parameter description:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing diagram

The following figure shows the timing diagram of the parameters IN, R, Q, and ET.

Note
The output parameters "ET" and "Q" are updated when this instruction is executed. Therefore, the change in the
state of "Q" is not at the time when the elapsed time after the timer starts equals "PT", but at the time when the in-
struction is executed for the first time after the elapsed time after the timer starts reaches "PT". That is, the delay of
the output parameters can be up to one cycle.

3.8.3 Connection Delay Timer - TONR

When the IN input of the timer instruction changes from OFF to ON, the timer starts timing and the
output Q turns ON. During the period when the IN input flow remains ON, the running time of the timer
is the time specified by PT. After the timing duration reaches the time period specified by PT, Q turns
ON. During the timing process or after timing is completed, when the IN input flow changes to OFF,
timing ends and Q turns OFF.

When the IN input flow is ON, ET outputs the current timing duration during timing of the timer, and
the ET value is retained after the timing duration reaches the value specified by PT. When the IN input
flow is OFF, the ET value becomes 0.

Programming Basics

-109-

During timing, if the reset input R changes from OFF to ON, the timing duration of the TONR timer is
reset to 0, and the output Q turns OFF. After the reset input R turns OFF, to resume timer timing, you
need to set the IN input flow to ON again.

During timing, if the reset input R changes from OFF to ON, the timing duration of the TONR timer is
reset to 0, and the output Q turns OFF. After the reset input R turns OFF, if the IN input flow is active,
the timer resumes timing.

Parameter description:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing diagram

The following figure shows the timing diagram of the parameters IN, R, Q, and ET.

Note
The output parameters "ET" and "Q" are updated when this instruction is executed. Therefore, the change in the
state of "Q" is not at the time when the elapsed time after the timer starts equals "PT", but at the time when the in-
struction is executed for the first time after the elapsed time after the timer starts reaches "PT". That is, the delay of
the output parameters can be up to one cycle.

3.8.4 Off Delay Timer - TOFR

When the IN input of the timer instruction changes from OFF to ON, the timer starts timing and the
output Q turns ON. When the IN input flow changes from ON to OFF, during the period when the IN
input flow remains ON, the running time of the timer is the time specified by PT. After the timing
duration reaches the time period specified by PT, Q turns OFF.

When the IN input flow is ON, the ET output is 0. When the IN input changes from ON to OFF, ET
outputs the current timing duration during timing of the timer, and the ET value is retained after the
timing duration reaches the value specified by PT.

Programming Basics

-110-

When the IN input flow is ON, if the reset input R changes from OFF to ON, the output Q turns OFF; if R
resumes OFF, the output Q resumes ON. When the IN input flow changes from ON to OFF, if the reset
input R changes from OFF to ON during the timing process or after timing is completed, the output Q
turns OFF, and ET is reset to 0. After the reset input R turns OFF, to resume timer timing, you need to
set the IN input flow to OFF again.

Parameter description:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing diagram

The following figure shows the timing diagram of the parameters IN, R, Q, and ET.

Note
The output parameters "ET" and "Q" are updated when this instruction is executed. Therefore, the change in the
state of "Q" is not at the time when the elapsed time after the timer starts equals "PT", but at the time when the in-
struction is executed for the first time after the elapsed time after the timer starts reaches "PT". That is, the delay of
the output parameters can be up to one cycle.

3.8.5 Accumulation Timer - TACR

When the IN input flow of the timer instruction is ON, if the timer value has not reached the time period
specified by PT, the timer continues to count, and the output Q is OFF; when the timing duration
reaches the time period specified by PT, Q turns ON. During the timing process, if IN changes from ON
to OFF, the timing duration is retained. When IN turns ON again, the timer starts counting from the
current retained value. After the time specified by PT is reached, Q becomes ON.

Programming Basics

-111-

When the IN input flow is ON, ET outputs the current timing value. After the timing duration reaches
the time period specified by PT, the ET value is retained. When the IN input flow turns OFF, ET remains
unchanged.

During the timing process or after timing is completed, if the reset input R changes from OFF to ON, the
output Q turns OFF, and ET is reset to 0. After the reset input R turns OFF, if the IN input flow is active,
the timer resumes timing.

Parameter description:

PT ranges from 0 to 2147483647 ms (about 24 days). If the value of PT is less than or equal to 0, it is
considered 0.

Timing diagram

The following figure shows the timing diagram of the parameters IN, R, Q, and ET.

Note
The output parameters "ET" and "Q" are updated when this instruction is executed. Therefore, the change in the
state of "Q" is not at the time when the elapsed time after the timer starts equals "PT", but at the time when the in-
struction is executed for the first time after the elapsed time after the timer starts reaches "PT". That is, the delay of
the output parameters can be up to one cycle.

Programming Basics

-112-

3.9 Graphical Block Instructions

3.9.1 Instruction Composition

Some instructions support graphical block programming. An graphical block instruction is composed
of the instruction name, flow signal, input side, and output side. The following figure shows the compo-
sition of a graphical block instruction of a motion control axis.

The floating-point numbers such as the target position and target velocity in the instructions are
single-precision floating-point data. Therefore, the values in the instructions must meet the
requirements of the range and precision of single-precision floating-point data when being processed
in the PLC program. That is, a value should fall between –3.4E38 and +3.4E38, with a maximum of 7
significant digits. If a value has more than 7 significant digits, the excess part will be automatically
rounded.

Since AutoShop 4.0.0.0 with PCB software 3.0.0.0, the motion control axis control instructions
(EtherCAT/pulse output, pulse input) of graphical blocks support access by axis name. "AxisID" is
changed to "Axis", and access by axis ID is still supported.

3.9.2 Programming

During programming, you only need to enter the name of a graphical block instruction and simply
press the "Enter" key to add the graphical block instruction to the program network. You can also di-
rectly edit the instruction parameters.

● When editing a ladder diagram, enter an instruction name or select an instruction name according
to the instruction prompt and click "OK". The graphical block instruction is added to the ladder
diagram network.

Programming Basics

-113-

● Enter parameters in the graphical block instruction to complete editing of the graphical block
instruction.
In the instruction, parameters (with "???") next to ① are mandatory, and parameters next to ② are
optional. If a parameter is not used, the default parameter value is used automatically in the
instruction input, and the state cannot be obtained in the instruction output in the program or
during monitoring and debugging.

● All instructions under "Instruction Set" in the "Toolbox" pane are in graphical block mode. During
programming, you can directly double-click an instruction under "Instruction Set" to add the
instruction to the current focus position of the ladder diagram.

①: Double-click an instruction to add it to the ladder diagram. ②: The instruction is added
successfully.

3.9.3 Labeling Function

Graphical blocks can be used to quickly increase or decrease label numbers and implement incremen-
tal paste.

Quickly Increasing/Decreasing Label Numbers

When editing the ladder diagram, you can press "Alt"+"UP"/"DOWN" to quickly increase or decrease
the label number of an element or array subscript.

Programming Basics

-114-

● This function can be used during command editing.

● For complex array variables, you can select the array subscript that needs to be increased or
decreased.

● When a function block is selected, the operation will be performed on all pins.

Incremental Paste

When editing the ladder diagram, you can use the incremental paste function to continuously paste
the copied elements for multiple times. At the same time, the element number or array subscript can
be specified during the process.

1. Select an element in the ladder diagram and press "Ctrl"+"C", or right-click the element and choose
"Copy".

2. Right-click the destination position and choose "Increment paste" from the shortcut menu (or press
"Ctrl"+"Shift"+"V").

Programming Basics

-115-

3. Specify the increment value and paste times in the displayed configuration window.

Programming Basics

-116-

● "Incremental pastes number (1–10)": You can set the paste times.
● "After increment": You can enter the expected value after increment, and "Increment number" is

automatically calculated based on this value.
● "Increment number": You can set the increment in the target element each time a paste

operation is performed.
● "Bit operate increment": During bit operation of an element, if this option is selected, the

increment applies to the bit operation of the target element.
● "Batch setting increment": You can set the increments in batches.

4. Click "OK". The paste operation is performed based on the configuration.

Programming Basics

-117-

3.10 Subprograms

3.10.1 Overview

3.10.1.1 Subprogram Overview

The following table lists the subprogram categories and corresponding description.

Code Name Description
SBR Subprogram Up to 1024 subprograms are supported. Subprograms can be set as common

subprograms or encrypted subprograms.

Common subprograms and encrypted subprograms have infinite capacity and share the
system capacity of 200,000 steps.

INT Interrupt subprogram External interruption: X000 to X003 input interrupt, including the rising edge, falling
edge, and rising and falling edges

Timed interruption: 4 points (time base = 1 ms)

Comparison interruption: 16 points ranging from 1 to 16

3.10.1.2 Subprogram Execution Mechanism

The following figure shows the execution logic and circular scanning methods of the main program
and subprograms.

Programming Basics

-118-

Subprogram nesting levels

A subprogram supports up to six nesting levels. The main program calls the subprogram as level 1. The
nesting level increases by 1 upon each call. If the nesting is returned, the nesting level does not
increase. The following figure shows the details.

3.10.2 General Subprogram Application

3.10.2.1 Creating a General Subprogram

In the "Project Manager" tree, unfold "Programming", right-click "Function block" or a folder under
"Function block", and select "Insert Subprogram". The new subprogram is displayed under "Function
block".

Programming Basics

-119-

Subprogram naming rule: SBR_SN, in which the subprogram SN can be changed during renaming or
property modification.

3.10.2.2 Calling a General Subprogram

The following figure shows how to call a general subprogram.

Programming Basics

-120-

3.10.3 Encrypted Subprogram Application

3.10.3.1 Encrypting a General Subprogram

1. Encrypt the SBR_001 general subprogram as an example. Right-click SBR_001 and select
"Encryption/Decryption".

2. In the "Encrypt" dialog box that is displayed, set "Password" and "Verify Password".

Programming Basics

-121-

After encryption, the SBR_001 general subprogram is shown in the following figure.

If you repeat the preceding operations on the encrypted general subprogram, the subprogram will
be decrypted.

To access an encrypted general subprogram, you can double-click it or right-click it and select
"Verify password". In the pop-up dialog box, input the correct password.

3.10.3.2 Calling an Encrypted Subprogram

The method of calling an encrypted subprogram is the same as that of calling a general subprogram.

Programming Basics

-122-

3.10.4 Interrupt Subprogram Application

3.10.4.1 External Interrupt Subprogram

External interrupt subprograms must be immediately executed to respond to external input signals. Ex-
ternal interrupt subprograms are executed regardless of scan cycles.

1. In the "Project Manager" tree, unfold "Programming", right-click "POU" or a folder under "POU", and
select "Insert interrupt subprogram".

2. Right-click the inserted interrupt subprogram (such as INT_001 in the figure above) and select
"Properties" to open the interrupt subprogram settings page as shown in the following figure.

3. Click next to the "Interrupt Event" field to open the interrupt selection page.
4. Select an external interrupt, such as X0 input interrupt, and then select the corresponding property,

such as "Rising Edge", "Falling Edge", and "Rising Edge And Falling Edge".
5. Write interrupt subprograms in INT_001.
6. Enable EI in the main program. When the external interrupt conditions are met, the corresponding

interrupt subprogram will be executed.

3.10.4.2 Timed Interrupt Subprogram

Timed interrupt subprograms apply to scheduled execution of set program blocks. Timed interrupt
subprograms are executed regardless of scan cycles.

1. In the "Project Manager" tree, unfold "Programming", right-click "POU" or a folder under "POU", and
select "Insert interrupt subprogram".

Programming Basics

-123-

2. Right-click the inserted interrupt subprogram (such as INT_001 in the figure above) and select
"Properties" to open the interrupt subprogram settings page as shown in the following figure.

3. Click next to the "Interrupt Event" field to open the interrupt selection page.
4. Select a timed interrupt and set Timing (ms) to a value ranging from 1 ms to 1000 ms.
5. Write interrupt subprograms in INT_001.
6. Enable EI in the main program. When the timed interrupt conditions are met, the corresponding

interrupt subprogram will be executed.

3.10.4.3 Comparison Interrupt Subprogram

Comparison interrupt subprograms must be immediately executed to respond to the setpoint of the
counter axis. Comparison interrupt subprograms are executed regardless of scan cycles.
For details about the procedure, see “13.6.7 Comparison Interruption” on page 446.

3.11 Function Blocks and Functions (FB/FC)

3.11.1 Function Blocks (FB)

A function block (FB) abstractly encapsulates the part used repeatedly in a program into a general pro-
gram block that can be called repeatedly within the program. Using encapsulated function blocks in
programming can improve program development efficiency, reduce programming errors, and improve
program quality.
Different instances can be created based on the same function block. These instances can output one
or more values during execution. The system allocates memory for internal variables of each instance,
and these variables describe the running state of the function block. With the same input parameters,
different instances provide different calculation results.

The basic steps of using a function block are as follows: Create a function block -> Program the
function block -> Instantiate the function block -> Run the function block -> Encapsulate the function
block -> Import the function block.

Programming Basics

-124-

Creating a Function Block

Expand the "Programming" node in the project management window, right-click "Function Block
(FB)", or right-click a folder under "Function Block (FB)", choose "New", enter a name in the displayed
dialog box, and click "OK". A function block is created successfully.

Programming the Function Block

Function blocks can be programmed in the ladder diagram or structured text. Double-click the created
function block under "Function Block (FB)" to go to the function block program editing interface.
Compared with ordinary program editing, the function block program editing interface has an
additional input/output and local variable definition window.

Programming Basics

-125-

①: Input/output and local variable definition window

1. "I/O Type": attribute of the function block variable

Variable Type Type Description Description

IN Input variable The parameter is provided by the logic block that calls the variable,
and the input is transferred to the instruction of the logic block.

OUT Output variable The parameter is provided to the logic block that calls the variable,
that is, structure data is output from the logic block.

INOUT Input/Output
variable

An input/output variable can not only be transferred to the called
logic block, but also can be modified inside the called logic block.

VAR Local variable A local variable is only valid in the current logic block and cannot be
accessed externally.

2. "Name": name of the variable
3. "Data Type"

The supported data types include BOOL, INT, DINT, REAL, BYTE, IP, and STRING. You can also define
array variables and structure variables. To use structure variables, you need to create structure
members in the structure of global variables.

4. "Initial Value"
You can set the initial value of a variable when execution starts.

5. "Power Down Hold"
This attribute allows you to choose whether to retain the value of a variable upon power failure.

● "Non Retained": The variable resumes the specified initial value after power-on.
● "Retained": If you select "Re-initialize retentive variables when downloading", the variable

resumes the specified initial value during program downloading; otherwise, it retains the
previous value.

The function block program adopts ladder diagram programming. It can call functions (FC) or function
blocks (FB) and supports up to 8 levels of nested calls.

In addition to variables, the function block program can also use supported elements, such as M8000,
as global variables.

Example: Counting Up with FB Encapsulation

Programming Basics

-126-

Instantiating and Calling the Function Block

After the FB program is compiled, the function block needs to be instantiated.

● Method 1: Directly enter the FB name in the ladder diagram application, and then enter the
instance name in "???" at the top of the function block instruction to instantiate the function block.

● Method 2: Directly enter the FB name+Instance name in the ladder diagram application and click
"OK" to instantiate the function block.

Programming Basics

-127-

After instantiation is completed, edit the instruction parameters in the FB instruction as required by
the program to call the instantiated function block.

● Method 3: Double-click the FB instruction under "FB" of the "Toolbox" pane to add the FB instruc-
tion to the selected position in the ladder diagram. Then enter the instance name in the graphic
block instruction to complete the instantiation definition.

Running the Function Block

After the function block is instantiated, the En of the function block is connected to the ladder
network. When the En network flow is ON, the function block program is executed, and the output of
the function block changes with the input state and internal variable state. When the En network flow
is OFF, the function block program is not executed, and output of the function block is not refreshed.

When the counter function block CUT flow is ON, the function block is executed. The output CV
increases by 1 when the input condition CU changes on the rising edge.

When the counter function block CUT flow is OFF, the function block is not executed. The output CV is
not refreshed when the input condition CU changes on the rising edge.

Encapsulating the Function Block

The function block can be encapsulated into a library after editing and debugging. The function block
encapsulated into a library can be multiplexed in different programs through library management of
AutoShop.

1. Right-click "Function Block (FB)" under "Programming" and choose "Export FB".

Programming Basics

-128-

2. Select the function block to be encapsulated and set the version in the displayed "Export Library"
window. Select "Source Visible" as required. If the source code is visible, after importing the library
in the project, you can debug or modify the function block program. If the source code is invisible,
after the library is imported, the function block program can only be called but not viewed or
modified in the project.

Programming Basics

-129-

3. Specify "Export Path" and click "OK". The FB is exported to the specified location, and a function
block in .fe format is generated.

Encrypted function blocks, function blocks that call encrypted function blocks, and function blocks that call en-
crypted functions cannot be selected for export.

Importing the Function Block

After the function block is exported as a library, it can be called in other programs after being
imported. You can import the function block library in either of the following two ways.

● Method 1: Right-click "Function Block (FB)" under "Programming" in the project management
window and choose "Import FB" to import the library.

Programming Basics

-130-

This method can only be used to import function blocks of which the source code is visible. After
importing, you can double-click to open the function block program and edit and debug it. The
function block library imported using this method is managed in the project. If you want to call the
function block in a new project, you need to re-import the library.

● Method 2: Right-click "Library" in the "Toolbox" pane and choose "Import FB" to import the library.
This method can be used to import function blocks of which the source code is visible or invisible.
The libraries imported this way are managed as custom libraries, and the function blocks in the
libraries can be used directly when a new project is created. You can double-click the function block
library imported in the toolbox to directly add it to the ladder diagram program as an instruction. If
you need to view or modify a function block program of which the source code is visible, you need
to import it in the project management window.

3.11.2 Functions (FC)

A function (FC) is an independently encapsulated program block. The program block can define input/
output parameters and non-static internal variables. That is, when a function is called with the same
input parameters, the output results are the same. An important feature of a function is that its internal
variables are static, and there is no internal state storage. You will obtain the same output with the
same input parameters. This is the main difference between a function and a function block.
FC, as a basic arithmetic unit, is often used in various mathematical operations. For example, sin(x)
and sqrt(x) are typical functions.

The basic steps of using a function are as follows: Create a function -> Program the function -> Call the
function -> Run the function -> Encapsulate the function.

Programming Basics

-131-

Creating a Function

Expand the "Programming" node in the project management window, right-click "Function (FC)", or
right-click a folder under "Function (FC)", choose "New", enter a name in the displayed dialog box, and
click "OK". A function is created successfully.

Programming the Function

Functions can be programmed only in the ladder diagram. Double-click the created function under
"Function (FC)" to go to the function program editing interface. The editing interface of the function
program is similar to that of the function block. Compared with ordinary program editing, the function
program editing interface has an additional input/output and local variable definition window.

In the input/output and local variable definition window, you can define the input (IN), output (OUT),
input/output (INOUT), and local variable (VAR) of a function block. The supported data types include
BOOL, INT, DINT, REAL, BYTE, IP, and STRING. You can also define array variables and structure
variables. To use structure variables, you need to create structure members in the structure of global
variables.

● Compared with variables of function blocks, variables of functions do not support configuration of
initial values, and all local variables are non-retentive.

● The function program adopts ladder diagram programming. It can call functions. A function can be
called by other functions, function blocks, and programs.

● In addition to variables, the function program can also use M8000 as an always ON variable.
● In a function program, instructions related to states or executed for multiple cycles, such as LDP

and MC_Power, cannot be used.

Programming Basics

-132-

Example: Encapsulating the Addition Function

Calling the Function

The function program can be called directly or used in an application after it is compiled.

● Method 1: Directly enter the function name in the ladder diagram application, press "Enter", and
then edit the input/output parameters in the graphic block instruction.

①: Enter the function name.

②: Click "OK".

③/④: Add input/output variables.

● Method 2: After a function program is created, the corresponding instruction is generated under
"FC" in the "Toolbox" pane. Double-click the FC instruction under "FC" to add the FC instruction to
the selected position in the ladder diagram.

①: Double-click the FC instruction to add it.
②: Add input parameters.

③: Add output parameters.

Running the Function

After the function is called, the En of the function is connected to the ladder network. When the En
network flow is ON, the function program is executed, and the output of the function is refreshed

Programming Basics

-133-

according to the input state operation. When the En network flow is OFF, the function program is not
executed, and output of the function is not refreshed.

①: The function is executed when the En network flow is ON.

Encapsulating the Function

The encapsulation procedure of functions is similar to that of function blocks. For details, see the
description of "Encapsulating the Function Block".

3.11.3 Authorization Function Block

By using the Prog_Auth function, the core algorithm function block is controlled and compiled into a li-
brary file. Only authorized PLCs that pass the verification can use this library file, thus protecting the in-
tellectual property of the equipment manufacturer.

Setting Authorization Code

1. Run "H5U_AuthManger.exe" in the software installation directory.

Programming Basics

-134-

2. Enter the IP address of the PLC, enter the 8-digit authorization code, and click "Set Authorization
Code".

3. Click "Generate Verification Code". A string of characters is generated in the "Instruction
Authorization Verification Code" text box.

4. You can also verify or clear the authorization code (only after you enter the authorization code) in
the software.

Adding a Program Block

1. Open the function block to be authorized, and add the PARAS function block.

2. Enter the instruction authorization verification code generated by the software in "AuthCode".
3. The function block is authorized. If the authorization code of the PLC is inconsistent with that in the

function block, the program in the function block cannot run.

Example

Since the verification code obtained by using Prog_Auth is inconsistent with the preset verification
code in the PLC, the return value is "OFF", and the ADD instruction of the program is not executed.

3.11.4 FB Initial Values

The initial values of FB settings can be modified based on the FB type or FB instance.

● Modifying the initial values based on the FB type is equivalent to modifying the initial values of the
type.

● Modifying the initial values based on an FB instance is equivalent to modifying the initial values of
the instance.

● If the initial values of an instance are modified, the member variables of the FB instance display the
values after modification, and the background color of the cells is yellow.

● If the initial values of an instance are not modified, the member variables of the FB instance display
the default values, and the background color of the cells is white.

Programming Basics

-135-

The initial values of the FB type are the default values of the instance. When the initial values of an
instance are modified back to the default values, the background color of the cells changes from
yellow to white.

Modifying Initial Values When the FB Is Not Nested

Modify the initial value of the FB type from 0 to 10. Use the default value as the initial value of the FB
instance, that is, the initial value 10 of the FB type.

Modify the initial value of the FB instance from 10 to 100. The initial value of the FB instance is 100. At
this time, if you attempt to modify the initial value of the FB type to 11, you will find that the initial
value of the FB instance remains unchanged (still 100).

In the ladder diagram, double-click "FB" to display the FB instance. At this time, the initial value of the
FB instance is displayed in the FB view instead of the initial value of the FB type. If the initial value of
the variable is modified to be inconsistent with the FB, the background color will be yellow. Modifying
the initial value on this interface is the same as modifying the initial value of the instance in the
function block instance table.

Programming Basics

-136-

Modifying Initial Values When the FB Is Nested

Add a variable fb1 in the FB type, and set the data type to "FB_1". Modify the initial value of FB_1 from
1000 to 1001. The member variable fb1 of the FB type automatically takes the default value 1001 as the
initial value, and the member variable fb1 of the FB instance also automatically takes the default value
1001 as the initial value.

FB is the middle layer between the instance and FB_1. Modify the initial value of FB_1 to 1500 on the
FB type interface. Then the initial value of the FB type changes to 1500, and the background color
changes to yellow. At this time, the initial value of FB_1 of the FB instance is also 1500, but the
background color is white, indicating that the default value is used.

● Enter the instance interface from the main program. The initial value of the FB instance is
displayed. Double-click "FB_1" to enter the FB_1 instance interface, and modify the initial value to
2000. Open the FB_1 type, and the initial value is still 1001. Open the FB instance FB_1, and the
initial value is 2000.

Programming Basics

-137-

At this time, the tab name is "FB_1(var_1.fb1)".

● Double-click "FB" in the "Project Manager" navigation tree. You can see that the initial value of FB_
1 on the FB type interface is 1500. Double-click "FB_1" in the ladder diagram of the FB type
interface to enter the FB_1 instance interface. You can see that the initial value of the FB_1 instance
is 1500. Modify it to 2500. Then return to the FB type interface to check the initial value of FB_1. You
will find that it also changes to 2500.

At this time, the tab name is "FB_1(fb1)".

Programming Basics

-138-

Tab at the Bottom of the FB View

The tab displayed at the bottom of the FB view contains the following information from left to right:
node name, instance name, and unsaved flag. The node name is the name of the project tree node,
and the instance name refers to the instance name in parentheses. The following figures show the
details.

As shown in the preceding figure, "FB" is the node name, "var_1.fb1" is the instance name, and "*"
indicates unsaved.

Since the tab needs to be parsed, characters including the period (.), asterisk (*), and parentheses (())
are not allowed when FBs and structures are renamed.

3.11.5 Encrypting FB or FC

This section takes encryption of function blocks as an example. The process is similar for encrypting
functions. After encryption, the method of calling the function blocks or functions remains unchanged.

1. Choose "Programming" > "Function Block (FB)" in the project management window, right-click "FB",
and choose "Encryption/Decryption".

Programming Basics

-139-

2. Enter and confirm the password in the displayed "Encrypt" dialog box.

The following figure shows a function block after encryption.

Programming Basics

-140-

Performing the preceding steps on an encrypted function block will decrypt it and restore it to its
original unencrypted state.

To access an encrypted function block, you can double-click the encrypted node, or right-click the
encrypted node and choose "Password verification" from the shortcut menu, and enter the correct
password in the displayed dialog box.

3.12 Folder

You can use folders to classify and batch operate program blocks, function blocks, and functions.

Creating a folder

1. Right-click "POU", "Function block", or "Function", and select "New folder". For example, right-click
"POU", as shown in the following figure.

2. In the "New folder" dialog box that is displayed, set "Folder name" and click "OK". A folder is
created.

Programming Basics

-141-

Note
Nested folders can contain up to four levels. Each folder name must not:

● Be empty.
● Contain special characters such as space, asterisk (*), pipe (|), backslash (\), less-than sign (<), comma (,), period

(.), forward slash (/), left parenthesis ((), right parenthesis ()), and question mark (?), or start with underscore (_),
numbers, SYS, or _SYS_.

● Be the same as the name of any soft element forms, standard data types, instructions, or constants.
● Be any keywords such as ARRAY, TRUE, FALSE, ON, OFF, and NULL.
● Be the same as the name of any files or folders at the same level.

3. Right-click the new folder and select "Insert Subprogram" to add the new subprogram file.
You can drag program files from other folders to a specified folder.

Renaming a folder

1. Right-click a folder to be renamed and select "Rename", as shown in the following figure.

Programming Basics

-142-

2. Enter the new folder name in the folder name text box and press "Enter", as shown in the following
figure.

Copying and pasting a folder

1. Right-click a folder to be copied and select "Copy" to copy the folder and the sub folders and files in
the folder to the clipboard, as shown in the following figure.

Programming Basics

-143-

Folders containing an encrypted program cannot be copied.

2. When the clipboard contains valid content, right-click the target node, and select "Paste" to paste
the content in the clipboard to the target node, as shown in the following figure.

Programming Basics

-144-

● Pasting fails when the target node contains a file or folder with the same name as the folder in the clipboard.
● Pasting fails if the target node and the folder in the clipboard will produce nested folders of more than four

levels.

Deleting a folder

1. Right-click a folder to be deleted and select "Delete", as shown in the following figure.

Programming Basics

-145-

Folders containing an encrypted program cannot be deleted.

2. In the dialog box that is displayed, click "OK" to delete the selected folder and sub folders and files
in the folder.

Programming Languages

-146-

4 Programming Languages

4.1 Programming Language (LiteST)

4.1.1 Overview

LiteST is an high-level text-based programming language for automation systems. Its syntax structure
is similar to that of PASCAL. It provides a simple standard structure to make programming fast and effi-
cient. LiteST uses many traditional characteristics of high-level languages, including variables, opera-
tors, and control statements. LiteST provides a freer text-based programming mode than IL because
extra placeholders are added to ensure a hierarchical structure of the program frame for easy reading
and understanding. LiteST also provides easier migration and repeatability than graphical program-
ming modes such as LD.
Example:

IF A>0 THEN

X:=10;

ELSE

X:=0;

END_IF;

Note
This function requires a firmware version of V5.14.0.0 or later for the H5U series, or a firmware version of V5.67.0.0 or
later for the Easy series, and an AutoShop software version of V4.8.1.0 or later.

4.1.2 Expressions

Block diagrams of different functions are basic elements in the LD programming environment. Similar
to LD, expressions are basic elements for LiteST. An expression consists of operators and operands. An
operand can be a constant, a variable, a function call, or other expressions.

● Constant, such as 20, 1.43, and 16#10
● Variable, such as iVar and D0:E
● Function call, whose value is the return value of a call, such as Fun1(1,2,4)
● Other expressions: such as 10+3, var1 OR var2, (x+y)/z, and iVar1:=iVar2+22

In an expression, operands are evaluated using operators in sequence defined by a particular operator
priority. Operators with top priority must be first used for evaluation. Other operators with lower
priority are used by priority in descending order. Operators with the same priority must be used in
order from left to right in the expression.

For example, if A, B, C, and D are INT variables and are set to 1, 2, 3, and 4 respectively, A+B-C*ABS(D)
must be –9 and (A+B-C)*ABS(D) must be 0.

Programming Languages

-147-

When an operator has two operands, the leftmost operand must be evaluated first. For example, in SIN
(X)*COS(Y), SIN(X) must be evaluated first, then COS(Y), and finally the product of the overall
expression.

Table 4–1 LiteST operators

Operation Type Sign Example Priority

Bracket (Expression) (A+B/C), (A+B)/C, A/(B+C) 9 (highest)

Function call Function name (separated by
commas (,) in the parameter
list)

LN(A), MAX(X,Y) 8

Opposite - -A 7

Unary plus (+) + +B 7

Negate NOT NOT C 7

Multiply * A*B 6

Divide / A/B 6

Modulo MOD A MOD B 6
Plus + A+B 5
Minus - A-B 5
Compare <, >, <=, >= A<B 4

Equal = A=B 4

Not equal <> A<>B 4

Logic AND AND A AND B 3

Logic XOR XOR A XOR B 2

Logic OR OR A OR B 1 (lowest)

4.1.3 Variables

You can compile variables during LiteST program editing and press Enter or click in the area outside
the program basic block to display the variable definition box. The default variable type is INT. During
a function call or an instruction call, the data type can be automatically identified.

Programming Languages

-148-

LiteST supports various data types such as D, R, and W. For example, D0 s a 16-bit integer, DO:D is a 32-
bit integer, and DO:E is a 32-bit floating-point number. The following figure shows the details.

4.1.4 Constants

Constants can be expressed in may ways:

1. A constant is a decimal number by default, for example, a:=100.
2. A constant can contain underlines (_), for example, a:=10#100_10, a:=16#FF_AE_12, and a:=2#1100_

1111_11_10, as shown in the following figure.
3. LiteST also allows LD expression as constants. That is, K100 indicates constant 100, H indicates a 16-

bit number, and E indicates a floating-point number.

4.1.5 FB, FC, Subprogram, and Interrupt

FB: In terms of input parameters, only axis parameters are variables requiring pin input and other pins
do not need to be input. In addition, output pins do not need to be input.

FC: Input parameter pins must be input. Otherwise, a compilation error is reported. Output parameters
can be left empty.

Subprogram: A subprogram is called in non-parametric function format, for example, SBR_001().

Interrupt: Interrupts do not need to be manually called. EI() must be called to enable interrupts and DI
() must be called to disable interrupts.

Precautions

● Up to eight hierarchies can be called for FB and FC nesting.
● Up to six hierarchies can be called for SBR nesting.

4.1.6 Intelligent Input and Prompts

4.1.6.1 Quick Input

After entering the instruction name, press the tab key to complement the instruction pin. If the default
parameter next to the pin is "???", the parameter must be input. Otherwise, the parameter can be input
or not as required.

MC_Jog(Enable := ???,

Axis := ???,

JogForward := ???,

Programming Languages

-149-

JogBackward := ???,

Velocity := ???,

Acceleration := ???,

Deceleration:= ,

CurveType:= ,

Busy => ,

CommandAborted => ,

Error => ,

ErrorID =>);;

4.1.6.2 Mouse Hover Prompt

When you hover the mouse over a variable, the variable name, type, and comment are displayed.

When you hover the mouse over an FB, FC, or instruction, the function name, function type, function
comment, input and output parameters, pin name, type, and comment are displayed.

4.1.7 Syntax Instructions

4.1.7.1 Overview

The overall LiteST program consists of instructions separated by semicolons (;).

Table 4–2 LiteST syntax instructions

Instruction Function Example

:= Assignment A := B

Function block call Function block call and output TONR(IN := b0,PT := dVar,R := b0,Q => ,ET =>);

IF Selection

IF A>0 THEN

X:=10;

ELSE

X:=0;

END_IF;

Programming Languages

-150-

Instruction Function Example

CASE Multiway branch

CASE A OF

1: X:=1;

2: X:=2;

3: X:=3;

ELSE

X:=0;

END_CASE;

WHILE WHILE loop

A := 0;

WHILE A <= 1000 DO

A := A+7;

END_WHILE;

REPEAT REPEAT loop

A := 1;

TOTAL := 0;

REPEAT

TOTAL := TOTAL + A;

A := A+1;

UNTIL A>10

END_REPEAT;

FOR FOR loop

FOR i:=0 TO 100 DO

X[i]:=0;

END_FOR;

EXIT EXIT loop EXIT;

CONTINUE Interrupting the current loop CONTINUE;

RETURN Return RETURN;

(*Text*) Comment

(*Comment out multiple lines

IF A=3 THEN

A:=5;

END_IF;

*)

//Text Single-line comment //A:=5;
; Empty statement ;

4.1.7.2 Assignment Instructions

In an assignment statement, the evaluation result of the expression is used to replace the current
values of one or multiple element variables. An assignment statement must contain a variable
reference on the left, followed by the assignment operator ":=" and then the evaluation expression.

Example:

Programming Languages

-151-

A:=B*10

After execution, the value of A is 10 times the value of B.

4.1.7.3 Function Block Calls

Syntax: FB instance name (FB input variable := value, FB output variable => value,... More FB input and
output variables);

Example: After you call an instance of the function block with the maximum value evaluated (MAXFB),
load input parameters D0 and D1 and the output parameter D2, and execute the function, the result is
assigned to the variable maxVar.

MYFB(VAR1 := D0,VAR2 := D1,RESULT => D2);

maxVar := MYFB.RESULT;

Note
myFB is the functional block instance of MAXFB.

4.1.7.4 IF

IF instructions are used to execute relevant statements according to the calculation result of condition
expressions.

In IF select statements, only the statements where the condition expression value is boolean 1(TRUE)
can be executed. If the condition is set to 0(FALSE), no statement is executed or the statements in the
ELSE (or ELSIF) keyword conditions are executed.

1. ELSIF is not required if there is only one condition expression. In addition, ELSE is not required if the
Boolean expression indicating no condition is met is not processed. For example:
IF condition expression THEN

statement;

END_IF

2. One IF select statement can contain multiple ELSIF statements. For example:
IF condition expression 1 THEN

statement;

ELSIF condition expression 2 THEN

statement;

ELSIF condition expression 3 THEN

statement;

ELSIF condition expression 4 THEN

statement;

ELSE

statement;

Programming Languages

-152-

END_IF

3. IF select statements can be nested. Statement 11 is executed when the condition expressions 1 and
11 are TRUE.
IF condition expression 1 THEN

IF condition expression 11 THEN

statement 11;

ELSIF condition expression 12 THEN

statement 12;

ELSE

statement 13;

END_IF

ELSIF condition expression 2 THEN

statement 2;

ELSE

statement 3;

END_IF

Example

IF score <60 THEN

bPass := FALSE;

ELSE

bPass := TRUE;

END_IF

In the example, if the score is less than 60, the test fails. Otherwise, the test passes.

Precautions

● An IF select statement consists of one IF, one THEN, and one END_IF at least.
● The keyword must be ELSIF rather then ELSEIF.
● In a condition expression, the keyword THEN is used to determine whether the expression ends.

4.1.7.5 CASE

Functions and instructions

Statements to be executed are selected from multiple statements based on the value of the specified
integral expression. An integral expression can be the return value of an INT variable, a DINT variable,
an expression, or a function.

CASE integral expression OF

Programming Languages

-153-

Value 1: statement 1;

Value 2: statement 2;

Value 3, value 4: statement 3;

Value 5, value 6: statement 4;

　　　:

ELSE

statement 5;

END_CASE;

Like the program expressed by LiteST, CASE instructions can be processed as follows:

● If the value of an integral expression is value 1, statement 1 is executed;
● If the value of an integral expression is value 2, statement 2 is executed;
● If the value of an integral expression is value 3 or value 4, statement 3 is executed;
● If the value of an integral expression is value 5 or value 6, statement 4 is executed;
● Otherwise, statement 5 is executed.

CASE select statements can be nested. Statement 12 is executed when the value of integral expression
1 is value 1 and the value of integral expression 11 is value 2.

CASE integral expression 1 OF

　　1 :

　 CASE integral expression 11 OF

　　　　　 1 : statement 11;

　　　　　 2 : statement 12;

　　　　　 ELSE

　　　　　 statement 1m;

　 END_CASE;

　　2 : statement 2;

　　3 : statement 3;

　　ELSE

　 statement n;

END_CASE;

Example

CASE ERROR_CODE OF

1:ERR_MSG := 'function lacking the right bracket';

2:ERR_MSG := 'failure to process variables';

3:ERR_MSG := 'invalid variable initial value';

Programming Languages

-154-

...

255:ERR_MSG := 'function lacking the right bracket';

ELSE ERR_MSG := 'unknown error';

END_CASE

Precautions

● In CASE statements, values of expressions must be integers.
● ELSE options are optional, and some programs can contain only the CASE...OF...END_CASE

structure.

4.1.7.6 WHILE

Functions and instructions

When the calculation result of a specified condition expression is TRUE, a statement is repeatedly
executed.

In a sense, the WHILE loop and REPEAT loop functions are more powerful than the FOR loop function
because cycle times do not need to be counted before loop execution. Therefore, only the WHILE loop
and REPEAT loop are required in some cases. However, if the cycle times is clear, the FOR loop is
better.

Example

WHILE Counter<>0 DO

Var1:= Var1*2;

Counter := Counter-1;

END_WHILE

Precautions

WHILE must be used with END_WHILE in pair.

4.1.7.7 REPEAT

Functions and instructions

After a statement is executed once, repeat it before the value of the specified condition expression
changes to TRUE. A REPEAT instruction requires statement running before condition expression
evaluation. Therefore, the statement must be executed.

Example

A := 1;

TOTAL := 0;

Programming Languages

-155-

REPEAT　

　 TOTAL := TOTAL + A;

　 A := A+ 1;

UNTIL A>10

END_REPEAT;

Numbers 1 to 10 are added together, and the result is used for the variable TOTAL.

Precautions

REPEAT, UNTIL, and END_REPEAT are necessary.

4.1.7.8 FOR

Functions and instructions

The FOR loop can be used to compile the iterative processing logic.

FOR control variable := Initial value TO Final value{BY incremental value} DO

statement;

END_FOR;

In the preceding program,

Information in the braces is optional.

The control variable is the counter. The statement will be executed only if the value on the counter is
not greater than the final value. Before statement execution, check this condition. If the initial value is
greater than the final value, the statement will not be executed.

After the statement is executed the last time, the counter automatically increases the incremental
value. An incremental value can be any integer. If the parameter is not set, the default value is 1. When
the value on the counter is greater than the final value, the loop stops.

Example

sumResult := 0;

factorial := 1;

FOR i :=1 TO 10 BY 1 DO

sumResult := sumResult + i;

factorial := factorial * i;

END_FOR;

In the preceding example, sumResult (result of adding 1 to 10) and the factorial result are calculated.

Precautions

FOR must be used with END_FOR in pair.

Programming Languages

-156-

4.1.7.9 EXIT

Functions and instructions

An EXIT instruction is used to exit the FOR, WHILE, or REPEAT loop. The instruction interrupts iterative
processing of the internal FOR, WHILE, or REPEAT instruction, and executes the next step of the
iterative processing.

Example

IF A THEN

DATA[3] :=98;

FOR n := 1 TO 50 BY 1 DO

DATA[n] := DATA[n] + n;

IF DATA[n] > 100 THEN EXIT;

END_IF;

END_FOR;

A :=FALSE;

END_IF;

In the preceding example, the variable value starts from n=1 and increases to 50 by 1 repeatedly to add
n to the specified sorting variable DATA[n]. However, after the value of DATA[n] exceeds 100, the
operation ends.

Precautions

● This instruction must be used between FOR and END_FOR, WHILE and END_WHILE, or REPEAT and
END_REPEAT.

● To interrupt all hierarchical iterative processing (nesting), the number of the EXIT instructions must
be the same as that of hierarchies.

4.1.7.10 CONTINUE

Functions and instructions

A CONTINUE instruction is used to end a FOR, WHILE, or REPEAT loop in advance and start the next
loop. It is different to interrupt a loop and exit a loop. When you interrupt a loop, the loop is ignored
and the next loop is executed.

Example

FOR Counter:=1 TO 5 BY DO

INT1:=INT1/2;

IF INT1=0 THEN

CONTINUE;

Programming Languages

-157-

END_IF

Var:=Var1/UBT1L

END_FOR;

Precautions

This instruction must be used between FOR and END_FOR, WHILE and END_WHILE, or REPEAT and
END_REPEAT.

4.1.7.11 RETURN

Functions and instructions

This instruction forcibly ends main programs, subprograms, FBs, or FCs.

Example

IF b=TRUE THEN

RETURN;

END_IF;

a:=a+1;

If b is TRUE, the statement "a:=a+1;" will not be executed, and POU will be immediately returned.

Precautions

If this instruction is frequently used, the process will be complex.

4.1.7.12 Comments

Structured text can be commented in two ways:

● Single-line comment: Start with "//", for example, "// This is a comment.".
● Multi-line comment: Start with "(*" and end with "*)", for example, "(*This is a comment.*)".

Comments can be added to the LiteST editor declaration or any part in implementation.

A comment can be nested in other comments.

Example

(*

a:=inst.out; (*to be checked*)

b:=b+1;

*)

Programming Languages

-158-

4.1.8 PLC Instructions Supported by LiteST

4.1.8.1 Basic Axis Control Instructions
Instruction Description

MC_Power Enable
MC_Reset Reset
MC_ReadStatus Axis reading status

MC_ReadAxisError Axis reading fault

MC_ReadDigitalInput DI reading status

MC_ReadActualPosition Reading the current position

MC_ReadActualVelocity Reading the actual speed

MC_ReadActualTorque Reading the actual torque

MC_SetPosition Setting the current position

MC_TouchProbe Probe
MC_MoveRelative Relative positioning

MC_MoveAbsolute Absolute positioning

MC_MoveVelocity Speed instruction

MC_Jog Jog

MC_TorqueControl Torque control instruction

MC_Home Homing instruction

MC_Stop Stop instruction

MC_Halt Pause (not recoverable)

MC_SetOverRide Overshoot value reference
MC_MoveFeed Interrupt positioning

MC_ImmediateStop Emergency stop

MC_MoveVelocityCSV CSV-based speed instruction with adjustable pulse width

MC_SyncMoveVelocity CSV-based synchronous speed instruction supporting PWM

MC_FollowVelocity CSP-based synchronous speed instruction

MC_MoveBuffer Multi-position instruction

MC_MoveSuperImposed Motion superimposition

MC_SyncTorqueControl Sync torque control instruction

MC_SetAxisConfigPara Setting axis parameters

MC_MoveLinear Linear interpolation
MC_GroupStop Stopping axis group operation

MC_MoveCircular Circular interpolation
MC_GroupPause Pausing axis group operation

4.1.8.2 Cam and Gear Instructions
Instruction Description

MC_CamIn Starting cam operation

MC_CamOut Canceling cam operation

MC_Phasing Master axis phase shift

MC_GenerateCamTable Updating cam table

MC_SaveCamTable Saving cam table

Programming Languages

-159-

Instruction Description
MC_GearIn Starting gear operation

MC_GearOut Canceling gear operation

MC_GetCamTablePhase Obtaining cam table phase

MC_GetCamTableDistance Obtaining cam table offset

MC_DigitalCamSwitch Controlling electronic cam tappet

4.1.8.3 Encoder Instructions
Instruction Description

HC_Counter High-speed counter enable

HC_Preset High-speed counter preset value

HC_TouchProbe High-speed counter probe

HC_Compare High-speed counter comparison

HC_ArrayCompare High-speed counter array comparison

HC_StepCompare High-speed counter equidistance comparison

ENC_SetUnit Encoder axis setting gear ratio (valid only for the local encoder
axis)

ENC_SetLineRotationMode Encoder axis setting linearity rotation mode (valid only for the
local encoder axis)

ENC_Counter Encoder axis enable
ENC_Reset Encoder axis fault reset (only for the bus encoder axis)

ENC_ResetCompare Encoder axis reset comparison output (only for the bus
encoder axis)

ENC_Preset Encoder axis preset value

ENC_TouchProbe Encoder axis probe
ENC_Compare Encoder axis comparison output (only for the local encoder

axis)
ENC_ArrayCompare Encoder axis array comparison

ENC_StepCompare Encoder axis step comparison

ENC_GroupArrayCompare Encoder axis group array comparison (only for the bus encoder
axis)

ENC_ReadStatus Encoder axis read status (only for the bus encoder axis)

ENC_DigitalOutput Encoder axis digital output control (only for the bus encoder
axis)

4.1.8.4 Communication Instructions
Instruction Description

ETC_ReadParameter_CoE Read the SDO parameter of the ETC slave station

ETC_WriteParameter_CoE Write the SDO parameter of the ETC slave station
ETC_RestartMaster Restart the ETC master station

4.1.8.5 Timer Instructions
Instruction Description

TPR Pulse timer
TONR Connection delay timer

Programming Languages

-160-

Instruction Description
TOFR Off delay timer

TACR Accumulation timer

4.1.8.6 Interrupt Instructions

Instruction Description
EI Enable interrupt
DI Disable interrupt

4.1.8.7 Operation Instructions

Instruction Type Instruction Description Instruction Name

Mathematical operation instruction Modulo MOD

Shift instruction
Bitwise left shift SHL
Bitwise right shift SHR

Select instruction
Either one SEL
Maximum value MAX
Minimum value MIN

Arithmetic operation instruction

Absolute value ABS
Square root SQRT

Natural logarithm LN

Common logarithm LOG

Power exponent EXPT

Sine function SIN
Cosine function COS
Tangent function TAN

Arcsine function ASIN
Arccosine function ACOS
Arctan function ATAN

Word logic

And AND
Or OR
Not NOT
Exclusive OR XOR

Programming Languages

-161-

Instruction Type Instruction Description Instruction Name

Data type conversion

BOOL to INT BOOL_TO_INT
BOOL to DINT BOOL_TO_DINT
BOOL to REAL BOOL_TO_REAL
INT to REAL INT_TO_REAL
INT to DINT INT_TO_DINT
INT to BOOL INT_TO_BOOL
DINT to REAL DINT_TO_REAL
DINT to INT DINT_TO_INT
DINT to BOOL DINT_TO_BOOL
REAL to DINT REAL_TO_DINT
REAL to INT REAL_TO_INT
REAL to BOOL REAL_TO_BOOL
To BOOL TO_BOOL
To INT TO_INT
To DINT TO_DINT
To floating-point number TO_REAL

4.1.8.8 Other Instructions
Instruction Description

ZSET Batch setting

ZRST Batch reset
BITW 16-Bit variable conversion to word variable
WBIT Word variable conversion to 16-bit variable
MSET Memory setting

MCPY Member reset
R_TRIG Rising edge inspection trigger

F_TRIG Falling edge inspection trigger

4.1.8.9 Instruction Examples

Use examples of axis control instructions

MC_Power use example:
MC_Power(Enable := b0, //

Axis := Axis_0, //Axis name/ID

Status => b4, //Axis enable flag

Busy => b6, //Busy flag

Error => b8, //Instruction fault flag

ErrorID => d0); //Fault code

MC_Jog use example:
MC_Jog(Enable := b0, //

Axis := Axis_0, //Axis name/ID

JogForward := b1, //Forward motion, with the valid level for rising edge trigger

Programming Languages

-162-

JogBackward := b2, //Reserve motion, with the valid level for rising edge trigger

Velocity := d0:E, //Target speed

Acceleration := d2:E, //Acceleration rate

Deceleration := d4:E, //Deceleration rate

CurveType := d6, //Curve type. 0: T-type speed curve; 1: Five-segment running curve

Busy => b3, //Busy flag

CommandAborted => b4, //Execution termination

Error => b5, //Instruction fault flag

ErrorID => d8); //Fault code

Use examples of mathematical operation functions

Max use example
c:=MAX(a,b);

Use examples of other instructions

R_TRIG (rising edge) use example
(*If X0 changes from FALSE to TRUE, the rising edge trigger.Q is TRUE. Execute the M0 assignment
statement in the if statement. Otherwise, do not execute the statement.*)

Rising edge trigger(CLK := X0,Q =>);

if rising edge trigger.Q THEN

M0:=TRUE;

END_IF;

F_TRIG (falling edge) use example
(*If B0 changes from TRUE to FALSE, the falling edge trigger.Q is TRUE. Execute the M0 assignment
statement in the if statement. Otherwise, do not execute the statement.*)

Falling edge trigger(CLK := B0,Q =>);

if falling edge trigger.Q THEN

M0:=TRUE;

END_IF;

4.1.9 Exception Protection and Handling

4.1.9.1 Division-by-zero Protection

If the divisor is 0, it automatically changes to 1.

The following figure shows the details.

Programming Languages

-163-

The PLC LED alternatively flashes Er50 and Er81.

4.1.9.2 Array Out-of-bounds

Array out-of-bounds is automatically checked during compilation for constants and during running for
variables. Values over the upper limit are stored in the element with the maximum subscript in the
array, and values below the lower limit are stored in the element with the subscript 0 in the array.
BOOL arrays are not checked for out-of-bounds currently.

As shown in the following figure, an INT array is defined with up to 10 elements. In case of out-of-
bounds, the software reports an error and stores the values out of the range to the element with the
subscript (9) in the array.

The PLC LED alternatively flashes Er50 and Er80.

4.1.9.3 Infinite Loop

The program is automatically checked for an infinite loop. In case of an infinite loop, an error is
reported, the infinite loop is automatically displayed, and the program stop running. The fault
diagnosis page shows the error information and the error is located.

The PLC LED alternatively flashes Er1500 and Er5082.

In the error information, Er1500 indicates watchdog timeout and Er5082 indicates an infinite loop
alarm.

Programming Languages

-164-

4.1.9.4 Array Subscript Considerations

● The subscript of a constant array cannot exceed the array size.
● The subscript of an array cannot be a soft element.
● The subscript of an array in an FB or FC cannot be a global variable.
● The subscript of an array cannot be an expression.
● A variable with a complex structure can contain up to only one variable array sub-index.

4.2 Programming Language (LD)

LD is a graphical programming language. Its structure is similar to that of the circuit diagram. LD
contains a series of networks (also called nodes), and each network starts from the vertical line on the
left (the power rail and power flow line). A network consists of points of contact, coils, arithmetic
blocks (functions, function blocks, programs, execution blocks, actions, and methods), jump
instructions, labels, and connecting wires.

LD mainly includes points of contact, coils, arithmetic blocks, branches, and comments. These
elements are inserted, dragged, scribed, and copied and pasted to networks to form the LD execution
logic.

LD provides online commissioning functions such as monitoring, written values, force values, and
breakpoints.

For details about the LD programming language, see the "AutoShop.chm". To obtain the manual, you
can choose "Help" > "Help Manual" in the AutoShop menu bar and double-click "AutoShop.chm" in the
"Manual" folder.

4.3 Programming Language (SFC)

SFC is a novel graphic programming language for programming according to the process flow. The
icons or menu items for all SFC elements can be found in the SFC toolbar and SFC menu. You can click
a specified icon to enter the required element, and set properties of the specified SFC element in the
SFC input dialog box. The SFC toolbar and menu also provide shortcuts to add connecting wires. You
can establish connections between SFC elements as required.
For details about the SFC programming language, see the "AutoShop.chm". To obtain the manual, you
can choose "Help" > "Help Manual" in the AutoShop menu bar and double-click "AutoShop.chm" in the
"Manual" folder.

Extension Modules

-165-

5 Extension Modules

5.1 H5U Local Extension Modules

5.1.1 Overview

H5U can carry up to 16 local extension modules, and can access local extension based on module
configuration.
The following figure shows the hardware configuration for H5U to connect to local extension modules.

The following table lists the supported models of local extension modules.

Product Description
GL10-0016ETP 16 digital output (DO) transistor module - PNP

GL10-0016ETN 16 DO transistor module - NPN
GL10-0016ER 16 DO relay module

GL10-1600END 16 digital input (DI) module

GL10-3200END 32 digital input (DI) module

GL10-0032ETN 32 DO module
GL10-4AD 4 analog input (AI) module

GL10-4DA 4 analog output (AO) module

GL10-4PT 4-in resistance temperature detector (RTD) module
GL10-4TC 4-in thermocouple temperature detection (TC TEMP MEAS) module
GL10-8TC 8-in TC TEMP MEAS module

5.1.2 Configuring Hardware

Local extension modules are implemented by hardware configuration. To configure hardware, perform
the following steps:

1. In the "Project Manager" tree, unfold "Config" and double-click "Module Config". The "Extension
Config" page is displayed.

Extension Modules

-166-

2. Click the position number of an extension module on the guide rail, double-click the module on the
right or drag and move the module to the guide rail, and configure the extension module.

5.1.3 Configuring Extension Modules

5.1.3.1 DI Modules

DI modules included GL10-1600END and GL10-3200END. The method of using a DI module as a local
extension module is as follows:

1. In the module list, select a module to be added, and double-click the module for automatic
extension on the extension rack, or drag the module to the extension rack.

2. After local DI extension modules are connected to the master module without port configuration,
numbers of input X ports on the extension modules follow the number of the input X port on the
master module in sequence.
For example, if the master module is a general H5U model, and number of the last X port on the
master module is X37 after GL10-1600END connection, numbers of 16 input X ports on the extension
module range from X40 to X47 and X50 to X57 during programming. This also applies to other DI
extension modules by analogy.

H5U series PLCs allow manual configuration of port numbers. You can double-click a module on the
module configuration page to access the port configuration page.

Extension Modules

-167-

Use module 1 as an example. Double-click module 1 to access the module configuration page.

Click "..." to configure the port number as required.

Extension Modules

-168-

Note
The port mapping of the H5U module is determined by the configuration. If there is no special configuration, the
software arranges the port mapping in order. Even if the front-end module is deleted after the configuration is com-
pleted, the port mapping of the subsequent modules will not change.

The relay output extension module can be connected to the relay or transistor main module. Similarly, the transis-
tor input extension module can be connected to the transistor or relay main module.

5.1.3.2 DO Modules

DO modules include GL10-0016ETP, GL10-0016ETN, GL10-0016ER, and GL10-0032ETN. The method of
using a DO module as a local extension module is as follows:

1. In the module list, select a module to be added, and double-click the module for automatic
extension on the extension rack, or drag the module to the extension rack.

2. After local DO extension modules are connected to the master module, numbers of output Y ports
on the extension modules follow the number of the Y port on the master module in sequence.

Extension Modules

-169-

For example, if the master module is a general H5U model, and number of the last Y port on the
master module is Y37 after GL10-0016END connection, numbers of 16 output Y ports on the
extension module range from Y40 to Y47 and Y50 to Y57 during programming. This also applies to
other DO extension modules by analogy.

H5U series PLCs allow manual configuration of port numbers. You can double-click a module on the
module configuration page to access the port configuration page.

Use module 1 as an example. Double-click module 1 to access the module configuration page.

Click "..." to configure the port number as required.

Extension Modules

-170-

Note
The port mapping of the H5U module is determined by the configuration. If there is no special configuration, the
software arranges the port mapping in order. Even if the front-end module is deleted after the configuration is com-
pleted, the port mapping of the subsequent modules will not change.

The relay output extension module can be connected to the relay or transistor main module. Similarly, the transis-
tor input extension module can be connected to the transistor or relay main module.

5.1.3.3 AI Modules

The method of using the GL10-4AD AI module as a local extension module is as follows:

1. In the module list, select a module to be added, and double-click the module for automatic
extension on the extension rack, or drag the module to the extension rack.

2. Double-click the GL10-4AD module on the rack. The page shown in the following figure is displayed.

Extension Modules

-171-

① Determine whether to select "Enable channel". If not, deselect it to save the scanning time.

② Select the corresponding span and resolution.

③ Set "Filtering parameter" to a value in the range of 1 ms to 255 ms.

④ Leave the auxiliary function items empty.

3. On the "IO Mapping" tab page, map CH0 of the 4AD module to the D element D100. In H5U, you can
also map the module to a customized variable.

Extension Modules

-172-

The following table lists the relationships between the mapped variables and actual input analog
values.

Input Type Rated Input Range Rated Digital Value Input Limit Range Digital Value Limit

Analog voltage
input

–10 V to +10 V –20000 to +20000 –11 V to +11 V –22000 to +22000
0 V to 10 V 0 to 20000 –0.5 V to +10.5 V –1000 to +21000
–5 V to +5 V –20000 to +20000 –5.5 V to +5.5 V –22000 to +22000
0 V to 5 V 0 to 20000 –0.25 V to +5.25 V –1000 to +21000
1 V to 5 V 0 to 20000 0.8 V to 5.2 V –1000 to +21000

Analog current
input

–20 mA to +20 mA –20000 to +20000 –22 mA to +22 mA –22000 to +22000
0 mA to 20 mA 0 to 20000 –1 mA to +21 mA –1000 to +21000
4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA –1000 to +21000

4. Use the LD programming language to program AD sampling, and assign the voltage sampling value
of CH0 from D100 to D0.

5. After compilation succeeds, download and run the project.

5.1.3.4 AO Modules

The method of using the GL10-4DA AO module as a local extension module is as follows:

1. In the module list, select a module to be added, and double-click the module for automatic
extension on the extension rack, or drag the module to the extension rack.

2. Double-click the GL10-4DA module on the rack. The "Config(DA4)" tab page is displayed, as shown in
the following figure.

Extension Modules

-173-

① Determine whether to select "Enable channel". If not, deselect it to save the scanning time.

② Set "Translation Mode" to select the output type and range.

③ Set "Output state after Stopping" to "Output zero", "Output Holding", or "Output preset" when
the PLC is in the Stop state.

3. On the IO mapping page, map CH0 of the 4DA module to the D element D100. In H5U, you can also
map the module to a customized variable.

The following table lists the relationships between the mapped variables and actual output analog
values.

Extension Modules

-174-

Output type Rated Output Range Rated Digital Value Output Limit Range Digital Value Limit

Analog voltage
output

–10 V to +10 V –20000 to +20000 –11 V to +11 V –22000 to +22000
0 V to 10 V 0 to 20000 –0.5 V to +10.5 V –1000 to +21000
–5 V to +5 V –20000 to +20000 –5.5 V to +5.5 V –22000 to +22000
0 V to 5 V 0 to 20000 –0.25 V to +5.25 V –1000 to +21000
1 V to 5 V 0 to 20000 0.8 V to 5.2 V –1000 to +21000

Analog current
output

0 mA to 20 mA 0 to 20000 0 mA to 21 mA 0 to 21000
4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA –1000 to +21000

4. Use the LD programming language to program the DA output. The digital values corresponding to –
10 V to +10 V are –20000 to +20000, so the value 20000 is assigned for D0 and the output voltage of
CH0 is +10 V.

5. After compilation succeeds, download and run the project.

5.1.3.5 Temperature Detection Modules

Temperature detection modules include GL10-8TC, GL10-4TC, and GL10-4PT.

Use H5U as the control master module, sample the temperature of the K thermocouple through CH0 of
the GL10-8TC module, and assign the sampling value for the corresponding variable.

1. In the module list, select a module to be added, and double-click the module for automatic
extension on the extension rack, or drag the module to the extension rack.

2. Double-click the GL10-8TC module on the rack. The "8TC Config" tab page is displayed, as shown in
the following figure.

Extension Modules

-175-

① To use external cold junction compensation, select "External cold end compensation". When
external cold junction compensation is used, CH7 of the 8TC module is used for input of the external
cold junction compensation sensor (PT100) but cannot be used to measure temperature for the
thermocouple.

② Set "TEMP unit" to the corresponding temperature unit.

③ Set "Sampling period".

3. On the "CH0 –CH1" tab page, select "Enable channel' for CH0 and set "Sensor type" to "K".

Extension Modules

-176-

4. On the IO mapping page, map CH0 of the 8TC module to the D element D100. In H5U, you can also
map the module to a customized variable.

5. Use the LD programming language to program 8TC sampling, and assign the temperature sampling
value of CH0 from D100 to D0.

Extension Modules

-177-

6. After compilation succeeds, download and run the project.

5.2 Easy Local Extension Modules and Extension Cards

5.2.1 System Variables

5.2.1.1 System Variables of Extension Modules

Information about the GL20 local module of _GL20_ExtSlt
Name Data Type Description R/W

_GL20_ExtSlt[0].ConfigModule DINT Type of the configured
module

R

_GL20_ExtSlt[0].MountedModule DINT Type of the installed
module

R

_GL20_ExtSlt[0].LogicVersion DINT Version of the logic device R

_GL20_ExtSlt[0].SWVersion DINT Software version R

_GL20_ExtSlt[0].Error BOOL Error state R

_GL20_ExtSlt[0].bDisableSlot BOOL Module disabled R/W

Program example

The program enable module 1 and disable module 2 make program compilation and download take
effect.

5.2.1.2 System Variables of Extension Cards

Information about the GL20 local module of _GL20_ExtSlt
Name Data Type Description R/W

_ExtCard[0].ConfigModule INT Type of configured extension card R

_ExtCard[0].MountedModule INT Type of installed extension card R

_ExtCard[0].LogicVersion INT Version of the logic device R

_ExtCard[0].SWVersion INT Software version R

_ExtCard[0].Error BOOL Error state R

Extension Modules

-178-

Name Data Type Description R/W

_ExtCard[0].DI0 BOOL DI0 bit of 4 DI extension card R/W
_ExtCard[0].DI1 BOOL DI1 bit of 4 DI extension card R/W
_ExtCard[0].DI2 BOOL DI2 bit of 4 DI extension card R/W
_ExtCard[0].DI3 BOOL DI3 bit of 4 DI extension card R/W
_ExtCard[0].DO0 BOOL DO0 bit of 4 DO extension card R/W
_ExtCard[0].DO1 BOOL DO1 bit of 4 DO extension card R/W
_ExtCard[0].DO2 BOOL DO2 bit of 4 DO extension card R/W
_ExtCard[0].DO3 BOOL DO3 bit of 4 DO extension card R/W
_ExtCard[0].AD0 INT AD0 channel of analog extension

card
R/W

_ExtCard[0].AD1 INT AD1 channel of analog extension
card

R/W

_ExtCard[0].DA0 INT DA0 channel of analog extension
card

R/W

_ExtCard[0].ConfigData INT[16] Extension card configuration data R

4 DI is the default mapping address of the input extension card. 4 DO is the default mapping address of
the output extension card. AD and DA are default mapping addresses of analog extension cards in the
same program control way as modules.

Configure I/O mapping for GE20-2AD1DA-I, as shown in the following figure.

Note
AutoShop earlier than version V4.8.1.0 supports modification of the GE20-2AD1DA-I/GE20-2AD1DA-V channel map-
ping elements. AutoShop V4.8.1.0 and later versions do not support the modification.

Use the LD programming language to program GE20-2AD1DA-I sampling, and assign the voltage
sampling value of CH0 from D300 to D30, which can be compiled and downloaded for running, as
shown in the following figure.

5.2.2 Local Extension Modules

5.2.2.1 Overview

An Easy series host can carry up to 16 modules to access local modules based on module
configuration.

Extension Modules

-179-

The following figure shows how to connect an Easy series host to a local module.

The following table lists the supported modules of local modules.

Model Description

GL20-1600END 16 DI module
GL20-0800END 8 DI module
GL20-3200END 32 DI module
GL20-0016ETN 16 DO module
GL20-0016ETP 16 DO module
GL20-0008ETN 8 DO module
GL20-0008ETP 8 DO module
GL20-0008ER 8 DO module
GL20-0032ETN 32 DO module
GL20-0808ETN 8 DI module and 8 DO module
GL20-3232ETN 32 DI module and 32 DO module
GL20-4AD 4 AI module
GL20-4DA 4 AO module
GL20-4PT 4-in RTD module
GL20-4TC 4-in TC TEMP MEAS module
GL20-2SCOM 2 serial communication module (configurable for RS232, RS422,

and RS485)
GL20-2S485 2 RS485 serial communication module

5.2.2.2 Configuring Hardware

Local extension modules are implemented by hardware configuration. To configure hardware, perform
the following steps:

1. Double-click "Module Config" in AutoShop to access the configuration page, or unfold the extension
module or local module node in the toolbox.

2. Double-click the corresponding local module. On the configuration page that is displayed, add the
corresponding module.

Extension Modules

-180-

5.2.2.3 Configuring Extension Modules

5.2.2.3.1 DI Modules

DI modules include GL20-1600END, GL20-0800END, and GL20–3200END. The method of using the a DI
module as a local extension module is as follows:

1. In the toolbox, select a module and double-click it. The module is automatically added to the
corresponding configuration position.

2. After local DI extension modules are connected to the master module without port configuration,
numbers of input X ports on the extension modules follow the number of the input X port on the
master module in sequence.
For example, if the master module is an Easy series module, and number of the last X port on the
master module is X37 after GL20-1600END connection, numbers of 16 input X ports on the extension
module range from X40 to X47 and X50 to X57 during programming. This also applies to other DI
extension modules by analogy. Taking GL20-1600END of module 1 as an example, access the
configuration page in any of the following ways: ① Double-click the subnode under "Module Config".
② Double-click the module configuration on the configuration page. ③ Double-click an item in
"Device Detailed List".

The dialog box that is displayed contains the "Configure" tab page and "IO Mapping" tab page.

The GL20-1600END series 16 DI module is used as an example. Two channels are provided on the "IO
Mapping" tab page, each of which maps eight consecutive I/O elements. Two channels are also
provided on the "Configure" tab page, each of which has a filter parameter. Set "Filtering parameter"
as required, as shown in the following figure.

Extension Modules

-181-

On the "IO Mapping" tab page, click "..." to pop up the variable assistant, or double-click the first
mapped node such as X10 and X20 and enter the modified mapping element to modify the
corresponding mapping, as shown in the following figure.

Extension Modules

-182-

Click "..." to pop up the variable assistant and locate the corresponding element for mapping, as
shown in the following figure.

Extension Modules

-183-

5.2.2.3.2 DO Modules

DO modules include GL20-0016ETN, GL20-0016ETP, GL20-0008ETN, GL20-0008ETP, GL20-0008ER, and
GL20-0032ETN. The method of using a DO module as a local extension module is as follows:

1. In the toolbox, select a module and double-click it. The module is automatically added to the
corresponding configuration position.

2. After local DO extension modules are connected to the master module without port configuration,
numbers of input Y ports on the extension modules follow the number of the input Y port on the
master module in sequence.
For example, if the master module is an Easy series module, and number of the last Y port on the
master module is Y37 after GL20-0016ETN connection, numbers of 16 input Y ports on the extension
module range from Y40 to Y47 and Y50 to Y57 during programming. This also applies to other DO

Extension Modules

-184-

extension modules by analogy. Taking GL20-0016ETN of module 2 as an example, access the
configuration page in any of the following ways: ① Double-click the subnode under "Module Config".
② Double-click the module configuration on the configuration page. ③ Double-click an item in
"Device Detailed List".

The dialog box that is displayed contains the "Configure" tab page and "IO Mapping" tab page.

The GL20-0016ETN series 16 DO module is used as an example. Two channels are provided on the
"IO Mapping" tab page, each of which maps eight consecutive I/O elements. Two channels are also
provided on the "Configure" tab page, each of which is configured with the disconnection and
output stop modes for eight I/O elements. You can set or retain the output values of I/O ports when
the PLC is disconnected or stopped, as shown in the following figure.

On the "IO Mapping" tab page, click "..." to pop up the variable assistant, or double-click the first
mapped node such as Y10 and Y20 and enter the modified mapping element to modify the
corresponding mapping, as shown in the following figure.

Extension Modules

-185-

Click "..." to pop up the variable assistant and locate the corresponding element for mapping, as
shown in the following figure.

Extension Modules

-186-

5.2.2.3.3 DI or DO Modules

DI and DO modules include GL20-0808ETN and GL20-3232ETN. GL20-0808ETN provides two channels.
One channel maps eight consecutive input I/O elements, and the other channel maps eight consecu-
tive output I/O elements, which can be considered as combination of the DI and DO modules. This also
applies to GL20-3232ETN.
For details, see the use cases of DI and DO modules.

5.2.2.3.4 AI Modules

The method of using the GL20-4AD AI module as a local extension module is as follows:

1. In the toolbox, select a module and double-click it. The module is automatically added to the
corresponding configuration position.

For example, if the master module is an Easy series module, connect to the GL20-4AD extension
module and then access the configuration page in any of the following ways: ① Double-click the
subnode under "Module Config". ② Double-click the module configuration on the configuration
page. ③ Double-click an item in "Device Detailed List".

2. Double-click GL20-4AD to access the parameter setting page of GL20-4AD.

Extension Modules

-187-

GL20-4AD provides four channels, and the parameters for the four channels are set consistently. The
parameters are defined as follows:

① Determine whether to select "Enable channel". If not, deselect it to save the scanning time.

② Select the corresponding span and resolution.

③ Set "Filtering parameter" to a value in the range of 1 ms to 255 ms.

④ Leave the auxiliary function items empty.

3. GL20-4AD supports consecutive I/O mapping and separate I/O mapping. Click "..." next to the parent
node for consecutive mapping or double-click the node of each channel for separate mapping.

Extension Modules

-188-

4. On the "IO Mapping" tab page, map CH0 of the 4AD module to the D element D100. In an Easy series
host, you can map it to a customized variable. The following table lists the relationships between the
mapped variables and actual input analog values. The EtherCAT bus coupler supports conversion of
three digital spans, including –20000 to +20000, –32000 to +32000, and –27648 to +27648, while the
local bus only supports conversion of the span –20000 to +20000.

Input type Rated Input Range Rated Digital Value Input Limit Range Digital Value Limit

Analog voltage
input

–10 V to +10 V –20000 to +20000 –11 V to +11 V –22000 to +22000
0 V to 10 V 0 to 20000 –0.5 V to +10.5 V –1000 to +21000
–5 V to +5 V –20000 to +20000 –5.5 V to +5.5 V –22000 to +22000
0 V to 5 V 0 to 20000 –0.25 V to +5.25 V –1000 to +21000
1 V to 5 V 0 to 20000 0.8 V to 5.2 V –1000 to +21000

Analog current
input

–20 mA to +20 mA –20000 to +20000 –22 mA to +22 mA –22000 to +22000
0 mA to 20 mA 0 to 20000 –1 mA to +21 mA –1000 to +21000
4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA –1000 to +21000

5. Use the LD programming language to program AD sampling, and assign the voltage sampling value
of CH0 from D100 to D0, which can be compiled and downloaded for running.

Extension Modules

-189-

5.2.2.3.5 AO Modules

The method of using the GL20-4DA AO module as a local extension module is as follows:

1. In the toolbox, select a module and double-click it. The module is automatically added to the
corresponding configuration position.

2. Access the parameter setting page of GL20-4DA.

GL20-4DA provides four channels, and the parameters for the four channels are set consistently. The
parameters are defined as follows:

① Determine whether to select "Enable channel". If not, deselect it to save the scanning time.

Extension Modules

-190-

② Set "Translation Mode" to select the output type and range.

③ Set "Output state after Stopping" to "Output zero", "Output Holding", or "Output preset" for
analog and digital values when the PLC is in the Stop state.

3. GL20-4DA also supports consecutive I/O mapping and separate I/O mapping. Click "..." next to the
parent node for consecutive mapping or double-click the node of each channel for separate
mapping.

4. On the "IO Mapping" tab page, map CH0 of the 4DA module to the D element D200. In an Easy
model, you can also map it to a customized variable. The following table lists the relationships
between the mapped variables and actual output analog values. The EtherCAT bus coupler supports
conversion of three digital spans, including –20000 to +20000, –32000 to +32000, and –27648 to
+27648, while the local bus only supports conversion of the span –20000 to +20000.

Output type Rated Output Range Rated Digital Value Output Limit Range Digital Value Limit

Analog voltage
output

–10 V to +10 V –20000 to +20000 –11 V to +11 V –22000 to +22000
0 V to 10 V 0 to 20000 –0.5 V to +10.5 V –1000 to +21000
–5 V to +5 V –20000 to +20000 –5.5 V to +5.5 V –22000 to +22000
0 V to 5 V 0 to 20000 –0.25 V to +5.25 V –1000 to +21000
1 V to 5 V 0 to 20000 0.8 V to 5.2 V –1000 to +21000

Analog current
output

0 mA to 20 mA 0 to 20000 0 mA to 21 mA 0 to 21000
4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA –1000 to +21000

5. Use the LD programming language to program DA sampling, and assign the voltage sampling value
of CH0 from D200 to D10, which can be compiled and downloaded for running.

Extension Modules

-191-

5.2.2.3.6 Temperature Detection Modules

The method of using GL20-4PT 4-in RTD module and GL20-4TC 4-in TC TEMP MEAS module as local
extension modules is as follows:

1. The add, delete, and parameter check operations on the page are similar to those of other local
modules.

2. Each channel contains basic parameter settings. In the parameters, "Enable channel" indicates
whether the current channel parameters are enabled; "Upper TEMP" and "Lower TEMP" can be set
only when "Detect overrun" is selected; "Offset value" can be set only when "Offset TEMP" is
selected.

3. GL20-4PT or GL20–4TC provides four channels, each of which can be used to map a soft element or
REAL variable.

Extension Modules

-192-

4. Use the LD programming language for sampling programming on the temperature of the GL20-4PT
and GL20-4TC modules. Map CH0 to CH4 to REAL array PTs in sequence, use D10 to D14 to collect the
temperature, and compile, download, and run the program, as shown in the following figure.

5.2.2.3.7 Communication Modules

The method of using GL20-2SCOM 2-in RS232/RS485 module, GL20-2SCOM 1-in RS422 encoder
module, and GL20-2S485 2 RS485 serial communication module as local extension modules is as
follows:

1. The add, delete, and parameter check operations on the page are similar to those of other local
modules.

2. Each module provides two channels, each of which contains basic serial port parameter settings and
basic data transmission settings. In the parameters, "Enable channel" indicates whether the current
channel parameters are enabled; Some parameters that are unavailable, such as "Serial port NO."
and "Data bit", indicate that these parameters cannot be set on the page.

Extension Modules

-193-

3. After the GL20-2S485 and GL20-2SCOM modules are added, two COM ports are generated in the
"Project Manager" tree, ranging from COM4 to COM15. As shown in the following figure, COM4 and
COM5 are generated, corresponding to communication data of CH0 and CH1 of GL20-2S485. Double-
click COM4 or COM5 to check COM communication parameters.

4. Select a COM port, change the COM port number, and then map corresponding data to the modified
COM port. The modified parameters such as "Baud rate", "Data length", "Parity", and "Stop bit" will
be synchronized to the module page shown in the preceding figure, to ensure data synchronization.
After setting the corresponding COM port as the Modbus-RTU master station, right-click the port to
add the Modbus configuration for Modbus communication in the same way as COM0.
If a communication module has no I/O mapping data, the module page is empty.

Extension Modules

-194-

5.2.2.3.8 Application Examples

1. Connect the GL20-0800END, GL20-0008ETN, and GL20-0808ETN modules to the actual host as an
example. In the "Project Manager" tree, right-click "Module Config" and select "Auto Scan" to start
scanning. The scan result is displayed as shown in the following figure. The three modules can be
manually added.

2. Click "Update Config" to add the mounted modules to the configuration. The default configuration is
added for the modules by default.

3. Download the configuration and run the modules. Nodes of the modules in the "Project Manager"
tree turn green and "Ok" is displayed on the configuration page, indicating that the modules are
running properly.

Extension Modules

-195-

5.2.3 Extension Cards

5.2.3.1 Overview

An Easy series host can be equipped with up to two extension cards, and nine types of extension cards
are supported. Extension card slot 1 and extension card slot 2 support different types of extension
cards, as listed in the following table.

No. Name (Model) Function Extension Card Slot
1

Extension Card Slot
2

1 GE20-232/485-RTC Providing either the RS232 or RS485
extension interface

RTC extension

Not supported Supported

2 GE20-232/485 Providing either the RS232 or RS485
extension interface

Supported Supported

3 GE20-CAN-485 Providing the CAN extension interface

Providing the RS485 extension
interface

Supported Not supported

4 GE20-2AD1DA-I Providing 2-in AD and 1-out DA
extension (current)

Supported Supported

5 GE20-2AD1DA-V Providing 2-in AD and 1-out DA
extension (voltage)

Supported Supported

6 GE20-4DI Providing 4-in I/O extension Supported Supported

7 GE20-4DO-TN Providing 4-out I/O extension Supported Supported

8 GE20-RTC Providing RTC extension Not supported Supported

9 GE20-TF Providing the SD extension card
interface

Not supported Supported

5.2.3.2 Configuring Extension Cards

5.2.3.2.1 Adding Extension Cards

Extension cards can be added in two ways:

● Unfold the extension module or extension card node on the toolbox, and double-click to add
corresponding extension cards.

● In the "Project Manager" tree, right-click EXP-A or EXP-B, and select the extension card type. On the
configuration page that is displayed, add corresponding extension cards.

Extension Modules

-196-

The following figure shows how to add an extension card using the shortcut menu.

5.2.3.2.2 Configuring Extension Card Parameters

You can access the extension card configuration page in the following ways:

● Double-click a node under EXP-A or EXP-B.
● Double-click the EXP-A or EXP-B configuration on the configuration page.
● Double-click an item in "Device Detailed List", as shown in the following figure.

Extension Modules

-197-

Configurable COM nodes will be generated for the cards with COM ports, such as GE20-CAN-485, GE20-
232/485-RTC, and GE20-232/485. EXP-A corresponds to COM2 and EXP-B to COM3. If GE20-CAN-485 is
added for EXP-A, the CAN and COM2 nodes will be generated. If GE20-232/485 is added for EXP-B, the
COM3 node will be generated. You can double-click a node for parameter configuration, as shown in
the following figure.

GE20-2AD1DA-I and GE20-2AD1DA-V are current-voltage hybrid extension cards. If they are added for
EXP-A, the COM2 node will be generated by default. If they are added for EXP-B, the COM3 node and
three Modbus instructions will be generated by default. You cannot exit COM port parameters and
Modbus parameters.

GE20-4DI and GE20-4DO extension cards are used in the same way as DI and DO modules. The
extension cards provide mappings to system variables by default, which can be automatically
modified.

Extension Modules

-198-

5.2.4 Application Examples

After installing the host and module, right-click "Module Config" in the "Project Manager" tree of the
software, select "Auto Scan", and use the configuration scanning function to scan modules and
extension cards, as shown in the following figure.

On the "Auto Scan" page, click "Update Config" to add the scanned configuration to default
configurations, compile and download it, and check the operation status.

Extension Modules

-199-

5.3 GL20-RTU-ECT Local Extension Module

5.3.1 Overview

The GL20-RTU-ECT communication port module also supports the following six models.

Model Description

GL20-0808ETN 8 DI module and 8 DO module
GL20-0008ETN 8 DO module
GL20-0008ETP 8 DO module
GL20-0008ER 8 DO module
GL20-0800END 8 DI module
GL20-4PT 4-in RTD module

5.3.2 Configuring Extension Modules

The GL20-RTU-ECT coupler is mainly mounted by using the EtherCAT bus to add corresponding
modules. The procedure is as follows:

1. In the toolbox, choose "EtherCat Devices" > "Inovance Devices" > "IO coupler" and then double-click
"GL20-RTU-ECT_1.2.8.0". The "GL20-RTU-ECT" slave station node is generated under "EtherCat" in
the "Project Manager" tree. Double-click it to display the configuration page.

2. Click "Slot configuration" to access the slot configuration page. Select modules on the right, and
click "Add/Change" or "Delete". Use the mounted modules GL20-0800END, GL20-0008ETN, and
GL20-0808ETN as an example. Select the modules on the right and click "Add/Change" to add them
to the left part.

Extension Modules

-200-

Alternatively, you can wire the modules, power on the PLC, right-click EtherCAT, and select "Auto
Scan".

Extension Modules

-201-

3. Click "Start Scan".

Extension Modules

-202-

4. Click "Update Config" and select whether to retain current configurations. If so, configurations of
slave stations scanned for one or more times will be added next to current configurations. If not,
current configurations will be deleted and then scanned default configurations need to be added,
with the same result as manual adding.

5. As shown in the following figure, three nodes are generated under GL20-RTU-ECT, indicating three
modules. Double-click each node to access the corresponding module configuration page, and
configure module parameters.

6. Double-click GL20-RTU_ECT and switch to the "Process data" page and the "Start parameter" page
to check the generated process data and startup parameters respectively.

Extension Modules

-203-

7. Download the generated data and run the PLC. Then, the EtherCAT and GL20-RTC-ECT icons turn
green, and no PLC error is reported, indicating that the PLC is running properly.

5.4 GR10-EC-6SW Branch Module

5.4.1 Overview

The GR10-EC-6SW branch module only supports use with H5U devices.

The GR10-EC-6SW branch module is used to extend Extension ports, as shown in the following figure.

No. Terminal Name Definition
① Power indicator PWR Green Turned on upon power-on

② EtherCAT input
port

IN Port1 and EtherCAT input port, connecting to the front EtherCAT master station

Extension Modules

-204-

No. Terminal Name Definition

③
EtherCAT output
port

X2 Port2 and EtherCAT output port, connecting to the rear EtherCAT slave station

X3 Port3 and EtherCAT output port, connecting to the rear EtherCAT slave station

X4 Port4 and EtherCAT output port, connecting to the rear EtherCAT slave station

X5 Port5 and EtherCAT output port, connecting to the rear EtherCAT slave station

X6 Port6 and EtherCAT output port, connecting to the rear EtherCAT slave station

④ 24 V power
input terminal

Power input for a module

The GR10-EC-6SW branch module can be connected to multiple EtherCAT slave devices. System wiring
is shown in the following figure.

For more information about the GR10-EC-6SW branch module, see the GR10-EC-6SW 6-EtherCAT
Branch Module User Guide.

5.4.2 Adding the Branch Module and Its Slave

Branch modules and slave devices can be added manually or by automatic scanning.

Manual adding

1. In the toolbox, choose "EtherCAT Devices" > "Inovance Devices" > "Branch module", and double-
click GR10-EC-6SW.

Extension Modules

-205-

2. Select the EtherCAT output port with the same physical configuration and add a branch module or
slave device.
For example, to use the X2 EtherCAT output port to add a branch module, select "X2" and double-
click "GR10-EC-6SW" in the toolbox; to use the X3 EtherCAT output port to add the slave device
AM600-RTU-ECTA, select "X3", choose "Inovance Devices" > "IO coupler" in the toolbox, and double-
click "AM600-RTU-ECTA".

Note
● Up to three levels of branch modules can be added.
● Multiple slaves or branch modules can be added under the EtherCAT output port of a branch module.
● If Slave-Disable is turned on for the selected node, all branch nodes under the slave are disabled. Branch nodes

also support Slave-Disable. If an EtherCAT output port is disabled, all slaves under the port are disabled.
● Slaves of branch modules do not support copy and paste.

3. For details about the EtherCAT slave station configuration, see section 9.3 "Slave Configuration" in
chapter 9 "EtherCAT Communication."

Automatic scanning

1. In the "Project Manager" tree, right-click "EtherCAT" and select "Auto Scan". Click "Update Config",
select not to retain current configurations, and add the GR10-EC-6SW branch module and its slave
device.

Extension Modules

-206-

2. For details about the EtherCAT slave station configuration, see section 9.3 "Slave Configuration" in
chapter 9 "EtherCAT Communication."

5.4.3 Deleting the Branch Module and Its Slave

In the "Project Manager" tree on the left, right-click the branch module or slave device under
"EtherCAT", and select "Delete slave station" to delete the branch module or slave device. After the
slave station is deleted, data of the slave station and all its subnodes is deleted.

The branch modules as the X2 to X6 nodes, Internal Port, and GR10-EC-6SW Sub-device node must not be deleted.

Extension Modules

-207-

5.5 GS20-ECT-8L Module

5.5.1 Overview

The GS20-ECT-8L module is connected to the sensor or activator as an EtherCAT slave station using the
IO-Link protocol.

IO-Link is a serial digital communication protocol used to integrate a smart sensor and an activator
into an automation system. According to IEC 61131-9, it is the first worldwide standard I/O technology
for periodic data exchange between sensors/activators and PLCs. IO-Link is an open point-to-point
communication protocol but not a fieldbus protocol. The protocol features ease of use, stabilization,
reliability, and plug and play and is used more and more widely with the development of industry 4.0.

The IO-Link topology consists of PLCs, IO-Link master stations (GS20-ECT-8L), IO-Link slave stations
(GR20-16EMNL, GR20-16EMPL, GS20-16EMNL, or GS20-16EMPL), sensor, activator, and IO-Link cable, as
shown in the following figure. IO-Link master stations are connected to each other and PLCs through
EtherCAT communication. IO-Link master stations are connected to IO-Link slave stations and sensors/
activators and IO-Link slave stations are connected to sensors/activators through IO-Link
communication. IO-Link master stations and slave stations can supply power for sensors/activators
directly.

Note
The IO-Link ports support two working modes: IO-Link mode and Standard I/O (SIO) mode. The working mode can
be set separately on any port.

5.5.2 Configuring the GS20-ECT-8L Module

Prerequisites: The PLC is connected to the GS20-ECT-8L module through cables and is powered on.

1. Add the GS20-ECT-8L module.

Extension Modules

-208-

In the toolbox, choose "EtherCAT Devices" > "Inovance Devices" > "EtherCAT Fieldbus modules", and
double-click "GS20-ECT-8L" to add the GS20-ECT-8L module. Alternatively, in the "Project Manager"
tree, right-click "EtherCAT" and select "Auto Scan". After successful scanning, click "Update Config"
to update the device configuration and add the GS20-ECT-8L module.

Note
If you choose to discard the current configuration, delete all slave configurations first, and then add the scanned de-
vices. If you choose to retain the current configuration, add the scanned slaves one by one after the existing slaves.

2. Configure slots.
Click "Slot configuration". On the page that is displayed, select corresponding slots and click
"Delete" to delete devices from the slots. When the slot area is empty, select target devices on the
right and click "Add/Change" to add the selected devices to the slots. The following table lists the
slot numbers, names, and description.

Extension Modules

-209-

No. Slot Name Description

1 to 8
(corre-
sponding
to IO-
Link
physical
ports 0
to 7 of
the
GS20-
ECT-8L
module)

GR20-16EMNL-BYTE, GR20-16EMNL-BIT, GR20-
16EMPL-BYTE, GR20-16EMPL-BIT, GS20-16EMNL-
BYTE, GS20-16EMNL-BIT, GS20-16EMPL-BYTE, GS20-
16EMPL-BIT

Names of Inovance IO-Link slave station
modules, where N indicates active low and P
indicates active high

STD_IN_1bit Standard input

STD_OUT_1bit Standard output

IOL_I_xbyte/IOL_I_xbit IO_Link input, such as IOL_I_1byte,
indicating 1-byte IO-Link input

IOL_O_xbyte/IOL_O_xbit IO_Link output, such as IOL_O_1byte,
indicating 1-byte IO-Link output

IOL_I/O_x/_ybyte/IOL_I/O_x/_ybit IO_Link I/O, such as IOL_I/O_1/_1byte,
indicating 1-byte IO-Link input and 1-byte IO-
Link output

9 INPUT_PIN2_8CH PIN2 input
10 ACTOR_SHORTCIRCUIT_PIN2_8CH PIN2 short circuit monitoring

11 ACTOR_SHORTCIRCUIT_PIN4_8CH PIN4 short circuit monitoring

12 SENSOR_SUPPLY_SHORTCIRCUIT_8CH PIN1 short circuit monitoring

13 SYSTEM_HARDWARE_MONITOR Hardware status monitoring

14 OUTPUT_PIN2_8CH PIN2 output

3. Configure process data and I/O function mapping.

a. Click "Process data" and select corresponding I/O PDOs as required. The corresponding I/O
mapping data is generated on the "I/O function mapping" page. The PDO index 16#1600 is output
as an example.

Note
● The background DINT is of the signed 32-bit type, so an error occurs when UDINT data is read. If there is no

signed number with more than 32 bits, test whether the value read is correct. If decimal display is incomplete,
use hexadecimal display. In hexadecimal display, unsigned 32-bit numbers are displayed. Device IDs and other
UDINT type data can be viewed in hexadecimal display.

● The BITARR8 type of PDO data is mapped to the BYTE type by default, and can be operated bitwise according to
the BYTE type, or mapped to a BOOL array for reading and writing.

Extension Modules

-210-

Then, channel mappings for "GR20-16EMNL-BYTE_1 output byte 0" and "GR20-16EMNL-BYTE_1
output byte 1" are generated by default.

b. (Optional) Set a customized variable.

Click or . In the dialog box that is displayed, select a customized variable and click
"OK".

Note
To use the default mapping variables, skip this step.

Extension Modules

-211-

c. For example, configure the GR20_16EMPL byte operation through CH0 and the GR20_16EMPL bit
operation through CH1 to map the corresponding input and output variables respectively. Set
Output_pin2_chn of the corresponding port if the slave station is configured with output data.

d. Download and run the program.
The RUN indicator of the IO-Link master station flashes green and then turns steady green. The "0"
indicators of the ports configured to the IO-Link mode flash green.

e. Connect the IO-Link slave station of the GR20-16EMPL model to port 0 and port 1.
The "0" indicators on port 0 and port 1 turn steady green. The "1" indicators on port 0 and port 1
are steady yellow, for example, Output_pin2_chn. At the slave station, the US indicator is steady
green and the COM indicator flashes green.

4. Configure parameters of the IO-Link slave station.
Basic parameters of the IO-Link slave station can be configured by index 0x40n0 (n = 0 to 7). For
details about indexes, see “5.5.4.4 IO-Link Slave Configuration Data” on page 229. I/O port
information of the IO-Link slave station is configured as an example as follows:

a. Run the ETC_ReadParameter and ETC_Write_Parameter instructions to set corresponding pin
parameters to read and write corresponding indexes. This section describes operations of the
ETC_Write_Parameter instruction, which are the same of the ETC_ReadParameter instruction.

Note
● The string type does not support reading or writing.
● The background DINT is of the signed 32-bit type, so an error occurs when UDINT data is read. If there is no

signed number with more than 32 bits, test whether the value read is correct. If decimal display is incomplete,
use hexadecimal display. In hexadecimal display, unsigned 32-bit numbers are displayed. Device IDs and other
UDINT type data can be viewed in hexadecimal display.

● The ETC_ReadParameter and ETC_Write_Parameter instructions support reading and writing DINT type data,
and do not support reading and writing 32-bit BYTE arrays (BYTE[32]).

b. (Optional) Read the I/O port configuration information of the IO-Link slave station.

1). Set "Index" to "0X41" (hexadecimal) or "65" (decimal). The default value of "Subindex" of
Inovance IO-Link slave station is 0, which does not need to be changed.

2). Set "Length" based on the index length of the IO-Link slave station in bytes, for example, 2
bytes. For details, see the "Object List" section in the IO-Link Slave Station User Guide.

Extension Modules

-212-

3). Set "Control" to 0 and then to 3 to read the I/O port configuration information of the IO-Link
slave station.

c. Configure the I/O port information of the IO-Link slave station.

1). Set "Index" to "0X41" (hexadecimal) or "65" (decimal). The default value of "Subindex" of
Inovance IO-Link slave station is 0, which does not need to be changed.

2). Set "Length" based on the index length of the IO-Link slave station in bytes. For details, see the
"Object List" section in the IO-Link Slave Station User Guide.

3). Set "Data". Value 1 indicates output and value 0 indicates input. For example, configure the
low-order 8 bits of the IO-Link slave station as output and the high-order 8 bits as input, and set
"Data[0]" to 255 and "Data[1]" to 0.

4). Set "Control" to 0 and then to 2 to configure the I/O port information of the IO-Link slave
station.

Extension Modules

-213-

5. Verify the configuration correctness.
After the configuration is completed, verify whether the configuration is correct. This section verifies
whether port 0 and port 1 of GS20-ECT-8L are correctly configured based on the short connection
between the low-order 8 bits (configured to output) and high-order 8 bits (configured to input) of
GR20-16EMPL of the IO-Link slave station.

a. Use an I/O cable for short connection between the low-order 8 bits and high-order 8 bits of GR20-
16EMPL.

b. Verify whether port 0 of GS20-ECT-8L is correctly configured.

1). Use an IO-Link communication cable to connect the IO-Link port of GR20-16EMPL to port 0 of
GS20-ECT-8L.

2). Make the system enter the monitoring mode, and double-click "GS20-ECT-8L". On the page that
is displayed, click "I/O function mapping", and double-click the low-order 8 bit output data of
port 0 of GS20-ECT-8L. In the dialog box that is displayed, set "Value" to 255 to output signal 1
for the eight input ports of the IO-Link slave station of GR20-16EMPL.

3). Check the high-order 8 bit input data of port 0 of GS20-ECT-8L and the status of I/O indicators
on the IO-Link slave station of GR20-16EMPL.
If the high-order 8 bit input data of port 0 of GS20-ECT-8L is 255 and all the I/O indicators on the
IO-Link slave station of GR20-16EMPL are turned on, the configuration is correct. Otherwise, the
configuration is incorrect. Contact our technical support personnel for help.

c. Verify whether port 1 of GS20-ECT-8L is correctly configured.

1). Use an IO-Link communication cable to connect the IO-Link port of GR20-16EMPL to port 1 of
GS20-ECT-8L.

Extension Modules

-214-

2). Double-click "GS20-ECT-8L". On the page that is displayed, click "I/O function mapping", and
double-click the low-order 8 bit output data of port 1 of GS20-ECT-8L. In the dialog box that is
displayed, set "Value" to 202 as an example to output the "TRUE" or "FALSE" signal for the
eight input ports of the IO-Link slave station of GR20-16EMPL. By default, BYTE variables are
mapped, and the binary code of 202 is 11001010, indicating that the first, third, sixth, and
seventh bits are set to TRUE and other bits are set to FALSE.

3). Check the high-order 8 bit input data of port 1 of GS20-ECT-8L and the status of I/O indicators
on the IO-Link slave station of GR20-16EMPL.
If the high-order 8 bit input data of port 1 of GS20-ECT-8L is the same as the low-order 8 bit
output data, and the I/O indicators on the IO-Link slave station of GR20-16EMPL are displayed
accordingly, the configuration is correct. Otherwise, the configuration is incorrect. Contact our
technical support personnel for help.

Extension Modules

-215-

5.5.3 Fault Diagnosis

5.5.3.1 EtherCAT Diagnosis

LED Indicator Description Possible Cause Solution
RUN Off The EtherCAT slave

station is in the
initialization state

The EtherCAT master
station is not connected to
the EtherCAT slave station

● Check that the
configuration and
parameter distribution are
correct
● Check that the
communication address
configuration is correct
● Check that the network
cable specifications (M12
interface, with a shielded
Cat5e network cable) and
length (within 100 m) meet
the requirements

Flashing green The EtherCAT slave
station is in the pre-
operational state

The EtherCAT slave station
is in a non-OP state

● Check that the EtherCAT
slave station configuration
is correct
● Check that the EtherCAT
slave station is faulty
● Check that all EtherCAT
slave stations are
configured

Flashing green
only

The EtherCAT slave
station is in the safe-
operational state

ERR Flashing red The EtherCAT
communication
network is abnormal

● The EtherCAT master
station does not exchange
data with the EtherCAT
slave station
● EtherCAT receives status
conversion instructions that
cannot be executed
● EtherCAT synchronization
fails
● A watchdog error occurs in
EtherCAT communication

● Check that the M12
network cable plus is
correctly inserted
● Check that the network
cable is not damaged
● Check that the PDO
configuration is correct
● Restart the power supply

5.5.3.2 IO-Link Diagnosis

The following table lists the error codes and their definitions.

Extension Modules

-216-

Type Fault Code Description
System 0x0002 US supply overvoltage

0x0003 US supply undervoltage

0x0004 UA supply overvoltage

0x0005 UA supply undervoltage

0x0006 MCU temperature over 80°C

0x0008 Port communication disconnection
0x000c Pin2 short circuit

IO-Link master
station

0x1800 Port connection to no device
0x1801 Parameter loading failure

0x1802 Invalid vendor ID
0x1803 Invalid device ID
0x1804 Pin4 short circuit
0x1805 PHY chip overtemperature

0x1806 Pin1 short circuit
0x1807 Pin1 overcurrent
0x1808 Slave device event overflow
0x1811 Pin4 short circuit (DO mode)
0x1813 Pin4 overcurrent (DO mode)
0x6000 Invalid cycle time

0x6001 Incorrect version for slave station

5.5.4 Object List

5.5.4.1 Process Data

The input data of the IO-Link master station indicates TxPDO of the IO-Link slave station. If the IO-Link
slave station with TxPDO is connected, the port of the IO-Link master station must be configured with
input data. The following table defines TxPDO data of the IO-Link slave station. In the table, the entry
names and slave implementation may be different, and n indicates the port number of the IO-Link
master station.
Index 0xF100 CHn IO-Link Communication Status (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0xF100:00 Sub-index 00 Highest sub-index

supported
USINT 0x08 (8dec)

Extension Modules

-217-

0xF100:01 Sub-index 01 Status of
communication
between the master
station and the slave
station

Bit 0 to bit 3: IO-
Link status

0: Port inactive

1: Input mode

2: Output mode

3: Communication
OP

4: Communication
failure

Bit 4 to bit 7: error
code

00: No error

1: Watchdog error

2: Buffer overflow

3: Invalid device ID

4: Invalid vendor ID

5: Invalid version

6: Invalid frame
function

7: Invalid cycle time

8: Invalid length for
input process data

9: Invalid length for
output data

10: Connection to no
device

11: None

USINT 0x00 (0dec)
...
0xF100:08 Sub-index 08 USINT 0x00 (0dec)

Index 0x20n0 Ch.n Pin2 status monitoring input process data (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0x20n0:00 Sub-index 00 Highest sub-index

supported
USINT 0x02 (2dec)

0x20n0:01 Sub-index 01 Pin2 input process
data

● 0: Disable
● 1: Enable

USINT 0x00 (0dec)

0x20n0:02 Sub-index 02 Short circuit status
upon Pin2
configuration as
output

● 0: No short circuit
information
● 1: Short circuit

USINT 0x00 (0dec)

Index 0x20n1 Ch.n Pin4 and Pin1 short circuit status monitoring (for 0 ≤ n≤ 7)

Index Name Description Data Type Default

Extension Modules

-218-

0x20n1:00 Sub-index 00 Highest sub-index
supported

USINT 0x02 (2dec)

0x20n1:01 Sub-index 01 Short circuit status
upon Pin4
configuration as
output

● 0: No short circuit
information
● 1: Short circuit

USINT 0x00 (0dec)

0x20n1:02 Sub-index 02 Pin1 short circuit
status

● 0: No short circuit
information
● 1: Short circuit

USINT 0x00 (0dec)

Index 0x2A02 hardware status monitoring

Index Name Description Data Type Default
0x2A02:00 Sub-index 00 Highest sub-index

supported
USINT 0x03(3dec)

0x2A02:01 Sub-index 01 Activator power
voltage detection

● 00: 18 < UA < 30.2
● 01: 11 < UA < 18
● 10: UA > 30.2
● 11: UA < 11

USINT 0x00 (0dec)

0x2A02:02 Sub-index 02 System power
voltage detection

● 00: 18 < US < 30.2
● 01: 11 < US < 18
● 10: US > 30.2
● 11: US < 11

USINT 0x00 (0dec)

0x2A02:03 Sub-index 03 MCU internal
temperature
detection

● 00: 0 < internal
temperature < 85
● 01: internal
temperature < 0
● 10: internal
temperature > 85
● 11: Reserved

USINT 0x00 (0dec)

Index 0x30n8 Ch.n Pin2 output data in DO mode (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0x30n8:00 Sub-index 00 Highest sub-index

supported
USINT 0x01 (1dec)

0x30n8:01 Sub-index 01 Pin2 output data

● 0: Disable
● 1: Enable

BIT 0

Index 0x60n0 Ch.n IO-Link input data (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0x60n0:00 Sub-index 00 Highest sub-index

supported
USINT 0x00 (0dec)

Extension Modules

-219-

0x60n0:01 TxPDO 01 IO-Link input process
data [00]

UDINT 0x00 (0dec)

...
0x60n0:20 TxPDO 32 IO-Link input process

data [32]
UDINT 0x00 (0dec)

Index 0x70n0 Ch.n output data (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0x70n0:00 Sub-index 00 Highest sub-index

supported
USINT 0x00 (0dec)

0x70n0:01 RxPDO 01 IO-Link output
process data [00]

UDINT 0x00 (0dec)

...
0x70n0:20 RxPDO 32 IO-Link output

process data [32]
UDINT 0x00 (0dec)

The following table lists configuration data of the IO-Link port.

Index 0x20n3 Ch.n Pin4 parameters in DO mode (for 0 ≤ n≤ 7)

Index Name Description Data
Type

Code Default

0x20n3:00 IO Settings
Ch.1- 8

Highest sub-index supported USINT RW 0x1(1dec)

0x20n3:01 Pin4 safe
state

Safe state preset value upon Pin4
configuration as output

● 0x00: Output 0 upon a communication error
● 0x01: Output 1 upon a communication error
● 0x02: Last output value upon a
communication error

UDINT RW 0x00 (0dec)

Index 0x20n2 Ch.n Pin2 parameters in DO mode (for 0 ≤ n≤ 7)

Index Name Description Data
Type

Code Default

0x20n2:00 IO Settings
Ch.1- 8

Highest sub-index supported USINT RW 0x1(1dec)

0x20n2:01 Pin2 safe
state

Safe state preset value upon Pin2
configuration as output

● 0x00: Output 0 upon a communication error
● 0x01: Output 1 upon a communication error
● 0x02: Last output value upon a
communication error

UDINT RW 0x00 (0dec)

5.5.4.2 EtherCAT Object Dictionary Data (CoE Object)

The object dictionary of the EtherCAT IO-Link master station contains SDO-based addressing objects
and the standard objects and manufacturer objects supported by the IO-Link master station. The
ETG.1000.6: Application Layer protocol specification describes standard objects and ETG.5001-6220
describes the modular equipment profile objects. In addition, the manufacturer objects can be
addressed by combination of indexes and sub-indexes. Sub-index 0 indicates the number of sub-
indexes or highest-level sub-indexes.

Index 0x1000 EtherCAT slave station device type

Index Name Description Data Type Code Default

Extension Modules

-220-

1000:00 Device type Device type of
the EtherCAT
slave station

UDINT RO 0x1389 (5001dec)

Index 0x1001 error register

Index Name Description Data Type Code Default
1001:00 Error register Error register USINT RO 0x00

Index 0x1001 EtherCAT slave station device name
Index Name Description Data Type Code Default
1008:00 Device name Device name STRING(11) RO GS20-ECT-8L

Index 0x1008 EtherCAT slave station hardware version information
Index Name Description Data Type Code Default
1009:00 Hardware

version
Hardware
version of the
EtherCAT slave
station

STRING(16) RO A00.01

Index 0x100A EtherCAT slave station protocol stack software version information

Index Name Description Data Type Code Default
100A:00 Slave version Software version

of the EtherCAT
slave station
protocol stack

STRING(4) RO 5.13

Index 0x100B IO-LINK master station product-related version information

Index Name Description Data Type Code Default
100B:00 Software version Highest sub-

index supported
USINT RO 0x04

100B:01 App version Application
software version

UDINT RO 0x10100000

100B:02 FPGA version FPGA software
version

UDINT RO 0x10100000

100B:03 IOLM version Software version
of the IO-Link
master station

UDINT RO 0x0305

Index 0x1018 EtherCAT slave station identity information

Index Name Description Data Type Code Default
1018:00 Identity Highest sub-

index supported
USINT RO 0x04 (4dec)

1018:01 Vendor ID Vendor ID of the
EtherCAT slave
station

UDINT RO 0x00100000

1018:02 Product code Product code of
the EtherCAT
slave station

UDINT RO 0x10F42EE1

1018:03 Revision Firmware version
of the product
application

STRING(11) RO 1.1.0.0

1018:04 Serial number Production serial
number

UDINT RO 0x15FA66

Index 0x10F3 diagnosis history

Index Name Description Data Type Code Default
10F3:00 Diagnosis history Highest sub-

index supported
USINT RO 0x16

Extension Modules

-221-

10F3:01 Maximum
message

Maximum
number of
diagnosis
messages

USINT RO 0x14 (20dec)

10F3:02 Newest message Sub-index of the
latest diagnosis
message

USINT RO 0x00000000
(0dec)

10F3:03 Newest
acknowledged
message

Latest
acknowledged
message

USINT RW 0x00000000
(0dec)

10F3:04 New message
available

New diagnosis
information

BOOL RO 0

10F3:05 Flags Setting for send
and store
diagnosis
messages

UINT RW 0x00000000
(0dec)

10F3:06 Diagnosis
message 01

Diagnosis
information 1

ARRAY [0..27] OF
BYTE

RO 0x00000000
(0dec)

...
10F3:40 Diagnosis

message 64
Diagnosis
information 64

ARRAY [0..27] OF
BYTE

RO 0x00000000
(0dec)

Index 0x3010 ESC port 0 error counter

Index Name Description Data Type Code Default
3010:00 Port0 error

counter
Highest sub-
index supported

USINT RO 0x04 (4dec)

3010:01 Port0 invalid
frame counter

Number of
invalid frames for
ESC port 0

USINT RO 0x00 (0dec)

3010:02 Port0 Rx error
counter

Number of error
frames for ESC
port 0

USINT RO 0x00 (0dec)

3010:03 Port0 forwarded
Rx error counter

Number of error
loopback frames
for ESC port 0

USINT RO 0x00 (0dec)

3010:04 Port0 lost link
counter

Number of lost
frames for ESC
port 0

USINT RO 0x00 (0dec)

Index 0x3011 ESC port 0 error counter

Index Name Description Data Type Code Default
3011:00 Port1 error

counter
Highest sub-
index supported

USINT RO 0x04 (4dec)

3011:01 Port1 invalid
frame counter

Number of
invalid frames for
ESC port 1

USINT RO 0x00 (0dec)

3011:02 Port1 Rx error
counter

Number of error
frames for ESC
port 1

USINT RO 0x00 (0dec)

3011:03 Port1 forwarded
Rx error counter

Number of error
loopback frames
for ESC port 1

USINT RO 0x00 (0dec)

Extension Modules

-222-

3011:04 Port1 lost link
counter

Number of lost
frames for ESC
port 1

USINT RO 0x00 (0dec)

Index 0x3012 ESC error counter
Index Name Description Data Type Code Default
3012:00 ESC error

counter
Highest sub-
index supported

USINT RO 0x04 (4dec)

3012:01 ECAT processing
unit error
counter

Error counter for
the ESC
processing unit

USINT RO 0x00 (0dec)

3012:02 PDI error counter PDI error counter USINT RO 0x00 (0dec)
3012:03 Watchdog

counter process
data

Number of
watchdogs for
process data

USINT RO 0x00 (0dec)

3012:04 Watchdog
counter PDI

Number of PDI
watchdogs

USINT RO 0x00 (0dec)

Index 0x3016 station address
Index Name Description Data Type Code Default
3016:00 Station address Highest sub-

index supported
USINT RO 0x04 (4dec)

3016:01 Rotary switch
value

DIP switch value USINT RO 0x00 (0dec)

3016:02 Configured
station address

Configured
station address

USINT RO 0x00 (0dec)

3016:03 Configured
station alias

Configured
station alias

USINT RO 0x00 (0dec)

3016:04 Alias in EEPROM Alias in EEPROM USINT RO 0x00 (0dec)

The following table lists configuration data of the IO-Link port.

Index 0x80n0 Ch.n IO-Link port configuration data (for 0 ≤ n≤ 7)

Index Name Description Data
Type

Code Default

0x80n0:00 IO Settings
Ch.1- 8

Highest sub-index supported USINT RW 0x28 (40dec)

0x80n0:04 Device ID ID of the IO-Link device UDINT RW 0x00000000
(0dec)

0x80n0:05 VendorID Vendor ID of the IO-Link device UDINT RW 0x00000000
(0dec)

0x80n0:06 Product ID Product ID of the IO-Link device USINT RW 0x00000000
(0dec)

0x80n0:08 Serial
number

Serial number of the IO-Link device USINT RW 0x00000000
(0dec)

0x80n0:20 IO-Link
revision

Version of the specification for IO-Link device
communication

● Bit 0 to bit 3: Minor version
● Bit 4 to bit 7: Major version

USINT RW 0x00 (0dec)

0x80n0:21 Frame
capability

Reserved USINT RW 0x00 (0dec)

Extension Modules

-223-

0x80n0:22 Min cycle
time

Cycle time① between the IO-Link master
station and slave station, which is
transmitted by IO-Link data frames of the
minimum cycle

● Bit 6 to bit 7: Time base
● Bit 0 to bit 5: Ratio
● 0x00: The IO-Link master station
automatically uses the update time of the IO-
Link device

USINT RW 0x00 (0dec)

0x80n0:23 Offset time Reserved USINT RW 0x00 (0dec)
0x80n0:24 Process

data in
length

Number of bits in the input process data
transmitted by IO-Link data frames, which is
recorded as 255 for 256 bits

USINT RW 0x00 (0dec)

0x80n0:25 Process
data out
length

Number of bits in the output process data
transmitted by IO-Link data frames, which is
recorded as 255 for 256 bits

USINT RW 0x00 (0dec)

0x80n0:26 Compatible
ID

Reserved UINT RW 0x0000 (0dec)

0x80n0:27 Reserved Reserved UINT RW 0x0000 (0dec)
0x80n0:28 Master

control
Bit 0 to bit 3:

0: Port not used

1: Port configured as DI mode

2: Port configured as DO mode

3: Port configured as the IO-Link automatic
mode

4: Port configured as the IO-Link verification
mode

Bit 4 to bit 7:

0: Invalid process data upon network
disconnection

1: Output 0 upon network disconnection

2: Output of the last cycle upon network
disconnection

Bit 8 to bit 15:

0: Not verifying device parameter
information

1: Verifying vendor ID and device ID in V1.0

2: Verifying vendor ID and device ID in V1.1

3: Enabling backup and restoration of slave
station configuration data

4: Only enabling restoration of slave station
configuration data

* V1.0 and V1.1 indicates the versions of the
IO-Link slave station protocol stack.

* If the modes specified by values 3 and 4 are
used, the port must be configured to the
verification mode.

UINT RW 0x0000 (0dec)

Index 0x90n0 Ch.n IO-Link port configuration data (for 0 ≤ n≤ 7)

Extension Modules

-224-

Index Name Description Data
Type

Code Default

0x90n0:00 IO Settings
Ch.1- 8

Highest sub-index supported USINT R 0x28 (40dec)

0x90n0:04 Device ID Obtained device ID of the IO-Link slave
device

UDINT R 0x00000000
(0dec)

0x90n0:05 VendorID Obtained vendor ID of the IO-Link slave
device

UDINT R 0x00000000
(0dec)

0x90n0:06 Product ID Obtained product ID of the IO-Link slave
device (not supported)

USINT R 0x00000000
(0dec)

0x90n0:08 Serial
number

Obtained serial number of the IO-Link slave
device (not supported)

USINT R 0x00000000
(0dec)

0x90n0:20 IO-Link
revision

Version of the specification for IO-Link device
communication

● Bit 0 to bit 3: Minor version
● Bit 4 to bit 7: Major version

USINT R 0x00 (0dec)

0x90n0:21 Frame
capability

Reserved USINT R 0x00 (0dec)

0x90n0:22 Min cycle
time

Cycle time① between the IO-Link master
station and slave station, which is
transmitted by IO-Link data frames of the
minimum cycle

● Bit 6 to bit 7: Time base
● Bit 0 to bit 5: Ratio

USINT R 0x00 (0dec)

0x90n0:23 Offset time Reserved USINT R 0x00 (0dec)
0x90n0:24 Process

data in
length

Obtained number of bits in the input process
data transmitted by IO-Link slave station
data frames, which is displayed as 255 for
256 bits

USINT R 0x00 (0dec)

0x90n0:25 Process
data out
length

Obtained number of bits in the output
process data transmitted by IO-Link slave
station data frames, which is displayed as
255 for 256 bits

USINT R 0x00 (0dec)

0x90n0:26 Compatible
ID

Reserved UINT R 0x0000 (0dec)

0x90n0:27 Reserved Reserved UINT R 0x0000 (0dec)

① For details about the cycle time, see the following table.

Time Baseline Code Time Baseline Value Calculation Method Cycle Time
00 0.1 ms Multiplier x Time baseline 0.4 ms to 6.3 ms

01 0.4 ms 6.4 ms + Multiplier x Time
baseline

6.4 ms to 31.6 ms

10 1.6 ms 32.0 ms + Multiplier x Time
baseline

32.0 ms to 132.8 ms

11 Reserved Reserved Reserved

5.5.4.3 Configuration Data for Process Data Communication

EtherCAT PDO communication is managed by PDO assignment, PDO mapping, and process data object
dictionaries. PDO assignment and PDO mapping are described and sampled as follows:

Extension Modules

-225-

PDO assignment

PDO assignment, which is divided into two object dictionaries to receive PDO assignment and transmit
PDO assignment, is used to configure PDO mapping. Indexes for the two dictionaries are respectively
0x1C12 and 0x1C13.

Index 0x1C12 RxPDO assignment

Index Name Description Data Type Default
0x1C12:00 Sub-index 00 Assignment of

output process data
USINT 0x08 (8dec)

0x1C12:01 Sub-index 01 Assignment of
output process data
of index 1

DT1C12ARR 0x1600 (5632dec)

0x1C12:02 Sub-index 02 Assignment of
output process data
of index 2

DT1C12ARR 0x1601 (5633dec)

0x1C12:03 Sub-index 03 Assignment of
output process data
of index 3

DT1C12ARR 0x1602 (5634dec)

0x1C12:04 Sub-index 04 Assignment of
output process data
of index 4

DT1C12ARR 0x1603 (5633dec)

0x1C12:05 Sub-index 05 Assignment of
output process data
of index 5

DT1C12ARR 0x1604 (5634dec)

0x1C12:06 Sub-index 06 Assignment of
output process data
of index 6

DT1C12ARR 0x1605 (5635dec)

0x1C12:07 Sub-index 07 Assignment of
output process data
of index 7

DT1C12ARR 0x1606 (5634dec)

0x1C12:08 Sub-index 08 Assignment of
output process data
of index 8

DT1C12ARR 0x1607 (5635dec)

Index 0x1C13 TxPDO assignment

Index Name Description Data Type Default
0x1C13:00 Sub-index 00 Assignment of input

process data
USINT 0x08 (8dec)

0x1C13:01 Sub-index 01 Assignment of input
process data of index
1

DT1C13ARR 0x1A00 (6656dec)

0x1C13:02 Sub-index 02 Assignment of input
process data of index
2

DT1C13ARR 0x1A01 (6657dec)

0x1C13:03 Sub-index 03 Assignment of input
process data of index
3

DT1C13ARR 0x1A02 (6657dec)

0x1C13:04 Sub-index 04 Assignment of input
process data of index
4

DT1C13ARR 0x1A03 (6658dec)

0x1C13:05 Sub-index 05 Assignment of input
process data of index
5

DT1C13ARR 0x1A04 (6658dec)

Extension Modules

-226-

0x1C13:06 Sub-index 06 Assignment of input
process data of index
6

DT1C13ARR 0x1A05 (6659dec)

0x1C13:07 Sub-index 07 Assignment of input
process data of index
7

DT1C13ARR 0x1A06 (6659dec)

0x1C13:08 Sub-index 08 Assignment of input
process data of index
8

DT1C13ARR 0x1A07 (6660dec)

PDOmapping

PDO mapping is used to map the process data object dictionary that requires communication. PDO
mapping is divided into RxPDO mapping and TxPDO mapping, and the index ranges for them are
respectively 0x1600 to 0x17FF and 0x1A00 to 0x1BFF.

The object dictionary for PDO mapping contains the values of indexes, sub-indexes, and length of
process data in the object dictionary for PDO communication.

Bit 31 ... 16 15 ... 8 7 ... 0
Descrip-
tion

Index Sub-index Object length

Index 0x1A0n Ch.n input process data mapping (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0x1A0n:00 Sub-index 00 Input process data

mapping
USINT 0x00 (0dec)

0x1A0n:01 Sub-index 01 1. Input process data
mapping

UDINT 0x70n0:01,08

...
0x1A0n:40 Sub-index 64 64. Input process

data mapping
UDINT 0x70n0:40,08

Index 0x1A10 Pin2 input process data mapping (8 Ch)

Index Name Description Data Type Default
0x1A10:00 Sub-index 00 Input process data

mapping for Pin2
USINT 0x08 (8dec)

0x1A10:01 Sub-index 01 Input process data
mapping for Pin2
through CH0

BIT 0x2000:01,01

0x1A10:02 Sub-index 02 Input process data
mapping for Pin2
through CH1

BIT 0x2010:01,01

0x1A10:03 Sub-index 03 Input process data
mapping for Pin2
through CH2

BIT 0x2020:01,01

0x1A10:04 Sub-index 04 Input process data
mapping for Pin2
through CH3

BIT 0x2030:01,01

0x1A10:05 Sub-index 05 Input process data
mapping for Pin2
through CH4

BIT 0x2040:01,01

Extension Modules

-227-

0x1A10:06 Sub-index 06 Input process data
mapping for Pin2
through CH5

BIT 0x2050:01,01

0x1A10:07 Sub-index 07 Input process data
mapping for Pin2
through CH6

BIT 0x2060:01,01

0x1A10:08 Sub-index 08 Input process data
mapping for Pin2
through CH7

BIT 0x2070:01,01

Index 0x1A13 Pin1 short circuit process data mapping (8 Ch)

Index Name Description Data Type Default
0x1A13:00 Sub-index 00 Short circuit process

data mapping for
Pin1

USINT 0x08 (8dec)

0x1A13:01 Sub-index 01 Short circuit process
data mapping for
Pin1 through CH0

BIT 0x2001:02,01

0x1A13:02 Sub-index 02 Short circuit process
data mapping for
Pin1 through CH1

BIT 0x2011:02,01

0x1A13:03 Sub-index 03 Short circuit process
data mapping for
Pin1 through CH2

BIT 0x2021:02,01

0x1A13:04 Sub-index 04 Short circuit process
data mapping for
Pin1 through CH3

BIT 0x2031:02,01

0x1A13:05 Sub-index 05 Short circuit process
data mapping for
Pin1 through CH4

BIT 0x2041:02,01

0x1A13:06 Sub-index 06 Short circuit process
data mapping for
Pin1 through CH5

BIT 0x2051:02,01

0x1A13:07 Sub-index 07 Short circuit process
data mapping for
Pin1 through CH6

BIT 0x2061:02,01

0x1A13:08 Sub-index 08 Short circuit process
data mapping for
Pin1 through CH7

BIT 0x2071:02,01

Index 0x1A14 system hardware status monitoring process data mapping

Index Name Description Data Type Default
0x1A14:00 Sub-index 00 Process data

mapping for status
monitoring of system
hardware

USINT 0x03(3dec)

0x1A14:01 Sub-index 01 Process data
mapping for status
monitoring of system
power voltage

UDINT 0x2A02:01,08

0x1A14:02 Sub-index 02 Process data
mapping for status
monitoring of
activator power
voltage

UDINT 0x2A02:02,08

Extension Modules

-228-

0x1A14:03 Sub-index 03 Process data
mapping for status
monitoring of MCU
internal temperature

UDINT 0x2A02:03,08

Index 0x1A80 master and slave station communication status monitoring process data mapping

Index Name Description Data Type Default
0x1A81:00 Sub-index 00 Process data

mapping for status
monitoring of master
and slave station
communication

USINT 0x08 (8dec)

0x1A81:01 Sub-index 01 Process data
mapping for status
monitoring of master
and slave station
communication
through CH0

UDINT 0xF100:01,08

0x1A81:02 Sub-index 02 Process data
mapping for status
monitoring of master
and slave station
communication
through CH1

UDINT 0xF100:02,08

0x1A81:03 Sub-index 03 Process data
mapping for status
monitoring of master
and slave station
communication
through CH2

UDINT 0xF100:03,08

0x1A81:04 Sub-index 04 Process data
mapping for status
monitoring of master
and slave station
communication
through CH3

UDINT 0xF100:04,08

0x1A81:05 Sub-index 05 Process data
mapping for status
monitoring of master
and slave station
communication
through CH4

UDINT 0xF100:05,08

0x1A81:06 Sub-index 06 Process data
mapping for status
monitoring of master
and slave station
communication
through CH5

UDINT 0xF100:06,08

0x1A81:07 Sub-index 07 Process data
mapping for status
monitoring of master
and slave station
communication
through CH6

UDINT 0xF100:07,08

Extension Modules

-229-

0x1A81:08 Sub-index 08 Process data
mapping for status
monitoring of master
and slave station
communication
through CH7

UDINT 0xF100:08,08

Index 0x160n Ch.n output process data mapping (for 0 ≤ n≤ 7)

Index Name Description Data Type Default
0x160n:00 Sub-index 00 Output process data

mapping
USINT 0x00 (0dec)

0x160n:01 Sub-index 01 1. Output process
data mapping

UDINT 0x60n0:01,08

...
0x160n:20 Sub-index 32 32. Output process

data mapping
UDINT 0x60n0:40,08

Index 0x1620 Pin2 output process data mapping (8 Ch)

Index Name Description Data Type Default
0x1620:00 Sub-index 00 Output process data

mapping for Pin2
USINT 0x08 (8dec)

0x1620:01 Sub-index 01 Output process data
mapping for Pin2
through CH0

BIT 0x3008:01,01

0x1620:02 Sub-index 02 Output process data
mapping for Pin2
through CH1

BIT 0x3018:01,01

0x1620:03 Sub-index 03 Output process data
mapping for Pin2
through CH2

BIT 0x3028:01,01

0x1620:04 Sub-index 04 Output process data
mapping for Pin2
through CH3

BIT 0x3038:01,01

0x1620:05 Sub-index 05 Output process data
mapping for Pin2
through CH4

BIT 0x3048:01,01

0x1620:06 Sub-index 06 Output process data
mapping for Pin2
through CH5

BIT 0x3058:01,01

0x1620:07 Sub-index 07 Output process data
mapping for Pin2
through CH6

BIT 0x3068:01,01

0x1620:08 Sub-index 08 Output process data
mapping for Pin2
through CH7

BIT 0x3078:01,01

5.5.4.4 IO-Link Slave Configuration Data

Index 0x40n0 Ch.n IO-Link port slave configuration parameter read/write (for 0 ≤ n≤ 7)

Index Name Description Data Type Code Default
0x40n0:00 subindex0 Highest sub-index supported USINT RO 0x07

(7dec)

Extension Modules

-230-

0x40n0:01 Control ● 0: Disabled
● 0→2: Write parameter
● 0→3: Read parameter

UDINT RW 0x00
(0dec)

0x40n0:02 Status ● 0x00: No error
● 0x02: Read success
● 0x40: Error

UDINT RW 0x00
(0dec)

0x40n0:03 Index Index number of the slave station USINT RW 0x00
(0dec)

0x40n0:04 Subindex Sub-index number of the slave station USINT RW 0x00
(0dec)

0x40n0:05 Length Data length, in byte UINT RW 0x00
(0dec)

0x40n0:06 Data Data ARRAY [0..31] OF
BYTE

RW 0x00
(0dec)

0x40n0:07 Fault Code ● 0x1: Operation not supported
● 0x3: Device access failure
● 0x4: Unauthorized operation
● 0x5: Slave device in non-OP state
● 0x34: Length error
● 0x36: Invalid operation due to busy master
station
● 0x39: Port disabled

UINT RO 0x00
(0dec)

5.6 Basic Operations of Local Modules

5.6.1 Scanning Local Modules Automatically (Easy)

1. Right-click "Module Config" and select "Auto Scan".

Note
Both modules and extension cards are scanned and the scanning follows the same specifications.

Extension Modules

-231-

2. In the dialog box that is displayed, click "Start Scan". If the PLC is running, click "Yes" in the popup
window to switch to the stopped state.

3. Click "Start Scan". After the scanning is completed, the list of scanned modules is displayed. If the
mounted modules are inconsistent with the modules configured in the background, they are marked
red.

4. Click "Update Config".
The "Save current axises." window is described as follows:

● Deselected: All the background module configurations are deleted. The default configurations of
scanned modules are added according to the scan result.

● Selected: Compare the mounted modules with the modules configured in the background. If they
are consistent, the mounted modules are not replaced or updated. If they are inconsistent, the
background modules of the corresponding slots are deleted, the default configured modules are
added, and the modules are compared in sequence by slot.

Click "OK" to add the scan result.

Extension Modules

-232-

5.6.2 Disabling Local Modules

To use the function of disabling local extension modules, ensure that the physical extension modules
removed are the same as the modules to be disabled in the module list of the software. The procedure
is as follows:

1. In the module list, select a module to be disabled and right-click the module.

2. Choose "Ban" from the drop-down list, and download the program to the PLC device.

Extension Modules

-233-

3. After downloading the program, restart the PLC device.

5.6.3 Enabling Local Modules

To use the function of enabling local extension modules, ensure that the physical extension modules
installed are the same as the modules to be enabled in the module list of the software. The procedure
is as follows:

1. In the module list, select a module to be enabled and right-click the module.

Extension Modules

-234-

2. Choose "Enable" from the drop-down list, and download the program to the PLC device.

3. After downloading the program, restart the PLC device.

Serial Communication

-235-

6 Serial Communication

6.1 Overview

H5U provides a serial communication port that supports baud rates of 9600 bps, 19200 bps, 38400 bps,
57600 bps, and 115200 bps.

Serial ports supported by the Easy series are listed in the following table.

Easy300 Series Easy500 Series

Easy301 Easy302 Easy320 Easy501 Easy502 Eas
y521

Eas
y522

Eas
y523

Serial
com-
muni-
cati-
on

One RS232 port
and one RS485
port, supporting
free protocol for
serial ports

One RS232 port
and one RS485
port, scalable up
to two RS485/
RS232 ports,
supporting free
protocol for serial
ports

One RS485 port, scalable
up to two RS485/RS232
ports, supporting free
protocol for serial ports

One RS485 port, scalable
up to two RS485/RS232
ports, supporting free
protocol for serial ports

One RS485 port,
scalable up to two
RS485/RS232 ports,
supporting free
protocol for serial
ports

Table 6–1 Communication protocol

Communication Protocol Description

Free protocol Freely sends/receives data with the SerialRS instruction

Modbus-RTU master station A standard Modbus-RTU master station that reads/writes data from/to a slave station
through Modbus configuration

Modbus-RTU slave station A standard Modbus-RTU slave station
Modbus-ASCII master station A standard Modbus-ASCII master station that reads/writes data from/to a slave station

through Modbus configuration

Modbus-ASCII slave station A standard Modbus-ASCII slave station

6.2 Serial Communication Network

You are recommended to use shielded twisted pairs for the RS485 bus and use twisted pairs to connect
RS485+ and RS485–. A 120 Ω termination resistor is connected at both ends of the bus to prevent signal
reflection. The reference grounds (GND) of RS485 signals on all nodes are connected together. A
maximum of 31 nodes are supported and the distance between each node and the bus must be less
than 3 m.

H5U series

Communication termination resistor DIP switch

The communication termination resistor DIP switch is located in the battery bay. ON means the
termination resistor is connected (factory default: OFF). The switch schematic diagram is as follows, in
which 1 and 2 are used for RS485 communication, and 3 and 4 are used for CAN communication.

Serial Communication

-236-

ON

1 2 3 4

RS485 CAN

Networking of RS485 serial communication

The following figure shows the RS485 bus topology.

The RS485 port of H5U has a 120 Ω termination resistor which can be turned on or off by setting the
DIP switch.

Easy series

The Easy series host has no termination resistor. An external termination resistor can be connected if
necessary. The RS485 communication extension card of the GE20 series has a termination resistor. The
termination resistor can be turned on or off by setting the DIP switch and the default setting is OFF.
The following figure shows the RS485 bus topology.

6.3 Free Protocol Configuration

6.3.1 Free Protocol Configuration

Double-click "COM". In the dialog box "COM Communication Parameter Config" displayed, select "Free
Agreement", set serial port parameters, and then click "OK". Then, you can use the SerialRS instruction
to send and receive data in the user program.

Serial Communication

-237-

Ethernet

6.3.2 Free Protocol Cancellation (SerialSR Instruction)

When the free protocol is set for the COM port, you can use the SerialSR instruction to send and receive
data over the free protocol, and set the system variable _SerialSR.abort to abort a free protocol send/
receive process. The modification takes effect immediately, as shown in the following figure.

Serial Communication

-238-

Figure 6-1 _SerialSR structure

Usage:

When _SerialSR.abort is set to a non-zero value, the send and receive processes can be aborted within
the specified timeout period. After the processes are aborted, their states change to 16-Completed,
and the DONE signal is ON.

6.4 Master Configuration

6.4.1 Modbus-RTU or Modbus-ASCII Master

Setting the serial port

Double-click "COM". In the dialog box "COM Communication Parameter Config" displayed, select
"MODBUS-RTU master" or "MODBUS-ASC master", and set serial port parameters.

Serial Communication

-239-

Ethernt

Adding the Modbus configuration

● Timeout: Sets the period for the master station to wait for the slave station to answer, in the unit of
ms.

● Enabling control element: Enables or disables the connection. Customized variables are supported.
If this option is not selected, the master station is enabled by default.

Accessing detailed configuration

Double-click "COM0 Modbus Config" to access the "Modbus Config" window. For detailed
configuration, see “6.4.2 Modbus Master Configuration Table” on page 239

6.4.2 Modbus Master Configuration Table

Configure the Modbus master station.
The following describes relevant configuration items:

● Name
The name that labels this condition configuration.

● Slave No.
The number of the slave station you want to access. Up to 255 slave stations can be specified.

● Trigger mode and condition
The communication modes are "Cycle" and "Trigger".

Serial Communication

-240-

When "Cycle" is selected, the trigger condition is used to set the cycle time in ms. Then the
configurations are executed according to the specified cycle.

Note
When the set cycle is smaller than the time required for communication, the configuration is executed according to
the time required for communication. For example, if the set cycle is 10 ms and the actual slave response requires
20 ms, the actual execution cycle is 20 ms.

When "Trigger" is selected, the trigger condition is used to set the trigger condition variable/
element. In this mode you can set the trigger condition to trigger a communication. If the slave
station responds to the request, the trigger condition is automatically reset; otherwise, the trigger
condition remains unchanged. If one trigger variable/element is used to trigger multiple
configurations, the trigger condition will be automatically reset after all the triggered configurations
are executed and the triggered configurations are not executed again.

● Function code

Function Code Definition
0x01 (01) Reads coils

0x02 (02) Reads discrete inputs

0x03 (03) Reads registers

0x04 (04) Reads input registers

0x05 (05) Single coil

0x06 (06) Single register

0x0f (15) Writes multiple coils

0x10 (16) Writes multiple registers

● Slave register address
The slave register address to be accessed.

You can set the slave register address format to hexadecimal or decimal.

● Quantity
The number of coils, discrete quantities, or registers to be accessed.

Function Code Name Max.
0x01 (01) Reads coils 2000

0x02 (02) Reads discrete inputs 2000

0x03 (03) Reads registers 125

0x04 (04) Reads input registers 125

0x05 (05) Single coil 1

0x06 (06) Single register 1

0x0f (15) Writes multiple coils 1968

0x10 (16) Writes multiple registers 123

● Mapped address
The mapped address of the slave coil, discrete quantity, or register in the master station.
Customized variables are supported.

● Repeat number
The number of retries after the slave station response times out.

Serial Communication

-241-

6.4.3 Modbus-RTU Slave Disable

When the PLC serves as the Modbus-RTU master station, you can use system variables to disable a
slave station.

Configuration

1. Set the PLC as the Modbus-RTU master station.

2. Add the configuration table.
3. Locate the slave station you want to disable based on the slave No. or slot No..
4. Configure the _MbMstEx structure array to disable slave stations under the corresponding host.

Serial Communication

-242-

Note
● The configuration corresponding to COM[N] in the _MbMstEx [N] structure array is not retentive at power failure.
● _MbMstEx.SlvDisableSetFlag is used to enable or disable the Slave Disable function. When it is non-zero, the

Slave Disable function is enabled.
● In _MbMstEx.SlvDisable[M], M is the Slave Disable flag corresponding to the slave station number mentioned in

step 3. It is only valid when _MbMstEx.SlvDisableSetFlag is enabled.

Program example

Note: When M1001, M1002,…, and M1254 are used to disable a single slave station, the read or write
operation on this slave station is invalid.

6.5 Slave Configuration

6.5.1 Modbus-RTU or Modbus-ASCII Slave

Double-click "COM". In the dialog box "COM Communication Parameter Config" displayed, select
"MODBUS-RTU slave" or "MODBUS-ASC slave", set serial port parameters and the slave No., and then
click "OK". Download the project to H5U. For function codes and addresses supported when H5U is
used as the Modbus slave station, see “6.5.2 Parameters and Addresses” on page 243.

Serial Communication

-243-

6.5.2 Parameters and Addresses

● When H5U is used as the slave station, the following function codes are supported:

Function Code Definition
0x01 Reads coils
0x02 Reads discrete quantities (same as 0x01).
0x03 Reads registers

0x04 Reads input registers (same as 0x03).

0x05 Writes a single coil.

0x06 Writes a single register.

0x0f Writes multiple coils
0x10 Writes multiple registers

0x80 to 0xFF Standard Modbus fault code

● When H5U is used as the slave station, addresses of coils that can be accessed by Modbus are listed
in the following table:

Variable Quantity Address Range

M0-M7999 8000 0x0000 to 0x1F3F (0 to 7999)
B0-B32767 32768 0x3000 to 0xAFFF (12288 to 45055)
S0-S4095 4096 0xE000 to 0xEFFF (57344 to 61439)

X0-X1777 (octal) 1024 0xF800 to 0xFBFF (63488 to 64511)

Y0-Y1777 (octal) 1024 0xFC00-0xFFFF (64512 to 65535)

● When H5U is used as the slave station, addresses of registers that can be accessed by Modbus are
listed in the following table:

Serial Communication

-244-

Variable Quantity Start Address
D0-D7999 8000 0x0000 to 0x1F3F (0 to 7999)
R0-R32767 32768 0x3000 to 0xAFFF (12288 to 45055)

Note
W elements and Pointer variables are not supported.

6.6 Example of Modbus-RTU Communication Application

Program requirements

In this example, two H5Us are connected through a serial port and communicate with each other
through the Modbus-RTU protocol. The master PLC reads the value in the D100 register of the slave
PLC every 10 ms, and the value in D100 of the slave station is added by one every second.

Slave configuration

Double-click the COM icon to access the serial port configuration page.

In the window displayed, set the serial communication protocol and communication parameters. In
this example, the protocol is Modbus-RTU and the communication parameter is 9600-8N2. Then, click
"OK" to save the settings.

Serial Communication

-245-

Edit the program so that the value of D100 of the slave station is added by one every second.

Then, click "Download" to download the program to the PLC.

Master configuration

Double-click the COM icon. In the window displayed, set the communication protocol to Modbus-RTU
master and set the communication parameter to that of the slave station. Right-click the COM icon. In
the dialog box displayed, select "Add MODBUS Config".

Serial Communication

-246-

You can set "Timeout" and "Enabling control element" in the dialog box displayed. In this example, the
default settings are used: "Timeout" is set to 500 ms, and "Enabling control element" is deselected.

Click "OK". The master configuration is generated.

Double-click "COM0 Modbus Config". On the configuration table page displayed, click "Add" to add the
configuration. In this example, the value of D100 of the slave station is stored in D200 of the master
station.

Then, click "Download" to download the program to the PLC.

Effect

The value of the D100 register of the slave station can be read from the D200 register of the master
station.

6.7 Modifying Serial Port Parameters

6.7.1 Modifying COM Port Parameters

When the free protocol and Modbus-RTU/Modbus-ASC master-slave are configured for the COM port,
you can set the system variable _COMSet to modify the COM port parameters. The effective _COMSet
parameter is synchronized to the _COM parameter, as shown in the following figure.

Serial Communication

-247-

Figure 6-2 COMSet structure

Figure 6-3 _COM structure

Usage:

1. When _COMSet.SetFlag is set to a non-zero value, parameters of the COM port can be modified
online.

2. Only the baud rate, data bit, parity bit, and stop bit can be modified. The physical port and
communication protocol parameters are read-only and cannot be modified.

3. Modification to these parameters takes effect only after STOP–RUN is executed on the PLC. The
effective parameters can be viewed through the system variable _COM.

4. Note that when the baud rate, data bit, parity bit, or stop bit is set to an invalid value, the parameter
will be reset by the system to the system background configuration parameter.

5. When the PLC is used as the Modbus-RTU or Modbus-ASC master station, the Modbus configuration
table must be added; otherwise, modification to the parameter _COMSet is not synchronized to
_COM.

6. After the COM parameters of the PLC are modified, parameters of the communication device
connected to the port will be automatically synchronized.

Serial Communication

-248-

6.7.2 Modifying Slave Address Parameters

When Modbus-RTU or Modbus-ASC slave is set for the COM port, you can use the system variable
_COMProtocolSet to modify the slave address parameter SlaveAddress of the COM port. After the modi-
fication takes effect, the parameter Address is synchronized to the SlaveAddress in the parameter
_MbSlv, as shown in the following figure.

Figure 6-4 _COMProtocolSet structure

Figure 6-5 _MbSlv structure

Usage:

1. When _COMProtocolSet.AddressSetFlag is set to a non-zero value, the parameter Address can be
modified online.

2. _COMProtocolSet can be used to modify the parameter Address only.
3. Modification to these parameters takes effect only after STOP–RUN is executed on the PLC. The

effective parameters can be viewed through the system variable _COM.

Ethernet Communication

-249-

7 Ethernet Communication

7.1 Overview

H5U provides an Ethernet port. The Easy320 and Easy52X series provide two Ethernet ports. You can
use AutoShop to monitor and commission the PLC and download and upload parameters from and to
the PLC through Ethernet quickly and conveniently. You can also exchange data with other devices in
the network through Ethernet.
The small PLC supports the Modbus-TCP protocol and includes a server and a client. It can
communicate and exchange data with devices supporting Modbus-TCP. It provides socket instructions
for devices not supporting Modbus-TCP to implement application protocols based on TCP/UDP. For
details, see the section "Socket Instructions" in the instruction manual.

7.2 Hardware Ports

H5U provides a standard Ethernet port (one RJ45 port) and supports the Modbus-TCP Ethernet
communication protocol.

The PLC hosts of the Easy320 and Easy52X series support Ethernet and the Modbus-TCP Ethernet
communication protocol, as shown in the table below.

Series Easy320 Easy521 Easy522 Easy523

Ethernet port Supports two Ethernet ports, Modbus-TCP
master-slave (when it is used as the client, a
maximum of 31 servers are supported), TCP/IP,
UDP, and EtherNet/IP master-slave. Supports a
maximum of 32 slave stations and a minimum
communication cycle of 5 ms.

Supports two Ethernet ports, Modbus-TCP master-slave
(when it is used as the client, a maximum of 31 servers
are supported), TCP/IP, UDP, and EtherNet/IP master-
slave. Supports a maximum of 32 slave stations and a
minimum communication cycle of 5 ms.

RJ45 port specifications

Item Ethernet Port
Transmission rate 10 Mbps: 10BASE-T

100 Mbps: 100BASE-TX

10 Mbps/100 Mbps self-adaptive

Modulation Baseband
Topology Star

Medium Cat5 twisted pairs or shielded twisted pairs with aluminum foil and braided mesh

Transmission distance Distance between nodes: 100 m or less
Number of connections 31

7.3 IP Address Settings

Restoring the default IP address for the H5U series PLC

The default IP address of H5U is 192.168.1.88. You can press the MFK key on the operating panel to
restore the IP address to the default value as follows.

Ethernet Communication

-250-

Switch the status of H5U to Stop, press and hold the MFK key until "IP" is displayed on the LED, and
then press the MFK key for no more than 2s.

Then, a countdown is displayed on the LED. When the countdown reaches 0, the IP address is restored
to the default value. You can press the MFK key during countdown to cancel the restoration operation.

...
Note: This IP address setting method is not supported by the Easy series.

Setting the IP address through a USB flash drive

For how to set the IP address through a USB flash drive, see the description in the section “2.2.3 USB
Connection” on page 35Direct connection through USB.

Setting the IP address through Ethernet

For how to set the IP address through Ethernet, see the description in the section “2.2.2 Ethernet
Connection” on page 29Connection through Ethernet.

Setting the IP address through system variables

You can use the system variable to modify the IP address in the running state. For example, to set the
variable Ethernet, perform the following operations.

1. Modify the value of the variable _Ethernet.IPCommand to 1.
2. Modify the variable _Ethernet.IPAddress to the target IP address. If the value of this variable is

hexadecimal, such as 192.168.1.88, input C0A80158.
3. After inputting the IP address, modify the value of the variable _Ethernet.IPCommand to 2. Then, the

value of this variable is automatically changed to 0 (display mode).

NoteThis variable can only modify the IP address and cannot modify other variables.

Ethernet Communication

-251-

7.4 Master Configuration

7.4.1 Modbus-TCP Master

The Modbus-TCP master station is the Modbus-TCP client, which can be configured through Modbus-
TCP. It can communicate with a maximum of 31 Modbus-TCP servers (slave stations) at a time.
Configure the Modbus-TCP master station as follows.

Ethernet

1. Set the IP address of the PLC. For details, see “2.2.2 Ethernet Connection” on page 29Connection
through Ethernet.

2. Add a Modbus-TCP connection.

● Timeout: Sets the period for the master station to wait for the slave station to answer, in the unit
of ms.

● Enabling control element: Enables or disables the connection. Customized variables are
supported. If this option is not selected, the master station is enabled by default.

3. Access detailed configuration.
Double-click the connected station to access the "Modbus Config" window. For details, see “6.4.2
Modbus Master Configuration Table” on page 239Modbus Master Configuration Table.

Ethernet Communication

-252-

7.4.2 Modbus Master Configuration Table

Configure the Modbus master station on the following page.

The following describes relevant configuration items:

● Name
The name that labels this condition configuration.

● Slave No.
The number of the slave station you want to access. Up to 255 slave stations can be specified.

Modbus-TCP communication identifies slave stations by IP address. The slave No. is not checked.
You can use the default slave No..

● Trigger mode and condition
The communication modes are "Cycle" and "Trigger".

Ethernet Communication

-253-

When "Cycle" is selected, the trigger condition is used to set the cycle time in ms. Then the
configurations are executed according to the specified cycle.

Note
When the set cycle is smaller than the time required for communication, the configuration is executed according to
the time required for communication. For example, if the set cycle is 10 ms and the actual slave response requires
20 ms, the actual execution cycle is 20 ms.

When "Trigger" is selected, the trigger condition is used to set the trigger condition variable/
element. In this mode you can set the trigger condition to trigger a communication. If the slave
station responds to the request, the trigger condition is automatically reset; otherwise, the trigger
condition remains unchanged. If one trigger variable/element is used to trigger multiple
configurations, the trigger condition will be automatically reset after all the triggered configurations
are executed and the triggered configurations are not executed again.

● Function code

Function Code Definition
0x01 (01) Reads coils

0x02 (02) Reads discrete inputs

0x03 (03) Reads registers

0x04 (04) Reads input registers

0x05 (05) Single coil

0x06 (06) Single register

0x0f (15) Writes multiple coils

0x10 (16) Writes multiple registers

● Slave register address
The slave register address to be accessed.

You can set the slave register address format to hexadecimal or decimal.

● Quantity
The number of coils, discrete quantities, or registers to be accessed.

Function Code Name Max.
0x01 (01) Reads coils 2000

0x02 (02) Reads discrete inputs 2000

0x03 (03) Reads registers 125

0x04 (04) Reads input registers 125

0x05 (05) Single coil 1

0x06 (06) Single register 1

0x0f (15) Writes multiple coils 1968

0x10 (16) Writes multiple registers 123

● Mapped address

Ethernet Communication

-254-

The mapped address of the slave coil, discrete quantity, or register in the master station.
Customized variables are supported.

● Repeat number
The number of retries after the slave station response times out.

7.4.3 Modbus-TCP Slave Disable

Configuration

1. Configure the PLC slave connection. Create three server connections numbered 0, 1, and 2, as shown
in the following figure.

2. Add the configuration table.
3. Locate the slave station you want to disable based on the slave No. or slot No..
4. Configure the _MbTcpMstEx structure array to disable slave stations under the corresponding host.

Note
● In the _MbTcpMstEx[N] structure array, N is the server number. In this example, N is 0.
● _MbTcpMstEx[N].SlvDisableSetFlag is used to enable or disable the Slave Disable function. When it is non-zero,

the Slave Disable function is enabled.
● In _MbTcpMstEx[N].SlvDisable[M], M is the Slave Disable flag corresponding to the slave station number

mentioned in step 3. It is only valid when _MbTcpMstEx[N].SlvDisableSetFlag is enabled.

Ethernet Communication

-255-

Program example

Note: When M1001, M1002,…, and M1254 are used to disable a single slave station, the read or write
operation on this slave station is invalid.

7.5 Slave Configuration References

7.5.1 Modbus-TCP Slave

A Modbus-TCP slave station is a Modbus-TCP server enabled with Modbus-TCP and port 502 by default.

Ethernet Communication

-256-

One H5U can connect to a maximum of 16 Modbus-TCP clients (master stations) at a time. When
serving as the client, the Easy320 and Easy52X series can connect to a maximum of 31 Modbus-TCP
servers. Configure the slave station as follows:

1. Set the IP address. Then, the Modbus-TCP slave function is enabled and you do not need to set the
communication protocol.

2. Configure the Modbus-TCP master station and create a connection. Then, you can use the IP address
of the PLC to communicate with H5U through the port 502.

7.5.2 Parameters and Addresses

● When H5U is used as the slave station, the following function codes are supported:

Function Code Definition
0x01 Reads coils
0x02 Reads discrete quantities (same as 0x01).

0x03 Reads registers

0x04 Reads input registers (same as 0x03).

0x05 Writes a single coil.

0x06 Writes a single register.

0x0f Writes multiple coils
0x10 Writes multiple registers

0x80 to 0xFF Standard Modbus fault code

● When H5U is used as the slave station, addresses of coils that can be accessed by Modbus are listed
in the following table:

Variable Quantity Address Range

M0-M7999 8000 0x0000 to 0x1F3F (0 to 7999)
B0-B32767 32768 0x3000 to 0xAFFF (12288 to 45055)
S0-S4095 4096 0xE000 to 0xEFFF (57344 to 61439)

X0-X1777 (octal) 1024 0xF800 to 0xFBFF (63488 to 64511)

Y0-Y1777 (octal) 1024 0xFC00-0xFFFF (64512 to 65535)

● When H5U is used as the slave station, addresses of registers that can be accessed by Modbus are
listed in the following table:

Variable Quantity Start Address
D0-D7999 8000 0x0000 to 0x1F3F (0 to 7999)
R0-R32767 32768 0x3000 to 0xAFFF (12288 to 45055)

Note
W elements and Pointer variables are not supported.

7.6 Example of Modbus-TCP Communication Application

Program requirements

Ethernet Communication

-257-

In this example, two H5Us are connected through an Ethernet port and communicate with each other
through the Modbus-TCP protocol. The master PLC reads the value in the D100 register of the slave
PLC every 10 ms, and the value in D100 of the slave station is added by one every second.

1. Slave configuration

Click the test communication status button . On the "Communication Settings" page displayed,
click "Modify IP/Name".

In the window displayed, set the slave IP address, subnet mask, and gateway, and then click "Modify
IP" to modify the IP address. In this example, the IP address, subnet mask, and default gateway are
set to 192.168.1.100, 255.255.255.0, and 192.168.1.1, respectively.

Ethernet Communication

-258-

When the operation is correct, the system prompts "IP modification successful!". Click "OK" to close
the dialog box.

Edit the program so that the value of D100 of the slave station is added by one every second.

Then, click to download the program to the PLC.

2. Master configuration

Click the test communication status button . On the "Communication Settings" page displayed,
click "Modify IP/Name".

Ethernet Communication

-259-

In the window displayed, set the slave IP address, subnet mask, and gateway, and then click "Modify
IP" to modify the IP address. In this example, the IP address, subnet mask, and default gateway are
set to 192.168.1.99, 255.255.255.0, and 192.168.1.1, respectively.

Ethernet Communication

-260-

When the operation is correct, the system prompts "IP modification successful!". Click "OK" to close
the dialog box.

Right-click the Ethernet icon and select "Add Ethernet configuration".

In the dialog box displayed, set "IP Address" to 192.168.1.100 and "Timeout" to 500 ms, deselect
"Enabling control element", and use default values for other configurations.

Ethernet Communication

-261-

Click "OK". The master configuration is generated.

Double-click the master configuration. On the configuration table page displayed, click "Add" to add
the configuration. In this example, the value of D100 of the slave station is stored in D200 of the
master station.

Then, click to download the program to the PLC.

3. Effect
The value of the D100 register of the slave station can be read from the D200 register of the master
station.

CAN Communication

-262-

8 CAN Communication

8.1 Overview

● H5U provides a CAN communication port that supports the CANlink and CANopen protocols and
can be scaled up to 63 slave stations.

● The Easy series (Easy302/Easy320/Easy501/Easy502/Easy521/Easy522/Easy523) can support one
master station and up to 63 slave stations by using the extension cards. They support the CANlink
and CANopen protocols.

Note
This function requires a firmware version of V5.65.2.0 or later and a software version of V4.6.5.0 or later for the
Easy302, Easy320, Easy501, and Easy502 series. It requires a firmware version of V5.66.0.0 or later and a software
version of V4.8.0.0 or later for the Easy521, Easy522, and Easy523 series.

8.2 Hardware Ports

The CAN communication port and RS485 port of H5U are integrated to a 6-pin port. CAN extension
cards of the Easy series use the RJ45 network port. For details, see the GE20-CAN-485 Communication
Extension Card User Guide.

5
4

1
2
3

6

Table 8–1 Port pins

Pin Signal Definition Description

1 485+ Positive signal of the RS485 differential pair for COM0

2 485– Negative signal of the RS485 differential pair for COM0

3 GND Power ground of COM0

4 CANH CAN communication data receiving terminal

5 CANL CAN communication data sending terminal

6 CGND CAN communication ground

CAN Communication

-263-

8.3 CAN Network

8.3.1 CAN Communication Networking

The three wires of each device must be interconnected to form a CAN. 120 Ω termination resistors must
be provided at both sides of the CAN bus (both the H5U and CAN extension card have a built-in resistor,
which can be connected by setting the DIP switch. The default value is ON).
The CAN bus wiring diagram of H5U is as follows.

Figure 8-1 Wiring diagram of a CAN network formed by multiple devices

Note
The CGND terminals of all the devices must be connected together.

8.3.2 Relationship Between CAN Communication Distance and Baud Rate

The following table lists relationship between CAN communication distances and baud rates

Baud Rate (kbps) Distance (m) Min. Cross-Sectional Area
(mm2)

Max. Number of Access Points

1000 20 0.3 18
500 80 0.3 31
250 150 0.3 31
125 300 0.5 31
100 500 0.5 31
50 1000 0.7 31

8.3.3 CAN Port System Variables

H5U provides a system variable named "_CAN" to view or monitor the status of the CAN port. "_CAN" is
a structure variable whose data type is "_sCAN". The following table lists its members and definitions.

Member Data Type Description

BaudRate INT The baud rate, in the unit of kbps

LoadRate INT The network load rate, in the unit of %
RxPexSec INT The number of messages received per second, in the unit of FPS

TxPexSec INT The number of messages sent per second, in the unit of FPS

CAN Communication

-264-

Member Data Type Description
RxErrCnt INT The count of errors received by the CAN controller

TxErrCnt INT The count of errors sent by the CAN controller

Protocol INT The communication protocol. 0: CANlink; 1: CANopen

8.4 CANlink Communication

8.4.1 CANlink3.0 Communication Principles

CANlink3.0 communication is implemented through CAN network configuration rather than CAN
communication instructions. When downloading user programs, you need to download CAN network
configurations to the PLC.

Understanding the principle of CANlink3.0 network configuration can help you complete the CAN
configuration table.

One CANlink3.0 network can have only one master station but can have one or more slave stations.

Master and slave stations on a CANlink3.0 network communicate with each other by automatically
sending and writing data rather than in query-response mode.

Example:

● To send data to slave stations, the master station "writes" register data in slave registers based on
CANlink communication configurations when trigger conditions are met.

● Slave stations automatically send data to the master station and "write" the data in the receiving
unit of the master station based on CANlink communication configurations.

● Slave stations automatically send data to each other and "write" the data in receiving units of slave
stations based on CANlink communication configurations.

● To send data to multiple stations, a station automatically sends the "write operation" data to itself
(equivalent to broadcasts), while the other stations selectively receive the data and automatically
store it in their receiving units.

● For efficient data exchange during network communication, master and slave stations save "heard"
broadcast data sent by other stations. You need to click "Receive Config" to set receiving slave
station numbers and addresses. In this way, the stations configured as receiving stations will ignore
the broadcast data from stations not configured as sending stations.

You do not need to configure CANlink3.0 slave stations because CANlink configurations can be
transmitted to slave stations through a master PLC. Therefore, CANlink3.0 communication
configuration items for slave stations are forwarded by the CANlink master station through
configuration frames.

Upon startup, the master station sends configuration frames to CANlink slave stations and assigns the
list of communication tasks. Slave stations automatically send data based on the list.

CANlink3.0 configuration items include the address of the sent register, address of the target receiving
slave station, number of data entries, address of the received register, interval for sending, and trigger
condition, which are required by common communication instructions. Different from common
communication operations, "communicate-write" operations do not need responses.

CAN Communication

-265-

In communication scenarios where multiple slave stations must synchronously act and respond (for
example, servo-driven synchronous multi-axes control and position-controlled high-speed movement),
you need to set Synchronous Write for the master station. The master station writes data to slave
stations and then sends broadcast command frames to make slave stations run simultaneously.

8.4.2 CANlink Configuration

Take the following steps to configure a CANlink network.

1. Configure the CANlink network through AutoShop and define the data to be exchanged.
2. Download configurations to the H5U series PLC.

After creating a project, choose "Project Manager" > "Config", and then double-click "CAN". In the
window displayed, select "CANlink" as the communication protocol. Then, the system automatically
determines whether the current PLC is the CANlink master station or the CANlink slave station based
on the presence of the CANlink configuration.

Select "CANlink", set the slave No. and baud rate, and then click "OK". When "CANlink" is selected, the
system automatically determines whether the current PLC is the CANlink master station or the CANlink
slave station based on the presence of the CANlink configuration.

CAN Communication

-266-

In this example, CAN is configured as the CANlink slave station. Choose "Project Manager" > "Config".
Right-click "CAN". In the window displayed, select "Add CAN configuration" to configure it as the
CANlink master station, as shown in the following figure.

CANlink3.0 Config Wizard page

Double-click "CANlink Config'. The "CANlink3.0 configuration wizard" page is displayed, as shown in
the following figure.

CAN Communication

-267-

● Baud rate (required)
Eight options are available for different scenarios: 20 kbps, 50 kbps, 100 kbps, 125 kbps, 250 kbps,
500 kbps, 800 kbps, and 1 Mbps. You can select the desired option from the drop-down list, and
then download the configuration to the master station (this parameter is valid for the master
station only, and needs to be manually modified on a slave station). You can select the baud rate
based on the bus load and communication distance.

● Network heartbeat (optional)
All slave stations send heartbeats to the master station at a specified interval. The master station
monitors the state (online or offline) of each slave station through the heartbeat mechanism. Slave
stations monitor the status of the master station through its heartbeats. (An interval of more than
200 ms is recommended.) If you deselect this parameter, the heartbeat function is disabled and the
system cannot monitor the network.

● Master Station No. (required)
In this example, the master station No. is the number of the PLC that serves as a master station. The
number cannot be changed. If the number entered is inconsistent with the actual number, the PLC
will determine that the downloaded configuration is invalid.

For example, if you enter 7, the configuration is valid only when downloaded to station 7. Station 7
then assigns the configuration to other stations. The CANlink network configuration is downloaded

CAN Communication

-268-

to the master station and then assigned to slave stations. In this way, the system can monitor and
manage the entire network through the master station in the background.

● Master station synchronous write trigger element (optional)
It is an element triggering Synchronous Write for the master station. When a trigger element (M) is
set, the corresponding configuration takes effect. The element is automatically reset after data is
sent.

Click "Next". The window for adding a slave station is displayed as follows.

Station information page

● Add
After configuring a slave station, click "Add". The station is added to the list.

● Delete
Select a station and click "Delete". In the confirmation dialog box "Delete it?", click "OK" (you can
delete multiple stations at a time).

● Modify
Select a slave station, modify parameters on the "Station Info" page, and then click "Modify". Do
not modify the station type.

CAN Communication

-269-

● Slave No.
Set the CANlink slave station number.

● Status Code Register (D)
It is used to save the status of a slave station fed back through heartbeat frames of the slave
station.

● Start/Stop Element (M)
It is an M element used to start or stop communication. When M is ON, communication is started.
When M is OFF, communication is stopped.

Note
In the configuration wizard, click "OK" to save the modification made in the wizard and exit; click the "X" button in
the upper right corner of the wizard to cancel the modification and exit.

Then, click "Finish". The following window is displayed.

● Network Information
Baud rate: Indicates the baud rate of the master station.

Network heartbeat: Indicates that the heartbeat function is enabled after this parameter is selected.

Network load: Calculates the real-time load of the network (this parameter is displayed only when
the network load is monitored during running of devices).

CAN Communication

-270-

■ Network load ≤ 50: Green (good)
■ 50 < Network load ≤ 75: Yellow (warning)
■ 75 < Network load ≤ 90: Red (major warning)
■ Network load > 90: ERR, red background (error)

● Site Status Monitoring
The online status of the station will be updated to the system variable _CANLink.NodeState[64], in
which _CANLink.NodeState[0] is the status of the local station, while _CANLink.NodeState[station
No.] is the status of the slave station.

Status Value Definition
1 Configurations of the slave station are available.

2 The slave station is running.

5 The slave station is disconnected.

Note
If the heartbeat function is disabled, the station monitoring function is meaningless.

● Network Management
Start/Stop Network (OFF) (enabled when monitoring is enabled): Starts and stops network
communication.

Synchronous Send: Synchronization will be triggered. You can enable the function in the user
program by setting _CANLink.SyncTrigger. After synchronous data frames are sent, _CANLink.
SyncTrigger will be automatically reset.

Start Monitor (OFF): Starts and stops network monitoring.

Device type: Filters displayed stations.

Slave start/stop: Select a slave station and control its start/stop of communication.

Station management: Click "Station Management". The initialization wizard page is displayed. You
can modify parameters of the master or slave station.

Station configuration: On the main screen, double-click a station. The communication
configuration window is displayed. Communication configuration includes sending configuration,
receiving configuration, and synchronization configuration (for the master station only).

Sending configuration:

CAN Communication

-271-

● Trigger mode
Time (ms): It is applicable to all devices. The station applies the configuration at a fixed interval.
The value ranges from 1 ms to 30000 ms.

Event (M): It is applicable to the host and PLC. The station applies the configuration when the
trigger condition (M element) is set. Multiple configurations can be triggered by the same M
element. The element is automatically reset after data is sent. Edge trigger instructions must be
used to operate M elements; otherwise, the network load will be excessive.

Synchronization: It is applicable to all devices. The master station applies the configuration when
the system variable _CANLink.SyncTrigger is set. The element is automatically reset after data is
sent.

Event (ms): It is applicable to IS, MD, and remote extension modules (TCM/NTCM). The station
applies the configuration when it detects the changed value of the sent register and the trigger
condition (disabling time) is met.

The disabling time indicates the minimum interval for sending the same configuration.

Maximum number of configuration items for one station: 256 for the host (master station), 16 for
one slave station, and 256 for all slave stations.

If you select a configuration item and press "Insert", an empty configuration line will be added
following the item. If you select a configuration item and press "Delete", the item will be deleted. In
addition, you can press shortcut keys or right-click an item to copy-paste or delete it, and insert or
delete a line.

● Register

CAN Communication

-272-

Host and PLC register values correspond to D elements. IS and MD register values correspond to
function codes. TCM/NTCM corresponds to BFM.

● Number of registers
It is the number of sent or received consecutive D elements or function codes.

● Point-to-multi-point configuration
When a sending station is also a receiving station, the station applies the point-to-multi-point
configuration, in which no receiving station is specified. If you enter the sending station number
into the receiving configuration table, the configured station can receive data sent by the sending
station. The received register is the D element or function code corresponding to the receiving
station.

● Received data
The entries in the gray background indicate data received from other stations, including point-to-
point and point-to-multi-point data. You can see which element or function code of which station
will affect the configured station.

● Receiving configuration
Receiving configuration applies to receiving point-to-multi-point data from other stations. Each
station can receive point-to-multi-point data from eight stations.

Note
The point-to-multipoint configuration enables simultaneous application of data. This is equivalent to master syn-
chronous configuration, but does not limit the data sending capability to the master alone. Each station can receive
point-to-multipoint data from up to eight different stations, but the number of stations each station can send point-
to-multipoint data to is not limited. In other words, all nodes in the network except for the sending station can re-
ceive such point-to-multipoint data. However, to receive point-to-multipoint data from a station, the receiver must
be configured to allow receiving such data from the station.

Synchronous write configuration for the master station

When the trigger condition (M) is set, the Synchronous Send configuration for the master station takes
effect. You can select different trigger conditions (M) to display, add, modify, or delete synchronization
configurations. Synchronization configuration is applicable to scenarios in which an operation needs
to be initiated synchronously.

As shown in the figure, when M1 is 1, the master station sends the three configuration items
successively. Upon receipt of the items, slave stations store them in the buffer. After the last data entry
is sent, the master station automatically sends a configuration application command. Upon receipt of
the command, all slave stations automatically write the data in the buffer in corresponding elements
or function codes. As shown in the figure, PLC 10 writes the D10 value in D10, servo 20 writes the D20
value in H200, and AC drive 30 writes the D30 value in HF003. All these values are synchronously
written when slave stations receive the configuration application command. After the command is
sent, the master station automatically resets the trigger element M1. Edge trigger instructions must be
used to operate M elements; otherwise, the network load will be excessive.

Precautions for the trigger condition (M):

● Each trigger condition associates a maximum of 16 configuration items. It determines whether the
associated synchronization configuration is valid. A maximum of 8 trigger conditions (M) are
allowed.

CAN Communication

-273-

● You can select a trigger condition from the drop-down list.
● During synchronization configuration of a 32-bit servo register, data must correspond to high-order

16 bits and low-order 16 bits respectively for the same trigger element. That is, two data entries
must be written for one trigger element, one corresponding to high address bits of the 32-bit
function code, and the other corresponding to low address bits. If only one entry is written or two
entries are written for two trigger elements respectively, the servo will return an error, and the
configuration cannot continue.

Example of 32-bit servo register synchronization configuration:

As shown in the following figure, H1112 is a 32-bit function code of the servo. During configuration of
the function code, two data entries must be written, corresponding to high and low address bits
respectively. When M3 is set, the master station writes D201 and D202 values in H1112. When all of the
five data entries of M3 are sent, the master station sends a command to enable the slave stations and
apply the configurations. Then M3 is automatically reset.

If only one address is processed for one trigger element, the servo will return an error so that
synchronization cannot continue. The error will be recorded in D8307 of the master station. Fault
codes are listed in “8.5.6.2 Fault Code List” on page 300Fault Code List.

● Master station fault codes and processing
The following table lists configuration errors and causes. You can use the system variable _CANLink.
ConfigErr to view the details.

Table 8–2 Configuration errors

Fault Code※ Cause Solution
XX00 Reserved None
XX01 Incorrect code Check whether the internal definition is correct.
XX02 Incorrect index Check whether the device type is correct.

XX03 Incorrect information Check whether the address is valid and check the read-
write property.

XX04 Reserved Reserved
XX05 Incorrect data length Check whether the data length exceeds the limit.

XX06 Configuration frames failing
to respond within a
specified time

Check whether the connection is normal.

The following table lists abnormality codes and causes. You can use the system variable _CANLink.
SyncWrErr to view the details.

Table 8–3 Fault codes
Fault Code※ Cause Solution

XX00 Reserved Reserved
XX01 Invalid command code Check whether the internal definition is correct.
XX02 Abnormal address Check whether the address is normal or whether the

address can be accessed.
XX03 Abnormal data Check whether the data is within a specified range.

XX04 Invalid operation Check whether the operation is authorized.

XX05 Invalid length Check whether the data length exceeds the limit.

XX06 Responding timeout Check whether the connection is normal.

CAN Communication

-274-

Note
● The fault codes are in decimal, where XX indicates the station number. Specifically, a fault code indicates that an

error occurred when configuring XX station or sending commands to XX station.
● Fault codes of PLC slaves are similar to those of the master, except that the fault codes of PLC slaves do not

contain a station number.

8.4.3 AC Drive Communication Example

Use one H5U and one MD200-CAN AC drive to control the start/stop and write the frequency of the AC
drive through the CANlink bus.

1. Connect the CANlink bus.

2. Configure function codes for the slave MD200 AC drive.

Function Code Name Value Description
FD-00 Baud rate 5005 CANlink baud rate: 500 kbps

FD-02 Local address 1 Local station No. is 1.
F0-02 Command source selection 2 Communication setting

F0-03 Main frequency reference
source

9 Communication setting

Control parameter addresses when MD200-CAN is used for communication with the host controller
PLC:

Address Name Description

H1000 Communication frequency
reference

–10000 to +10000 (decimal)

H1001 Feedback running frequency -

H2000 Control commands

0001: Forward running

0002: Reverse running

0003: Forward jog

0004: Reverse jog

0005: Coast to stop

0006: Decelerate to stop

0007: Fault reset

3. Configure the H5U master station

● In AutoShop, right-click CANlink, set the station No. of the H5U master station to 63, and set the
baud rate to 500 kbps.

CAN Communication

-275-

● Add an MD AC drive.

CAN Communication

-276-

Set the slave station No. according to that defined by FD-02 of the AC drive.

● Configure the master station to send data.

CAN Communication

-277-

Then:

The H5U master station writes the value of the D0 element to the 1000 (frequency reference)
address register of the slave station 1# at an interval of 10 ms.

When the M0 element is ON, the H5U master station writes the value of the D1 element to the
2000 (AC drive control word) address register of the slave station 1#.

● Configure the slave station to send data.

CAN Communication

-278-

The slave AC drive 1# converts the value in the 1001 (running frequency) address register and
then writes the value to the D20 element of the master station 63# at an interval of 10 ms.

● PLC programming
Set the AC drive running frequency to 20 Hz.

Set M20 to ON to start the AC drive and make it rotate in the forward direction.

Set M21 to OFF to stop the AC drive.

Judge the online status of the CANlink slave station.

CAN Communication

-279-

The online status of the slave station will be updated to the system variable _CANLink.NodeState
[64], in which _CANLink.NodeState[1] is the state of the station 1.

8.4.4 CANlink Indicator

You can judge the CANlink communication state based on the CANlink indicator.

Table 8–4 States of CANlink indicator
Indicator State Description

Communication
(green)

Off CANlink bus not connected or disconnected
On CANlink bus connected (remote frames received on the node)

Flashing (≤ 3 Hz) During CANlink communication, one flashing per frame of bus data sent or
received

Flashing (5 Hz) Flag monitor

Fault (red)

Off No fault
On Monitor timeout (node), no node (monitor)

Flashing (0.5 Hz) CANlink configuration error (for the configurator)

Flashing (1 Hz) Node lost or crash (for the monitor)

Flashing (5 Hz) CANlink address conflict

8.4.5 CANlink Communication Troubleshooting

Check the following items when a CANlink communication error occurs.

● Check the termination resistor
Power off all devices. Use a multimeter to measure the resistance between CANH and CANL. The
resistance should be about 60 Ω. If the resistance is too small, there are termination resistors
incorrectly connected at other locations. In this case, disconnect these termination resistors. If only
one termination resistor is available, the resistance is about 120 Ω, and the network connection is
bad. If no termination resistor is available, communication fails. Provide termination resistors
between the stations at both ends of the network.

● Check the baud rate
Check whether the baud rate is normal. Baud rates of all stations in the network must be the same;
otherwise, communication fails. Power off and then on the device or switch it from STOP to RUN so
that the baud rate can take effect.

● Others
In case of strong interference, reduce the baud rate.

CAN Communication

-280-

8.5 CANopen Communication

8.5.1 CANopen Communication Protocol

The H5U supports the CANopen communication standard protocol DS301.

Table 8–5 CANopen communication protocol standard

Software Function Module Slave Master
Supported protocol DS301 V4.02 DS301 V4.02

Maximum number of TPDOs 8 64
Maximum number of RPDOs 8 64
Number of slave station nodes / 30

Baud rate and communication
distance

1 Mbps/25 m

800 kbps/50 m

500 kbps/100 m

250 kbps/250 m

125 kbps/500 m

50 kbps/1000 m

20 kbps/2500 m

100 kbps

10 kbps

1 Mbps/25 m

800 kbps/50 m

500 kbps/100 m

250 kbps/250 m

125 kbps/500 m

50 kbps/1000 m

20 kbps/2500 m

100 kbps

10 kbps

Soft element for data
exchange

W300 to W363 D0 to D7999 (configurable)

8.5.2 CANopen Axis Control Instruction List

The following table lists CANopen axis control instructions supported by H5U. See H5U Series
Programmable Logic Controller Instructions Guide for detailed usage of related instructions.

Table 8–6 Instruction list
Name Function

MC_Power_CO Instruction for enabling the communication control servo axis

MC_Reset_CO Instruction for resetting faults of the communication control
servo axis

MC_ReadActualPosition_CO Instruction for reading the current position of the communication
control axis

MC_ReadActualVelocity_CO Instruction for reading the current velocity of the communication
control axis

MC_Halt_CO Instruction for halting the motion of the communication control
servo axis

MC_Stop_CO Instruction for stopping the communication control servo axis

MC_MoveAbsolute_CO Instruction for obtaining the absolute position of the
communication control axis

MC_MoveRelative_CO Instruction for obtaining the relative position of the
communication control axis

MC_MoveVelocity_CO Instruction for selecting the velocity operation mode of the
communication control axis

CAN Communication

-281-

Name Function
MC_Jog_CO Instruction for communication control axis jogging

MC_Home_CO Instruction for communication control axis homing

MC_WriteParameter_CO Instruction for writing parameters of the communication control
axis

MC_ReadParameter_CO Instruction for reading parameters of the communication control
axis

8.5.3 CANopen Terminology

● NMT: Network Management
Network management includes management of application layers, network states, and node ID
allocation. It is implemented in master-slave communication mode. That is, on a CAN network, only
one NMT master station exists with one or more slave stations. The service is used to control the
slave station state.

● SDO: Service Data Object
An SDO can access the data in the slave station object dictionary through indexes and sub-indexes.
SDOs are used for slave station configuration. Each frame of an SDO request must be answered.

● PDO: Process Data Object
PDOs are used to transmit real-time data. The data length ranges from one to eight bytes. Data can
be transmitted in synchronous and asynchronous modes. PDO frames are primary data exchange
frames after slave stations are started.

● SYNC: Synchronous
Synchronization is implemented in master-slave communication mode. The master SYNC node
regularly sends SYNC objects, and the SYNC slave node synchronously executes tasks upon receipt
of the objects. SYNC frames are used for synchronous transmission through PDOs.

● COB-ID: Communication Object Identifier
Each CANopen frame starts with a COB-ID. A COB-ID is not the slave station number. However, it is
associated with the slave station number by default.

8.5.4 CANopen Indicator

You can judge the CANopen communication state based on the CANopen indicator.

Table 8–7 States of the CANopen indicator

LED Indicator CAN RUN (Green) CAN ERR (Red)

Off None No error
On Operational Bus disconnected

Flashing slowly (at an interval
of 0.8s)

Pre-operational Pre-operational

Flashing slowly (at an interval
of 1.2s)

Stopped At least one error counter of the CAN controller hitting or
exceeding the threshold (too many error frames)

Flashing twice slowly (at an
interval of 1.6s)

None Incorrect control event (node protection or heartbeat
timeout)

CAN Communication

-282-

8.5.5 CANopen Configuration

8.5.5.1 Master Configuration

When "CANopen" is selected, the system automatically determines whether the current PLC is the
CANopen master station or the CANopen slave station based on the presence of the CANopen
configuration.

1. After creating a project, choose "Project Manager" > "Config", and then double-click "CAN". The
following window is displayed.

2. Select "CANopen", set the station number and baud rate, and click "OK".
In this example, CAN is configured as the CANopen slave station. Choose "Project Manager" >
"Config". Right-click "CAN". In the window displayed, select "Add CAN configuration" to configure it
as the CANopen master station, as shown in the following figure.

CAN Communication

-283-

3. Double-click "CANOpen Config". The following CANopen configuration page is displayed:

4. Double-click or drag the CANopen slave station you want to add in the device list.

CAN Communication

-284-

5. If the target slave station is not in the list, right-click the CANopen device list, and click "Import EDS"
to import the EDS file, which can be obtained from the device supplier.

CAN Communication

-285-

Master information page

Set the master parameters. Double-click the H5U master station in the network. The following window
is displayed.

CAN Communication

-286-

● Network management
Node ID: Indicates the master station number. If the station number is identical to the PLC number,
the PLC will be initialized as the CANopen master station. If the station number is different from the
PLC number, the PLC will be initialized as a CANopen slave station.

Baud Rate: Indicates the communication baud rate valid for the master station.

The program is running prohibited SDO, NMT access: If this option is selected, online
commissioning is disabled during running of the program. The function only applies to background
software.

Ignore any errors continue to configure SDO: After this option is selected, if SDO configuration
errors occur, configuration will continue. The function is valid for all slave stations. If the option is
not selected, when SDO errors occur, the master station will reset slave stations through
broadcasts.

● Synchronous

CAN Communication

-287-

Enable Synchronous Production: If this option is selected, the configured station will send a sync
frame repeatedly in the set synchronization cycle.

COB-ID: Indicates the ID for sync frame sending. The default value is 0x80. The parameter cannot be
configured.

Synchronization Cycle (ms): Indicates the cycle for sync frame sending. The default value is 200, in
the unit of ms.

Window Length (ms): The value is 0 by default. The parameter cannot be configured.

Note
Only one synchronous frame transmission can exist in one network.

● Heartbeat
Enable Heartbeat Production: If this option is selected, the configured station will send heartbeat
frames repeatedly in the set cycle.

Production Time (ms): Indicates the cycle for heartbeat sending. The default value is 300, in the unit
of ms.

Note
The default heartbeat monitoring consumption time of the master is 2.5 times the heartbeat production time. (The
timeout threshold for heartbeat monitoring is 2.5 times the heartbeat production time.)

● SDO Timeout
Timeout: Indicates the SDO waiting time. The default value is 500, in the unit of ms. SDO frames are
used for network configuration. If the SDO fails to receive return frames after the third try, the
master station determines that configuration times out. The waiting time for each frame is called
SDO timeout.

● Node Status Monitor
The online status of the station will be updated to the system variable _CANOpen.NodeState[64], in
which _CANOpen.NodeState[0] is the status of the local station, while _CANOpen.NodeState[station
No.] is the status of the slave station.

Value State
0 Initializing

4 Stopped
5 Operational

127 Pre-operational
255 Offline

Note
If the corresponding slave does not exist, the corresponding register will not be updated. For example, if station 3
does not exist, the data of _CANOpen.NodeState[3] will not be updated.

This function works only when the heartbeat or node protection function is set on the slave, because the relevant
status is fed back by the heartbeat or node protection frame of the slave.

CAN Communication

-288-

● Automatic Allocation PDO Map Register
Automatic Allocation: If this option is selected, the system will automatically assign the address of
the register for master-slave data exchange. If this option is not selected, you need to configure the
start address for data exchange (by configuring the start address of each PDO). This option is
selected by default.

Slaves receive the map registers start address: Indicates the automatically assigned start address of
data sent by the master station ("Automatic Allocation" must be selected).

Slaves send the map register start address: Indicates the automatically assigned start address of
data received by the master station ("Automatic Allocation" must be selected).

Network State

Start Monitor/Stop Monitor: Information monitoring is enabled by clicking this option. Monitoring is
disabled by clicking the option again.

Network Load: Monitors the network load in real time.

CAN Communication

-289-

Network state table: Displays the station state. The table is applicable only to the master station. The
state value is from the node state monitoring register.

● Emergency Error Message
The table lists emergency error messages on the network. It is applicable only to the master station.
The master PLC only caches the latest error message. If background programs are not shut down, a
maximum of five messages will be cached in the background.

● SDO Config
Station NO.: Indicates the number of the station with SDO configuration errors.

Error Step NO.: Indicates the SDO error number. To check numbers of slave stations with parameter
errors, click the SDO tab.

Fault Code: Indicates the SDO fault code (standard CANopen fault code).

8.5.5.2 Slave Configuration

This section takes the IS620 slave station as an example to describe how to configure the CANopen
slave station and its parameters.

General settings

Double-click a slave station in the network. The following window is displayed.

CAN Communication

-290-

Select "Enable Expert setting". The following window is displayed. (By default, this option is not
selected.)

CAN Communication

-291-

● Convention
Node ID: Indicates the ID of a slave station node.

Enable Expert setting: When this option is selected, detailed configurations of the slave station are
displayed. By default, this option is not selected.

● Ignore error and continue configuring SDO
Valid: When a configuration error (other than a check type error) occurs, configuration continues.

Invalid: When a configuration error occurs, configuration cannot continue, and the entire network is
disconnected. By default, this option is not selected.

● Create All SDO
If this option is selected, all writable object dictionaries in the EDS will be added and initialized. By
default, this option is not selected.

● Not Initialized

CAN Communication

-292-

If this option is selected, the slave station will not be initialized (this option can be selected only
when the station applies the default configuration). By default, this option is not selected.

● Factory Setting
If this option is selected, you can select options from the drop-down list. By default, the option is
not selected.

Error Control

● Node protection properties
Enable Node Protection: If this option is selected, node protection will be enabled. By default, the
option is not selected.

Node protection timeout = Guard time x Life cycle factor

Node protection provides a network evaluation platform on which master station and slave station
monitor each other with return frames. Either the heartbeat or node protection function can be
selected.

Guard Time (ms): Indicates the node protection time, which is 200 ms by default.

Life Cycle Factor: Indicates the node protection factor, which is 3 by default.

● Heartbeat properties
Enable Heartbeat: If this option is selected, heartbeats will be generated. By default, this option is
selected. When this option is selected, the master station will monitor the heartbeat state by
default.

Production Time (ms): Indicates the cycle for heartbeat sending.

Change heartbeat consumer properties: It is used to set heartbeats of other stations to be
monitored by the configured station. This function is disabled by default. The function can be
enabled only when the slave station supports heartbeat monitoring.

● Synchronous (if supported)
Enable Synchronous Production: If this option is selected, the configured station will send a sync
frame repeatedly in the set synchronization cycle.

COB-ID: Indicates the ID for sync frame sending. The default value is 0x80. The parameter cannot be
configured.

Synchronization Cycle (ms): Indicates the cycle for sync frame sending. The default value is 200, in
the unit of ms.

Window Length (ms): The value is 0 by default. The parameter cannot be configured.

Note
Only one synchronous frame transmission can exist in one network.

● Emergency Message
Emergency Message: If this option is selected, you can set the COB-ID of an emergency message. By
default, this option is not selected.

● Inspect When Restart

CAN Communication

-293-

If "Check Supplier ID", "Check Product ID", or "Check Version" is selected, corresponding data will
be checked before configuration of the slave station. If the check fails, the network cannot be
connected.

Receive PDO/Send PDO

Click "Receive PDO" or "Send PDO". The following page is displayed.

Receive PDO: Indicates the data sent by the master station to a slave station.

Send PDO: Indicates the data sent by a slave station to the master station.

8.5.5.3 PDO Enable

You can check the box in front of the number to enable a PDO. The PDOs in the EDS file that take effect
are checked by default.

CAN Communication

-294-

8.5.5.4 PDO Mapping Edit

You can click "Add PDO mapping", "Edit", or "Delete" to edit PDO mapping.

8.5.5.5 PDO Property Settings

The "PDO Property" page is as follows.

● COB-ID
Indicates the ID for sending a PDO parameter. Based on the CANopen DS301 protocol, default COB-
IDs are available for the first four PDO parameters. COB-IDs must be different from each other,
ranging from 0x180 to 0x57F.

● Transmission Type

Type Condition for Data Sending Condition for Valid Data

Loop-synchronization (Type 0) Data is changed, and a sync frame
is received.

Data does not take effect
immediately but takes effect after a
sync frame is received.

Loop-synchronization (Types 1 to
240)

Data is sent after the
corresponding "number of
synchronizations" frame is
received.

Data does not take effect
immediately but takes effect after a
sync frame is received.

Asynchronization-only RTR (Type
252)

Not supported Not supported

Asynchronization-only RTR (Type
253)

Not supported Not supported

Asynchronization-specified by
manufacturers (Type 254)

Manufacturer-defined Manufacturer-defined

Asynchronization-specified by the
configuration file (Type 255)

Data is changed or the event time
is correct, and the change cycle is
shorter than the suppression time.

Immediately

Note
To use the synchronous type, it is necessary to enable synchronous production on a station, usually the master.

● Synchronization NO.

CAN Communication

-295-

The number of synchronizations takes effect after "loop-synchronization (types 1 to 240)" is
selected.

● Suppression Time
The suppression time can be set after "asynchronization-specified by the configuration file (Type
255)" is selected. If the value is 0, the function is disabled. If the value is not 0, the suppression time
is the minimum interval for frame sending.

● Event Time
The event time can be set after "asynchronization-specified by the configuration file (Type 255)" is
selected. If the value is 0, the function is disabled. If the value is not 0, the event time is the cycle for
data sending. (Data sending is limited by the suppression time.)

The following figure shows the example of loop-synchronization (Type 2).

8.5.5.6 Service Data Object (SDO)

Click the "Service Data Objects" tab. The following page is displayed.

CAN Communication

-296-

The table lists SDO configurations automatically generated based on user settings.

SDO Edit

Add: Adds configurations. It is used to assign initial values to object dictionaries of a slave station.

Edit: Edits configurations.

Delete: Deletes configurations.

8.5.5.7 Online Commissioning

Click the "Debug" tab. The following page is displayed.

CAN Communication

-297-

Note
This function cannot be used if “The program is running, prohibited SDO, NMT access” is selected in the master.

● NMT Command
Start Node: Sends a command to the slave station to start a node.

Stop Node: Sends a command to the slave station to stop a node.

Pre-run: Sends a command to the node to pre-run it.

Reset Node: Sends a command to the node to reset it.

Reset Communication: Sends a command to the node to reset communication.

● Service Data Object
Index and sub-index: You can only select object dictionaries in the EDS as indexes or sub-indexes.

CAN Communication

-298-

Value: Indicates sent or returned data.

Bit Length: It is automatically generated based on an object dictionary in the EDS. It must not be
modified.

Result: Indicates abnormality information.

Read SDO and Write SDO: Reads and writes object dictionaries.

● Diagnosis
Online status: Indicates the status of the slave station (fed back based on heartbeat or node
protection).

SDO error steps: Indicates the SDO error number. This number corresponds to the "Service Data
Objects" tab.

Diagnostic string: Indicates the error message (SDO error).

Emergency Error Information: Indicates an emergency error frame (the system monitors real-time
errors and caches five error messages in the background; the PLC only caches the latest error
message) (emergency error).

8.5.5.8 I/O Mapping

The "IO Mapping" tab page is as follows.

This tab is used to set the communication relationship between master and slave PDOs. If "Automatic
Allocation" is not selected, when you double-click an item, the following page is displayed.

CAN Communication

-299-

You can configure the start register address for the master station corresponding to a slave PDO.

8.5.5.9 Device Information

The "Module information" tab page is as follows.

Device information can be obtained from the EDS file.

8.5.6 CANopen Communication Troubleshooting

8.5.6.1 General Troubleshooting Steps

● Check the termination resistor
Power off all devices. Use a multimeter to measure the resistance between CANH and CANL. The
resistance should be about 60 Ω. If the resistance is too small, there are termination resistors
incorrectly connected at other locations. In this case, disconnect these termination resistors. If only
one termination resistor is available, the resistance is about 120 Ω, and the network connection is
bad. If no termination resistor is available, communication fails. Provide termination resistors
between the stations at both ends of the network.

● Check the baud rate

CAN Communication

-300-

Check whether the baud rate is normal. Baud rates of all stations in the network must the same;
otherwise, communication fails. Power off and then on the device or switch it from STOP to RUN so
that the baud rate can take effect.

For the relationship between communication distance and baud rate, see “8.3.2 Relationship
Between CAN Communication Distance and Baud Rate” on page 263Relationship Between CAN
Communication Distance and Baud Rate.

● Check cable connections
Interconnect CGND pins of all CAN devices to ensure that all devices share one power supply CGND
port of CAN communication.

Check whether the communication cable, shielded cable, and power supply are short-circuited.

● Others
In case of strong interference, reduce the baud rate.

8.5.6.2 Fault Code List

SDO fault codes
Abort Code Description Abort Code Description

0503 0000 Trigger bit not alternated 0601 0002 Attempt to write a read-only object

0504 0000 SDO protocol timed out 0602 0000 Object not exist in the object dictionary

0504 0001 Invalid or unknown Client/Server
command word

0604 0041 Object cannot be mapped to the PDO

0504 0002 Invalid block size (for the Block
Transfer mode only)

0604 0042 The number and length of the objects
to be mapped exceed the PDO length

0504 0003 Invalid serial number (for the
Block Transfer mode only)

0604 0043 General parameter incompatibility

0503 0004 CRC error (for the Block Transfer
mode only)

0604 0047 General internal incompatibility in the
device

0503 0005 Memory overflow 0606 0000 Access to an object failed due to a
hardware error

0601 0000 Access to an object unsupported 0606 0010 Data type does not match. Length of
service parameters does not match

0601 0001 Attempt to read a write-only
object

0606 0012 Data type does not match. Length of
service parameters too high

0601 0002 Attempt to write a read-only
object

0606 0013 Data type does not match. Length of
service parameters too short

0602 0000 Object not exist in the object
dictionary

0609 0011 Sub-index does not exist

0604 0041 Object cannot be mapped to the
PDO

0609 0030 Beyond the value range (for write
access)

0503 0000 Trigger bit not alternated 0609 0031 Value of parameter written too large

0504 0000 SDO protocol timed out 0609 0032 Value of parameter written too small
0504 0001 Invalid or unknown Client/Server

command word
0609 0036 Maximum value is less than minimum

value
0504 0002 Invalid block size (for the Block

Transfer mode only)
0800 0000 General error

0504 0003 Invalid serial number (for the
Block Transfer mode only)

0800 0020 Data cannot be transmitted or stored
to the application

CAN Communication

-301-

Abort Code Description Abort Code Description
0503 0004 CRC error (for the Block Transfer

mode only)
0800 0021 Data cannot be transmitted or stored

to the application due to local control

0503 0005 Memory overflow 0800 0022 Data cannot be transmitted or stored
to the application due to current
device state

0601 0000 Access to an object unsupported 0800 0023 Object dictionary dynamic generation
fails or no object dictionary is available

(for example, an object dictionary is
generated through a file, but an error
occurs because the file is corrupted)

0601 0001 Attempt to read a write-only
object

Emergency fault codes
Table 8–8 Main table 1 (hexadecimal)

Emergency Fault
Code

Description Emergency Fault
Code

Description

00xx No error 50xx Device hardware
10xx General error 60xx Device software
20xx Current 61xx Internal software
21xx Current at input end 62xx User software
22xx Internal current 63xx Data setting

23xx Current at output end 70xx Extra module
30xx Voltage 80xx Monitoring

31xx Power voltage 81xx Communication

32xx Internal voltage 82xx Protocol error

33xx Output voltage 90** External error

40xx Temperature F0** Extra function
41xx Ambient temperature FF** Special device

42xx Device temperature

Table 8–9 Table 2 (hexadecimal)

Emergency Fault
Code

Description Emergency Fault
Code

Description

0000 Incorrect reset or no error 6300 Data setting

1000 General error 7000 Extra module error
2000 Current error 8000 Monitoring error

2100 Input current 8100 General communication error
2200 Internal current 8110 CAN communication overload
2300 Output current 8120 Incorrect CAN passive method

3000 Voltage error 8130 Node protection or heartbeat error

3100 Power voltage 8140 Bus disconnection

3200 Internal voltage 8150 CAN-ID impulse

3300 Output voltage 8200 Protocol error

4000 Temperature error 8210 PDO length error

4100 Ambient temperature 8220 Excessive PDO length

4200 Device temperature 8240 Unidentifiable SYNC data length

5000 Device hardware error 8250 RPDO timeout

CAN Communication

-302-

Emergency Fault
Code

Description Emergency Fault
Code

Description

6000 Device software error 9000 External error
6100 Internal software F000 Extra function error
6200 User software FF00 Special device error

EtherCAT Communication

-303-

9 EtherCAT Communication

9.1 Overview

EtherCAT is an open industrial field technology based on Ethernet. It features short communication re-
fresh cycles, low synchronization jitter, and low hardware costs. For details about EtherCAT principles
and related technologies, see the book "Industrial Ethernet Fieldbus EtherCAT Driver Design and Appli-
cations" or visit the official website of the EtherCAT Technical Group at https://www.EtherCAT.org.
cn.
The H5U and Easy500 series support standard EtherCAT ports (one RJ45 port). In the linear topology,
they support a maximum of 72 EtherCAT slave stations and a minimum EtherCAT bus cycle of 1 ms.

Table 9–1 EtherCAT port specifications

Item Specifications

Transmission rate 100 Mbps: 100BASE-TX

Modulation Baseband
Topology Linear and daisy chain

Medium Cat5 twisted pairs or shielded twisted pairs with aluminum foil and braided mesh

Transmission distance Distance between nodes: 100 m or less
Number of connections 72

9.2 Master Configuration

9.2.1 Importing Device Description (XML)

Importing device XML means importing the device description file with the suffix ".XML" that meets
standards of the EtherCAT Technical Group (ETG) into the programming software AutoShop, in which,
the file is parsed into EtherCAT configuration devices that can be added or deleted by users.
AutoShop provides built-in EtherCAT slave stations of Inovance, and therefore the device description
files do not need to be installed. To use third-party EtherCAT devices, their description files must be
installed. The following section takes importing the description file of Inovance bus motor drive
SV520N as an example.

1. Create a project, open the toolbox, and locate "EtherCAT Devices".

https://www.ethercat.org.cn
https://www.ethercat.org.cn

EtherCAT Communication

-304-

2. Right-click "EtherCAT Devices". In the dialog box displayed, select and import the target XML file.
3. Restart the software to make the imported XML file take effect. To import the XML files of multiple

devices, repeat Step 2 and then restart the device.

OK

You must manually restart the software before the added devices take effect.

4. The added devices are added to the list after the software is reaccessed.

EtherCAT Communication

-305-

9.2.2 Scanning Devices

The following section describes how to scan a device when the communication mode is Ethernet.

Note
EtherCAT slaves can only be scanned when the PLC is in the stopped state.

1. Select the target host.

EtherCAT Communication

-306-

① Click "Test communication status".

② On the page displayed, click "Search".

③ Select the target host.

④ Click "Test".

⑤ After confirming that the host is connected, click "OK".

2. Determine whether to automatically associate the motion control axis.
If "Automatically create axes and associate slaves when creating new slaves" is selected, each time
an EtherCAT slave station of the drive type (such as IS620N) is added, a motion control axis is
automatically added. In this case, this option is not selected.

3. Right-click EtherCAT and then select "Auto Scan".

4. In the dialog box displayed, click "Start Scan". If the PLC is running, click "Yes" to stop the PLC first.
5. When scanning is completed, the found slave stations are displayed. Click "Update Config" to add

the found devices to the configuration list, or click "Exit" to not add the found devices to the
configuration list.
After the configuration list is updated, the following figure is displayed and IS620N is automatically
associated with the motion control axis.

When the IN/OUT pins of the slave station are reversed, the message "IN/OUT port connection error"
is displayed in the "Message" column. In this case, the "Update Config" button is grayed out, and you
need to manually check the connection of the physical link and perform scanning again.

Note
The IN/OUT reversal detection is available to H5U with the firmware version of V6.0 or later. This function is unavail-
able to the Easy series.

EtherCAT Communication

-307-

9.2.3 Master Configuration

On the "Normal setting" page, set parameters shown in the following figure.

Parameter Name Description

Cycle time Indicates the EtherCAT data frame sending interval and the
EtherCAT task cycle time.

Synchronization offset Indicates the relative offset (in percentage) of the EtherCAT
task with respect to the Sync0 interrupt of the slave station.

Automatic restart of slave When this option is selected, the EtherCAT slave station is
automatically restarted when it attempts to connect to the
network after disconnection.

Note: This function is supported by AutoShop 4.0.0.0
matching the PCB software 3.0.0.0.

Alias enable After this option is selected, the aliases of all EtherCAT slave
stations are enabled. In this case, even "Alias enable" is not
selected for some slave stations, such slave stations are stilled
started with their aliases. When the network contains branch
modules, you are recommended to select this option.

If "Alias enable" is not selected for the master station, when
you select "Alias enable" for a single slave station, the alias
mode is applied only to this slave station. Then, aliases are
mixed with formal names, causing a communication error.

9.2.4 Start/Stop, Disable, and Enable

Start/Stop control

You can start or stop an EtherCAT bus but cannot start or stop a single slave station. The procedure is
as follows.

EtherCAT Communication

-308-

When the PLC state changes from STOP to RUN, the EtherCAT master station starts to run
automatically.

When the PLC state changes from RUN to STOP, the EtherCAT master station stops automatically.

When the PLC is running, you can use the system variables to start or stop the EtherCAT master
station.

NoteOnly the startup and stop of EtherCAT bus are supported, while the startup and stop of individual slaves are

not supported.

System Variable Data Type Function

bStopMaster BOOL Stop of the EtherCAT master station

The EtherCAT master station stops at the rising edge of the variable
input and then the variable is automatically reset.

bStartMaster BOOL Startup of the EtherCAT master station

When the EtherCAT bus fails or stops, the EtherCAT master station is
restarted at the rising edge of the variable input and then the variable is
automatically reset.

Auto Restart

For AutoShop 4.0.0.0 matching PCB software of a version earlier than 3.0.0.0, you can run the PLC
program together with system variables iSlavesState, iSlavesLinkState, and bStartMaster to
automatically restart the EtherCAT bus.

For AutoShop 4.0.0.0 matching PCB software of version 3.0.0.0 or later, you can select "Auto restart of
slave" on the "Normal setting" tab page to automatically restart the slave station.

Disable and Enable

When "Motion control axis-Virtual axis mode" is selected, even if you disable the EtherCAT master
station (all the master and slave stations under this bus are disabled), you can still control the motion
control axis through the program. For details, see description of the virtual axis mode of the motion
control axis. Note that after the EtherCAT master station is disabled, all EtherCAT slave stations are
disabled and bus servo axes associated with the slave stations cannot move.

Right-click the EtherCAT master station, and then select "Enabling device" or "Disable Device".

EtherCAT Communication

-309-

A disabled slave must be removed from the actual physical link. Otherwise, the slave will affect the startup of all
subsequent slaves.

9.2.5 Master Status Monitoring

On the "Status" page, you can view the running information of the EtherCAT bus, as shown in the
following figure.

● The left column displays the execution information of the EtherCAT task. The following table lists
functions and corresponding system variables.

EtherCAT Communication

-310-

System Variable Data Type Function

dMaxCycleTime DINT Maximum cycle time of the EtherCAT task

dMinCycleTime DINT Minimum cycle time of the EtherCAT task

dCycleTime DINT Cycle time of the EtherCAT task in the previous period

dMaxExeTime DINT Maximum execution time of the EtherCAT task
dMinExeTime DINT Minimum execution time of the EtherCAT task
dExeTime DINT Execution time of the EtherCAT task in the previous

period

bResetTime BOOL Execution time and cycle time for resetting

● The right column displays the data sending and receiving status of the EtherCAT bus.

System Variable Data Type Function

dtx_error_cnt DINT Number of EtherCAT data frame sending errors

drx_timeout_cnt DINT Number of EtherCAT data frame receiving timeout
times

drx_corrupt_cnt DINT Number of invalid frame receiving events by EtherCAT

drx_unmatch_cnt DINT Number of mismatched frame receiving events by
EtherCAT

dLoss_frames DINT Number of lost data frames by EtherCAT

bClearFrameCounter BOOL Resetting of the EtherCAT data frame counter register

● You can also use system variables to monitor the running, stop, or connection status of the master
station.

System Variable Data Type Function

bMasterRunState BOOL Running status of the EtherCAT master station

After the EtherCAT master station receives the RUN command and
all slave stations are started, this variable becomes TRUE.

Note: If some slave stations are disconnected during EtherCAT
running, this variable is still TRUE.

bLinkState BOOL Connection status of the master station

The variable is ON as long as one slave station is physically
connected to the master station. The variable is OFF if no slave
station is physically connected to the master station.

iSlavesState INT Online status of all slave stations

When all the configured slave stations are running, the value is 1.
When any slave station is not running, the value is 0.

iFirstErrorSlave INT When a configured slave station fails (the state machine switches to
a non-OP state or is offline), this variable displays the configuration
location of the first disconnected slave station.

iSlavesLinkState INT Physical connection status of all slave stations

When the physical connections of all configured slave stations are
normal, the value is 1; if the physical connection of any slave station
is abnormal, the value is 0.

EtherCAT Communication

-311-

9.2.6 Summary of System Variables

Table 9–2 System variables for EtherCAT communication

System Variable Data Type Function

bMasterRunState BOOL Running status of the EtherCAT master station

After the EtherCAT master station receives the RUN command and all slave
stations are started, this variable becomes TRUE.

Note: If some slave stations are disconnected during EtherCAT running, this
variable is still TRUE.

bLinkState BOOL Connection status of the master station

The variable is ON as long as one slave station is physically connected to
the master station. The variable is OFF if no slave station is physically
connected to the master station.

bHeartBeat BOOL EtherCAT real-time task heartbeat

Flip once per EtherCAT real-time task cycle

bBolckHeartBeat BOOL EtherCAT non-real-time task heartbeat

Flip once per EtherCAT non-real-time task cycle

dMaxCycleTime DINT Maximum cycle time of the EtherCAT task

dMinCycleTime DINT Minimum cycle time of the EtherCAT task

dCycleTime DINT Cycle time of the EtherCAT task in the previous period

dMaxExeTime DINT Maximum execution time of the EtherCAT task
dMinExeTime DINT Minimum execution time of the EtherCAT task
dExeTime DINT Execution time of the EtherCAT task in the previous period

dtx_frames DINT Total number of sent frames
drx_frames DINT Total number of received frames
dtx_frames_rates DINT Frame sending rate (frames/s)

drx_frames_rates DINT Frame receiving rate (frames/s)

dtx_bytes_rate DINT Frame sending rate (bytes/s)

drx_bytes_rate DINT Frame receiving rate (bytes/s)

dloss_frames DINT Number of lost data frames by EtherCAT

bResetTime BOOL Execution time and cycle time for resetting

bStopMaster BOOL Stop of the EtherCAT master station

The EtherCAT master station stops at the rising edge of the variable input
and then the variable is automatically reset.

bStartMaster BOOL Startup of the EtherCAT master station

When the EtherCAT bus fails or stops, the EtherCAT master station is
restarted at the rising edge of the variable input and then the variable is
automatically reset.

bClearFrameCounter BOOL Resetting of the EtherCAT data frame counter register

iSlavesState INT Online status of all slave stations

When all the configured slave stations are running, the value is 1. When any
slave station is not running, the value is 0.

iFirstErrorSlave INT When a configured slave station fails (the state machine switches to a non-
OP state or is offline), this variable displays the configuration location of
the first disconnected slave station.

dLibVersion DINT Version of EtherCAT system library software

dMstVersion DINT Version of EtherCAT master station software
dDriveVersion DINT Version of EtherCAT network adapter drive board software

EtherCAT Communication

-312-

System Variable Data Type Function

dtx_error_cnt DINT Number of EtherCAT data frame sending errors

drx_timeout_cnt DINT Number of EtherCAT data frame receiving timeout times

drx_corrupt_cnt DINT Number of invalid frame receiving events by EtherCAT

drx_unmatch_cnt DINT Number of mismatched frame receiving events by EtherCAT

dRxPDOLength DINT Total length of received PDOs in the configuration (bytes)

dTxPDOLength DINT Total length of send PDOs in the configuration (bytes)

dConfigureState DINT For internal use of configuration status

dDelay DINT Adjustment value of EtherCAT master station synchronization regulator

iSlavesLinkState INT Physical connection status of all slave stations

When the physical connections of all configured slave stations are normal,
the value is 1; if the physical connection of any slave station is abnormal,
the value is 0.

9.3 Slave Configuration

9.3.1 General Settings

Configuration address

Configuration addresses of slave stations are sequential addresses in the AutoShop device tree, which
increase from 0. The configuration address can be used as a subscript of the slave system variable
array or as the slave address for reading and writing SDO instructions.

EtherCAT Communication

-313-

Distributed clock (DC)

You can set the synchronization running mode for a slave station on the following page.

Synchronization mode selection: For an EtherCAT slave station, options are "FreeRun", "SM-Synchron",
and "DC-Synchron". The available options vary with the selected slave station.

For example, the GL10-RTU-ECTA module only supports SM-Synchron, and does not support SYNC0
and SYNC1. There is only one interrupt for data input and output events inside the clock slave station,
and the internal processing logic of the slave station is shown in the following figure.

Take the GR10-4PME module that supports only DC-Synchron as an example. In this mode, the Sync
interrupt of the slave station can be configured. The DC Sync event is enabled by default, the SYNC0
interrupt is enabled, the period of the SYNC0 interrupt is the same as the cycle time of the EtherCAT
master station, and the SYNC1 interrupt is not enabled.

EtherCAT Communication

-314-

Note
Users not familiar with the EtherCAT communication principles shall not modify the default configuration in DC-Syn-
chron mode.

Slave alias setting

An alias can be set for a slave station only when the expert mode is enabled. To enable the station alias
function, you must set an alias for the slave station first. You can set parameters to set an alias for
Inovance servo, use the DIP switch to set an alias for the GR10-0808ETNE module, and set the EtherCAT
master station to set an alias for GL10-RTU-ECTA. Set an alias for an ECTA module as follows.

1. Create a configuration, do not select "Alias enable", download the program, and wait until the slave
station is started.

2. Select "Enable Expert setting". In the "Write site alias" text box, input an alias, enter the monitoring
status, and then click "Write EEPROM". Wait until the write operation is completed. The following
takes writing 1 as an example.

① Select "Enable Expert setting".

② Write an alias for the target station.

③ Click "Write EEPROM".

EtherCAT Communication

-315-

④ Click "OK" and restart the slave station.

3. Power on the slave station again. You can perform auto scanning to check whether the alias is
written.

4. In the configuration, select "Alias enable". In the "Alias address" text box, input the actual alias of
the current slave station, and then download the program.

① Select "Enable Expert setting".

② Select "Alias enable".

③ Write the alias address.

Note
● Avoid mixing the use of station alias and station names. Avoid alias conflicts when using aliases.
● It is recommended to enable the alias function for all slaves when setting up branch module networking.
● After the alias function is enabled for slaves, function blocks for reading and writing SDOs and system variables

for accessing the slaves still use the configuration addresses.

9.3.2 Process Data

You can edit PDOs on the "Process data" page.
The "Process data" page is as follows.

EtherCAT Communication

-316-

① PDO editing button

② PDO configuration downloading selection area

③ PDO display area

PDOs are divided into output PDOs and input PDOs by data flow direction. Output PDOs indicate
process data sent from the EtherCAT master station to an EtherCAT slave station, such as the control
word 0x6040. Input PDOs indicate process data sent from an EtherCAT slave station to the master
station.

Each slave station may have one or more groups of PDOs. As shown in the preceding figure, the first
group of input PDOs and the first group of output PDOs can be added, edited, or deleted.

The following describes how to add a PDO.

① Select a PDO in the first group.

② Click "Add".

③ Select 6060.

EtherCAT Communication

-317-

④ Click "OK".

When a slave station has multiple groups of PDOs, such PDO groups are exclusive, such as IS660N. You
can select one group each time.

OK

Such mutually exclusive relationship varies with the slave station. For example, you can select multiple
PDO groups for GL10-RTU-ECTA.

The master station downloads the PDO configuration relationships to EtherCAT slave stations in the
form of startup parameters through PDO allocation and PDO mapping.

"PDO allocation" is used to download the selected PDO group number to the slave station, while "PDO
allocation" is used to download editable PDOs of a group to the slave station. When PDOs are modified
but "PDO allocation" and "PDO configuration" are not selected, the slave station may not be started.
The configurations can be viewed in the startup parameter list.

EtherCAT Communication

-318-

9.3.3 Startup Parameters

Startup parameters are used to write slave station PDO configuration, factory settings, and parameters
specified by some protocols (such as the 402 protocol) to the slave station through writing SDO when
the slave station is in the PreOP state.
Take IS620N as an example:

① PDO configuration parameters

② 402 protocol parameters

③ Factory parameters

EtherCAT Communication

-319-

On this page, you can add startup parameters as required. For example, you can add the object
dictionary 0x605a and modify its value to 5 as follows.

① Click "Add".

② Select 605A.

③ Modify its value to 5.

④ Click "OK".

9.3.4 I/O Function Mapping

You can control an EtherCAT slave station module by controlling the operation variables only after the
PDO data is connected to the PLC.
The "IO Functional Mapping" page is as follows.

EtherCAT Communication

-320-

Each time a slave station is added, a group of internal variables are automatically created and
connected to the PDO of the slave station, such as IQ2_0.

Note
(1) The automatically generated variables change when the module position is changed or any PDO is added, de-
leted, or modified.

(2) If a slave is associated with a motion control axis, such as SV660N, these variables can only be controlled through
axis instructions.

Associated variables

To modify an associated variable, perform the following operations (taking the GR10-1616ETNE
module as an example).

1. Open the variable table and add a variable.

2. Associate the variable on the "IO Functional Mapping" page.

EtherCAT Communication

-321-

① Open the slave station.

② Select "IO Functional Mapping".

③ Click the icon "...".

④ Select "Variable Table".

⑤ Select the variable and click "OK".

3. The following page is displayed.

4. The PLC program controls DO_0 to flash once every second.

Mapping rules

Data types supported by customized variables are BOOL, BYTE, INT, DINT, and REAL. PDO variables of
EtherCAT slave stations support more data types. The following table lists the mapping rules available
on the "IO Functional Mapping" page.

EtherCAT Communication

-322-

EtherCAT Slave Station
Type

Bit Length Mapping Rules

BOOL 1 BOOL
BYTE 8 INT: Low-order 8 bits are valid. High-order 8 bits are

reserved.

BOOL[8]: An 8-bit BOOL-type array is used.

BYTE: 8-bit BYTE-type mapping is used.

SINT 8 INT: Low-order 8 bits are valid. High-order 8 bits are
reserved.

BOOL[8]: An 8-bit BOOL-type array is used.

BYTE: 8-bit BYTE-type mapping is used.

USINT 8 INT: Low-order 8 bits are valid. High-order 8 bits are
reserved.

BOOL[8]: An 8-bit BOOL-type array is used.

BYTE: 8-bit BYTE-type mapping is used.

BITARR8 8 INT: Low-order 8 bits are valid. High-order 8 bits are
reserved.

BOOL[8]: An 8-bit BOOL-type array is used.

BYTE: 8-bit BYTE-type mapping is used.

BIT8 8 INT: Low-order 8 bits are valid. High-order 8 bits are
reserved.

BOOL[8]: An 8-bit BOOL-type array is used.

BYTE: 8-bit BYTE-type mapping is used.

INT 16 INTBOOL[16]: A 16-bit BOOL-type array is used.
UINT 16 INTBOOL[16]: A 16-bit BOOL-type array is used.
WORD 16 INT

BOOL[16]: A 16-bit BOOL-type array is used.

BITARR16 16 INT

BOOL[16]: A 16-bit BOOL-type array is used.
DINT 32 DINTBOOL[32]: A 32-bit BOOL-type array is used.
UDINT 32 DINTBOOL[32]: A 32-bit BOOL-type array is used.

DWORD 32 DINT

BOOL[32]: A 32-bit BOOL-type array is used.

BITARR32 32 DINT

BOOL[32]: A 32-bit BOOL-type array is used.
REAL 32 REAL

The following figure shows an example with the data type of USINT.

EtherCAT Communication

-323-

To detect the DI channel of the GL10-1600END module, you must allocate a variable to both GL10-
1600END_1 Digital input CH1-8bit and GL10-1600END_1 Digital input CH2-8bit (you can also use the
default variables IQ4_1 and IQ4_2, but they are not easy to expand and maintain). The configuration
can be displayed in the following three ways.

Solution 1: Associate the D element

1. Create a mapping relationship

2. Call it in the program

Solution 2: Associate customized variable of the INT type

1. Create a global variable
2. Create a mapping relationship

EtherCAT Communication

-324-

3. Call it in the program

Solution 3: Associate an array of the BOOL type

1. Create a global variable array
2. Create a mapping relationship

3. Call it in the program

9.3.5 Start/Stop, Disable, and Enable

For AutoShop 4.0.0.0 matching PCB software of a version earlier than 3.0.0.0, you cannot start or stop a
single slave station, but can only start or stop the entire EtherCAT bus.

For AutoShop 4.0.0.0 matching PCB software of version 3.0.0.0 or later, you can select "Auto restart of
slave" on the EtherCAT master station configuration page to automatically restart a slave station.

When the number of configured slave stations is greater than the number of connected ones, you can
disable unavailable slave stations in the configuration.

To enable or disable a slave station, right-click the target slave station, and then select "Disable
Device" or "Enabling device".

EtherCAT Communication

-325-

When the network contains branch modules, if a branch port is disabled, all slave stations mounted to
this port are disabled.

9.3.6 Disabling Slaves Using Instructions

You can disable EtherCAT slave stations during programming by using the ETC_RestartMaster instruc-
tion and relevant system variables.

System variables

● The following table lists system variables used to enable or disable specified EtherCAT slave
stations.

Name Unit Description Retentive upon Power Failure

bDisableEnable BOOL

Disable/Enable

OFF: Enabled

ON: Disabled

No

wDisableState INT

Configuration status

0: Reserved

1: Enabled

2: Disabled

No

● The following table lists system variables of EtherCAT slave stations used to enable or disable the
entire EtherCAT bus.

EtherCAT Communication

-326-

Name Unit Description Retentive upon Power Failure

bDisableMaster BOOL

Disable/Enable

OFF: Enabled

ON: Disabled

No

iDisableState INT

Configuration status

0: Reserved

1: Enabled

2: Disabled

No

Usage

1. After power-on, the PLC initializes the bDisableEnable variable based on the background
configuration, updates the configuration list based on the value of the bDisableEnable variable,
starts the master station, and then writes the disabling status of the slave station to the
wDisableState variable.

2. Wait until the PLC parses the program configuration.
3. Use the PLC program to set the value of the bDisableEnable variable.
4. Use the ETC_RestartMaster instruction to restart the EtherCAT master station.
5. After the master station is restarted, use the bDisableEnable variable to update the configuration list

and write the disabling status of the slave station to wDisableState.

Example

1. Create a configuration by using the background software, enable the EtherCAT communication, and
configure four IS620N slave stations and one AM600-RTU-ECTA slave station.

2. Set the system variables _DisableEnable and bDisableEnable to disable the slave stations IS620N_2
and AM600-RTU-ECTA, and then use the ETC_RestartMaster instruction to restart the master station.

EtherCAT Communication

-327-

3. Download the project to the controller. The slave stations IS620N_2 and AM600-RTU-ECTA are
disabled after start.

9.3.7 System Variables

The following table lists system variables of EtherCAT slave stations.

EtherCAT Communication

-328-

System Variable Data Type Function

bDisableEnable BOOL

Disable/Enable

OFF: Enabled

ON: Disabled

wDisableState INT

Configuration status

0: Reserved

1: Enabled

2: Disabled

bSlaveRunState BOOL
Running status of slave station

The value is TRUE when the slave station is in the OP state; otherwise,
the value is FALSE.

bSetAliasState BOOL

Set the alias status (for the use of the background only)

TRUE: Busy

FALSE: Idle or setting completed

bSetAliasError BOOL

Failed to set the alias status (for the use of the background only)

TRUE: Failed to set the alias status

FALSE: No fault

bSetAlias BOOL
Set the station alias (for the use of the background only)

The value of wTarAlias is written to the slave station at the rising edge
of the variable.

wALState INT

Status of the EtherCAT slave station state machine

1: INIT

2: PreOP

4: SafeOP

8: OP

wAlCode INT
Code of failure to convert the slave station state machine. For details,
see the slave station guide.

wActAlias INT
Actual alias of the slave station. Initialization is performed once upon
power-on, and the modification does not take effect.

wTarAlias INT Station alias to be written (for the use of the background only)

wStationAddress INT
Sequential address of the slave station. Initialization is performed
once upon power-on, and the modification does not take effect.

9.4 Faults and Diagnosis

9.4.1 Learning Faults

The BF indicator indicates the fault status of the EtherCAT bus. The following table lists the statuses
and solutions.

EtherCAT Communication

-329-

LED
Indicator

Definition Solution

Off No fault /
Flashing The EtherCAT bus is

abnormal.
Troubleshoot the problem based on the fault code displayed. For details, see “9.4.2
Fault Codes” on page 329.

On Failed to request for the
master station.

Troubleshoot the problem based on the fault code displayed. For details, see “9.4.2
Fault Codes” on page 329.

You can obtain the code of an EtherCAT instruction fault based on the ErrorID in the instruction.

You can view the EtherCAT bus faults on the "Fault Diagnosis" page.

9.4.2 Fault Codes
Fault Code Cause Solution

8001 Failed to request for the master
station.

1. Check whether the PCB software version matches the background
version.

2. Restart the PLC.
8002 Failed to obtain the slave station

configuration parameters.
Check whether the PCB software version matches the background
version.

8003 Master station startup timed out. Check the network connection.
8004 Failed to request for the master

station.
1 Restart the PLC.
2 An error occurred while loading ECAT. Upgrade the firmware to
the correct version.

... - -
8200 Failed to write startup

parameters.
1. Check whether the startup parameter list contains any object
dictionary that is not supported by the slave station.

2. Check whether the value of the object dictionary exceeds the
range.

8201 The slave station is lost during
running.

1. Check whether the slave station is disconnected from the
network.

2. Check whether the slave station is powered off.

8202 The slave station enters a non-OP
state during running.

1. Check whether the slave station is disconnected from the
network.

2. Check whether the slave station is powered off.
8203 Reserved -
8204 The slave station type does not

match.
1. Check whether the network cable is inversely connected.

2. Check whether the configured device matches the connected
device.

8205 The PDO address is incorrect. 1. Check whether the memory is used up.

2. Check whether the background version matches the PCB software
version.

3. Power off and then on the device.
8206 The PDO length is incorrect. Check whether the background version matches the PCB software

version.
8301 Failed to switch to the INIT status. Check whether the slave station state machine supports status

conversion.
8302 Failed to switch to the PerOP

status.
Check whether the slave station supports the CoE protocol.

8304 Failed to switch to the SafeOP
status.

Check whether the PDO communication configuration is correct.

EtherCAT Communication

-330-

Fault Code Cause Solution
8308 Failed to switch to the OP status. 1. Check the network communication quality.

2. Check whether the EtherCAT task cycle is set appropriately.

8310 Configuration of the FMMU unit is
incorrect.

Check whether the slave station supports the FMMU unit.

8311 The email configuration is
incorrect.

Check whether the slave station supports the SM unit.

8400 The ECTA configuration is
incorrect.

Check whether the configured extension module is the connected
extension module.

8401 An ECTA hardware error occurred. 1. Check whether the connection between ECTA and the extension
module is loose.

2. Replace ECTA.
8402 The extension module mounted

to ECTA is incorrect.
Check the fault type of the extension module based on the ECTA
guide.

1280 No master station. Check whether EtherCAT bus communication is enabled.
1281 No slave station. Check whether this slave station is configured.

1282 The SDO length to be read or
written is greater than 4 or equal
to 0.

Check whether the read or written SDO length is correct.

1283 No master station. Check whether the configuration parameters of the master station
are correct.

1284 Read or write operation failed.

● SDO read/write timed out.
● SDO does not exist.
● SDO read/write is not
supported due to the status
of the slave station.
● The SDO length to be read or
written is incorrect.

Check whether the SDO operation is supported by the slave station
state machine.

Check whether the SDO to be read or written exists.

Check whether the SDO length to be read or written is correct.

1285 Memory request failed.
1. Check whether the PLC memory is used up.

2. Contact Inovance.
1286 The master station stops. This instruction cannot be called when the master station stops.

When an EtherCAT bus fault occurs, the fault status indicator in the lower-right corner of AutoShop
turns to yellow. If you double-click this area, the "Fault Diagnosis" dialog box is displayed, in which you
can view the configuration of the failed slave station, the fault code, and the fault details.

EtherNet/IP Communication

-331-

10 EtherNet/IP Communication

10.1 Overview

The open connected end is the EtherNet/IP master station, and the opened end is the EtherNet/IP
slave station, as shown in the following figure.

The small PLC background AutoShop V4.4.0.5 and later versions support the EtherNet/IP function. The
communication specifications are as follows.

● H5U and Easy320/Easy52X series PLCs support one EtherNet/IP master station.
● The minimum cycle communication period (RPI) is 5 ms.
● The maximum data volume of single connection communication is 1400 bytes for Easy, and 500

bytes for H5U.
● A maximum of 32 connections (consumer tags + server tags + slave connections) are supported.
● A maximum of 32 tags (producer tags + server tags) can be created.

Note
● When EtherCAT and EtherNet/IP networks both exist in a networking project, the real-time communication

performance of EtherNet/IP network is reduced because EtherCAT has the highest priority by default.
● For protocol details, see the official standard documents EIP-CIP-V1-1.0 and EIP-CIP-V2-1.0.
● The firmware version must be V5.66.0.0 or later, and the software version must be AutoShop V4.8.0.0 or later.

10.2 Technical Specifications

10.2.1 EtherNet/IP Transmission Specifications
Table 10–1 Transmission specifications

Item Technical Specifications

10BASE-T 100BASE-TX
Transmission rate 10 Mbps 100 Mbps

Transmission media STP or UTP above Cat3[1] STP or UTP above Cat5[1]

Max. cable length[2] 100 m 100 m

Meet the standard IEEE802.3.

● [1]: STP: shielded twisted pair. UTP: unshielded twisted pair.
● [2]: The maximum cable length is the distance between an EtherNet/IP unit and a network device.

EtherNet/IP Communication

-332-

10.2.2 EtherNet/IP Communication Specifications

Item H5U Series Easy32x Series Easy52x Series

CIP
service

Implicit
message
communica-
tion

Number of I/O connections at
the originator[1]

32 32 32

Number of I/O connections at
the target end[2]

32 32 32

RPI (communication cycle) 5 ms to 50000 ms

Bandwidth
allowable for
implicit (I/O)
message
communica-
tion

(@4 bytes) 12800 pps[3] 12800 pps[3] 12800 pps[3]

(@250 bytes) 6400 pps[3] 12800 pps[3] 12800 pps[3]

(@500 bytes) 3200 pps[3] 12800 pps[3] 12800 pps[3]

(@1400 bytes) - 8000 pps[3] 12800 pps[3]

Maximum data size per
connection[4]

500 bytes 1400 bytes 1400 bytes

Multicast filter[5] Supported (IGMP client function)

Explicit
message
communica-
tion

Number of Class3 tags at the
originator[6]

32 32 32

Number of Class3 tags at the
target end[6]

32 32 32

Number of UCMM tags at the
initiator[6]

Number of
simultaneous
executions: 32

Number of
simultaneous
executions: 32

Number of
simultaneous
executions: 32

Number of UCMM tags at the
target end[6]

Number of
simultaneous
executions: 32

Number of
simultaneous
executions: 32

Number of
simultaneous
executions: 32

[1] I/O connections at the originator include:

● Consumer tags: Connections requested by the originator with the name of the producer tag as the
connection path.

● Originator generic I/O connections: Connections requested by the originator with the instance ID of
the generic I/O connections of the target end as the connection path.

[2] I/O connections at the target end include:

● Consumer tags: Responses from the target end to the connection requests with the name of the
producer tag as the connection path.

● Target end generic I/O connections: Responses from the target end to connection requests with the
instance ID of the generic I/O connections of the target end as the connection path.

[3] pps refers to Packet Per Second. pps is the unit of network throughput rate. Here, it means the sum
of the number of grouping packets sent and received that can be processed in one second. It is
calculated according to the following formula: Communication bandwidth pps = 1000 ms/RPI x
Number of connections x 2.

[4] Data simultaneity within a connection is guaranteed. The device used supports Large Forward Open
(CIP option specification) when the data size is greater than 509 bytes.

[5] The EtherNet/IP unit supports the IGMP client function, so the use of an Ethernet switch that
supports IGMP Snooping allows filtering out unattended multicast packets.

[6] The number of tags is as follows:

EtherNet/IP Communication

-333-

● Initiator tags include the consumer tags, initiator generic I/O connections, Class3 tags at the
originator, and UCMM tags at the initiator. The maximum number is 32.

● Target end tags include the producer tags, target end generic I/O connections, Class3 tags at the
target end, and UCMM tags at the target end. The maximum number is 32. The maximum number of
target end generic I/O connections is 16.

10.2.3 Quick Reference Table of EtherNet/IP Solutions

The quick reference table of EtherNet/IP solutions lists typical values generated based on the
bandwidth allowable for implicit (I/O) message communication provided in “10.2.2 EtherNet/IP
Communication Specifications” on page 332. It strictly adheres to the relevant communication
bandwidth regulations and is designed to help customers to quickly find a solution. When user
requirements do not match the solution quick reference table, the bandwidth allowable for implicit (I/
O) message communication provided in “10.2.2 EtherNet/IP Communication Specifications” on page
332 shall be used as a design constraint.

Table 10–2 Solution quick reference table for the H5U series

Specification No. Data Size Number of
Connections

RPI Communication
Bandwidth

SPEC.001 (0,4] bytes 32 5 ms 12800 pps

SPEC.002 (4,250] bytes 32 10 ms 6400 pps

SPEC.003 (4,250] bytes 16 5 ms 6400 pps

SPEC.004 (250,500] bytes 32 20 ms 3200 pps

SPEC.005 (250,500] bytes 16 10 ms 3200 pps

SPEC.006 (250,500] bytes 8 5 ms 3200 pps

1. You are recommended to set the user program scan cycle to RPI x 2.

2. "(a,b] bytes" means an integer value greater than a but equal to or less than b.

3. When user requirements match the data in the table, but the connection number and scan cycle do
not match, balance them to meet the communication bandwidth requirements.

For example, when the data size of user requirement REQ.X does not match the data size of SPEC.Y in
the table, REQ.X must meet the following condition:

REQ.X RPI/REQ.X connection number = SPEC.Y RPI/SPEC.Y connection number

Table 10–3 Solution quick reference table for Easy32X

Specification No. Data Size Number of
Connections

RPI Communication
Bandwidth

SPEC.001 (0,4] bytes 32 5 ms 128000 pps

SPEC.002 (4,250] bytes 32 5 ms 128000 pps

SPEC.003 (250,500] bytes 32 5 ms 128000 pps

SPEC.004 (500,1400] bytes 32 8 ms 8000 pps

1. You are recommended to set the user program scan cycle to RPI x 2.

2. "(a,b] bytes" means an integer value greater than a but equal to or less than b.

EtherNet/IP Communication

-334-

3. When user requirements match the data in the table, but the connection number and scan cycle do
not match, balance them to meet the communication bandwidth requirements.

For example, when the data size of user requirement REQ.X does not match the data size of SPEC.Y in
the table, REQ.X must meet the following condition:

REQ.X RPI/REQ.X connection number = SPEC.Y RPI/SPEC.Y connection number

Table 10–4 Solution quick reference table for Easy52X

Specification No. Data Size Number of
Connections

RPI Communication
Bandwidth

SPEC.001 (0,4] bytes 32 5 ms 128000 pps

SPEC.002 (4,250] bytes 32 5 ms 128000 pps

SPEC.003 (250,500] bytes 32 5 ms 128000 pps

SPEC.004 (500,1400] bytes 32 5 ms 128000 pps

1. You are recommended to set the user program scan cycle to RPI x 2.

2. "(a,b] bytes" means an integer value greater than a but equal to or less than b.

3. When user requirements match the data in the table, but the connection number and scan cycle do
not match, balance them to meet the communication bandwidth requirements.

For example, when the data size of user requirement REQ.X does not match the data size of SPEC.Y in
the table, REQ.X must meet the following condition:

REQ.X RPI/REQ.X connection number = SPEC.Y RPI/SPEC.Y connection number

10.2.4 EtherNet/IP Solution Selection Example

Taking REQ.A as an example to describe how to use the solution quick reference table

User requirement REQ.A

One H5U connects to 32 EtherNet/IP devices.

The data size of each connection is 500 bytes for both input data and output data.

RPI is 25 ms.

Solution

1. Use the data size and connection number of REQ.A as indexes and search for the specification in the
"Solution quick reference table for the H5U series" of the section “10.2.3 Quick Reference Table of
EtherNet/IP Solutions” on page 333. SPEC.004 matches.

2. The scan cycle of REQ.A is 25 ms, greater than 20 ms of SPEC.004. In this case, you do not need to
reduce the connection number and the recommended user program scan cycle is 50 ms.

3. Options:
REQ.A communication bandwidth: 1000 ms/RPI x Connection number x 2 = 1000 ms/25 ms x 32 x 2 =
2560 pps.

The communication bandwidth provided in the "Solution quick reference table for the H5U series" of
the section “10.2.3 Quick Reference Table of EtherNet/IP Solutions” on page 333 is 3200 pps, greater
than 2560 pps. Therefore, the solution is appropriate.

EtherNet/IP Communication

-335-

Taking REQ.B as an example to describe how to use the solution quick reference table

User requirement REQ.B

One H5U connects to 32 EtherNet/IP devices.

The data size of each connection is 300 bytes for both input data and output data.

RPI is 10 ms.

Solution 1

1. Use the data size and connection number of REQ.B as indexes and search for the specification in the
"Solution quick reference table for the H5U series" of the section “10.2.3 Quick Reference Table of
EtherNet/IP Solutions” on page 333. SPEC.004 matches.

2. RPI of REQ.B is 10 ms, less than 20 ms of SPEC.004.
3. Solution: Increase the RPI

RPI of REQ.B must be equal to or greater than 20 ms of SPEC.004. Therefore, you are recommended to
set RPI to 20 ms.

Solution 2

1. Use the data size and RPI of REQ.B as indexes and search for the specification in the "Solution quick
reference table for the H5U series" of the section “10.2.3 Quick Reference Table of EtherNet/IP
Solutions” on page 333. SPEC.005 matches.

2. The connection number of REQ.B is 32, greater than 16 of SPEC.005.
3. Solution: Reduce the connection number

The connection number of REQ.B must be equal to or less than 16 of SPEC.005. Therefore, you are
recommended to set the connection number to 16.

In general, both solution 1 and solution 2 are appropriate for REQ.B after adjustment.

10.3 Class 1 Communication

10.3.1 Master Configuration

10.3.1.1 EtherNet General Settings

1. Log in through the background, connect to the PLC, and configure the PLC gateway, including the IP
address, mask, and gateway.

EtherNet/IP Communication

-336-

2. In the main menu, choose "Tools" > "Communication Settings".
3. In the "Communication Settings" dialog box displayed, click "Search" to search for PLCs in the

current network, select the target PLC, and click "Test" to check whether the PLC can be connected.

10.3.1.2 EtherNet/IP Device IP Settings

EtherNet/IP supports bus topology, star topology, and bus-star topology. In a star topology, all nodes
are connected to the network hub, and nodes are easily added, deleted, and maintained. Such
topology is often used due to its cost-effectiveness, easy connection, and availability of required
devices.

IP addresses of all devices must be unique and in the same EtherNet/IP network segment. The
following figure shows a star topology.

EtherNet/IP

PLC

LAN

IP address of the EtherNet/IP master station: 192.168.1.100

IP address of the EtherNet/IP slave station 1: 192.168.1.101

IP address of the EtherNet/IP slave station 2: 192.168.1.102

...

EtherNet/IP Communication

-337-

IP address of the EtherNet/IP slave station n: 192.168.1.XXX

10.3.1.3 Adding EtherNet/IP Slaves

1. Import the EDS description file of the slave station.
Create a master station project. Right-click "EtherNet/IP Devices" under "Toolbox". In the menu
displayed, click "Import EDS". In the dialog box displayed, select the EDS file and then click "Open".
The following figure takes importing the EDS file of KEYENCE N-L20 EtherNet/IP as an example.

Note
To synchronize with the latest EDS file of a slave when there is any change to the EDS file, expand the "EtherNet/IP"
menu, right-click the slave, and select "Update EDS" in the shortcut menu. In this process, select the option that the
EDS file exported from the slave overwrites the original file in the directory. See “10.3.1.4 Exporting EDS Files” on
page 338 for details.

2. Create the configuration. You can create a configuration in AutoShop in two ways.
①: Locate the device file you want to import, and double-click the file. The device is added to the
network configuration. You can add multiple EtherNet/IP slave stations one by one.

②: Scan a device to add it to the configuration. When AutoShop and PLC are connected, you can
click "Auto Scan" to scan EtherNet/IP devices connected to the PLC. The procedure is as follows.

a. Right-click "EtherNet/IP" in the project tree. In the menu displayed, click "Auto Scan".
b. In the "Auto Scan" dialog box displayed, slave stations configured for the current project are

displayed on the left. The names of the slave stations scanned out by the PLC after you click "Auto
Scan" are displayed on the right. The slave stations in red are devices for which no matching EDS
file is found in AutoShop, while configurations of slave stations in black can be updated.

c. Click "Update Config". The system asks you to confirm whether to save the current configuration.
After you select "Yes", slave stations whose configurations can be updated are added to the
current configuration. If you select "No", all EtherNet/IP configurations are deleted and the slave
stations whose configurations can be updated are added.

EtherNet/IP Communication

-338-

10.3.1.4 Exporting EDS Files

The way to export EDS files is basically the same for Easy and H5U. The main difference is that Easy
supports a maximum of 1400 bytes while H5U supports a maximum of 500 bytes.

1. Double-click "EtherNet/IP", and then select "EIP Adapter". On the EIP slave station page displayed,
you can add or delete connections (up to 16 connections are supported), as shown in the following
figure.

2. Click "Edit connection" to edit the O->T and T->O sizes for connections. The default value is 500
bytes.

EtherNet/IP Communication

-339-

3. You can also split the size of bytes according to the data set of O->T and T->O, and split the total
bytes into multiple variables of the required byte size for mapping. You can add or delete a data set
to adjust the byte size, or move a data set up or down.

4. Split bytes will generate multiple corresponding variable which can be viewed on the "IO Mapping"
page. The corresponding bytes will generate the corresponding variable numbers, and the byte size
will be that of the connection.

5. You can expand and view an array.

EtherNet/IP Communication

-340-

6. Select parameters, switch to the "EtherNet/IP" page, and click "Export EDS file" to export the EDS
file to any folder.

7. To import the exported EDS file to the background, choose "EtherNet/IP Devices" under "Toolbox",
and double-click the H5U.eds file. On the following page displayed, select the I/O connection from
the drop-down list of "Connection name"。

EtherNet/IP Communication

-341-

8. You can click "Add connection" or "Add label connection" to add the required connection. "Add
connection" is used to add an I/O connection while "Add label connection" is used to add a
consumer connection.

10.3.2 Slave Configuration

10.3.2.1 General Settings

Modifying the configuration of a single slave station

Double-click the EtherNet/IP slave station "N-L20" you want to set. On the page displayed, set the IP
address and matching options for the slave station.

EtherNet/IP Communication

-342-

Electronic match: The EtherNet/IP master station checks whether the following fields of the EtherNet/
IP slave station match those in the EDS file: supplier code, device type, product code, major version,
and minor version. The following table lists the matching options.

Parameter Name Description

Compatible Module Conditional matching. The communication is established only when the supplier
code, device type, and product code are identical and the major version and minor
version of the slave station are equal to or later than those in the EDS file (the version
of the slave station is equal to or later than the version in the EDS file, and the slave
station is compatible with EDS files of earlier versions).

Exact Match Communication can be established between EtherNet/IP master and slave stations
only when all of such fields are exactly matched.

Stop check[1] Communication is directly established between EtherNet/IP master and slave stations
without checking whether such fields are matched.

[1]: Exercise special caution when selecting "Stop check". Improper use of this option may cause physical injury,
property damage, or economic loss. It is strongly advised against using the "Stop check" option.

Modifying configurations of multiple slave stations

When multiple slave stations are configured, right-click "EtherNet/IP" in the "Project Manager" section.
In the menu displayed, select "Batch Configuration". In the "Batch Configuration" dialog box, modify
the IP addresses and matching options of slave stations in a batch.

EtherNet/IP Communication

-343-

10.3.2.2 Connection Settings

1. Add a connection.
The EDS description file of an EtherNet/IP slave station contains a default connection path. After the
EtherNet/IP network configuration is added, the background connection page loads the default
connection path, as shown in the following figure.

You can also click the connection name and set the connection path pre-defined in the EDS file, as
shown in the following figure.

EtherNet/IP Communication

-344-

On the preceding page, click "Edit connection" to enter the connection setting page. Generally, all
parameters other than RPI (communication cycle) of the connection must use the default values.

2. Configure the general parameters.

● Connection path: Specifies the format and connection instance of a byte stream frame.
For example, 20 04 2C C6 2C 68 (for details, see EIP-CIP-V1-1.0, Appendix C: Data Management).

20: Logical Segment, ClassID, 8-bit logical address

04: Assembly Object (04H)

2C: Logical Segment, Connection Point, 8-bit logical address

C6: ID-C6H of the Assembly Object instance

2C: Logical Segment, Connection Point, 8-bit logical address

68: ID-68H of the Assembly Object instance

EtherNet/IP Communication

-345-

Note: The connection path must be configured based on the guide of the specific slave station.
The connection path varies with the manufacturer.

● RPI (MS): Requested Packet Interval. It indicates the communication transmission interval in ms.
The RPI of each node can be set individually without affecting each other.

3. Scan the target.

● Transmission byte size
1) O->T Size (Bytes): Indicates the amount of data transferred from the producer (scanner) to the
consumer (target device), in bytes.

2) T->O Size (Bytes): Indicates the amount of data transferred from the consumer (target device)
to the producer (scanner), in bytes.

● Transport Type
Exclusive Owner: Allows users to set both data sending from the initiator to the target device and
data receiving from the target device to the initiator.

Redundant Owner: Allows multiple initiators to create independent and identical connections to
the same target device.

Input Only: This connection can only be used to set data receiving from the target device to the
initiator.

Listen Only: EtherNet/IP devices apply this type of connections to listen to multicast data without
providing configuration or scheduling information.

● Trigger Type
Cyclic: Periodically triggers data transmission.

Change-Of-State: Transmits data when a change in the state of the application object is detected.

Application Object: Transmits data when the application object is triggered.

● Connection Type
Multicast: Multiple scanners receive data from one target device at the same time.

Point-to-Point: One scanner can receive data from only one target device.

Note
Click "Add connection" to open the connection setting interface and select "Universal connection" to customize a
connection as needed. This requires knowledge of the CIP protocol. For users without such knowledge, it is recom-
mended to use the default connection configuration.

10.3.2.3 Configuring I/O Variable Mapping

You can expand an array when modifying a variable mapping. For example, to create a connection, of
which the O->T size of the consumer tag is 10 bytes, the number of server tags is 5, and _IP2_0 and
_IP2_1 are variables of the default mapping, click "..." and input the variables at the variable name
position to modify the mapping.

EtherNet/IP Communication

-346-

Only three data types are displayed: INT, DINT, and RAL. If you have modified the data type of the
consumer tag through the data set, the data type is converted to any of these three types. The
correspondence is as follows.

INT: BYTE, INT, UINT, SINT, and USINT are all displayed as INT.

DINT: DINT, UDINT, LINT, ULINT, LWORD, DWORD, and WORD are all displayed as DINT.

REAL: REAL and LREAL are displayed as REAL.

10.3.3 EtherNet/IP Master Application Example

This project describes how to create an EtherNet/IP network in which H5U serves as the master
station. In this example, the slave station is the Tockwell PowerFlex 525 AC drive.

1. Under "EtherNet/IP Devices" of "Toolbox", select the corresponding slave station for I/O
communication.

2. Set the IP address of the slave station you want to connect.

EtherNet/IP Communication

-347-

3. Set the connection parameters. The PowerFlex 525 AC drive supports only the default connection
and therefore only one connection is listed under "Connection name". You can directly change the
RPI. In this case, RPI is 50 ms and cannot be modified.

4. After making the configuration, download the program, run the PLC, and monitor the
communication status.

The communication details can be viewed on the status page.

10.3.4 EtherNet/IP Slave Application Example

1. Add two connections, and modify their O->T size to 100 bytes and T->O size to 100 bytes. Export the
EDS file, set the IP address of the connected PLC to 10.45.124.150, compile the project, and then
download and run the project.

EtherNet/IP Communication

-348-

2. Import the exported EDS file. Double-click "H5U" under "EtherNet/IP" in the "Toolbox" section, add
a slave station, and set the IP address of the connected PLC to 10.45.124.77.

3. After the file is imported, "Connection1" is selected by default, whose O->T and T->O sizes are those
you set when creating the connection.
You can click "Add connection" to add a custom I/O connection or click "Add label connection" to
add a consumer tag connection. You can click "Connection name" to unfold the drop-down list
which displays connections defined in the EDS file. You can switch, edit, and delete connections in
the drop-down list.

EtherNet/IP Communication

-349-

4. On the "General" tab page, set the IP address to 10.45.124.150, and then export and run the project.

5. If a green icon is displayed for the H5U node in the project tree, the node is connected. On the status
page on which the connection status of "Connection1" is successful.

10.3.5 Tag Communication

10.3.5.1 Configuring Producer Tag Data

Configuring the producer tag data on the "Producer label" page

EtherNet/IP Communication

-350-

1. In the "Project Manager" section, unfold "Config", and double-click "EtherNet/IP" to open the
"Producer label" page. Supported producer tag types are INT, DINT, REAL, and array.

2. To create a producer tag, create a variable in the variable table. On the "Producer label" page, click
"Add label", input the created variable, and then click "OK".

For data of the type INT, DINT, or REAL, you can input a name to create a tag on the "Producer label"
page. Then, AutoShop automatically displays the variable creation dialog box, on which you can create
the variable, as shown in the following figure.

Directly configuring the producer tag data in the variable table

In the variable table, modify the "Network Public" property of the variable to "IN/OUT". Then, the
variable is configured as a producer tag.

10.3.5.2 EtherNet/IP Consumer Tag Connection

Configuring an EtherNet/IP consumer tag connection

Note
Before configuring a consumer or producer, add a slave and select a tag from the slave.

Take the EDS file of the Inovance slave station as an example. In the toolbox, import the AM600_400
Series PLC EIP Adapter.eds file, add the configuration, modify the IP address, and then access the
"Connection" page, on which a connection is loaded from the EDS file by default.

If the connection is a consumer tag connection, the "Add connection" button is activated and can be
used to add a custom consumer tag connection. You can also click "Edit connection" to modify the
RPI, T->O size, and connection path, wherein the connection path is the consumer tag name.

EtherNet/IP Communication

-351-

Methods for adding a slave station

1. Import the EDS file

The following describes how to add a slave station by taking the EDS file of the Inovance slave station
as an example.

1. Right-click "EtherNet/IP Devices" in the "Toolbox" section, click "Import EDS file", and select the
corresponding EDS file.

2. After the EDS file is imported, double-click the EDS file, and add the slave station corresponding to
EIP.

3. Select "Connection" and click the corresponding connection.

EtherNet/IP Communication

-352-

2. Use the generic template Generic_EtherNet_IP_device

When no EDS file is provided for third-party device tag communication or the product ID of the current
device does not match that in the EDS file, you can add this device and manually configure the device.
On the "General setting" page, set all items of electronic matching to 0 and select "Stop check", as
shown in the following figure.

10.3.5.3 Setting Tag Data Set

In the data area of tag communication, the parameter data types can be classified based on the T->O
size. You can combine structure variable members to generate the corresponding I/O mapping.

EtherNet/IP Communication

-353-

10.3.6 Tag Communication Example

The following takes the example of one H5U consuming tags a1, a2, and a3 created by another H5U to
describe how to make the configuration.

1. In the variable table, create the variable (producer). The configuration page is as follows.

2. Associate the variable with the tag (producer).
3. Access the configuration page (consumer).

EtherNet/IP Communication

-354-

4. Add connections to consumer tags corresponding to the tags a1, a2, and a3 of H5U.

After configuration, download the projects to the PLC to monitor their communication states.

10.4 Service Message Tag Communication

10.4.1 Configuring Service Message Tags on Server

Configuration on the "Service message label" page

1. In the "Project Manager" section, unfold "Config", and double-click "EtherNet/IP" to open the
"Service message label" page. Data types supported by service message tags are INT, DINT, REAL,
and array.

2. To create a service message tag, you can create a variable in the variable table. On the "Service
message label" page, click "Add label", input the created variable, and then click "OK".

You can also click "Add label" and input a name to create a tag on the "Service message label" page.
Then, AutoShop automatically displays the variable creation dialog box, as shown in the following
figure. (*If you modify the variable of a created server tag in the variable table, an error is reported
when you compile the variable directly. In this case, you can click "Edit" to refresh the data type of the
variable associated with the tag.*)

EtherNet/IP Communication

-355-

Directly configuring the tag in the variable table

In the variable table, modify the "Network Public" property of the variable to "Public". Then, the
variable is configured as a service message tag.

10.4.2 Configuring Service Message Tags on Client

The following takes service message tag communication between Inovance H5Us as an example to
describe how to configure service message tags.

1. In the "Toolbox" section, double-click the EDS file of H5U, add the configuration, modify the IP
address, and access the "Service message label" page.

2. Click "Add label", and specify the name and data size of the service message tag you want to
request, that is, the response service message tag created by the peer device to be connected.

EtherNet/IP Communication

-356-

You can click "Edit" to modify an added service message tag or double-click a tag in the list to edit the
tag.

You can click "Delete" to delete an added service message tag.

The following section describes terms on the page of adding service message tag configuration.

● Connection type
① Class3 means a CIP connection is required for communication, that is, a connection-type tag
communication.

② UCMM means a CIP connection is not required for communication, that is, connection-free tag
communication.

● Setting type
① Originator Read means reading the data of the target tag.

② Originator Write means writing data to the target tag.

● Target label name: Indicates the name of the service message tag created by the requested device.
The sum of the tag name size and the data size cannot exceed 487 bytes.

● Data type: Indicates the data type of the requested service message tag. Supported data types are
INT, DINT, and REAL.

● Element number: Indicates the number of arrays of the requested service message tag. When the
number of elements is N (N is greater than 1), an array whose size is N and type is basic data is
created.

● Trigger type
① Cyclic means data is requested periodically. The valid range of "Cycle time" is 5 ms to 1000 ms,
and the default value is 50 ms.

② Application Trigger indicates the status trigger and corresponds to Input variable. The request is
triggered by the BOOL-type variables.

10.4.3 Application Example

The following takes the example of H5U-1 consuming tags a1, a2, and a3 created by H5U-2.

1. Response service message tag: In the variable table, create the variable (producer). The H5U-2
configuration page is as follows.

EtherNet/IP Communication

-357-

2. Response service message tag: In the H5U-2 project, associate the variable with the tag.

3. Request service message tag: In the H5U-1 project, configure the service message tag.

4. After configuration, download the projects to the PLC to monitor their communication states, and
monitor the request data in the H5U-1 project.

PROFINET Communication

-358-

11 PROFINET Communication

11.1 Overview

About PROFINET

PROFINET, launched by PROFIBUS International (PI), is a new generation of automation bus standards
based on the industrial Ethernet technology.

PROFINET provides a complete network solution for automation communication, encompassing hot
topics in automation such as real-time Ethernet, motion control, distributed automation, fail-safe and
network security. As a cross-supplier technology, it is fully compatible with industrial Ethernet and
existing fieldbus (such as PROFIBUS) technologies, protecting existing investments.

Extension modules supported by H5U as PROFINET slave station

H5U supports connection to Siemens PLCs through the PROFINET protocol. Extension modules of H5U
are operated through the TIA Portal software and data is mapped to H5U. The following table lists
supported extension table.

Module Name Input (Bytes) Output (Bytes) Description

0016ETN - 2 A module with 16 DO terminals (transistor NPN output)
0016ETP - 2 A module with 16 DO terminals (transistor PNP output)
0016ER - 2 A module with 16 DO terminals (relay output)

1600END 2 - A module with 16 DI terminals
3200END 4 - An input module with 32 channels
0032ETN - 4 An input module with 32 channels
4DA - 8 A module with 4 DA terminals, supporting voltage and

current output
4AD 8 - A module with 4 AD terminals, supporting voltage and

current input

8TC 16 - A temperature module with 8 channels
4TC 8 - A temperature module with 4 channels
4PT 8 - A temperature module with 4 channels

Share IN2 BOOL 2 - Remote module input data area

Share IN32 DINT 32 - Remote module input data area

Share IN32 INT 32 - Remote module input data area

Share IN32 REAL 32 - Remote module input data area

Share IN64 DINT 64 - Remote module input data area

Share IN64 INT 64 - Remote module input data area

Share IN64 REAL 64 - Remote module input data area

Share OUT2
BOOL

- 2 Remote module output data area

Share OUT32
DINT

- 32 Remote module output data area

Share OUT32 INT - 32 Remote module output data area

Share OUT32
REAL

- 32 Remote module output data area

PROFINET Communication

-359-

Module Name Input (Bytes) Output (Bytes) Description

Share OUT64
DINT

- 64 Remote module output data area

Share OUT64 INT - 64 Remote module output data area

Share OUT64
REAL

- 64 Remote module output data area

H5U devices can only be used as PROFINET slaves, and only support the reading and writing of process data of ex-
tension modules.

Data mapping relationship

● TIA Portal page
The directory tree "Module" on the right shows all currently supported extension modules, as well
as shared modules Share INXX and Share OUTXX. All modules can be added to the slots under H5U
in the "Device overview" area in any order. A maximum of 16 modules can be added to the 16 slots
(except Share INXX/Share OUTXX, a maximum of 15 Share IN64XX/Share OUT64XX modules or a
maximum of 20 other modules can be added). In the TIA Portal software, you can operate the I or Q
address of each module, map the final data to H5U, and view the data of the module in AutoShop.

● AutoShop page
AutoShop uses the system variable "_SYS_PN" to obtain mapped data in the TIA Portal software.

In the TIA Portal software, data areas of all H5U modules are mapped to corresponding variables to
the variable table "_SYS_PN" in AutoShop. The following table lists the mapping relationship.

■ Mapping relationship of H5U extension modules

TIA Portal Module Name AutoShop Variable Name

0016ETN MOD1600ETN
0016ETP MOD3200ETP
0016ER MOD0016ER
1600END MOD1600END
3200END MOD3200END
0032ETN MOD0032ETN
4DA MOD4DA
4AD MOD4AD
8TC MOD8TC
4TC MOD4TC
4PT MOD4PT

When there are multiple identical modules, these modules will be mapped to the data areas of
the corresponding indexes in the order they are added in the TIA Portal software. For example,
three 3200END modules are added in the Portal software, and they are mapped to "MOD3200
[0]", "MOD3200[1]", and "MOD3200[2]", respectively.

■ "Share INXX" and "Share OUTXX" modules are mapped to variables "_share_inxx" and
"_share_outxx", respectively. These modules can be used as data mapping variables for remote
modules (Share INXXmapped to _share_inxx, and Share OUTXXmapped to _share_outxx).

PROFINET Communication

-360-

11.2 Configuration Process

11.2.1 TIA Portal Configuration

1. Import and install the GSD file.

a. In the menu bar, choose "Option > Manage general station description file (GSD)", as shown in the
following figure.

b. In the dialog box displayed, click , locate the GSD file (the software automatically indexes the
file), select the GSD file, and then click "Install".

2. Configure H5U.

PROFINET Communication

-361-

a. Double-click "H5U" in the hardware directory or drag "H5U" to the "Network view" section, as
shown in the following figure.

b. Hold down the left mouse button and drag the PLC green box to the H5U green box to connect the
PLC and H5U, as shown in the following figure.

c. Double-click a module in the hardware directory tree on the right to add the module and assign
the address, as shown in the following figure.

PROFINET Communication

-362-

Note
It is recommended to keep the order of added modules and slots consistent with the AutoShop interface.

d. Click "Display all variables". On the "PLC variable" page displayed, define the specific address
variable of the module, as shown in the following figure.

11.2.2 AutoShop Configuration

1. Under "Config" in the "Project Manager" section, double-click "Module Config". In the "Module"
section, double-click the module you want to add, as shown in the following figure.

PROFINET Communication

-363-

Note
It is recommended to keep the order of added modules and slot numbers consistent with the TIA Portal interface.

2. In the "Device Detailed List" section, double-click the module (taking GL10-4AD as an example) for
which you want to configure parameters, configure the module parameters, and then click "OK", as
shown in the following figure.

PROFINET Communication

-364-

3. Map the module I/O to the corresponding variable in the system variable "_SYS_PN".

a. In the "Device Detailed List" section, double-click the module (taking GL10-4AD as an example) for
which you want to perform I/O mapping, as shown in the preceding figure.

b. Click "IO Mapping", and map the module to the variable "MOD4AD[0]", as shown in the following
figure.

PROFINET Communication

-365-

c. Click "OK", and then "OK".

11.3 Enable and Disable

PROFINET is disabled for H5U by default. To enable this function, perform the following operations.

Enable

1. On the "Module Config" page, right-click "H5U", and select "PN Enable".

PROFINET Communication

-366-

2. Download the program to H5U.
3. Restart H5U. Then, the function is enabled.

Disable

1. On the "Module Config" page, right-click "H5U", and select "PN Ban".

2. Download the program to H5U.
3. Restart H5U. Then, the function is disabled.

Motion Control

-367-

12 Motion Control

12.1 Introduction to Motion Control Axes

12.1.1 Overview

Basic composition and control logic

In a motion control system, the objects of motion control are called axes. The axes are the bridge
between a drive and the PLC instructions. The motion control axes are used to control EtherCAT bus
drive that is compliant with the CiA 402 protocol, as well as local high-speed pulse outputs and high-
speed pulse inputs.

The following figure shows the basic composition and processing logic of an axis in the PLC.

Scheduling mechanism of motion control instructions

Main programs, subprograms, and interrupt subprograms are provided for users to write programs.
However, motion control instructions can only be called in the main programs or subprograms, not in
the interrupt subprograms.

The EtherCAT tasks are hidden tasks that are not open to users, so programming of the EtherCAT tasks
is not supported.

As shown in the following figure, in a main program, the PLC scans all the motion control instructions
written in the program in turn, and stores the final result in the motion control parameter buffer
according to the interrupt rules of the program. The PLC updates the motion control instruction when
a EtherCAT task is executed. After the execution is completed, the execution result is put into the
buffer, and the motion control instruction in the main program updates the instruction status
according to the execution result.

Motion Control

-368-

For example, there are two MC_MoveAbsolute instructions in the program. The target position of the
first instruction is 100, the target position of the second instruction is 200, and both instructions are
triggered by the soft element M1000 at the same time. When the PLC scans the program, the PLC first
scans the first absolute positioning instruction, obtaining the target position 100, and then scans the
second instruction, updating the target position to 200. At the end of the main task, the PLC finally
writes the target position 200 to the motion control buffer and implements the instruction according to
the second absolute positioning parameter, interrupting the first instruction. After obtaining the target
position 200, the EtherCAT task starts to execute the absolute positioning algorithm, and sets the
completion flag when the positioning is completed. After the second absolute positioning instruction
in the main program obtains the completion flag, the Done signal is activated.

Figure 12-1 EtherCAT instruction execution

Axis types

Supported axis types include bus servo axis, local pulse axis, bus encoder axis, and local encoder axis.

Axis Type Content

Bus servo axis Bus servo axis is controlled using EtherCAT slave servo drives.

When virtual axis mode is disabled, the bus servo axis is assigned to the actual servo
drive for use.

The bus servo axis supports the control of several basic modes such as torque, point,
velocity, and homing modes.

Local pulse axis Local pulse axis is controlled using a pulse drive controlled by local high-speed I/O.

Four local pulse axes can be set: Y0/Y1, Y2/Y3, Y4/Y5, and Y6/Y7.

Each pulse output channel can be set to pulse+direction or CW/CCW.

Up to two probe terminals can be set per pulse output channel.

The local pulse axis supports control in several basic modes such as point, velocity, and
homing modes. Torque mode is not supported.

Bus encoder axis Reserved
Local encoder axis See “13.1 Introduction to High-speed Counter Axes” on page 427.

Motion Control

-369-

To fully describe the attributes of an axis, monitor the axis status, and control the axis motion, each
axis is divided into three parts.

Axis Structure Function
Axis configuration
parameter

Configures parameters of an axis, such as gear ratio, homing type, and encoder mode.

Axis system variable Monitors the operating status and abnormal information of an axis, such as the current
position and axis error code.

Axis control instruction In a user program, axis motion control is performed using MC motion control
instructions.

Axis control instructions are divided into management (such as MC_Power), motion
(such as MC_Jog), and status (MC_ReadStatus).

Configuration interface

In the project, the axis configuration interface is as follows:

① Motion control axis

② EtherCAT bus drive

③ List of axis configuration and monitoring options

④ Axis number (unique access ID for an axis)

⑤ Associated physical drive

⑥ Detailed parameter settings

Motion control axis access modes

In the PLC program, a motion control axis can be accessed in two ways: motion control instructions
and system variables.

Motion Control

-370-

● In AutoShop of version V4.0.0.0 or later versions in combination with PCB software of version
V3.0.0.0 or later versions, axis instructions and system variables can be accessed by using axis
names. Axis names can also be introduced into FB as parameters, for example:

Axes can also be introduced into FB as parameters.

12.1.2 PLCOpen State Machine

The PLCOpen state machine allows you to manage axis status and motion and complete different func-
tions in different states.
The status transition diagram is as follows.

Motion Control

-371-

The detailed description is as follows.

Status Value Status Description
0 Disabled Disabled
1 ErrorStop Stopped due to a fault
2 Stopping Stopping

3 Standstill Enabled
4 Discrete Motion Discrete motion
5 Continuous Motion Continuous motion
7 Homing Homing

8 Synchronized Motion Synchronized motion

The following table summarizes the status transition conditions.

Transition Transition Conditions
1 The fault detection logic of the axis detects a fault. In this case, the system immediately transits to this

state.
2 The axis is free of faults and MC_Power.Enable=FALSE
3 MC_Reset is called to reset the axis fault and MC_Power.Status=FASLE.
4 MC_Reset is called to reset the axis fault and MC_Power.Status=TRUE.
5 MC_Power.Enable=TRUE and MC_Power.Status=TRUE.
6 MC_Stop(MC_ImmediateStop).Done=TRUE and MC_Stop(MC_ImmediateStop).Execute=FALSE.

12.1.3 Axis Units

Two units are used in the axis structure: user unit and pulse unit.
User unit

It refers to the measurement units used in instructions, such as millimeters, centimeters, and angles,
which are called user units and usually represented by Unit.

Motion Control

-372-

The user coordinate systems are divided into linear coordinate system and rotary coordinate system
according to working conditions.

A linear coordinate system typically includes a zero point. An axis is in forward motion when the target
position increases, or in reverse motion when the target position decreases. The linear coordinate
system can set positive and negative software limits.

The rotary coordinate system includes a zero point and a rotation cycle in which CW motion occurs
when the target position increases and CCW motion occurs when the target position decreases.

Pulse unit

It refers to the units measured in pulses and used on the drive, which are usually represented by pulse.

The drive usually contains two parameters: the pulse zero point and the number of pulses of an
encoder per revolution of the motor.

12.1.4 Axis Configuration Parameters

Attributes of motion control axes can be set as needed. The following table summarizes the axis
configuration parameters.

Category Description Bus Servo Axis Local Pulse Axis

Basic settings

Axis number √ √
Axis type √ √
Input device x x

Output device √ √
Automatic mapping √ x

Virtual axis mode √ √
PDO √ x

Unit conversion settings

Reverse √ √
The number of instruction pulses per revolution
of the motor/encoder √ √

The distance per revolution of the worktable in
the background √ √

Gear ratio numerator √ √
Gear ratio denominator √ √

Mode/parameter settings

Encoder mode √ x
Linear/rotary mode settings √ √

Software limit √ √
Software error response √ √
Following error √ √
Axis velocity settings √ √
Torque limit √ x

Probe settings x √
Output settings x √
Hardware limit logic √ x

Not entering ErrorStop state upon a limit
activation

√ √

Motion Control

-373-

Category Description Bus Servo Axis Local Pulse Axis

Homing settings

Home signal √ √

Positive limit √ √
Negative limit √ √
Z signal √ x

Homing direction √ √
Home input detection direction √ √
Homing list √ √
Homing velocity √ √
Homing closing velocity √ √
Homing acceleration √ √

Homing timeout time
√

[Note]
√

Negative limit terminal settings x √
Positive limit terminal settings x √
Home signal settings x √

Online commissioning
Monitoring list √ √
Motion commissioning √ √

[Note]: This function is only available to Inovance servo drives.

12.1.5 Axis System Variables

In the program, you can monitor the current status of an axis through its system variables. The system
variables of a bus servo axis/local pulse axis are shown in the following table.

Variable Data Type Function

bPowerState BOOL Monitoring parameter, enabled or disabled status of the axis, read-only

bDebugState BOOL Monitoring parameter, commissioning status of the axis, read-only

fSetPosition REAL Monitoring parameter, position reference of the axis, user unit, read-only

fSetVelocity REAL
Monitoring parameter, velocity reference of the axis (that is, the change rate
of the position reference), user unit, read-only

fSet_Acc_Dec REAL
Monitoring parameter, acceleration reference of the axis (that is, the change
rate of the velocity reference), user unit, read-only

fSetTorque REAL Monitoring parameter, torque reference of the axis, user unit, read-only

fActPosition REAL Monitoring parameter, feedback position of the axis, user unit, read-only

fActVelocity REAL
Monitoring parameter, the current velocity of the axis (that is, the change
rate of the feedback position), user unit, read-only

fActAcc_Dec REAL
Monitoring parameter, the current acceleration of the axis (that is, the
change rate of the feedback velocity), user unit, read-only

fActTorque REAL Monitoring parameter, feedback torque of the axis, user unit, read-only

Motion Control

-374-

Variable Data Type Function

wPLCOpenState INT

Monitoring parameter, PLCOpen state machine for the axis, read-only

0: PowerOff

1: ErrorStop

2: Stopping

3: StandStill

4: DiscreteMotion

5: ContinuousMotion

7: Homing

8: SynchronizedMotion

wConfigState INT

Monitoring parameter, configuration status of the axis, read-only

0: Init (axis in the initialization state)

1: Configure finish (configuration reading completed)

2: Sync finish (synchronized with EtherCAT tasks)

3: Wait communication (communication with the servo drive established)

4: Slave ready (initialization completed for the servo drive controlled by
axes)

5: Axis ready (communication established)

wAxisError INT
Monitoring parameter, error code for the axis in the ErrorStop state, read-
only

wServoError INT
Monitoring parameter, error code for a drive or local axis, displaying 0x603f
values, read-only

bEnterDebug BOOL Commissioning parameter, entering the commissioning mode when the
variable is valid

bPowerOn BOOL Commissioning parameter, axis enable instruction

bStop BOOL Commissioning parameter, axis stop instruction

bReset BOOL Commissioning parameter, axis reset instruction

bJogP BOOL Commissioning parameter, forward jog instruction

bJogN BOOL Commissioning parameter, reverse jog instruction

bHome BOOL Commissioning parameter, homing instruction

bSetPos BOOL Commissioning parameter, current position setting instruction

bAbsPos BOOL Commissioning parameter, absolute positioning instruction

bRevPos BOOL Commissioning parameter, relative positioning instruction

bRelPos BOOL Commissioning parameter, reciprocating motion instruction

bVelocity BOOL Commissioning parameter, continuous motion instruction

bTorque BOOL Commissioning parameter, torque instruction

wDebugMotionType INT

Commissioning parameter, commissioning mode

0: Idle

1: Relative positioning control

2: Absolute positioning control

3: Continuous motion control

5: Reciprocating motion control

6: Torque control

fJogVelocity REAL Commissioning parameter, jogging velocity

fPositionOffser REAL Commissioning parameter, homing offset

Motion Control

-375-

Variable Data Type Function

fPresetPosition REAL Commissioning parameter, preset positions

fTarPosition1 REAL Commissioning parameter, target position

fTarVelocity1 REAL Commissioning parameter, target velocity

fTarAcceleration1 REAL Commissioning parameter, target acceleration

fTarDeceleration1 REAL Commissioning parameter, target deceleration

wCurveType1 REAL Commissioning parameter, curve type

fTarPosition2 REAL Commissioning parameter, target position 2

fTarVelocity2 REAL Commissioning parameter, target velocity 2

fTarAcceleration2 REAL Commissioning parameter, target acceleration 2

fTarDeceleration2 REAL Commissioning parameter, target deceleration 2

wCurveType2 INT Commissioning parameter, curve type 2

dUnused Commissioning parameter, reserved

fTarTorque REAL Commissioning parameter, target torque

fTarTorqueSlop REAL Commissioning parameter, torque slope

fLimitVelocity REAL Commissioning parameter, velocity limit in torque mode

wControlWord INT Loop variable, control word 0x6060, read-only

WStatusWord INT Loop variable, status word 0x6061, read-only

dSetPosition DINT Loop variable, target position 0x607a, read-only

dActPosition DINT Loop variable, feedback position 0x6064, read-only

dSetVelocity DINT Loop variable, velocity reference 0x60ff, read-only

dActVelocity DINT Loop variable, feedback velocity 0x606c, read-only

dSetTorque DINT Loop variable, torque reference 0x6071, read-only

dActTorque DINT Loop variable, feedback torque 0x6077, read-only

dDO DINT Loop variable, DO 0x60fe:1, read-only

dDI DINT Loop variable, DI 0x60fd, read-only

wModesOfOperation INT Loop variable, control mode 0x6060, read-only

wModesOfOperationDis-
play INT Loop variable, current control mode 0x6061, read-only

wTouchFunction INT Loop variable, probe function settings 0x60b8, read-only

wTouchStatus INT Loop variable, probe status 0x60b9, read-only

dTouch1Ppos DINT Loop variable, probe 1 position on the rising edge 0x60ba, read-only

dTouch2Ppos DINT Loop variable, probe 2 position on the rising edge 0x60bb, read-only

dTouch1Npos DINT Loop variable, probe 1 position on the falling edge 0x60bc, read-only

dTouch2Npos DINT Loop variable, probe 2 position on the falling edge 0x60bd, read-only

dMaxVelocity DINT Loop variable, maximum velocity 0x607f, maximum velocity

wErrorCode INT Loop variable, drive error code 0x603f, read-only

wAxisRingPos INT Configuration parameter, axis configuration position, power-on initialization

WAxisID INT Configuration parameter, axis ID, power-on initialization

fUnits REAL Configuration parameter, axis gear ratio, power-on initialization

fFilter REAL[3] Setting the filter coefficient of the master axis, initialized to 1.0,.0.0,0.0 upon
power-on, and modifiable

bMotionState BOOL
Monitoring parameter, motion status, indicating whether the axis is in
motion, read-only

bphlimit BOOL Monitoring parameter, hardware positive limit input status, read-only

bnhlimit BOOL Monitoring parameter, hardware negative limit input status, read-only

Motion Control

-376-

Variable Data Type Function

bhomestate BOOL Monitoring parameter, hardware home switch input status, read-only

bpslimit BOOL
Monitoring parameter, indicating whether the software positive limit is
reached, read-only

bnslimit BOOL
Monitoring parameter, indicating whether the software negative limit is
reached, read-only

dLocialAxisSetPos DINT Monitoring parameter, position reference of the local pulse axis, read-only

fFollowPos REAL Following error, read-only

12.1.6 List of Axis Control Instructions

The following table lists single-axis control instructions. For details about how to use these
instructions, see the H5U and Easy Series Programmable Logic Controllers Instructions Guide.

Instruction Name
MC_Power Enable control
MC_Reset Fault reset
MC_ReadStatus Axis status reading

MC_ReadAxisError Axis error reading

MC_ReadDigitalInput Digital input reading

MC_ReadActualPosition Actual position reading

MC_ReadActualVelocity Actual velocity reading

MC_ReadActualTorque Actual torque reading

MC_SetPosition Position setting

MC_TouchProbe Probe
MC_MoveRelative Relative positioning

MC_MoveAbsolute Absolute positioning

MC_MoveVelocity Velocity
MC_Jog Jogging

MC_TorqueControl Torque control
MC_Home Homing

MC_Stop Stop

MC_Halt Pause

MC_ImmediateStop Emergency stop

MC_MoveFeed Interrupt positioning

MC_MoveBuffer Multi-position positioning

MC_MoveSuperImposed Motion superimposition

MC_MoveVelocityCSV CSV-based velocity control with adjustable pulse width

MC_SyncMoveVelocity CSV-based synchronous velocity control with adjustable pulse
width

MC_SyncTorqueControl Synchronous torque control

Motion Control

-377-

12.2 Setting Motion Control Axes

12.2.1 Creating a Project

Follow these steps to accurately control an axis: First, create a configuration based on the needs of
your project. Then, set relevant parameters based on the working conditions, download the project,
and carry out simple operations through online commissioning to determine whether the parameter
settings are reasonable and whether the hardware connection is reliable. Lastly, write a PLC program
to complete the overall control logic. Here is an example.

This routine creates a new bus servo axis and a local pulse axis, and implements simple motion
through two ways: online commissioning interface and instructions.

1. Open AutoShop, click "New Project", and set the PLC type to H5U.

2. After the project is successfully created, enter the main interface.

Motion Control

-378-

Zone 1: Menu bar

Zone 2: Toolbar

Zone 3: Project management area

Zone 4: Program editing section

Zone 5: Toolbox

12.2.2 Creating Project Configuration

To control the IS620N motion, you can configure a servo drive and a bus servo axis and link them to-
gether in two modes: automatic scan and manual adding.
In the automatic scan mode, bus servo axes are automatically added, while local pulse axes need to be
added manually. The operations of the two modes are explained below.

Automatic scan

1. In "System Options", check whether the option "Automatically create axes and associate slaves
when creating new slaves" is ticked. If not, tick it.

Motion Control

-379-

2. Check whether the computer host is normally connected to a PLC and whether the EtherCAT
network port of the PLC is normally connected to a servo drive.
The way to test the connection of PLC to the computer host is as follows.

Motion Control

-380-

3. In the toolbox, check whether the EtherCAT device list includes the IS620N. If not, add the
corresponding XML file.

4. Select the master station, right-click, select "Auto Scan", and the "Auto Scan" dialog box will pop up.
5. Click "Start Scan". After the scan is completed, click "Update Config" to complete the creation of a

bus servo axis.

6. After the scan is completed, you can see the servo drive and bus servo axis in the device tree.

Motion Control

-381-

Manual adding

1. Open the toolbox and locate the IS620N. If it is unavailable, you can add the device profile ESI for
IS620N to the toolbox by importing the file.

Motion Control

-382-

2. Double-click the IS620N in the toolbox to add an IS620N to the device tree EtherCAT configuration.
If you have ticked "Automatically create axes and associate slaves when creating new slaves" in the
"System Options", a bus servo axis will be added when you add the IS620N. Otherwise, the bus servo
axis will not be added automatically. The assumption in this routine is that "Automatically create
axes and associate slaves when creating new slaves" is not ticked.

Motion Control

-383-

3. You can add a motion control axis by choosing "Motion Control Axis" in the device tree, and right-
clicking the "Add Axis". You can establish two axes by repeating this operation twice.

Configuration after adding two axes:

4. Set the first axis as the bus servo axis and associate it with IS620N. Set the second axis to be the
local pulse axis and associate it with the Y0/Y1 channel.

Motion Control

-384-

Figure 12-2 Adding the bus servo drive

Figure 12-3 Local output axis

12.2.3 Setting Axis Parameters

12.2.3.1 Bus Servo Axis

You can set the relevant parameters of an axis based on actual working conditions and requirements.
The settings in this routine are as follows.

Motion Control

-385-

1. Set the mode to rotary and the rotation cycle to 10.

2. Set the homing mode to 33.

12.2.3.2 Local Pulse Axis

You can set the relevant parameters of an axis based on actual working conditions and requirements.
The settings in this routine are as follows.

1. Set the pulse output mode to CW/CCW.

2. Set the "Pulses per motor/encoder revolution" to 5000 (16#1388).

Motion Control

-386-

3. Set the homing mode to 17 and the negative limit to M1000.

12.2.4 Writing a Program

1. The function block MC_Power is used to control the enabling of an axis. MC_Power is an instruction
and therefore does not need to be instantiated. This also applies to the following instructions.

Motion Control

-387-

2. Call instruction MC_Jog for a test.

Motion Control

-388-

3. Call instruction MC_Home for a test.

Motion Control

-389-

4. Call instruction MC_MoveRelative to test discrete motion.

Motion Control

-390-

5. Monitoring axis status
In the PLC program, the status of the axes can be monitored through function blocks or axis system
variables.

Motion Control

-391-

12.2.5 Downloading a Project

After completing the programming and project setup, perform the download operation as follows.

1. Click the download button , in which case the compilation operation is performed first.
2. After the compilation is completed, if the PLC is in the running state, the following dialog box will

pop up. Select "OK" to go to step 3. If the PLC is in the stopped state, download the project directly
and go to step 4.

Motion Control

-392-

3. If the PLC is in the running state before you download the program, you can see the download
completion prompt after the download is completed. In the dialog box that pops up, select "OK" to
switch the PLC to the running state.

4. If the PLC is in a stopped state before you download the program, the information output window
will pop up the download completion prompt after the download is completed. Manually click the

start button to switch the PLC to the running state.

Motion Control

-393-

12.2.6 Basic Motions

12.2.6.1 Pre-conditions

To complete the basic action in this routine, it is recommended to first enter the monitoring mode, and

click the monitoring button to enter the monitoring mode.

After entering the monitoring mode, you can see that the EtherCAT bus startup is completed and the
servo axis initialization is completed.

① EtherCAT initialization completed

② Axis initialization completed

The following describes the ways to control the servo axis motion through PLC program and online
commissioning.

12.2.6.2 PLC Program Control

1. Enable control: Set the two BOOL variables of servo_en and step_en to TRUE, and the output of
servo_on and step_on will be valid after the bus servo axis and local pulse axis are enabled.

Motion Control

-394-

Call the MC_ReadStatus instruction to view the status of the bus servo axis.

Alternatively, enter the online commissioning interface to view the axis status, which is standstill in
this example.

Motion Control

-395-

2. Jogging operation of the bus servo axis

● When the variable servo_frd_jog is set to TRUE, the bus servo axis starts to run forward at the
velocity reference, and the actual axis driven by the servo drive runs forward at 5 rpm/s.

● When the variable servo_bkd_jog is set to TRUE, the bus servo axis starts to run in reverse at the
velocity reference, and the actual axis driven by the servo drive runs in reverse at 5 rpm/s.

Motion Control

-396-

3. Homing test of the bus servo axis

● When the servo_home_en is set to ON, the servo_home_busy will automatically set to ON.

● When the servo motor encounters the Z signal, the homing is automatically completed, in which
case the servo_home_done is set to ON, and the servo_home_busy is automatically set to OFF.

4. Relative positioning test of the bus servo axis

● The current position of the bus servo axis is as follows:

● When the variable servo_rel_en is set to TRUE, the output of variable servo_rel_busy by the
function block is TRUE, in which case the bus servo axis starts to run.

Motion Control

-397-

● After the positioning is completed, the output of variable servo_rel_done is TRUE.

● Through the online commissioning interface, you can see that the set position of the servo at this
time has increased by 5 user units compared with the original.

12.2.6.3 Online Commissioning

1. Open the online commissioning interface of the local pulse axis. Click "Enter servo debug" to enter
the commissioning mode.

2. Click "Enable" to enable the servo drive.
3. Click "Homing" to start homing. Correctly operate the negative limit variable M1000 to complete the

homing action.

● When M1000 is set to FALSE, homing begins and the axis returns to home through reverse motion.
● When M1000 is set to TRUE, the axis decelerates to stop after triggering the negative limit, and

then moves forward at a low speed.
● Set M1000 to FALSE and complete homing.

4. Choose "Relative locate mode", set the parameters as follows, and click "Start" to complete the
relative positioning test.

Motion Control

-398-

12.3 Configuring Motion Control Axes

12.3.1 Bus Servo Axis versus Local Pulse Axis

The local pulse output and the EtherCAT drive are controlled with the same set of instructions, and
share the same axis structure in design. The main differences between them are listed below.

Item Local Pulse Output EtherCAT Bus Drive
Different axis
types

A local pulse axis needs to be selected. A bus servo axis needs to be selected.

Different out-
put devices

Local IO terminals need to be set up, with every two of
them forming a group, that is, Y0/Y1, Y2/Y3, Y4/Y5, and
Y6/Y7 groups.

The PDO needs to be configured and
mapped into the loop variable of the
axis.

Pulse output
forms

The two supported pulse forms are pulse+direction and
CW/CCW, which can be selected in the "Mode/Parameter
setting" -> "Output setting".

No setup is required.

Motion Control

-399-

Item Local Pulse Output EtherCAT Bus Drive
Probe function Two probes are supported, and each probe terminal can

be selected from X0 to X7. This function needs to be se-
lected in the "Mode/Parameter setting" -> "Probe
setting".

The probe terminals need to be con-
figured according to the application
guide for the EtherCAT drive.

Homing
settings

The supported homing modes (except for the Z signal)
are specified in the CiA 402 protocol. The limit signal and
home signal of the local pulse output axis can be se-
lected through the interface "Set the homing".

The homing modes No 1 to No 35
specified in the CiA 402 protocol are
supported in setting, while the limits
and home signals need to be set on
the drive side.

12.3.2 Basic Settings

The basic settings interface of an axis is used to set the type of the axis, and select a physical drive.
The basic settings interface is shown in the following figure.

● Axis No: Each axis is assigned a separate number in the range of 0 to 36, which cannot be modified
manually. An axis number can be used as a unique input parameter of the MC instruction to access
the axis.

● Axis type: Optional axis types are bus servo axis, local pulse axis, bus encoder axis (not supported
before version 4.2.0.0), and local encoder axis.

● Input device: It is used only for bus encoder axes and local encoder axes.

Motion Control

-400-

● Output device: It is active only in bus servo axis and local pulse axis modes. In case of a bus servo
axis, it is used to select EtherCAT servo drives; in case of a local pulse axis, it is used to select the
local high-speed output terminals. Four groups of high-speed output terminals including Y0/Y1, Y2/
Y3, Y4/Y5, and Y6/Y7 are available for selection.

● Virtual axis mode: It is active only in bus servo axis and local pulse axis mode. When the virtual axis
mode is ticked, the axis will no longer control the drive selected by the output device (high-speed
output terminal), but will execute motion control instructions internally on a virtual servo axis.

● Loop variables: It is active only in bus encoder axis and bus servo axis modes. The EtherCAT slave
communicates periodically based on the PDO and an axis is connected to the object dictionary of
the EtherCAT slave through a loop variable. When automatic mapping is selected, the mapping
process is assigned automatically and cannot be configured manually.

Loop variables of the bus servo axis

The list of variables is as follows. For the detailed meaning of the object dictionary, see the standard
CiA 402 protocol.

Table 12–1 List of Variables
Loop Variable Object Dictionary Function

Controlword 0x6040 Control word
Set position 0x607a Corresponding to the target position in servo drive

CSP mode
Set velocity 0x60ff Reserved

Set torque 0x6071 Corresponding to the target torque in CST mode of
the servo drive.

Modes of operation 0x6060 Control mode, with a range of setting as follows.

6: Homing mode

8: Cyclic synchronous position (CSP) mode

9: Cyclic synchronous velocity (CSV) mode

10: Cyclic synchronous torque (CST) mode

Touch probe function 0x60b8 Probe control word

Add velocity Reserved Reserved

Add torque Reserved Reserved

Digital outputs 0x60fe:1 Digital output (DO)

Max Velocity 0x60FF Maximum velocity

Statusword 0x6041 Status word
Actual position 0x6064 Feedback position

Actual velocity 0x606c Feedback velocity

Actual torque 0x6077 Feedback torque

Modes of operation display 0x6061 Current control mode

Digital inputs 0x60fd DI terminal status, with functions as follows:

Bit2: Home switch

Bit1: Positive limit switch

Bit0: Negative limit switch

Touch probe status 0x60b9 Touch probe status

Touch probe 1 rising edge 0x60ba Probe 1 position on the rising edge

Touch probe 1 falling edge 0x60bb Probe 1 position on the falling edge

Motion Control

-401-

Loop Variable Object Dictionary Function

Touch probe 2 rising edge 0x60bc Touch probe 2 positive edge

Touch probe 2 negative edge 0x60bd Probe 2 position on the falling edge

Errorcode 0x603f Drive error code

Parameters that need to be set for unit conversion
Table 12–2 Related Parameters

Parameter Function
The number of pulses per revolution of
the motor/encoder

Set the number of pulses required for the motor to rotate one turn
according to the encoder resolution.

Gear change mechanisms in use or not Specify whether gear change mechanisms are in use or not.

Distance per revolution of the motor/
encoder

The workpiece-moving distance per revolution of the motor when no
gear change mechanism is in use

Distance per revolution of the
worktable

The distance per revolution on the workpiece side when gear change
mechanisms are in use

Gear ratio on the workpiece side Set a gear ratio on the workpiece side.

Gear ratio on the motor side Set a gear ratio on the motor side.

The bus drives (local pulse axes) use pulse units when controlling a motor, and use common
measurement units for motion control instructions, such as millimeters, degrees, and inches, which are
called user units (Unit). According to the configuration parameters, the two units are converted to each
other within an axis. The conversion between the two units is divided into the following modes.

● With gear change mechanisms
When the gear change mechanisms are not in use, the conversion equation from user unit to pulse
unit is as follows.

Take the Inovance 20-bit encoder as an example. The set parameters are as follows.

Number of pulses per revolution of the motor/encoder = 1048576

Distance per revolution of the motor/encoder = 1

Then, when the target displacement given by the relative positioning instruction is 10, the actual
number of pulses sent by the motion control axis is 10485760, and the motor rotates by 10
revolutions.

● With gear change mechanisms
Typical working condition in linear mode is shown in the following figure.

Motion Control

-402-

In the figure, (1) is the servo motor, (3) is the workpiece, (4) is the gear ratio denominator, and (5) is
the gear ratio numerator.

The calculation equation from user unit to pulse unit is as follows.

Typical working condition in ring mode is shown in the following figure.

In the figure, (1) is the servo motor, (3) is the workpiece, (4) is the gear ratio numerator, and (5) is
the gear ratio denominator.

The calculation equation from user unit to pulse unit is as follows.

12.3.3 Mode/Parameter Settings

12.3.3.1 Configuration Interface

The following figure shows the "Basic setting" page. The parameter list varies with the selected axis
type.

Motion Control

-403-

12.3.3.2 Encoder Mode

The encoder mode is only valid in the bus servo axis mode and is used with incremental encoder servo
drives and absolute encoder servos. Choose the mode according to the type of servo drive actually
used. The processing on the PLC side is as follows.

Incremental mode

The increase in the number of revolutions caused by the overflow of the 32-bit counter of servo drive
encoder is not taken into account on the PLC side. The PLC does not save the current position of the
encoder when the power is turned off and on again. After the second power-on, the current position of
the axis is calculated only according to the position of a single revolution given by the servo drive.

Absolute mode

The increase in the number of revolutions caused by the overflow of the 32-bit counter of servo drive
encoder is taken into account on the PLC side. The PLC saves the current position given the encoder
when the power is turned off and on again. After the second power-on, the encoder position of the axis
saved inside the PLC and the position given the servo drive are read during the initialization to
calculate the current absolute position of the axis.

Note
If an Inovance servo is used and process parameters 200B.3Bh (low-order 32 bits of mechanical absolute position)
and 200B.3Dh (high-order 32 bits of mechanical absolute position) are configured, the axis calculates its current ab-
solute position during initialization. The calculation is based on the 64-bit mechanical absolute position feedback
from the servo drive and the position offset saved in the PLC. This can effectively prevent data overflow in the 32-bit
counter.

Motion Control

-404-

12.3.3.3 Mode Setting

Set the motion control axis to linear mode or ring mode based on actual working conditions.
Linear mode

Linear mode is usually used for devices that move within the range of mechanical actions in the X-Y
linear coordinate system.

Linear mode typically involves a zero point.

An increase in the feedback position during motion indicates a forward motion, while a decrease
indicates a reverse motion.

Forward and reverse software limits can be set. After the software limit is enabled, an axis can only
move within the limit range.

Absolute positioning mode: When the target position is greater than the start position, the axis moves
forward over a distance equal to the result of the target position minus the start position. When the
target position is less than the start position, the axis moves reversely over a distance equal to the
result of the start position minus the target position.

Relative positioning mode: When the target displacement is greater than 0, the axis moves forward
over a distance equal to the target displacement. When the target displacement is less than 0, the axis
moves reversely over a distance equal to the target displacement.

Processing mode of velocity instructions in linear mode: If the target velocity is greater than 0, a
forward motion is performed. If the target velocity is less than 0, a reverse motion is performed.

Ring mode

The ring mode is a mode in the form of a ring counter that is capable of infinitely repeated counting
within a set range. It is usually used in revolving stages or rolls.

The ring mode usually involves a zero point and a rotation cycle. The feedback position of a ring
counter is greater than or equal to 0 and less than one rotation cycle.

In ring mode, an increase in feedback position indicates a CW motion, and a decrease in feedback
position indicates a CCW motion.

Motion Control

-405-

Software limits are not applicable in ring mode.

● Processing mode of relative positioning: When the target displacement is greater than 0, the axis
moves clockwise over a distance equal to the target displacement. When the target displacement is
less than 0, the axis moves counter-clockwise over a distance equal to the target displacement.

● Processing mode of absolute positioning:
Forward: First, take the modulus of the target position divided by the rotation cycle. Then, move
the axis in a CW manner from the start position to the target position.

Reverse: First, take the modulus of the target position divided by the rotation cycle. Then, move the
axis from the start position to the target position in a CCW manner.

The shortest distance: First, take the modulus of the target position divided by the rotation cycle to
obtain the target position. Then, calculate the displacement from the start point in a CW manner to
the target position. If the displacement is less than or equal to half cycle, a CW motion is performed;
otherwise, a CCW motion is performed to the target position.

Motion Control

-406-

Current direction: A motion is performed to the target position in the latest axis motion direction, or
a forward motion is performed to the target position in case of initial power-on.

Processing mode of velocity instructions in ring mode: If the target velocity is greater than 0, a CW
motion is performed; if the target velocity is less than 0, a CCW motion is performed.

12.3.3.4 Software Limits

Software limits can be set in linear mode.
When software limits are valid, the system constantly detects the absolute position of an axis that
decelerates from the current velocity to 0 at the set limit deceleration rate according to T-type
deceleration mode. If the absolute position of the axis is beyond the limit range, the axis will execute
the software limit deceleration algorithm and the positioning or velocity instruction being executed
will be aborted.

Software limits are invalid in homing or torque mode.

12.3.3.5 Deceleration upon Axis Fault

During the operation of an axis, if the axis must switch to the ErrorStop state due to a logic failure of
the motion instruction itself, the axis will do T-type deceleration according to the setting of
deceleration upon axis fault. The axis will not enter the ErrorStop state until it decelerates to 0.

12.3.3.6 Following Error

During the execution of positioning and velocity instructions, the servo drive actually works in cyclic
synchronous position (CSP) mode, and the planning of the position curve is done on the PLC. The PLC
sends the target position to the servo drive through 0x607A, the servo drive drives the servo motor to
move, and the position of the motor encoder is sent back to the PLC through 0x6064. Due to the
inherent features of the servo drive and the motor, a difference between 0x607A and 0x6064 is
generated. This difference is called the following error when converted to user units. You can set a
following error limit. If the absolute value of the following error of an axis exceeds the limit, the axis
reports an excessive following error and enters the ErrorStop state.

12.3.3.7 Axis Speed Setting

You can set three parameters: maximum velocity, maximum acceleration, and maximum jogging
velocity. When a parameter, such as the target velocity, acceleration, and deceleration, in the
positioning instruction or velocity instruction exceeds the velocity limit, the relevant instruction
reports an error and the axis enters the ErrorStop state.

For the bus servo axis, the maximum velocity is converted into pulse units and written into the object
dictionary 0x607f of the servo drive in the form of startup parameters.

12.3.3.8 Torque Setting

The torque setting is only applicable to the bus servo axis.

Motion Control

-407-

If the target torque exceeds the maximum torque in the torque instruction, the instruction reports an
error and the axis enters the ErrorStop state.

The forward torque limit will be written into the object dictionary 0x60e0 of the servo drive in the form
of startup parameters, and the reverse torque limit will be written into the object dictionary 0x60e1 of
the servo drive in the form of startup parameters.

12.3.3.9 Probe Setting

Probe terminals can be enabled for local pulse axes through probe setting.

Each local pulse axis can be configured with up to two probe terminals. The probe terminals can be
selected from X0 to X7.

When a probe terminal is enabled, the local pulse axis can use probe instructions and interrupt
positioning instructions.

12.3.3.10 Output Setting

You can select Y0/Y1, Y2/Y3, Y4/Y5, and Y6/Y7 as four local pulse axes.

The output of local pulse axes can be set as pulses in the format of pulse+direction or CW/CCW.

For channels that are set as pulse axes, when pulse+direction is selected, Y0, Y2, Y4, and Y6 are the
pulse terminals, and Y1, Y3, Y5, and Y7 are the direction terminals. When CW/CCW is selected, Y0, Y2, Y4,
and Y6 are CW pulse terminals, and Y1, Y3, Y5, and Y7 are CCW terminals.

12.3.3.11 Not Entering ErrorStop State upon a Limit Activation

This function is only available for AutoShop 4.0.0.0 matching PCB software of version 3.0.0.0 or later.

● When this option is selected, the motion mode is synchronized, and only the axis control instruction
reports an error when the motion control axis reaches the limit, but the motion control axis does
not enter the ErrorStop state.

● When this option is not selected, if the motion control axis reaches the limit after a motion control
instruction other than MC_Jog is called, the motion control axis enters the ErrorStop state, and the
instruction reports an error.

12.3.3.12 Hardware Limit Logic

This function is only available for AutoShop 4.0.0.0 matching PCB software of version 3.0.0.0 or later.

Among axis system variables, bphlimit and bnhlimit indicate the hardware positive limit and hardware
negative limit, respectively. When the hardware limit logic is positive, they correspond to the values of
bit1 and bit0 in the object dictionary 0x60fd, respectively. When the hardware limit logic is negative,
they are inverted values of bit1 and bit0 in the object dictionary 0x60fd, respectively.

Motion Control

-408-

The hardware limit logic setting is only reflected in the above variables and has no impact on the limit
stop processing when the servo reaches the limit.

12.3.4 Homing

The homing modes No. 1 to No. 35 specified in the CiA 402 protocol are supported.
The homing settings interface is as follows.

The parameters in the configuration interface are as follows.

Parameter Description

Home signal It is used to choose whether to use a home signal.

When "Unassigned" is selected, it is not used as a mandatory filter.

When "Do not use" is selected, the homing modes that must use a home signal are removed.

When "Use" is selected, the homing modes that do not support a home signal are removed.

Negative limit It is used to select whether to use a hardware left limit signal.

When "Unassigned" is selected, it is not used as a mandatory filter.

When "Do not use" is selected, the homing modes that must use a negative limit signal are
removed.

When "Use" is selected, the homing modes that do not support a negative limit signal are
removed.

Positive limit It is used to choose whether to use a hardware right limit signal.

When "Unassigned" is selected, it is not used as a mandatory filter.

When "Do not use" is selected, the homing modes that must use a positive limit signal are
removed.

When "Use" is selected, the homing modes that do not support a negative limit signal are
removed.

Z signal It is used to choose whether to use a motor Z signal.

When "Unassigned" is selected, it is not used as a mandatory filter.

When "Do not use" is selected, the homing modes that must use a z signal are removed.

When "Use" is selected, the homing modes that do not support a Z signal are removed.

Motion Control

-409-

Parameter Description

Homing direction It is used to set the direction of motion at the beginning of homing.

Forward: The direction of motion is forward when the limit (home) signal input is inactive,
otherwise it is the opposite.

Reverse: The direction of motion is reverse when the limit (home) signal input is inactive,
otherwise it is the opposite.

Homing detection direction The direction of motion when the home signal is reached

Forward: stopping at the edge of the home signal during forward motion.

Reverse: stopping at the edge of the home signal during the reverse motion.

Homing list The homing modes, with a setting range of 1 to 35, are written into the object dictionary 0x6098 in
the form of startup parameters.

Homing mode It is used to set the relative mode or absolute mode in homing mode No. 35, which are written
into the object dictionary 0x60e6 in the form of startup parameters.

Homing velocity The homing velocity is written into the sub-index No. 1 of the object dictionary 0x6099 in the form
of startup parameters after the user units are converted into pulse units.

Homing closing velocity The homing closing velocity is written into the sub-index No. 2 of the object dictionary 0x6099 in
the form of startup parameters after the user units are converted into pulse units.

Homing acceleration The homing acceleration is written into the object dictionary 0x609A in the form of startup
parameters after the user units are converted into pulse units.

Homing timeout time This parameter is exclusive to Inovance drives.

In actual use, the homing mode is defined by several parameters, such as home signal, positive limit,
negative limit, Z signal, homing direction, and homing detection direction, and then selected from the
options of the homing list as needed.

It is worth noting that multiple homing modes are still left after the conditions for homing are filtered,
in which case you can choose an appropriate homing mode from the homing list. For example, if the
parameters are set as in the following table, you can filter out two homing modes.

Signal Value

Home signal "Use"

Negative limit "Do not use"

Positive limit "Use"
Z signal "Use"

Homing direction "Forward"

Homing detection direction "Forward"

According to the above settings, the two homing modes No. 8 and No. 10 can be filtered out, and the
difference between the two is whether the home input signal is active when the homing is completed.

12.4 Online Monitoring

You can obtain the status of an axis through PLC instructions, system variables of the axis, and the
online commissioning interface in the background.

1. Obtaining the axis status through instructions
You can obtain the status of an axis through status instructions such as MC_ReadStatus and MC_
ReadPosition.

Motion Control

-410-

2. Obtaining the status of an axis through system variables
With system variables, you can view the motion status of each axis in real time.

3. Obtaining the axis status through the online commissioning interface

Motion Control

-411-

Through the online commissioning interface, you can view the motion status of each axis in real
time. The online monitoring interface of an axis is shown in the following figure.

The following table shows the data that can be monitored.

Object System Variable Function

Position reference fSetPosition Target position (user unit) when PLC performs path planning

Velocity reference fSetVelocity Target velocity (user unit) when PLC performs path planning

Acceleration reference fSet_Acc_Dec Target acceleration (user unit) when PLC performs path
planning

Torque reference fSetTorque Target torque when PLC performs torque planning (%)

Actual position fActPosition Current position of drive feedback (user unit)

Actual velocity fActVelocity Velocity calculated from actual position (user unit)

Actual acceleration fAct_Acc_Dec Acceleration calculated from actual velocity (user unit)

Actual torque fActTorque Actual torque of drive feedback (%)

Status wPLCOpenState The status of the PLCOpen state machine:

0: PowerOff

1: ErrorStop

2: Stopping

3: StandStill

4: DiscreteMotion

5: ContinuousMotion

7: Homing

8: SynchronizedMotion

Communication wConfigState The status of data communication between the motion
control axis and the drive

0: Init (axis in the initialization state)

1: Configure finish (configuration reading completed)

2: Sync finish (synchronized with EtherCAT tasks)

3: Wait communication (communication with the servo drive
established)

4: Slave ready (initialization completed for the servo drive
controlled by axes)

5: Axis ready (communication established)

Axis error wAxisError The internal error of a motion control axis
Servo error wServoError For a local pulse axis, it is the error code of the axis; for a bus

servo axis, it is the corresponding 0x603F value. See the guide
for the drive used.

Motion bMotionState Indicates whether a motion control axis is currently in
motion.

Motion Control

-412-

Object System Variable Function

Hardware positive
limit

bphlimit Indicates whether the hardware positive limit input for a
motion control axis is valid.

Hardware negative
limit

bnhlimit Indicates whether the hardware negative limit input for a
motion control axis is valid.

Home switch bhomestate Indicates whether the home switch input of a motion control
axis is valid.

Software positive limit bpslimit Indicates whether a motion control axis has reached the
software positive limit.

Software negative
limit

bnslimit Indicates whether a motion control axis has reached the
software negative limit.

12.5 Axis Control Functions

12.5.1 Overview

Basic servo control can be realized through the online commissioning function, such as enable, stop,
jogging, and point-to-point control. After the basic actions are confirmed to be normal, complex logic
control can be realized through motion control instructions. Online commissioning and PLC instruction
control cannot be used at the same time. The restrictions are as follows:

● When the MC_Stop instruction is called to make an axis enter the Stopping state, the axis cannot
enter the online commissioning mode through the background.

● The MC_Power instruction and the enable function in online commissioning are in a OR
relationship, that is, when either of them is valid, the axis can be enabled.

● Motion instructions, such as MC_MoveAbsolute, that have a lower priority than the online
commissioning are invalid when an axis is in the online commissioning mode. In this case, the
instructions will report an error if called, but the axis will not enter the fault state.

12.5.2 Online Commissioning

The functions that can be achieved by online commissioning are as follows:

Function System Variable Description

Entering the online
commissioning mode

bEnterDebug Makes an axis enter the online commissioning mode, after which the PLC
will not continue to execute motion control instructions.

Enable bPowerOn
Similar to the way to call the MC_Power instruction to put an axis in an
enabled or disabled state.

Reset bReset
Resets a fault that occurs on an axis. This instruction is equivalent to the
MC_Reset instruction.

Stop bStop Stops the motion of an axis. This instruction is equivalent to the MC_Stop
instruction.

Homing bHome
Performs a homing action. This instruction is equivalent to the MC_Home
instruction.

Setting the current
position bSetPos

Sets the current position of an axis. This instruction is equivalent to the
MC_SetPosition instruction.

Jog bJogP/bJogN Implements the jog function. This instruction is equivalent to the MC_Jog
instruction.

Motion Control

-413-

Function System Variable Description

Motion Type bDebugMotionType

Selects a motion mode from the following options:

1: Absolute positioning

2: Relative positioning

3: Continuous motion

5: Reciprocating motion

6: Torque mode

Relative positioning bAbsPos
Implements the relative positioning. This instruction is equivalent to the
MC_MoveRelative instruction.

Absolute positioning bRelPos
Implements the absolute positioning. This instruction is equivalent to the
MC_MoveAbsolute instruction.

Continuous motion bVelocity
Implements continuous motion at a certain velocity. This instruction is
equivalent to the MC_MoveVelocity instruction.

Reciprocating motion bRevPos
Implements the reciprocating motion between two absolute positions.
This instruction is equivalent to two MC_MoveAbsolute instructions in a
loop.

Torque control bTorque
Implements the torque control. This instruction is equivalent to the MC_
MoveTorque instruction.

Operation steps for online commissioning

1. Entering the online commissioning mode
As shown in the following figure, click "Enter online debug" to put an axis in the online
commissioning mode.

After receiving the instruction to enter the online commissioning mode, the background will do the
following checks:

● If the current axis is in the Stopping state, the axis cannot enter online commissioning mode.

Motion Control

-414-

● If the current axis is already in motion, the user will be asked whether to enter the online
commissioning mode. If the axis is forced to enter the online commissioning mode, the original
motion state will be interrupted and the axis motion will stop.

● If the axis is already enabled when entering the online commissioning mode, the axis remains en-
abled after entering the mode.

2. Basic operations

● Enable: After an axis enters the online commissioning mode, click "Enable" to make the axis enter
the enabled state, and the execution effect is equivalent to the following instructions.

Note
The enable-control in online commissioning and the MC_Power instruction called in the PLC program jointly control
the enable-state of the axis. When either of the inputs is active, the axis is enabled.

● Preset position: When an axis is in non-motion mode, click "Settings" to write the value in the
preset position field to the axis. The execution logic is as follows:

● Homing control: When an axis is in the Standstill state, click "Homing", the axis will control the
servo drive to perform the homing operation. When the homing is completed, the value set in the
"Home offset" field will be written into the servo drive. The execution logic is as follows:

● Jog: When an axis is in the Standstill state, click "Jog+" to move the axis in the forward direction
according to the target velocity set in the "Forward jog" field. Click "Jog–" to move the axis in the

Motion Control

-415-

opposite direction according to the target velocity set in the "Reverse jog" field. The execution
logic is as follows:

● Reset: When an axis is in the ErrorStop state, click "Reset" in attempt to reset the axis faults. If the
servo drive fault cannot be reset, the reset may fail. The execution logic is as follows:

● Stop: There are two stop buttons in the interface, both with the same function, and both for
stopping the motion of an axis. The deceleration used is the limit deceleration in the mode/
parameter settings of an axis. The execution logic is as follows:

3. Motion modes
A motion mode can only be set when an axis is enabled.

● Absolute positioning
After the control mode is set to absolute positioning, you can set five parameters: target position,
target velocity, acceleration, deceleration, and curve type. Click the start button to start absolute
positioning according to the above parameters. The execution logic is as follows:

Motion Control

-416-

● Relative positioning
After the control mode is set to relative positioning, you can set five parameters: target position,
target velocity, acceleration, deceleration, and curve type. Click the start button to start relative
positioning according to the above parameters. The execution logic is as follows:

● Continuous motion
After the control mode is set to continuous motion, you can set four parameters: target velocity,
acceleration, deceleration, and curve type. Click the start button to start absolute positioning
according to the above parameters. The execution logic is as follows:

● Reciprocating motion
After the control mode is set to the reciprocating motion, you can set two sets of target positions,
target velocities, acceleration rates, deceleration rates, and curve types. Click the start button,
and the axis will first locate the target position 1 according to the set parameters, and then locate
the target position 2, followed by reciprocating. The execution logic is as follows:

Motion Control

-417-

● Torque mode
After the control mode is set to the torque mode, you can set three parameters: target torque,
torque slope, and limit velocity. Click the start button to start absolute positioning according to
the above parameters. The execution logic is as follows:

Motion Control

-418-

12.5.3 Instruction Control Rules

Motion of axes can be controlled in the PLC through instructions. The rules for calling instructions are
as follows.

● Instructions do not need to be instantiated.
● The axis number in the instruction is the unique identifier to access the axis.
● The priority of motion instructions is generally lower than the priority of online commissioning

mode.
● Floating-point parameters in the instructions must meet the precision range of floating-point

numbers, which generally contain 7 valid digits and can be set to 9999999 at the maximum.

12.5.4 Limit Handling

Two limit detection methods are supported: software limit detection and hardware limit detection.

● To ensure correct processing of hardware limit signals, 0x60Fd must be configured in the process
data.

● Software limit processing is only valid for calling position and velocity instructions in linear mode. It
is invalid for calling homing and torque instructions.

● If the absolute target position of the called position instruction is within the software limit, the
instruction can be executed. If the absolute target position exceeds the software limit, the
execution of the positioning instruction is interrupted and the axis stops at the software limit.

● When a velocity instruction is called, if the current velocity of the axis exceeds the software limit,
the execution of the velocity instruction is interrupted and the axis stops at the software limit.

● If the axis position has exceeded the positive (negative) limit, the axis can only run in the negative
(positive) direction.

The following table lists system variables of limits.

Variable Function
bphlimit Positive limit input status of hardware

bnhlimit Negative limit input status of hardware

bpslimit Software positive limit status

bnslimit Software negative limit status

12.5.5 Positioning Curve

Two types of velocity curves are supported: T-shape acceleration/deceleration curve, and 5-segment S-
shape acceleration/deceleration curve. The curve type is determined by the CuriveType parameter in
the instructions.

When the axis reaches the limit or enters the ErrorStop state and decelerates to stop upon a fault, the
axis decelerates to stop according to the T-shape curve.

T-shape velocity curve

When CuriveType in the instruction is 0, the axis accelerates or decelerates according to the T-shape
curve. In the T-shape velocity curve, the axis plans the curve according to the target position, target

Motion Control

-419-

velocity, target acceleration rate, and target deceleration rate. The actual acceleration/deceleration
rate is fixed during acceleration/deceleration. The following figure shows a positioning curve.

● Target position: Indicates the final position of the axis in the absolute positioning instruction, in the
unit of Unit (user unit)

● Target velocity: Indicates the maximum velocity of the axis, in the unit of Unit/s (user unit/second).
● Target acceleration rate: Indicates the amount of change in velocity per second when the axis

accelerates, in the unit of Unit/t2.
● Target deceleration rate: Indicates the amount of change in velocity per second when the axis

decelerates, in the unit of Unit/t2.
● Assume that the axis initial velocity is Vs, target velocity is Vt, and target acceleration rate is Acc,

then the acceleration time is:
Tacc = (Vt – Vs)/Acc

● Assume that the axis initial velocity is Vs, target velocity is Ve, and target deceleration rate is Dec,
then the deceleration time is:
Tdec = (Vs – Ve)/Dec

S-shape velocity curve

When CuriveType in the instruction is 1, the axis accelerates or decelerates according to the S-shape
curve. In the 5-segment S-shape curve, the axis plans the curve according to the target position, target
velocity, target acceleration rate, and target deceleration rate, of which the target acceleration rate
and target deceleration rate refer to the maximum accelerate rate and deceleration rate the axis can
reach. The following figure shows a positioning curve.

Motion Control

-420-

The 5-segment S-shape velocity curve is divided into 5 stages based on the acceleration rate state:
increasing acceleration, decreasing acceleration, constant speed, increasing deceleration, and
decreasing deceleration. The constant acceleration and constant deceleration stages do not exist.
During variable acceleration stages such as increasing acceleration or increasing deceleration, the
actual Jerk is calculated by the PLC and cannot be set by users.

● Target position: Indicates the final position of the axis in the absolute positioning instruction, in the
unit of Unit (user unit)

● Target velocity: Indicates the maximum velocity of the axis, in the unit of Unit/s (user unit/second).
● Target acceleration rate: Indicates the amount of change in velocity per second when the axis

accelerates at variable velocities, in the unit of Unit/t2. In the velocity curve, the acceleration rate at
the moment (t2) when the stage changes from increasing acceleration to decreasing acceleration is
certainly the target acceleration rate.

● Target deceleration rate: Indicates the amount of change in velocity per second when the axis
decelerates at variable velocities, in the unit of Unit/t2. In the velocity curve, the deceleration rate at
the moment (t5) when the stage changes from decreasing acceleration to decreasing deceleration
is certainly the target deceleration rate.

● Assume that the axis initial velocity is Vs, target velocity is Vt, and target acceleration rate is Acc,
then the acceleration time is:
Tacc = 2 x (Vt – Vs)/Acc

●

Assume that the axis initial velocity is Vs, target velocity is Ve, and target deceleration rate is Dec,
then the deceleration time is:

Tdec = 2 x (Vs – Ve)/Dec

Motion Control

-421-

12.6 Dragging Motion Control Axes

You can directly drag motion control axes to adjust their configuration sequences.

Note
This function is available in AutoShop V4.4.0.0 and PCB software V5.0.0.0 or later versions.

Example

Create a project containing four bus servo axes with Axis_1 as the cam master axis and Axis_0 as the
cam slave axis. When the cam position type is 1 (Position set in the current period), an error is reported
after the MC_CamIn instruction is called. The fault code is 9251, indicating that the configured master
axis address is equal to or greater than the slave axis address. In this case, you can drag motion control
axes to adjust their sequences to eliminate the error as follows.

Hover the pointer over Axis_0, hold down the left mouse button, drag Axis_0 to cover Axis_1, and then
release the mouse. The configuration positions of Axis_0 and Axis_1 are changed. The servos bound
with Axis_0 and Axis_1 remain unchanged.

Motion Control

-422-

Download the adjusted configuration to the PLC and call the MC_CamIn instruction again. Then, no
error will be reported.

12.7 Modifying Axis Configuration Parameters Using Instructions

You can modify configuration parameters of an axis in the PLC program to meet different application
requirements, such as software limit and rotation cycle in ring mode.

Function

● To modify configuration parameters of an axis in the PLC program, you need to use the system
structure variable _sCfgAxis of the axis configuration to set parameters. The setting of this structure
is not retentive upon power failure.

● After the PLC is powered on, this structure variable is initialized based on the axis configuration in
the software background.

● After modifying the value of the initialized variable based on application requirements, call the MC_
SetAxisConfigPara instruction. Then, the setting takes effect.

Motion Control

-423-

Note
The axis configuration parameters are variables that are not retentive at power failure. After the PLC is restarted,
the previously set values are lost. Therefore, set the values every time the PLC is started.

Table 12–3 Definitions of _sCfgAxis structure variables

Variable Data Type Description

dPlusePreCycle DINT Number of pulses per revolution of the motor/encoder

fDistancePreCycle REAL Distance per revolution of the worktable

dNumerator DINT Gear ratio numerator
dDenominator DINT Gear ratio denominator

bDirection BOOL

Direction

OFF: Forward

ON: Reverse

bVirtualMode BOOL

Virtual axis mode

OFF: Invalid

ON: Valid

bSoftLimitEnable BOOL

Software limit enable control

OFF: Disabled

ON: Enabled

bEnterErrorStop BOOL

Not entering ErrorStop state upon an axis fault

OFF: Disabled

ON: Enabled

bPLimitTerminalPolarity BOOL

Forward limit polarity selection

OFF: Positive logic

ON: Negative logic

bNLimitTerminalPolarity BOOL

Negative limit polarity selection

OFF: Positive logic

ON: Negative logic

bHomeTerminaPolarity BOOL

Home signal polarity selection

OFF: Positive logic

ON: Negative logic

iEncoderMode INT

Encoder mode (valid for bus servo axis)

0: Absolute

1: Incremental

iLineRotateMode INT

Selection of linear or rotary mode

0: Linear

1: Rotary

fPLimit REAL Positive limit in linear mode
fNLimit REAL Negative limit in linear mode

fRotation REAL Rotation period in rotary mode

fLimitDeceleraion REAL Limit deceleration rate
fErrorStopDeceleration REAL Deceleration rate at axis fault

fFollowErrorWindow REAL Following error threshold

fInVelocityWindow REAL Velocity reach threshold

Motion Control

-424-

Variable Data Type Description

fMaxVelocity REAL Max. velocity

fMaxJogVelocity REAL Max. jog velocity

fMaxAcc REAL Max. acceleration rate

fMaxPTorque REAL
Max. positive torque (bus servo axis)

Only used for instruction parameter inspection, not
delivered to servo

fMaxNTorque REAL
Max. negative torque (bus servo axis)

Only used for instruction parameter inspection, not
delivered to servo

iHomeMethod INT
Homing mode, local pulse axis

Options are 17 to 30 and 35.

fHomeVelocity REAL Homing velocity, valid for local pulse axis

fHomeApproachVelocity REAL Homing approaching velocity, valid for local pulse axis

fHomeAcceleration REAL Homing acceleration rate, valid for local pulse axis

dHomeTimeOut DINT Homing timeout time, valid for local pulse axis

iHomePositionMode INT

Homing position mode selection, local pulse axis

0: Absolute homing

1: Relative homing

dTouchProbeID1 DINT

ID of the probe terminal 1 (Modbus address)

–2: Disabled

–1: Reserved

dTouchProbeID2 DINT

ID of the probe terminal 2 (Modbus address)

–2: Disabled

–1: Reserved

iPluseMethod INT

Pulse output mode (valid for local pulse axis)

3: Phase A/B

4: Pulse + direction

5: CW/CCW

dPLimitTerminalID DINT

ID of positive limit signal (Modbus address)

–2: Disabled

–1: Reserved

dNLimitTerminalID DINT

ID of negative limit signal (Modbus address)

–2: Disabled

–1: Reserved

dHomeTerminalID DINT

ID of home signal (Modbus address)

Only X0 to X7 are supported.

–2: Disabled

–1: Reserved

Example

1. Create a network consisting of H5Us and IS620Ns, enable EtherCAT communication, and add a
motion control axis Axis_0 with default parameters.

Motion Control

-425-

2. Compile the PLC program, modify the mode of Axis_0 to rotary, set the rotation period to 240, and
then call the MC_SetAxisConfigPara instruction to make the settings take effect.

3. Connect one IS620N to the EtherCAT network port of the controller, and compile and download the
program. The following figure shows the running effect.

Motion Control

-426-

12.8 Fault Categories

Axis faults are divided into instruction faults, axis faults, and drive faults.

● Instruction faults are faults of MC axis control instructions due to reasons such as inappropriate
instruction parameter settings or change to the PLCOpen state machine during axis running. You
can obtain the fault codes based on ErrorID in the failed instructions.

● Axis faults are faults of axes, such as excessive following error. You can view axis fault codes in four
ways. Method 1: On the "Online debug" page of the background, view the fault codes in the "Axis
fault" column. Method 2: Obtain fault codes based on AxisErrorID in the MC_ReadAxisError
instruction. Method 3: Obtain fault codes based on wAxisError in the axis system variables. Method
4: View fault codes on the "Fault Diagnosis" page.

● Drive faults are faults of the EtherCAT bus drive or local pulse output axis. To view the fault codes of
the EtherCAT bus drive, you must configure 0x603F in the PDO mapping and associate it with the
axis. You can view drive faults in three ways. Method 1: On the "Online debug" page of the
background, view the fault codes in the "Servo error" column. Method 2: Obtain fault codes based
on ServoErrorID in the MC_ReadAxisError instruction. Method 3: Obtain fault codes based on
wServoError in the axis system variables.

High-speed Counter

-427-

13 High-speed Counter

13.1 Introduction to High-speed Counter Axes

In AutoShop software and engineering applications, a counter is used as an encoder axis to enable
management, and the counter associated with an axis is known as a counter axis.
AutoShop supports 4-axis 32-bit high-speed counters, which can realize phase AB frequency
multiplication by 1/2/4, CW/CCW, pulse+direction, and single-phase counting. Counting signal sources
are external pulse input or internal 1 ms/1 μs clock counting, which can be used to preset and latch the
counter in combination with other input signals.

13.2 Creating Counter Axes

Before using a counter in AutoShop, you must associate the counter with an axis.

1. In the column "Project Manager", right-click a motion control axis under "Config" and choose "Add
Axis" to create a motion control axis.

2. Double-click the added axis (Axis_0 is selected in the following figure). On the "Basic setting"
interface displayed, select "Local encoder axis" as the axis type, and select "High Speed Counter" as
the input device to associate the axis and counter. The axis number is used in the program as an axis
identifier to control the corresponding counter axis.

13.3 Counter Axis User Unit and Conversion

High-speed counters use pulse units when decoding encoder signals, and use common measurement
units for counter instructions such as millimeters, degrees, and inches, which are called user units
(Unit). Through unit conversion, the number of pulses can be converted into user units (Unit), which

High-speed Counter

-428-

can be defined as equipment-related units (such as millimeters and revolutions) according to actual
applications.

The following table lists parameters that need to be set for unit conversion.

Parameter Function
Number of pulses in one turn by motor/encoder Set the number of pulses required for the motor to rotate one

turn according to the encoder resolution.

Gear change mechanisms in use or not Specify whether gear change mechanisms are in use or not.

Amount of movement in one turn by motor/encoder The workpiece movement amount per turn of the motor when
no gear change mechanism is in use

Amount of movement of the worktable in a circle The workpiece movement amount per turn of the worktable
when gear change mechanisms are in use

Gear ratio numerator Set a gear ratio on the workpiece side.

Gear ratio denominator Set a gear ratio on the motor side.

When a servo motor is connected to a screw rod through a reducer to drive the worktable and gives
feedback about the worktable position to an encoder counter through the PLC, if the counter counts
the encoder in pulses, the number of pulses shall be the unit, and if the counter axis is used to
represent the worktable position, then millimeter shall be the unit.

Therefore, in the program, the Unit is used uniformly as the user unit of the counter axis.

The conversion rule between the user unit (Unit) and the pulse is as follows:

High-speed Counter

-429-

In the unit conversion setting, set the relevant parameters according to the actual device.

1. Number of pulses in one turn by motor/encoder: "16#" in the input box indicates that hexadecimal
numbers are used.
If the number of pulses in one turn by the encoder is 10000, whose hexadecimal equivalent is 2710,
input 16#2710.

2. Working stroke setting: The working stroke can be set with or without gear change mechanisms.

● Without gear change mechanisms
When gear change mechanisms are not in use, the conversion equation from user unit to pulse
unit is as follows.

High-speed Counter

-430-

If one revolution of the encoder corresponds to one revolution of the working axis and the user
unit (Unit) is revolution, then the working stroke of the motor/encoder per revolution shall be set
to 1.

Take the Inovance 20-bit encoder as an example. The set parameters are as follows.

Number of pulses in one turn by motor/encoder = 1048576

Amount of movement in one turn by motor/encoder = 1

Then, when the target displacement given by the relative positioning instruction is 10, the actual
number of pulses sent by the motion control axis is 10485760, then the motor rotates by 10
revolutions.

● With gear change mechanisms
Typical working condition in linear mode is shown in the following figure.

Where, (1) is the servo motor, (3) is the workpiece, (4) is the gear ratio numerator, and (5) is the
gear ratio denominator.

The calculation equation from user unit to pulse unit is as follows.

If a servo motor is connected to a screw rod through a reducer to drive the worktable, the
working stroke per revolution of the screw rod is 5 mm, and the reduction ratio is 20:10. The
setting is as follows.

Typical working condition in ring mode is shown in the following figure.

High-speed Counter

-431-

Where, (1) is the servo motor, (3) is the workpiece, (4) is the gear ratio numerator, and (5) is the
gear ratio denominator.

The calculation equation from user unit to pulse unit is as follows.

13.4 Setting Working Modes

13.4.1 Linear Mode

The counter axis moves between the negative and positive limits. After the counter axis reaches the
limits, pulses in the same direction are still input; the counter axis reports an overflow while the
counter axis position remains unchanged. After the counter axis reports an overflow, input the reverse
pulses. The counter axis counts in reverse, and the overflow error is removed.

In linear mode, you can set the negative and positive position limits of the counter axis in the interface,
with user unit (Unit) as the position unit. The negative limit must be less than or equal to 0, and the
positive limit must be greater than or equal to 0.

Since the high-speed counter is a 32-bit counter, the negative and positive limits must be within the
32-bit integer range [–2147483648, +2147483647] after being converted to pulse units.

In linear mode, the high-speed counter operates in the closed interval of [negative limit, positive limit].
When the direction is negative, the count value decreases in the negative direction. After the negative
limit is reached, the count value no longer decreases. When the direction is positive, the count value
increases in the positive direction. After the positive limit is reached, the count value no longer
increases.

High-speed Counter

-432-

CW pulse counting

In linear mode, input CW pulses. After the incremental count of the counter axis position reaches the
limit, keep inputting CW pulses. The counter axis reports a positive overflow error, and the counter axis
position value remains unchanged. Input CCW pulses. The counter axis position counts down, and
positive overflow error is removed.

CCW pulse counting

In linear mode, input CCW pulses. After the decremental count of the counter axis position reaches the
limit, keep inputting CCW pulses. The counter axis reports a negative overflow error, and the counter
axis position value remains unchanged. Input CW pulses. The counter axis position counts up, and the
negative overflow error is removed.

High-speed Counter

-433-

13.4.2 Rotary Mode

The position of the counter axis changes cyclically during the rotation cycle. In case of incremental
count, the counter axis position turns 0 after reaching the maximum value in the rotation cycle; in case
of decremental count, the counter axis position decreases from the maximum value in the rotation
cycle after turning 0.

In rotary mode, you can set the rotation cycle of the counter axis in the interface, with user unit (Unit)
as the cycle unit.

Since the high-speed counter is a 32-bit counter, the rotation cycle must be within the 32-bit integer
range [–2147483648, +2147483647] after being converted to pulse units.

High-speed Counter

-434-

13.5 Setting Counter Parameters

13.5.1 Overview

Parameter settings mainly involve the count mode, probes, presetting, and position output
comparison function.

13.5.2 Count Modes

13.5.2.1 Overview

Local encoder axes support multiple signal counting modes, including phase A/B (frequency
multiplication by 1/2/4), CW/CCW, pulse+direction, and single-phase counting.

Signal sources: Different signal sources can be selected depending on the counting mode.

The supported input ports of signal sources in various counting modes are shown in the following
table. One input port of signal source can be selected for different local encoder axes.

Port
Mode

X0 X1 X2 X3 Internal 1 ms Internal 1 μs

Phase A/B Phase A Phase B Phase A Phase B x x
CW/CCW CW CCW CW CCW x x
Pulse+direction Pulse Direction Pulse Direction x x
Single-phase
counting Pulse Pulse Pulse Pulse Pulse Pulse

Note
When two input signals are required in the selected working mode, X0 and X1 make up one group of input signals,
while X2 and X3 make up the other group.

The above counting modes and signal sources can be arbitrarily selected for the four counters, and
repeatedly used for different counters.

High-speed Counter

-435-

13.5.2.2 Phase A/B Mode

In phase A/B mode, the encoder generates two orthogonal phase pulse signals with a phase difference
of 90°, that is, phase A signal and phase B signal. When the phase A signal leads the phase B signal, the
counter counts up; when the phase B signal leads the phase A signal, the counter counts down.

Phase A/B encoder wiring diagram

Figure 13-1 Sink Input Wiring

Figure 13-2 Source Input Wiring

The phase A/B pulse can be set to operate in frequency multiplication by 1, 2, or 4.

● In the mode of phase A/B frequency multiplication by 1, only the rising edge of phase A pulse is
counted as shown in the following figure.

High-speed Counter

-436-

● In the mode of phase A/B frequency multiplication by 2, the rising and falling edges of phase A
pulse are counted as shown in the following figure.

● In the mode of phase A/B frequency multiplication by 4, the rising and falling edges of the phase A
pulse and the phase B pulse are counted as shown in the following figure.

13.5.2.3 CW or CCW Mode

Clock Wise (CW) is the forward pulse signal, and Counter Clock Wise (CCW) is the reverse pulse signal.
When the encoder is forward running, CW pulse signals are output; when the encoder is reverse
running, CCW pulse signals are output.

High-speed Counter

-437-

When the local encoder axis operates in this count mode, the high-speed counter counts up the CW
signals and counts down the CCW signals, as shown in the following figure.

13.5.2.4 Pulse+Direction Mode

In this mode, when the direction signal is ON, the high-speed counter counts up the pulse signals;
when the direction signal is OFF, the high-speed counter counts down the pulse signals, as shown in
the following figure.

13.5.2.5 Single-phase Count

In this mode, the high-speed counter counts up the pulse signals. The position count is added with 1
when the rising edge of a pulse is input.

13.5.3 Probe Terminal Settings

Each counter supports two external inputs to latch the current value of the counter to realize the probe
function. Enable the counter axis position latch of the external inputs by ticking the "Probe enable".
The input terminal can be any of X0 to X7 inputs.

High-speed Counter

-438-

When the probe is enabled, read the probe position of the counter axis through the function block
instruction HC_TouchProbe.

Note: For the probe functions supported by the Easy series models, see the specific model for more
information.

Series Local Encoder Axis Local Pulse Axis
Easy301 series Each axis has only two probes. Dual-axis mode: 2 probes

Single-axis mode: Y0, Y1, Y2, and Y3
support two probes.

Other models of the Easy series Each axis has only one probe. Dual-axis mode: 2 probes

Single-axis mode: Probes are not
supported.

13.5.4 Preset Terminal Settings

Enable the preset counter value of external inputs by ticking "Preset enable". The input terminal can
be any of X0 to X7 inputs, with rising edge or falling edge as the trigger condition.

When the preset function is enabled, the encoder axis position is preset by external inputs through the
function block instruction HC_Preset.

13.5.5 Comparison Output Terminal Settings

After "Comparison output enable" is selected, the hardware output can be realized when the positions
are equal in comparison without software processing, featuring high real-time performance and
microsecond-level output responses.

● After the comparison output function is enabled, in combination with function block instructions,
the output controlled by the hardware circuit when the positions are equal in comparison is ON.
The output terminal can be any of Y0 to Y3, and the pulse width when the output is ON can be
measured in time units or user units (Unit).

● Each local encoder axis is equipped with one comparison output function, and the input terminal
and output pulse width can be configured as needed.

● After configuration, the axis position comparison output is realized through the function block
instructions HC_Compare, HC_ArrayCompare, and HC_StepCompare.

● When "ms" is selected as the unit, the time range for setting is 0.1 ms to 6553.5 ms. When "Unit" is
selected as the unit, make sure that the set value is within the range of 1 to 65535 after being
converted to pulse units.

The comparison output is directly output through the hardware control port, instead of software
processing. Therefore, status of comparison output is not available in the Y element in the program.

High-speed Counter

-439-

The Y soft element and the comparison output control the output port in an OR relationship. If the Y
element is continuously controlled to ON, the actual port output remains ON.

13.6 Counter Axis Instruction Application (H5U)

13.6.1 Overview

After a counter axis is set in AutoShop, the counter axis can be used in combination with function block
instructions to implement functions such as axis position counting/velocity measurement, axis
position presetting, and axis position latching and comparison.

13.6.2 Axis Position Count and Speed Measurement Instructions

The HC_Counter instruction can count the position and measure the velocity of the counter axis.

The counter axis position value (unit: Unit) is set according to the counter axis mode and changes
within the range of the mode.

The counter axis velocity is the current real-time velocity (unit: Unit/s). The minimum velocity that can
be measured by the counter axis is the velocity corresponding to 1 pulse of the counter within 1s. If 1
pulse of the counter corresponds to 0.01 Unit, the minimum velocity that can be measured is 0.01 Unit/
s.

The parameter Invert in the instruction can be set to change the count direction. The modification on
Invert takes effect only after this function block instruction is enabled again. The relationship between
the Invert setting and the count direction is as follows.

High-speed Counter

-440-

Invert Phase A/B Pulse+direction CW/CCW Single-phase counting

0 Incremental count if phase
A leads phase B

Decremental count if
Phase B leads Phase A

Decremental count for a low-level
direction signal

Incremental count for a high-level
direction signal

Incremental count for
phase A

Decremental count
for phase B

Incremental count

1 Decremental count if
phase A leads phase B

Incremental count if phase
B leads phase A

Incremental count for a low-level
direction signal

Decremental count for a high-level
direction signal

Decremental count
for phase A

Incremental count for
phase B

Decremental count

13.6.3 Axis Position Preset Instructions

The instruction HC_Preset assigns the counter axis position according to the preset conditions.

The preset condition TriggerType can be set to the trigger by the rising edge of the instruction or by
external X input.

TriggerType Definition
0 Trigger by the rising edge of the instruction flow

1 Trigger by the rising edge of the external X

2 Trigger by the falling edge of the external X

3 Trigger by the rising or falling edge of the external X

When the preset condition is set to the trigger by external X input, you need to tick "Preset function" in
counter parameter settings and select the "Input terminal" and "Trigger Condition". The input terminal
can be any of X0 to X7, with rising edge or falling edge as the optional trigger condition.

13.6.4 Probe Instructions

The function block instruction HC_TouchProbe can latch the counter axis position value when the
external input trigger condition is valid.

Each counter axis supports two probes. During use, you need to tick the corresponding probe function
in counter parameter settings and select "Input terminal" and "Trigger Condition". The input terminal
can be any of X0 to X7.

High-speed Counter

-441-

The parameter ProbeID specifies the number of the probe used by the counter.

ProbeID Definition
0 Indicates that probe 1 is used.
1 Indicates that probe 2 is used.

The parameter TriggerEdge specifies the probe trigger edge. The rising edge trigger position is latched
in the output parameter PosPosition, and the falling edge trigger position is latched in the output
parameter NegPosition.

TriggerEdge Definition

1 Trigger by the rising edge of the external X

2 Trigger by the falling edge of the external X

3 Trigger by the rising or falling edge of the external X

TriggerMode in the instruction can be set to the single trigger or continuous trigger.

● If the single trigger mode is used, when the function block instruction flow and the external input
trigger condition are valid, the counter axis position is latched once, and the Done signal is output.
The counter axis position is latched in real time based on the trigger edge, which is not affected by
program execution. During instruction execution, affected by the scan cycle, when the program
scans and runs to the latched instruction, it updates the latched position to the output parameter
of the instruction.

● If the continuous trigger mode is used, when the function block instruction flow and the external
input trigger condition are valid, the counter axis position is latched, and the Done signal that is
active for one scan cycle is output. When the Done signal becomes OFF and the external input
trigger condition is valid, the counter axis position continues to be latched and the Done signal that
is active for one scan cycle is output. During the scan cycle in which the Done signal is active, if the
external input trigger condition is valid, the counter axis position is not latched at this time.

High-speed Counter

-442-

● When the dual-edge trigger mode is used, the Done signal is output after the instruction is triggered
on both the rising and falling edges to complete the latch. In single trigger mode, the Done signal
remains active until the instruction execution is completed; in continuous trigger mode, the Done
signal is active for one scan cycle, and the latch signal is not responded within the scan cycle when
the Done signal is active.

13.6.5 Comparison Instructions

The instructions HC_Compare, HC_StepCompare, and HC_ArrayCompare can compare the counter
axis position with a single position, equally-spaced positions continuously, or multiple positions
continuously.

HC_Compare

The instruction compares the counter axis position with a single position. When the instruction flow is
active, the Done signal is output after the counter axis position reaches the comparison position.

High-speed Counter

-443-

HC_StepCompare

This instruction compares the counter axis position with equally-spaced positions continuously. When
the instruction flow is active, the counter axis position is compared with the position specified by
StartPosition. When they are equal, the comparison position increases or decreases by a value
specified by Step and then is compared with the counter axis position. The Done signal of one cycle is
not output after they are equal in each comparison, but after the last comparison position is
compared.

● If the StartPosition is less than the EndPostion, when the positions are equal in each comparison,
the comparison position increases by a value specified by Step. When the current comparison
position added with the value specified by Step is greater than the EndPosition, the current
comparison position is the last one.

● If the StartPosition is greater than the EndPostion, when the positions are equal in each
comparison, the comparison position decreases by a value specified by Step. When the current
comparison position minus the value specified by Step is less than the EndPosition, the current
comparison position is the last one.

● The output parameter NextIndex indicates the index of the next comparison point, that is, the
number of completed comparison points.

High-speed Counter

-444-

HC_ArrayCompare

This instruction compares the counter axis position with multiple positions in an array continuously.
When the instruction flow is active, the counter axis position is compared with the first position in the
array. If they are equal, the counter axis position is compared with the next position value in the array.
After the last comparison position is compared, the Done signal is output.

● ArrayLength in the instruction specifies the array length. After all the positions in the array are
compared, the Done signal is continuously output and the comparison with multiple positions is
completed.

● The output parameter NextIndex indicates the index of the next comparison point, that is, the
number of completed comparison points.

13.6.6 High-speed Hardware Comparison Output

The counter axis can realize the position comparison hardware output. When the counter axis and the
comparison position are equal, the output directly controlled by the hardware circuit is ON, and the
output delay is less than 1 μs.

Setting the comparison output function of the counter axis

In the parameter setting interface of the counter axis, tick "Comparison output enable".

The output terminal can be any of Y0 to Y3. The output width is set as the pulse width when the output
is ON, for which the unit can be time unit or user unit (Unit).

High-speed Counter

-445-

Note
When the unit of pulse output width is set to time, the time accuracy of pulse output width is 100 μs, and the maxi-
mum output width is 6500 ms. When the unit of pulse output width is set to user unit (Unit), the maximum output
width is equivalent to 65535 pulses.

Enabling the OutputEnable parameter in the comparison instructions

Use MC_Compare, MC_StepCompare, and MC_ArrayCompare comparison instructions to set
OutputEnable to 1, that is, associate hardware outputs when the instruction executes the comparison
for equality.

When the instruction executes the comparison for equality, the output terminal set directly through
the control of hardware circuit is ON, and the output turns OFF after the continuous width output.

High-speed Counter

-446-

Note
High-speed comparison hardware output is directly output through the hardware control port. Therefore, status of
comparison output is not available in the Y element in the program. The Y element and the comparison output con-
trol the output port in an OR relationship. If the Y element is continuously controlled as ON, the actual port output
remains ON.

13.6.7 Comparison Interruption

When the counter axes are compared for equality, comparison interruption can be associated and the
interrupt subprogram can be executed. The operation steps are as follows.

1. Under the item "Programming" in "Project Manager", right-click the "POU", and select "Insert
interrupt subprogram".

2. Right-click the inserted interrupt subprogram (such as INT_001 in the figure above) and select
"Properties" to open the interrupt subprogram settings page as shown in the following figure.

High-speed Counter

-447-

3. Click the icon after the "Interrupt Event" field, select "Comparison interrupt", and then write
interrupt subprograms in INT_001.

4. Call MC_Compare, MC_StepCompare, and MC_ArrayCompare instructions in the main program or
subprogram to associate the parameter InterruptMap with the comparison interruption number,
that is, setting the parameter InterruptMap as the comparison interruption number. EI is enabled in
the program, and when the instruction executes the comparison for equality, the comparison of
corresponding interrupt subprograms will be triggered.

High-speed Counter

-448-

13.7 Counter Axis Instruction Application (Easy)

13.7.1 Overview

After a counter axis is set in AutoShop, the counter axis can be used in combination with function block
instructions to implement functions such as axis position counting/velocity measurement, axis
position presetting, and axis position latching and comparison.

13.7.2 Axis Position Count and Speed Measurement Instructions

The instruction ENC_Counter implements position counting and velocity measurement of the counter
axis.

The counter axis position value (unit: Unit) is set according to the counter axis mode and changes
within the range of the mode.

The counter axis velocity is the current real-time velocity (unit: Unit/s). The minimum velocity that can
be measured by the counter axis is the velocity corresponding to 1 pulse of the counter within 1s. If 1
pulse of the counter corresponds to 0.01 Unit, the minimum velocity that can be measured is 0.01 Unit/
s.

The parameter Direction in the instruction can be set to change the count direction. The modification
on Direction takes effect only after this function block instruction is enabled again. The relationship
between the Direction setting and the count direction is as follows.

Direction Phase A/B Pulse+direction CW/CCW Single-phase
counting

0 Incremental count if
phase A leads phase B

Decremental count if
phase B leads phase A

Decremental count for a low-
level direction signal

Incremental count for a high-
level direction signal

Incremental count
for phase A

Decremental count
for phase B

Incremental count

1 Decremental count if
phase A leads phase B

Incremental count if
phase B leads phase A

Incremental count for a low-
level direction signal

Decremental count for a high-
level direction signal

Decremental count
for phase A

Incremental count
for phase B

Decremental count

High-speed Counter

-449-

13.7.3 Axis Position Preset Instructions

The instruction ENC_Preset assigns the counter axis position according to the preset conditions.

The preset condition TrigerMode can be set to the trigger by the rising edge of the instruction or by
external X input.

TrigerMode Definition

0 Trigger by the rising edge of the instruction flow

1 Trigger by the rising edge of the external X

2 Trigger by the falling edge of the external X

3 Trigger by the rising or falling edge of the external X

When the preset condition is set to the trigger by external X input, you need to tick "Preset function" in
counter parameter settings and select the "Input terminal" and "Trigger Condition". The input terminal
can be any of X0 to X7, with rising edge or falling edge as the optional trigger condition.

13.7.4 Probe Instructions

The function block instruction ENC_TouchProbe can latch the counter axis position value when the
external input trigger condition is valid.

Each counter axis supports two probes. During use, you need to tick the corresponding probe function
in counter parameter settings and select "Input terminal" and "Trigger Condition". The input terminal
can be any of X0 to X7.

High-speed Counter

-450-

The parameter ProbeID specifies the number of the probe used by the counter.

ProbeID Definition
0 Indicates that probe 1 is used.

The parameter TriggerEdge specifies the probe trigger edge. The rising edge trigger position is latched
in the output parameter PosPosition, and the falling edge trigger position is latched in the output
parameter NegPosition.

TriggerEdge Definition

0 Trigger by the rising edge of the external X

1 Trigger by the falling edge of the external X

2 Trigger by the rising or falling edge of the external X

TriggerMode in the instruction can be set to the single trigger or continuous trigger.

● If the single trigger mode is used, when the function block instruction flow and the external input
trigger condition are valid, the counter axis position is latched once, and the Done signal is output.
The counter axis position is latched in real time based on the trigger edge, which is not affected by
program execution. During instruction execution, affected by the scan cycle, when the program
scans and runs to the latched instruction, it updates the latched position to the output parameter
of the instruction.

● If the continuous trigger mode is used, when the function block instruction flow and the external
input trigger condition are valid, the counter axis position is latched, and the Done signal that is
active for one scan cycle is output. When the Done signal becomes OFF and the external input
trigger condition is valid, the counter axis position continues to be latched and the Done signal that
is active for one scan cycle is output. During the scan cycle in which the Done signal is active, if the
external input trigger condition is valid, the counter axis position is not latched at this time.

● When the dual-edge trigger mode is used, the Done signal is output after the instruction is triggered
on both the rising and falling edges to complete the latch. In single trigger mode, the Done signal

High-speed Counter

-451-

remains active until the instruction execution is completed; in continuous trigger mode, the Done
signal is active for one scan cycle, and the latch signal is not responded within the scan cycle when
the Done signal is active.

When WindowOnly is set to ON, the window setting is enabled and the probe is only active if the
encoder axis is in the window confined by FirstPosition and LastPosition.

13.7.5 Comparison Instructions

The instructions ENC_Compare, ENC_StepCompare, and ENC_ArrayCompare can compare the counter
axis position with a single position, equally-spaced positions continuously, or multiple positions
continuously.

ENC_Compare

The instruction compares the counter axis position with a single position. When the instruction flow is
active, the Done signal is output after the counter axis position reaches the comparison position.

ENC_StepCompare

This instruction compares the counter axis position with equally-spaced positions continuously. When
the instruction flow is active, the counter axis position is compared with the position specified by
StartPosition. When they are equal, the comparison position increases or decreases by a value
specified by Step and then is compared with the counter axis position. The Done signal of one cycle is
not output after they are equal in each comparison, but after the last comparison position is
compared.

High-speed Counter

-452-

● If the StartPosition is less than the EndPostion, when the positions are equal in each comparison,
the comparison position increases by a value specified by Step. When the current comparison
position added with the value specified by Step is greater than the EndPosition, the current
comparison position is the last one.

● If the StartPosition is greater than the EndPostion, when the positions are equal in each
comparison, the comparison position decreases by a value specified by Step. When the current
comparison position minus the value specified by Step is less than the EndPosition, the current
comparison position is the last one.

ENC_ArrayCompare

This instruction compares the counter axis position with multiple positions in an array continuously.
When the instruction flow is active, the counter axis position is compared with the first position in the
array. If they are equal, the counter axis position is compared with the next position value in the array.
After the last comparison position is compared, the Done signal is output.

● Size in the instruction specifies the array length. After all the positions in the array are compared,
the Done signal is continuously output and the comparison with multiple positions is completed.

● The output parameter Index indicates the index of the next comparison point, that is, the number
of completed comparison points.

High-speed Counter

-453-

13.7.6 High-speed Hardware Comparison Output

The counter axis can realize the position comparison hardware output. When the counter axis and the
comparison position are equal, the output directly controlled by the hardware circuit is ON, and the
output delay is less than 1 μs.

Setting the comparison output function of the counter axis

In the parameter setting interface of the counter axis, tick "Comparison output enable".

The output terminal can be any of Y0 to Y3. The output width is set as the pulse width when the output
is ON, for which the unit can be time unit or user unit (Unit).

High-speed Counter

-454-

Note
When the unit of pulse output width is set to time, the time accuracy of pulse output width is 100 μs, and the maxi-
mum output width is 6500 ms. When the unit of pulse output width is set to user unit (Unit), the maximum output
width is equivalent to 65535 pulses.

Enabling the OutputEnable parameter in the comparison instructions

Use ENC_Compare, ENC_StepCompare, and ENC_ArrayCompare comparison instructions to set
OutputEnable to 1, that is, associate hardware outputs when the instruction executes the comparison
for equality.

When the instruction executes the comparison for equality, the output terminal set directly through
the control of hardware circuit is ON, and the output turns OFF after the continuous width output.

High-speed Counter

-455-

Note
High-speed comparison hardware output is directly output through the hardware control port. Therefore, status of
comparison output is not available in the Y element in the program. The Y element and the comparison output con-
trol the output port in an OR relationship. If the Y element is continuously controlled as ON, the actual port output
remains ON.

13.7.7 Comparison Interruption

When the counter axes are compared for equality, comparison interruption can be associated and the
interrupt subprogram can be executed. The operation steps are as follows.

1. Under the item "Programming" in "Project Manager", right-click the "POU", and select "Insert
interrupt subprogram".

2. Right-click the inserted interrupt subprogram (such as INT_001 in the figure above) and select
"Properties" to open the interrupt subprogram settings page as shown in the following figure.

High-speed Counter

-456-

3. Click the icon after the "Interrupt Event" field, select "Comparison interrupt", and then write
interrupt subprograms in INT_001.

4. Call ENC_Compare, ENC_StepCompare, and ENC_ArrayCompare instructions in the main program or
subprogram to associate the parameter InterruptMap with the comparison interruption number,
that is, setting the parameter InterruptMap as the comparison interruption number. EI is enabled in
the program, and when the instruction executes the comparison for equality, the comparison of
corresponding interrupt subprograms will be triggered.

High-speed Counter

-457-

13.7.8 Setting the Gear Ratio of the Axis

The PLC reconfigures the gear ratio of the local encoder axis before the local encoder axis enables
count after power-on, program download, or a RUN/STOP operation.

The equation for calculating the gear ratio of the local encoder axis is:

For example, to realize that parameters of the local encoder axis are automatically modified to the
following after the PLC is powered on:

Parameter Value
Number of pulses in one turn by encoder 10000

Amount of movement of the worktable in a circle 30
Gear ratio numerator 3
Gear ratio denominator 2

You are recommended to add the following program to the PLC to trigger this instruction with M8000.

Note
When the program is running, calling this instruction re-initializes the local encoder axis and causes an abrupt
change to the feedback position of the local encoder axis.

13.7.9 Setting the Linear/Rotary Mode of the Axis

The PLC reconfigures the linear/rotary mode of the local encoder axis before the local encoder axis
enables count after power-on, program download, or a RUN/STOP operation.

● When LineRotateMode is set to 0, the local encoder axis is in linear mode.
In linear mode, when SoftLimitEnable is set to OFF, the limit is disabled. When SoftLimitEnable is
set to ON means the limit is enabled, in which case PLimit represents the positive limit, and NLimit
represents the negative limit.

● When LineRotateMode is set to 1, the local encoder axis is in rotary mode. In this case, Rotation
represents the rotation cycle.

High-speed Counter

-458-

For example, to realize that the local encoder axis automatically switches to the linear mode after the
PLC is powered on, and the limit is enabled with a positive limit of +100 and a negative limit of –10, the
program is as follows.

Interpolation Function

-459-

14 Interpolation Function

14.1 Introduction to the Interpolation Function

14.1.1 Overview

The space rectangular coordinate system is adopted for interpolation, which supports linear interpola-
tion and circular interpolation, and is performed in the form of axis groups.

● Each axis group can control up to four motion control axes (bus servo axes or local pulse axes),
including three coordinate axes X, Y, and Z, and one auxiliary axis.

● The H5U supports up to eight axis groups, each of which can contain two axes (X and Y), three axes
(X, Y, and Z), or four axes (X, Y, Z, and auxiliary).

● The Easy series models support different number of axes. See the specific model for the axis group
supported.

● Linear and circular interpolation support BufferMode. Each axis group allows up to eight curves to
be buffered, and the transition mode between curves can be set separately (see “14.3.2 Interrupt
+No Transition” on page 478 for more information on buffering and transition).

Figure 14-1 Space rectangular coordinate system

In the preceding figure, Vx, Vy, and Vz represent the velocities of the three coordinate axes,
respectively, which are also the actual running velocities of the servo axes. V represents the real-time
velocity of the interpolation curve. α, β, and γ represent the angles between the velocity of the
interpolation curve and the coordinate axis, respectively.

- +

0

Figure 14-2 Rectangular coordinate system of the auxiliary axis

During linear interpolation, the motion control axes representing the three coordinate axes of X, Y, and
Z move along the coordinate axes, while the auxiliary axis moves along a straight line from the start
point to the end point.

During circular interpolation, you can choose one of the X-Y, Y-Z, and X-Z axis planes for circular
interpolation, in which case if the axis group contains other axes, they will move along a straight line
from the start point to the end point.

Interpolation Function

-460-

14.1.2 List of Axis Group Control Instructions

The following table lists axis group control instructions. See H5U and Easy Series Programmable Logic
Controllers Instructions Guide for detailed usage of related instructions.

Instruction Name
MC_MoveLinear Linear interpolation

MC_MoveCircular Circular interpolation

MC_MoveEllipse Ellipse interpolation

MC_GroupStop Stop the axis group operation.

MC_GroupPause Pause the axis group operation.

14.1.3 Configuration Interface

The menu "Axis Group Settings" is located under the node "Config". After creating an axis group,
double-click the axis group to open the configuration interface of the axis group.

The interface of "Axis Group Settings" comprises three parts: "Basic setting", "Settings", and "Online
monitoring".

Basic setting

● "Axis group number": Specifies the number of an axis group.

Interpolation Function

-461-

● Selection of coordinate axes: You can select coordinate axes from the corresponding drop-down
lists, in which the X-axis and Y-axis are required, and the Z-axis and auxiliary axis are optional. One
axis can exist in different axis groups.

Settings

● "MaxVel": Specifies the maximum interpolation velocity of a space straight line in the linear
interpolation mode, or the maximum linear velocity of a circular arc in the circular interpolation
mode.

● "Max. acceleration": Specifies the maximum interpolation acceleration rate of a space straight line
in the linear interpolation mode, or the maximum linear acceleration rate of a circular arc in the
circular interpolation mode.

● "Stop mode": Specifies the stop mode when the axis group encounters an error.

Online monitoring

● "MaxVel": Specifies the maximum interpolation linear velocity of a space straight line in the linear
interpolation mode, or the maximum linear velocity of a circular arc in the circular interpolation
mode.

● "Max. acceleration": Specifies the maximum interpolation acceleration rate of a space straight line
in the linear interpolation mode, or the maximum acceleration rate of a circular arc in the circular
interpolation mode.

● "Stop mode": Specifies the stop mode when the axis group encounters an error.

Interpolation Function

-462-

Table 14–1 Online monitoring parameters

Parameter Description

Status The status of a single-axis PLCOpen state machine

0: PowerOff

1: ErrorStop

2: Stopping

3: StandStill

4: DiscreteMotion

5: ContinuousMotion

7: Homing

8: SynchronizedMotion

Fault code The fault code when a single axis is in the ErrorStop state

Setting position Real-time target position for a single axis

Feedback position Real-time feedback position for a single axis

Setting speed Real-time velocity reference for a single axis

Feedback speed Real-time feedback velocity for a single axis

Table 14–2 Axis group monitoring parameters

Name Description
Status The status of an axis group

0: Init

The axis configuration in the axis group is not completed.

1: Disabled

Not all axes in the axis group are enabled.

2: Single Stop

An axis in the axis group calls the instruction MC_Gtop.

3: Single Homing

An axis in the axis group calls the instruction MC_Home.

4: Single motion

An axis in the axis group calls single-axis motion instructions such as MC_MoveAbsolute.

5: ErrorStop

An axis in the axis group is in a fault state.

6: StandStill

All axes in the axis group are in the StandStill state.

7: Stopping

The instruction MC_GroupStop is called.

8: Synchronous Motion

A linear interpolation or circular interpolation instruction is called.

Fault code The fault code when the axis group fails due to error of a single axis

Operation distance In linear interpolation mode, it indicates the distance at which a space straight line moves
after the instruction is executed.

In circular interpolation mode, it indicates the length of a circular arc in which the circular
arc moves after the instruction is executed.

Interpolation Function

-463-

Name Description

Remaining distance In linear interpolation mode, it indicates the left distance for this section of a space straight
line after the instruction is executed.

In circular interpolation mode, it indicates the length of a space circular arc left after the
instruction is executed.

Setting speed In linear interpolation mode, it indicates the interpolation velocity of a space straight line.

In circular interpolation mode, it indicates the linear velocity of a circular arc.

Setting acceleration/deceleration The change rate of the velocity reference

Radius The radius of a circular arc during circular interpolation

Center The center of a circular arc during circular interpolation

14.2 Interpolation Operations

14.2.1 Overview

To properly execute an interpolation instruction, you need to first create an axis group and enable axes
in the axis group. The following figure shows the basic process.

Interpolation Function

-464-

Figure 14-3 Flow chart of interpolation operation

Note
Even after an axis group is created, axes in the axis group can still execute single-axis motion and control instruc-
tions. However, motion instructions for a single axis and interpolation instructions for an axis group are mutually ex-
clusive. These instructions cannot be activated at the same time or interrupt each other.

This section describes the basic interpolation procedures based on a routine that combines Axis_0,
Axis_1, Axis_2, and Axis_3 into an axis group to perform related actions.

Detailed information on the configuration of motion control axes can be found in the section "Motion
Control".

14.2.2 Creating an Axis Group

Right-click "Axis Group Settings", and select "Add Axis Group". After creating an axis group, you can
choose the coordinate axes and auxiliary axis and set relevant parameters.

Interpolation Function

-465-

14.2.3 Enabling an Axis Group

Each single axis in the axis group is enabled and disabled through the instruction MC_Power. The axis
group control instruction can only be executed if all axes in the axis group are enabled.

Interpolation Function

-466-

14.2.4 Linear Interpolation

The linear interpolation of an axis group is implemented by the instruction MC_MoveLinear.
When all axes in the axis group are in the StandStill state, the Execute is triggered, the axis group starts
to implement linear interpolation, and all axes in the axis group switch to the Synchronized Motion
state. In this case, the single-axis motion instructions such as MC_MoveAbsolute and MC_Stop must
not be executed.

After the linear interpolation is completed, all axes in the axis group return to the StandStill state, in
which case single-axis motion instructions such as MC_MoveAbsolute and MC_Stop can be executed
again.

Interpolation Function

-467-

Example

This routine uses absolute positioning to position the X-axis, Y-axis, and Z-axis to the position
(100,100,100), and the auxiliary axis to the position 50.

14.2.5 Circular Interpolation

Circular interpolation of an axis group is implemented by the instruction MC_MoveCircular. The conver-
sion rules for PLCOpen state machines are the same as those for linear interpolation.
This routine implements circular interpolation of the X-Y axis plane while the Z-axis and auxiliary axis
making synchronous linear motion. The circular interpolation is implemented in the border point
mode, that is, with absolute positioning, first passing through the border point (150,25) and then
reaching the position (200,0). The Z-axis and auxiliary axis reach the position 100.

For specific parameters related to the circular arc instructions, see H5U and Easy Series Programmable
Logic Controllers Instructions Guide.

Interpolation Function

-468-

14.2.6 Axis Group Stop

Stop the execution of the interpolation curve by the instruction MC_GroupStop.
The execution of the interpolation instruction is interrupted on the rising edge of Execute, and the
CommandAborted output of the interpolation instruction is valid.

Interpolation Function

-469-

Interpolation instructions cannot be triggered when Execute is TRUE. Execute must be set to False to
re-execute a new interpolation instruction.

This instruction can only be called when all axes in the axis group are in the StandStill or Synchronized
Motion state. Axes are in the Synchronized Motion state while the Execute of the instruction is true.

MC_GroupStop can only stop the operation of an interpolation curve, rather than that of single-axis
motion instructions such as MC_MoveAbsolute.

Example

In this routine, the following instruction is called during linear interpolation or circular interpolation to
stop the operation of an interpolation curve. With the decelerate-to-stop mode in use, the deceleration
to stop is 5000.

14.2.7 Axis Group Pause

The interpolation curve is paused by the instruction MC_GroupPause.
Pause the interpolation curve when Enable is TRUE and resume the execution when Enable is False.

MC_GroupPause can only pause the operation of an interpolation curve, rather than that of single-axis
motion instructions such as MC_MoveAbsolute.

Example

In this routine, the following instruction is called during line or circular interpolation to pause the
operation of the interpolation curve, and the deceleration to pause is 5000.

Interpolation Function

-470-

14.2.8 Single-axis Motion

When the single-axis PLCOpen state machine is in the Synchronized Motion state due to the execution
of the interpolation action, the single-axis instructions such as MC_MoveAbsolute and MC_Stop must
not be executed. When the axis is in the StandStill state, the single-axis motion instructions, such as
MC_MoveAbsolute, MC_MoveRelative, and MC_Jog, can be called to control the single-axis operation.

Example

In this routine, when no interpolation instruction is executed for the axis group, the jogging of the
single axis is realized through the instruction MC_Jog.

Interpolation Function

-471-

Interpolation Function

-472-

14.2.9 Setting the Current Position

Set the current position through the instruction MC_SetPosition.

Interpolation Function

-473-

14.2.10 Reading the Current Status

Single-axis status

The status, feedback position, feedback velocity, and feedback torque of the PLCOpen state machine
of a single axis are obtained through instructions MC_ReadStatus, MC_ReadActPosition, MC_
ReadActVelocity, and MC_ReadActTorque. The status of a single axis can also be accessed through the
system variables of the axis. See “12.4 Online Monitoring” on page 409 for details.

The status of an axis group

Access the state of an axis group through its system variables.

Interpolation Function

-474-

14.2.11 Resetting Axis Group Faults

When a single axis enters the fault state, the fault of the axis can be reset through the instruction MC_
Reset, and only by resetting the single-axis fault can the fault of the entire axis group be removed.

Example

In this routine, M200 is triggered to reset the fault of the axis group.

Interpolation Function

-475-

14.2.12 Homing

The homing for an axis group can be realized through single homing. The following is the single
homing implemented by the instruction MC_Home.

Interpolation Function

-476-

Interpolation Function

-477-

14.3 Buffer and Transition

14.3.1 Overview

The buffer mode refers to the process of executing instructions when multiple interpolation
instructions are started at the same time.

The transition mode refers to the way when multiple curves switch between each other.

The following four combined buffer and transition modes are supported.

No. Buffer Mode Description

0 Interrupt+No transition Immediately switch to the next function block. There is no transition
curve.

1 Buffer+No transition
Execute the buffered function block after the first segment of
deceleration is completed. There is no transition curve.

2 Previous Velocity+No transition
Move to the end of the first segment at the current velocity and start the
second segment at the rate of the first segment.

3 Additional angle transition
Add acceleration of the second segment when deceleration starts in the
first segment. There is a transition curve.

Interpolation Function

-478-

14.3.2 Interrupt+No Transition

The first interpolation instruction is executed first, and the second interpolation instruction is triggered
before the first straight line is completed. If the BufferMode of the second interpolation instruction is
set to "Interrupt+No Transition", the second interpolation instruction immediately interrupts the first
interpolation instruction and starts implementing a new interpolation curve.

At the interrupt point, the new curve remains at the same velocity rate, and the velocities of the X-axis,
Y-axis are re-decomposed, as shown in the following figure.

14.3.3 Buffer+No Transition

The first interpolation instruction is executed first, and the second interpolation instruction is triggered
before the first straight line is completed. If the BufferMode of the second interpolation instruction is
set to "Buffer+No Transition", the interpolator will continue to execute the first interpolation
instruction.

After the first interpolation instruction is executed and an active Done signal is output, the execution of
the second interpolation instruction will begin, as shown in the following figure.

Interpolation Function

-479-

14.3.4 Previous Velocity+No Transition

The first interpolation instruction is executed first, and the second interpolation instruction is triggered
before the first straight line is completed. If the BufferMode of the second interpolation instruction is
set to "Previous Velocity+No Transition", the interpolator will attempt to maintain the target velocity of
the first instruction to implement a full straight line.

After the first interpolation instruction is executed and an active Done signal is output, the execution of
the second interpolation instruction will begin. The velocity rate will remain unchanged at the
switching point, and the velocities of the coordinate axes will be redistributed. The following figure
shows the details.

This mode is particularly suitable for switching between straight lines and circular arcs with the
straight lines on the tangent line of the arcs, and can be used to maintain the constant velocity of an
interpolation curve.

Interpolation Function

-480-

14.3.5 Additional Angle Transition

The first interpolation instruction is executed first, and the second interpolation instruction is triggered
before the first straight line is completed. If the BufferMode of the second interpolation instruction is
set to the additional angle mode, the interpolator will initiate the second interpolation instruction
when it detects that the first straight line has begun to perform deceleration, and the final velocity of
each coordinate axis is the sum of the velocities of the two instructions, as shown in the following
figure.

14.4 Methods of Handling Single-Axis Configuration Parameters in
Interpolation

Some of the configuration parameters in the interpolation are different from the single-axis
configuration parameters, as shown in the following table.

Single-axis configuration
parameters

Handling Methods in Interpolation

Gear ratio setting The gear ratio of a single axis in an axis group is set on the interface "Unit conversion
setting" of the single axis.

Encoder mode selection The encoder mode of the drive can be set to incremental or absolute. Set this parameter in
the interface "Mode/Parameter setting" of a single axis.

Interpolation Function

-481-

Single-axis configuration
parameters

Handling Methods in Interpolation

Mode setting Modes of axes in an axis group are divided into linear mode and ring mode according to the
working conditions, and the interpolation instructions only support the linear mode.

Limit handling Axes in the interpolation instructions support both software limits and hardware limits.

Following error Axes in interpolation instructions support following errors.

Velocity limit The velocity in an interpolation instruction is limited by the maximum velocity of a single
axis, not by the maximum acceleration rate.

Torque limit Not involved.

14.5 System Variables

14.5.1 _sGROUPAXIS_INFO for Status of Coordinate Axes within Axis Group

Name Type Description

wAxisID INT16 Axis ID

wState INT16

The status of an axis' PLCOpen state machine

0: PowerOff

1: ErrorStop

2: Stopping

3: StandStill

4: DiscreteMotion

5: ContinuousMotion

7: Homing

8: SynchronizedMotion

wErrorCode INT16 The fault code of an axis
fsetpos REAL Position reference
factpos REAL Feedback position

fsetvel REAL Velocity reference

factvel REAL Feedback velocity

This system variable exists in the axis group _sMCGROUP_INFO and is used to represent the state of
individual axes within the axis group.

Interpolation Function

-482-

For example, write the position reference of the X-axis into the D3000 in the PLC:

14.5.2 _sMCGROUP_INFO for Axis Group Status

Name Type Description

wRingPos INT16 Axis group number

wGroupID INT16 Axis number

Interpolation Function

-483-

Name Type Description
wState INT16 Axis group status

0: Init

The axis configuration in the axis group is not completed.

1: Disabled

Not all axes in the axis group are enabled.

2: Single Stop

An axis in the axis group calls the instruction MC_Gtop.

3: Single Homing

An axis in the axis group calls the instruction MC_Home.

4: Single motion

An axis in the axis group calls single-axis motion instructions such as MC_
MoveAbsolute.

5: ErrorStop

An axis in the axis group is in a fault state.

6: StandStill

All axes in the axis group are in the StandStill state.

7: Stopping

The instruction MC_GroupStop is called.

8: Synchronous Motion

A linear interpolation or circular interpolation instruction is called.

wErrorCode INT16 Fault code
bMotionState BOOL Motion status

FALSE: Not in motion

TRUE: In motion
bHaltValid BOOL Halt status

FALSE: Halt not applied

TRUE: Halt applied

wBufNum INT16 The number of buffered curves
sAxis_x _sGROUPAXIS_INFO The status of the X-axis
sAxis_y _sGROUPAXIS_INFO The status of the Y-axis
sAxis_z _sGROUPAXIS_INFO The status of the Z-axis
sAxis_a _sGROUPAXIS_INFO The status of the auxiliary axis

fSetvel REAL Velocity reference

In linear interpolation mode, it indicates the interpolation velocity of a
space straight line.

In circular interpolation mode, it indicates the linear velocity of a circular
arc.

fSetacc_dec REAL Acceleration/deceleration reference

Indicates the change rate of setvel.

fSetvel_buf REAL The velocity reference of a buffered curve

In linear interpolation mode, it indicates the interpolation velocity of a
space straight line.

In circular interpolation mode, it indicates the linear velocity of a circular
arc.

Interpolation Function

-484-

Name Type Description

fSetacc_dec_buf REAL The acceleration/deceleration reference of a buffered curve

Indicates the change rate of fSetvel_buf

fSetdis REAL Distance reference

In linear interpolation mode, it indicates the distance at which a space
straight line moves after the instruction is executed.

In circular interpolation mode, it indicates the length of a circular arc in
which the circular arc moves after the instruction is executed.

fLeftdis REAL Left distance

In linear interpolation mode, it indicates the left distance for this section
of a space straight line after the instruction is executed.

In circular interpolation mode, it indicates the length of a space circular
arc left after the instruction is executed.

fCenter_x REAL The coordinates of point X at the center of a circular arc during circular
interpolation

fCenter_y REAL The coordinates of point Y at the center of a circular arc during circular
interpolation

fCenter_z REAL The coordinates of point Z at the center of a circular arc during circular
interpolation

fRadius REAL The radius of a circular arc during circular interpolation

fStartAng REAL The start angle during circular interpolation

fSetAng REAL The motion angle during circular interpolation

This system variable is used to indicate the status of the entire axis group:

For example, write the X-axis coordinates of the center of an axis group to D3010:

Interpolation Function

-485-

14.5.3 _sGROUPPOS_INFO for Target Positions of Coordinate Axes within Axis

Group

Name Type Description
px REAL The position of the X-axis
py REAL The position of the Y-axis
pz REAL The position of the Z-axis
pa REAL The position of the auxiliary axis

This structure sets the target position of a circular arc as an input parameter to the MC_MoveCircular.

1. Create a global variable
2. Assign values to the global variable

3. Call the instruction MC_MoveCircular

Interpolation Function

-486-

14.6 Fault Codes

When a fault occurs during use of the interpolation functions, see the fault codes listed in the following
table for troubleshooting.

Fault Code Description Solution
9400 The number of axis groups exceeds the

maximum value.
Check whether the number of axis groups is greater than 8.

9401 An axis in the axis group is in a fault state. Check whether an axis in the axis group has entered the ErrorStop
state.

Troubleshoot the fault based on the fault code of each axis.
9402 The number of buffered interpolation

instructions is greater than 8.
Check whether the number of buffered interpolation instructions is
greater than 8.

9403 The axis is reused. Locate the reused axis and replace it with an unused axis.

9404 Failed to create the axis group. The X-axis and Y-axis cannot be empty.

Check whether the X-axis or Y-axis does not exist or is not specified.
9405 The specified Z-axis does not exist. Check whether the axis specified by AxisID_z exists.

9406 The specified auxiliary axis does not exist. Check whether the axis specified by AxisID_a exists.

9407 The axis group ID is duplicate. Check whether GroupID is duplicate.

9408 Axis configuration failed. Check whether any axis in the axis group fails to be configured. If yes,
check whether the PCB software and the background match.

9409 The axis ID is less than 0. Check whether the ID of an axis in the axis group is less than 0.

9410 The axis group is not released because
the MC_SetAxesGroup instruction is
triggered repeatedly in a short time
period.

Do not re-trigger the MC_SetAxesGroup instruction while its Busy
signal output is still active.

9411 Instruction MC_GroupStop was
interrupted.

Check whether an instruction with higher priority is called while the
MC_GroupStop instruction is still active.

9412 The circular interpolation instruction
CircAxes is out of range.

Check whether the value of CircAxes of the circular interpolation
instruction is out of range.

9413 The circular interpolation instruction
CircMode is out of range.

Check whether the value of CircMode of the circular interpolation
instruction is out of range.

9414 The circular interpolation instruction
PathChoice is out of range.

Check whether the value of PathChoice of the circular interpolation
instruction is out of range.

9415 The stop instruction StopMode is out of
range.

Check whether the value of StopMode of the stop instruction is out of
range.

9416 The X-axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9417 The Y-axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9418 The Z-axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9419 The auxiliary axis is set to ring mode. Do not set the motion control axis to the ring mode in an
interpolation instruction.

9420 The circular interpolation instruction is
triggered repeatedly.

Do not re-trigger the same circular interpolation instruction while its
Busy signal output is still active.

9421 The linear interpolation instruction is
triggered repeatedly.

Do not re-trigger the same linear interpolation instruction while its
Busy signal output is still active.

9422 Failed to obtain the axis group. Check whether the axis group specified by GroupID has been created
by calling MC_SetAxesGroup.

Interpolation Function

-487-

Fault Code Description Solution
9423 Axis configuration failed. Check whether an instruction is triggered when axis configuration is

not completed.

Check whether the communication state of all axes in the axis group
is "Axis ready".

9424 An axis is disabled. Do not call the interpolation instruction when any axis is in Disabled
state.

9425 An axis is executing single-axis motion
instructions.

Do not call the interpolation instruction when any axis is executing
single-axis motion instructions and not in StandStill state.

9426 An axis is in Stopping state. Do not call the interpolation instruction when any axis is in Stopping
state after the MC_Stop instruction is executed.

9427 The axis group is in a stopped state. Do not call the interpolation instruction while the MC_GroupStop
instruction is still active.

9428 An axis is in Homing state. Do not call the interpolation instruction when any axis is in Homing
state after the MC_Home instruction is executed.

9429 An axis is executing the position setting
instruction.

Do not call the interpolation instruction when any axis is setting the
current position by executing the MC_SetPosition instruction.

9430 An axis is in commissioning state. Do not call the interpolation instruction when any axis is in
commissioning state.

9431 An axis enters the commissioning state
during interpolation, which interrupts the
instruction execution of other axes.

Check whether any axis enters the commissioning state during
interpolation.

9432 Failed to request the memory. Check whether the memory runs out.

Contact the manufacturer.
9433 The target velocity is 0 or less. Ensure that the target velocity of the instruction is greater than 0.

9434 The target acceleration rate is 0 or less. Ensure that the target acceleration rate of the instruction is greater
than 0.

9435 The target deceleration rate is 0 or less. Ensure that the target deceleration rate of the instruction is greater
than 0.

9436 The curve type is set beyond the range. Check whether the curve type is set to a value other than the T-
shaped curve for the interpolation instruction.

9437 AbsRelMode is set incorrectly. Check whether the parameter is set to a value other than the
absolute positioning and relative positioning modes.

9438 BufferMode is set incorrectly. Check whether the value of BufferMode is out of range.

9439 InsertMode is set incorrectly. Check whether the value of InsertMode is proper.

9440 An axis stops due to a fault. Locate the faulty axis and rectify the fault based on the fault code.

9441 Instruction MC_GroupStop is called
repeatedly.

Do not re-trigger an MC_GroupStop instruction or call other MC_
GroupStop instructions while an MC_GroupStop instruction is still
active.

9442 The data buffer is not empty. Contact Inovance for technical support.

9443 No circle can be drawn. -
9444 The start point, end point, and border

point in the circular interpolation
instruction are the same point, and no
circle can be drawn.

Check the input parameters of the circular interpolation instruction
and ensure that the start point, end point, and border point can form
a circle.

9445 The instruction buffer is full. Contact Inovance for technical support.
9446 The velocity of the X-axis exceeds the

maximum allowable velocity.
Ensure that the target velocity of the X-axis is not greater than the
maximum allowable velocity.

9447 The Y-axis exceeds the maximum velocity. Ensure that the target velocity of the Y-axis is not greater than the
maximum allowable velocity.

9448 The Z-axis exceeds the maximum velocity. The velocity of the Z-axis exceeds the maximum allowable velocity.

Interpolation Function

-488-

Fault Code Description Solution
9449 The auxiliary axis exceeds the maximum

velocity.
Ensure that the target velocity of the auxiliary axis is not greater than
the maximum allowable velocity.

9450 Failed to obtain the number of axis
groups.

Update the background software to the latest version.

9451 Internal fault Contact the manufacturer.
9452 The instruction is called when the axis is

in StandStill state.
Do not call this instruction when the axis is in StandStill state.

9453 The maximum allowable velocity is
exceeded.

Ensure that the target velocity of the instruction is not greater than
the maximum velocity specified on the axis group configuration
interface.

9454 The maximum allowable acceleration/
deceleration rate is exceeded.

Ensure that the target acceleration (deceleration) rate of the
instruction is not greater than the maximum acceleration
(deceleration) rate specified on the axis group configuration
interface.

9455 Axis group becomes faulty due to an error
reported by the linear interpolation
instruction.

Identify the first linear interpolation instruction that reports the error
and troubleshoot the fault based on the fault code.

9456 The axis group becomes faulty due to an
error reported by the circular
interpolation instruction.

Identify the first circular interpolation instruction that reports the
error and troubleshoot the fault based on the fault code.

9457 The axis group becomes faulty due to an
error reported by the axis group stop
instruction.

Identify the first axis group stop instruction that reports the error and
troubleshoot the fault based on the fault code.

9458 The axis group becomes faulty due to an
error reported by the axis group pause
instruction.

Identify the first axis group pause instruction that reports the error
and troubleshoot the fault based on the fault code.

Bus Encoder Axes

-489-

15 Bus Encoder Axes

15.1 Introduction to Bus Encoder Axes

Bus encoder axes support a maximum input pulse frequency of 200 kHz is supported, use the GR10-
2HCE module as the driver, and can count three forms of pulses: phase A/B, pulse+direction, and CW/
CCW.
Up to eight bus encoder axes can be configured. One GR10-2HCE module has two channels, each of
which can be assigned for one axis.

Bus encoder axes can also work with the DI and DO terminals of the GR10-2HCE module to implement
position presetting, probe, gating, and comparison output.

The feedback position of the GR10-2HCE module in pulses is sent to the PLC through PDOs, and the
feedback position within the PLC is finally provided to users in the form of REAL data type through the
conversion of gear ratios, which can also be used as the master axis of a cam or gear.

Note
The software of the GR10-2HCE module must be version V2.2.0.0 or later versions.

15.2 Software Configuration

15.2.1 Basic Settings

Bus encoder axes represent a category of motion control axes that require the user to enable EtherCAT
communication and add the GR10–2HCE module before enabling a bus encoder axis.
The configuration interface of a bus encoder axis is shown in the following figure.

Bus Encoder Axes

-490-

Operating panel description

● Axis No: Each bus encoder axis has an axis number, which is the unique identifier of the encoder
axis and is automatically assigned when the configuration is established.

● Axis type: Bus encoder axis.
● Input device: With H5U series PLC as an example, a bus encoder axis needs to be used with the

GR10-2HCE module. Each GR10-2HCE module supports two counting channels. You can select a
channel as required during device selection.

● Output device: Not supported.
● Automatic mapping: After "Automatic mapping" is ticked, the I/O variable of an axis and the PDO of

the GR10-2HCE module will be automatically associated. If this option is not ticked, you can
manually configure the mapping.

Variable mapping

The correspondence between the I/O variables of a bus encoder axis and the PDO of the GR10-2HCE
module is shown in the following table.

Table 15–1 Output variable mapping

Variable
Channel 0
Object

Dictionary

Channel 1
Object Dictionary

Description

Counter operation command 7000h:1 7000h:2 Encoder control word

Preset command value 7001h:1 7001h:2 Preset position

Touch probe function 7002h:1 7002h:2 Probe control word
Physical output command 7003h:1 7003h:2 DO terminal control word
Compare mode 7003h:3 7003h:11 Comparison output mode

Compare pulse/time 7003h:5 7003h:13 Comparison output pulses/time

Compare size/step 7003h:6 7003h:14 Comparison output array length/step

Bus Encoder Axes

-491-

Variable
Channel 0
Object

Dictionary

Channel 1
Object Dictionary

Description

Compare point value 1 7008h:1 7009h:1 Comparison output value 1

Compare point value 2 7008h:2 7009h:2 Comparison output value 2

Table 15–2 Input variable mapping

Variable
Channel 0
Object

Dictionary

Channel 1
Object Dictionary

Description

Error code 3200h:1 3200h:2 Fault code
Counter status 6000h:1 6000h:2 Counter status
Encoder present position 6002h:1 6002h:2 Encoder feedback position

Pulse rate 6003h:1 6003h:2 Pulse frequency

Time stamp 6009h:1 6009h:2 Time stamp

Physical input status 6001h:1 6001h:2 DI terminal status
Touch probe status 6004h:1 6004h:2 Probe status
Touch probe pos 1 pos value 6005h:1 6005h:2 Probe 1 position on the rising edge

Touch probe pos 1 neg value 6006h:1 6006h:2 Probe 1 position on the falling edge

Touch probe pos 2 pos value 6007h:1 6007h:2 Touch probe 2 positive edge

Touch probe pos 2 neg value 6008h:1 6008h:2 Probe 2 position on the falling edge

Physical output status 600Eh:1 600Eh:2 DO terminal status
Compare error code 6003h:3 6003h:5 Comparison output fault code

Current compare number/

position
6003h:7 6003h:9

Comparison output current group
subscript/position

15.2.2 Unit Conversion

The following table lists parameters that need to be set for unit conversion.

Parameter Function

The number of pulses in one turn by motor/encode
Set the number of pulses required for the motor to rotate one
turn according to the encoder resolution.

With gear change mechanisms Specify whether gear change mechanisms are in use or not.

Amount of movement in one turn by motor/encoder
The workpiece movement amount per turn of the motor when
no gear change mechanism is in use

Amount of movement of the worktable in a circle
The workpiece movement amount per turn of the worktable
when gear change mechanisms are in use

Gear ratio on the motor/encoder side Set a gear ratio on the motor/encoder side.

Gear ratio on the worktable side Set a gear ratio on the worktable side.

The module GR10-2HCE counts in pulses, while the encoder axis instructions use common
measurement units in operation, such as millimeters, degrees, and inches, which are known as user
units (Unit). The conversion between the two units is divided into the following modes:

1. Without gear change mechanisms
When gear change mechanisms are not in use, the conversion equation from user unit to pulse unit
is as follows.

Bus Encoder Axes

-492-

Take the Inovance 23-bit encoder as an example. The set parameters are as follows.

Number of pulses in one turn by motor/encode = 8388608

Workpiece movement amount per turn of the motor/encoder = 1

When the motor rotates by 10 revolutions, the number of pulses counted by the 2HCE module is
83886080, and the encoder axis instruction counts to the position increment of 10 Unit.

2. With gear change mechanisms

● Typical working condition in linear mode is shown in the following figure.

Where, (1) is the motor/encoder; (3) is the worktable; (4) is the gear ratio denominator; (5) is the
gear ratio numerator.

The calculation equation from user unit to pulse unit is as follows.

● Typical working condition in rotary mode is shown in the following figure.

Where, (1) is the motor/encoder; (3) is the worktable; (4) is the gear ratio denominator; (5) is the
gear ratio numerator.

The calculation equation from user unit to pulse unit is as follows.

Bus Encoder Axes

-493-

15.2.3 Mode/Parameter Settings

15.2.3.1 Configuration Interface

The following figure shows the mode and parameter configuration interface.

15.2.3.2 Selection of Linear or Rotary Mode

Linear mode

You can enable or disable software limits.

When the software limit is enabled, positive and negative limits can be set, and the counter will stop
counting when reaching the limits, and display an out-of-limit mark. When the positive limit is reached,
the output of the encoder axis system variable bPLimit is valid. When the negative limit is reached, the
output of the encoder axis system variable bNLimit is valid.

If the software limit is not enabled, the count value of GR10-2HCE ranges between –2147483648 and
+2147483647, jumps to –2147483648 when the positive count reaches +2147483647, and jumps to
+2147483647 when the negative count reaches –2147483648.

In this case, the range that the bus encoder axis can count needs to be calculated according to the
scheme described in “15.2.2 Unit Conversion” on page 491.

Bus Encoder Axes

-494-

EExxaammppllee

Example

Number of pulses in one turn by motor/encoder = 1000

Amount of movement in one turn by motor/encoder = 1

Rotary mode

In rotary mode, you can set the ring period. The counter counts in a reciprocating cycle between 0 and
the ring period.

Bus Encoder Axes

-495-

15.2.3.3 Counter Mode Selection

Count modes

Five count modes are supported: phase A/B 1-frequency multiplication, phase A/B 2-frequency
multiplication, phase A/B 4-frequency multiplication, pulse+direction, and CW/CCW.

1. Phase A/B pulse

2. Pulse+direction
Phase A is used as the counter's pulse input, and phase B is used as the counter's count direction
control input.

3. CW/CCW mode
For CW/CCW mode, under positive logic, the counter counts up on the rising edge that inputs pulse A
and counts down on the rising edge that inputs pulse B.

Count logic

Count logic is used to set the logic of the count direction. The logic is as follows.

Bus Encoder Axes

-496-

Pulse Mode Positive Logic Negative Logic

Phase A/B
Incremental count if phase A leads phase B

Decremental count if phase B leads phase
A

Decremental count if phase A leads phase
B

Incremental count if phase B leads phase A

Pulse+direction

Incremental count if phase B is at a high
level

Decremental count if phase B is at a low
level

Decremental count if phase B is at a high
level

Incremental count if phase B is at a low
level

CW/CCW

Incremental count if it is phase A pulse
input

Decremental count if it is phase B pulse
input

Decremental count if it is phase A pulse
input

Incremental count if it is phase B pulse
input

15.2.3.4 Frequency Sampling Period

It is used to set the calculation period of the pulse frequency.

15.2.3.5 Input Filter Time

It is used to set the filter time of DI terminals and ABZ input signals.

15.2.3.6 Input Terminal Function Selection

Each counting channel can be independently configured with four DI terminals. The functions that can
be allocated for each terminal are shown in the following table.

Terminal Optional Function Default

Xn0

0: Common input

1: Probe function 1

3: Reset

4: Preset

5: Gating

Probe function 1

Xn1

0: Common input

2: Probe function 2

3: Reset

4: Preset

5: Gating

Probe function 2

Xn2

0: Common input

3: Reset

4: Preset

5: Gating

Common input

Xn3

0: Common input

3: Reset

4: Preset

5: Gating

Common input

● Common input

Bus Encoder Axes

-497-

When a terminal is allocated with the common input function, its status can be obtained through
the system variable iDIStatus or the instruction ENC_ReadStatus.

● Probe function
When a terminal is allocated with the probe function, you need to call the instruction ENC_
TouchProbe to implement the probe function. For details, see the explanation of this instruction.

● Preset function
When a terminal is allocated with the preset function, you need to call the instruction ENC_Preset
to implement the counter preset function. When the input signal of the DI terminal is active, the
value of the counter will be set to the preset value of parameter Position of the instruction ENC_
Preset.

Note
If multiple terminals are configured with a preset function, the preset function is activated when one of the input
terminals receives an active signal.

● Gating function
If the DI terminal signal is set as a gating signal, the gating function is enabled, in which case the
counter is enabled to start counting only after the parameter Enable of ENC_Counter is ON and the
gating input signal is active. If the DI terminal signal is not set as a gating signal, and the gating
function is not enabled, then the counter starts counting after the parameter Enable of ENC_
Counter is ON.

Note
If multiple terminal input signals are used as gate signals, these gate signals must be active at the same time for the
counter to start counting.

15.2.3.7 Output Terminal Function Selection

Each counting channel can be independently configured with three DO terminals. The functions that
can be allocated for each terminal are shown in the following table.

Terminal Optional Function Default

Yn0

0: Common output

3: One-dimensional comparison output

4: Two-dimensional comparison output (only
supported by channel 0)

3: One-dimensional comparison output

Yn1 0: Common output 0: Common output

Yn2 0: Common output 0: Common output

● Common output
When a DO terminal is set to a common output terminal, its status can be controlled by the
instruction ENC_DigitalOutput. See description of the instruction ENC_DigitalOutput for detailed
usage.

● One-dimensional comparison output mode

Bus Encoder Axes

-498-

When a terminal is allocated with the one-dimensional comparison output function, the step
comparison output or array comparison output functions can be performed. See instructions ENC_
StepCompare and ENC_ArrayCompare for detailed guidance.

● Two-dimensional comparison output mode
When a bus encoder axis is bound to channel 0 of the GR10-2HCE module, the output terminal Y00
can be allocated with the two-dimensional comparison output function. See the instruction ENC_
GroupArrayCompare for detailed usage.

15.3 System Variables

Table 15–3 _sPoint2D: Structure of coordinate points in a two-dimensional coordinate system

Variable Type Function
px REAL Coordinate points on X-axis
py REAL Coordinate points on Y-axis

Table 15–4 _sENC_PDO: PDOs of the bus encoder axis

Variable Type Function
iControlWord INT Control word
iStatusWord INT Status word
dPresetPosition DINT Preset position

dActualPositionValue DINT Feedback position

dActualVelocityValue DINT Feedback velocity

dTimeStamp DINT Time stamp

iDOControlWord INT DO terminal control word
iDOStatusWord INT DO terminal status word
iCompareMode INT Comparison output mode

dCompare_Pluse_Time DINT Comparison output pulses/time

dCompare_Size_Step DINT Comparison output array length/step

dCompareValue_1 DINT Comparison output comparison value 1

dCompareValue_2 DINT Comparison output comparison value 2

dCompareAct_Num_Pos DINT Next position/comparison value of comparison output

iCompareErrorCode INT Fault code of comparison output

iDIStatus INT DI terminal status
iTouchProbeFunc INT Probe control word
iTouchProbeStatus INT Probe status word
dPos1PosValue DINT Probe 1 position latched on the rising edge

dPos2PosValue DINT Probe 2 position latched on the rising edge

dPos1NegValue DINT Probe 1 position latched on the falling edge

dPos2NegValue DINT Probe 2 position latched on the falling edge

iErrorCode INT Fault code

Table 15–5 _sENC_CONFIG: General configuration parameters for encoder axes

Variable Type Function
bLimitEnable BOOL Limit enable
fUnits REAL Gear ratio

Bus Encoder Axes

-499-

Variable Type Function

iRingMode INT

Linear/ring mode

0: Linear mode

1: Ring mode

fNegLimitPos REAL Negative limit in linear mode

fForLimitPos REAL Positive limit in linear mode
fRotationPeriod REAL Rotation cycle in rotary mode

Table 15–6 _sENC_EXT_AXIS: System variables of the bus encoder axis

Variable Type Function

bEnable BOOL

Count state of the encoder

OFF: Stop counting

ON: Enable counting

bActDir BOOL

Count direction

OFF: Forward (incremental count)

ON: Reverse (decremental count)

bPLimit BOOL

Arrival at the positive limit

OFF: Disabled

ON: Enabled

bNlimit BOOL

Arrival at the negative limit

OFF: Disabled

ON: Enabled
iConfigAddress INT Configuration address

iAxisID INT Axis No.
fPosition REAL Feedback position (user unit)

fVelocity REAL Feedback velocity (user unit)

dPosition DINT Feedback position (pulse unit)

dFrequency DINT Pulse frequency (pulse unit)

iAxisState INT

Statuses of the axis

0: Stop counting

1: Fault state of the axis

5: Enable counting

iConfigState INT

Configuration statuses of the axis

1: Init (axis in the initialization state)

2: Configure finish (reading of configuration data
completed)

3: Sync finish (synchronized with EtherCAT tasks)

4: Wait communication (communication with the drive
established)

5: Slave ready (initialization completed for the servo
drive controlled by axes)

6: Axis ready (communication established)

iAxisError INT Axis fault code
iSlaveAxisError INT Drive fault code

sCounter _sENC_CNT Reservation for compatibility with the local encoder
axis

Bus Encoder Axes

-500-

Variable Type Function

sReset _sENC_RST Reservation for compatibility with the local encoder
axis

sPreset _sENC_PRESET Reservation for compatibility with the local encoder
axis

sProbe _sENC_PROBE[2] Reservation for compatibility with the local encoder
axis

sMatch _sENC_MATCH[2] Reservation for compatibility with the local encoder
axis

sPDO _sENC_PDO Parameter value area of PDOs
sConfigure _sENC_CONFIG Parameter value area of configuration

15.4 Function Demonstration

15.4.1 Establishing the Configuration

In this example, the hardware required is as follows: one H5U and one GR10-2HCE module with its
channels CH0 and CH1 connected to the external phase A/B pulse of fixed frequency.
Create a project and add the GR10-2HCE module to the EtherCAT configuration. The two bus encoder
axes are automatically added. Among them, Axis_0 is automatically bound to channel CH0 of the GR10-
2HCE module, while Axis_1 is automatically bound to channel CH1 of the GR10-2HCE module.

Bus Encoder Axes

-501-

15.4.2 Counter Enabling

Set the "Counting mode" to "A/B phase frequency" for both Axis_0 and Axis_1, and select "Door
control" in "X12 setting" for Axis_1.

Call the instruction ENC_Counter to enable both bus encoders.

Bus Encoder Axes

-502-

● After M1 is set to ON, M2 and M3 output is ON, D2 displays the current position, and the bus encoder
axis Axis_0 starts counting.

● After M11 is set to ON, if the X12 input of the gating terminal is OFF, the M13 output of the
instruction is ON, the M12 output is OFF, and D12 shows the current position, then the encoder axis
Axis_1 does not count. If the X12 input of the gating terminal is ON and the M12 output of the
instruction is ON, then the encoder axis Axis_1 starts counting.

Bus Encoder Axes

-503-

15.4.3 Counter Presetting

Allocate X13 with the preset function and combine it with the instruction ENC_Preset to realize the
function of presetting the count value for the encoder Axis_1 of the terminal.

Bus Encoder Axes

-504-

● Set M21 to ON. Then the current count value of Axis_0 will be set to 0, and M22 output will be ON
after the setting is completed.

● Set M31 to ON and M33 output to ON. When the terminal X13 of the GR10-2HCE module switches its
state from OFF to ON, the current count value of Axis_1 will be set to 0, and the M32 output will be
ON after the setting is completed.

15.4.4 Probe Function

Allocate the probe function 1 and probe function 2 for X00 and X10 in the encoder axis Axis_0 and for
X10 and X11 in the encoder axis Axis_1.

Bus Encoder Axes

-505-

Tick the following PDO data on the interface "过程数据" of GR10-2HCE.

Call the instruction ENC_TouchProbe to control the probe function of the encoder axis. The functions
of the four probes are set as follows.

Para. Axis_0 probe 1 Axis_0 probe 2 Axis_1 probe 1 Axis_1 probe 2

Probe ID Probe 1 Probe 2 Probe 1 Probe 2

Trigger edge
Trigger by the rising
edge only

Trigger by the falling
edge only

Trigger by both rising
and falling edges

Trigger by both rising
and falling edges

Terminal DI terminal DI terminal DI terminal DI terminal
Trigger mode Single trigger Single trigger Continuous trigger Continuous trigger

Window limit Disabled Disabled Enabled Disabled
Start position - - 10 -
End position - - 100 -

Bus Encoder Axes

-506-

Bus Encoder Axes

-507-

15.4.5 One-dimensional Comparison Output

Allocate the one-dimensional comparison output function for Y00 in the encoder axis Axis_0 and Y10 in
the encoder axis Axis_1.

Bus Encoder Axes

-508-

Tick the following PDO data on the interface "Process data" of GR10-2HCE.

Call the instruction ENC_ArrayCompare to implement the array comparison of terminal Y00, and
output 50 ms at 10, 20, and 30 points, respectively.

Bus Encoder Axes

-509-

Call the instruction ENC_StepCompare to implement the step comparison of terminal Y10, with the
start point at 10, end point at 100, and step size as 15. The comparison output is performed in level
control mode with a level length of 5 Unit.

Bus Encoder Axes

-510-

15.4.6 Two-dimensional Comparison Output

The GR10-2HCE module supports the two-dimensional comparison output function only at terminal
Y00, so only the terminal Y00 of the encoder axis Axis_0 bound to channel CH0 can be allocated with
the two-dimensional comparison output function.

Tick the following PDO data on the interface "Process data" of GR10-2HCE.

Bus Encoder Axes

-511-

Call the instruction ENC_GroupArrayCompare to realize the comparison output function, and set three
comparison points (10,10), (20,20), and (30,30). The comparison output is performed in level control
mode with a high initial level.

Bus Encoder Axes

-512-

15.4.7 DO Terminal Control

If the DO terminal of the GR10-2HCE module is used as a common DO terminal, call the instruction
ENC_DigitalOutput in the program to control the terminal. The address mapping table of the DO
terminals is as follows.

Address Controlled Terminal
D400.0 Y00
D400.1 Y01
D400.2 Y02
D410.0 Y10
D410.1 Y11
D410.2 Y12

15.4.8 Obtaining Axis Status

Call the instruction ENC_ReadStatus to obtain the fault code of an axis and the status of the DI
terminal. The address mapping table of the DI terminals is as follows.

Address Mapped Terminal
D502.0 X00
D502.1 X01
D502.2 X02
D502.3 X03
D512.0 X10
D512.1 X11
D512.2 X12
D512.3 X13

Through the system variables, write the feedback position of the pulse unit of Axis_0 to D508 and the
feedback frequency of the pulse unit of Axis_1 to D518.

Bus Encoder Axes

-513-

Electronic Cam

-514-

16 Electronic Cam

16.1 Introduction to Electronic Cam

Electronic cam essentially involves the motion of the slave axis following the master axis. The motion
relationship between the master axis and the slave axis can be expressed in a cam table data or elec-
tronic gear ratio approach.

● In the cam table data approach, up to 361 key points can be created. In the electronic gear ratio
approach, only one constant ratio is applied between the master axis and the slave axis.

● If electronic gear is used, just set the numerator and denominator of the electronic gear ratio and
there is no need to set cam table data. If electronic cam is used, set electronic cam table data first.

● The programming software can be configured with 16 cam tables, each with up to 361 key points.
Up to 8 electronic cams can be used simultaneously in the program.

● During cam execution, it is allowed to add, delete, and modify key points of a cam table, and the
modified cam table takes effect in the next cam cycle.

16.2 Software Configuration

16.2.1 Overview

In "Project Manager", expand "Configure", and double-click "Electronic Cam" to open the relevant con-
figuration page.
The cam table page contains a graphic editing area on the left and a parameter point editing area on
the right.

16.2.2 Cam Node Settings

You can set cam nodes in the parameter point editing area.
Click "Add" to add a cam node data row and edit the relevant data. To delete a node, select the
corresponding node data row and click "Del".

Electronic Cam

-515-

Table 16–1 Definitions of cam node parameters

Para. Function

M-Pos
Master axis phase

Sets the phase of the master axis (relative mode)

S-Pos
Slave axis displacement

Sets the offset of the slave axis (relative mode)

PU-Speed
Connection speed

Automatically generated when the curve type is set to straight line, or manually set when the curve
type is set to quintic curve

Type

Sets the curve type

Line: Straight line

Spline: Quintic curve

16.2.3 Cam Curve Settings

In the graphic editing area, you can set cam curves, including position, speed ratio, and acceleration ra-
tio curves.

Cam curve description

1. Cam key points on the position curve can be moved up or down and left or right. The speed ratio
curve can only be moved up or down. The acceleration ratio curve does not allow modification.

2. The last point can only be dragged up and down. To change the value of the last point leftwards or
rightwards, manually modify the data in the toolbar on the right.

Electronic Cam

-516-

3. Hover the mouse cursor over a point in the coordinate system, and the specific coordinate
information will be displayed.

4. Right-click to insert or delete a key point.
5. Click a line segment between two key points in any coordinate system, and the line segments

between the two key points in all the three coordinate systems will become bolded.

16.2.4 Import and Export

You can export or import each individual cam table.
Select the electronic cam you want to export or import and right-click it to export/import the
electronic cam to/from a CSV file.

16.2.5 Uploading Cam Tables

All the cam tables saved in a board can be uploaded by using the upload feature.

16.2.6 Calling System Variables and Instructions

When a cam table is created, the software backend assigns a system variable to represent the cam
table. The status of the cam table can be monitored in the PLC program and can be used as a
parameter for instructions such as MC_CamIn. In addition, values of key points in the cam table can be
modified and updated using the MC_GenerateCamTable instruction.

16.3 System Variables

16.3.1 Cam Nodes

Each key point can be represented by a cam node variable, with the data type being _sMC_CAM_NODE.
Member variables of this structure are shown in the following table.

Table 16–2 _sMC_CAM_NODE structure

Variable Name Data Type Function Description

fPhase REAL Master axis phase

fDistance REAL Slave axis displacement

fVel REAL Connection speed

fAcc REAL Connection acceleration rate (reserved)

iCuve INT

Curve type

0: Reserved

1: Straight line

2: Quintic curve

Each cam node structure is used as a member variable of a cam table structure to store key point data
of the cam table. See “16.3.2 Cam Tables” on page 517for details.

Electronic Cam

-517-

In the program, you can also customize cam node arrays for updating cam tables.

The MC_GenerateCamTable instruction can be used to overwrite the existing cam node array in Ecam_
1 with a newly-defined camnode_1 cam node array.

16.3.2 Cam Tables

Cam tables can only be created and configured in the software tool and cannot be created in the pro-
gram. However, coordinates of cam key points can be modified in the program to facilitate modifica-
tion of process parameters.

Table 16–3 _sMC_CAMTABLE

Variable Name Data Type Read/Write
Property

Function Description

iCamID INT RO ID number
bSaveState BOOL RO Saving a cam table

ON: Saving

OFF: Idle
bCheckState BOOL RO Checking a cam table

ON: Checking

OFF: Idle
bNew BOOL RO Updating a cam table

ON: Updating

OFF: Idle

Electronic Cam

-518-

Variable Name Data Type Read/Write
Property

Function Description

iErrorCode INT RO Error code corresponding to the cam check/save failure

iSetNodeNum INT RW Total number of set key points

iActNodeNum INT RW Total number of actual key points

Updated after the first run and after each execution of
the MC_GenerateCamTable instruction

fMaxPhase REAL RO Cam cycle

sCamnode _sMC_CAM_NODE
[361]

RW Cam key point array

Needs the MC_GenerateCamTable instruction for
updating after modification in the program

The master axis phases must be arranged in ascending
order, otherwise an error will occur.

Cam table variables are automatically generated for cam tables created in the software tool.

16.3.3 Cam Contact Nodes

The system variable for the cam contact node is _sMC_CAMIN.

Electronic Cam

-519-

Table 16–4 _sMC_CAMIN data structure

Variable Name Data Type Read/Write Property Function Description

iCamInID INT RO Cam combination ID
iCAMTableID INT RO The cam table being executed

iMasterID INT RO Master axis ID
iSlaveID INT RO Slave axis ID
iState INT RO Reserved and not defined
iCamCnt INT RO Number of cam cycles already executed

iNodeCnt INT RO Key points waiting for execution

fMasterStartpos REAL RO Start position of the master axis

fSlaveStartPos REAL RO Start position of the slave axis

fphase REAL RO Current phase of the master axis

fDistance REAL RO Current displacement of the slave axis

fPhaseShift REAL RO Super-imposed amount of phase shift

fPhaseVelocity REAL RO Super-imposed velocity of phase shift

fPhaseAcc REAL RO Super-imposed acceleration of phase shift

This variable can only be defined as an output variable of the MC_CamIn instruction in the program.

16.4 State Machines

State machines of the electronic cam are shown in the following figure.

Electronic Cam

-520-

Note
Calling the MC_CamOut instruction can start the Continuous Motion state only when OutMode of the instruction is
0.

Table 16–5 State definitions
Status Function Description

Disabled Disabled
ErrorStop Stopped due to a fault

Standstill Enabled
Homing Homing

Stopping Stopped

Discrete Motion Discrete motion
Continuous Motion Continuous motion
Synchronized Motion Synchronized motion

Table 16–6 State transition conditions
Transition Transition Conditions

1 The fault detection logic of the axis detects a fault. In this case, the system immediately
transits to this state.

2 The axis is free of faults and MC_Power.Enable=OFF
3 MC_Reset is called to reset the axis fault and MC_Power.Status=FASLE.
4 MC_Reset is called to reset the axis fault and MC_Power.Status=ON.
5 MC_Power.Enable=ON and MC_Power.Status=ON.
6 MC_Stop(MC_ImmediateStop).Done=ON and MC_Stop(MC_ImmediateStop).Execute=OFF.

16.5 Electronic Cam Operations

16.5.1 Gear Operation

Basic block diagram

Function description

Gear operation is applicable to the following types of master and slave axes.

● Master axis: bus servo axis, local pulse axis, local encoder axis, and bus encoder axis

Electronic Cam

-521-

● Slave axis: bus servo axis and local pulse axis

Use the MC_GearIn (starting gear operation) instruction to start gear operation. Use the MC_GearOut
(ending gear operation) instruction or the MC_Stop (forced stop) instruction to end synchronized gear
operation.

After gear operation starts, the slave axis accelerates or decelerates, with the target speed being the
speed of master axis multiplied by the gear ratio.

Time before the slave axis reaches the target speed is called the Catching phase. Time after the slave
axis reaches the target speed is called the InGear phase.

Gear operation is executed by setting the gear ratio between the master and slave axes.

When the gear ratio is positive, the slave axis moves in the same direction as the master axis. When the
gear ratio is negative, the slave axis moves in the opposite direction to the master axis.

For detailed functions, see the MC_GearIn instruction in the "Electronic Cam Instructions" section of
the instructions guide.

Example

Job: Create two bus servo axes and make the second axis follow the first axis at a gear ratio of 1:1 for
gear operation.

Procedure:

1. Create a project. Create two bus servo axes, one as a master axis and the other as a slave axis.

Electronic Cam

-522-

Set Axis_0 of the two bus servo axes as the master axis and Axis_1 as the slave axis.

Bind IS620N of the two servo drives to Axis_0 and IS620_1 to Axis_1.

2. Call the MC_Power instruction to control the enabling of the master and slave axes.

3. Call the MC_Jog instruction to control the forward and reverse motion of the master axis.

4. Call the MC_GearIn instruction to execute gear operation, with the gear ratio set to 1:1.

Electronic Cam

-523-

5. Call the MC_GearOut instruction to end gear operation.

16.5.2 Cam Operation

Cam operation refers to the motion of the slave axis in sync with the position of the master axis accord-
ing to a cam table.

Basic block diagram

Function description

Cam operation is applicable to the following types of master and slave axes.

● Master axis: bus servo axis, local pulse axis, local encoder axis, and remote encoder axis
● Slave axis: motion control axis

Use the MC_CamIn (starting cam operation) instruction to start cam operation or change cam tables.
Use the MC_CamOut (ending cam operation) instruction or the MC_Stop (forced stop) instruction to
end cam operation.

In a typical cam structure shown in the following figure, the master axis rotates periodically and the
slave axis moves back and forth along a direction under the control of the master axis.

Electronic Cam

-524-

The electronic cam simulates such a structure, selecting one axis (bus servo axis, local pulse axis, local
encoder axis, or remote encoder axis) as the master axis and another axis (bus servo axis or local pulse
axis) as the slave axis. The master axis and the slave axis move in a synchronized way according to a
set cam curve.

Cam curves

A cam curve is a 2D coordinate system, where the horizontal axis represents the phase of the master
axis and the vertical axis represents the displacement of the slave axis. Set some key points in the
coordinate system, and connect every two key points with a set curve (such as a straight line or a
quintic curve) to form a cam curve.

For detailed functions, see the MC_CamIn and MC_CamOut instructions in the "Electronic Cam
Instructions" section of the instructions guide.

Example

Job: Create two servo axes. Set Axis_0 as the cam master axis, and Axis_1 as the cam slave axis that
follows Axis_0 to execute cam operation.

Procedure:

1. Create a project. Create two bus servo axes, one as a master axis and the other as a slave axis.

Electronic Cam

-525-

Set Axis_0 of the two bus servo axes as the master axis and Axis_1 as the slave axis.

Bind IS620N of the two servo drives to Axis_0 and IS620_1 to Axis_1.

2. Create a cam table.
3. Call the MC_Power instruction to control the enabling of the master and slave axes.

Electronic Cam

-526-

4. Call the MC_Jog instruction to control the forward and reverse motion of the master axis.

5. Call the MC_CamIn instruction to execute cam operation.

6. Call the MC_CamOut instruction to end cam operation.

16.5.3 Cam Tables

16.5.3.1 Introduction to Cam Tables

In the cam function module, a pair of data comprised of the master axis phase and the slave axis dis-
placement is defined as cam data, and combination of cam data is defined as a cam table.

Electronic Cam

-527-

Phase and displacement values of cam data in a cam table are relative quantities expressed in relation
to the start point "0.0".

In cam operation, the slave axis displacement is calculated based on the master axis phase and the set
curve type, to control the operation of the slave axis.

After a cam table is created with the cam editor in AutoShop, cam data in the cam table can be
modified in the user program.

16.5.3.2 Cam Table Specifications

Observe the following specifications when creating cam tables.

Table 16–7 Cam table specifications

Item Description

Total number of cam key points supported by
each cam table

361

Total number of cam tables supported 16

Number of cam tables that can be executed
simultaneously in the PLC

8

Rules for switching cam tables during cam
operation

Switch cam tables using the MC_CamIn instruction, and the newly selected cam
table takes effect in the next cam cycle.

Reading and writing cam data View the status and key point data of each cam table by using the global
variable named after the cam table.

You can modify key point data in a cam table directly and make the
modification take effect by using the MC_GenerateCamTable instruction. The
cam will act according to the modified cam table in the next cam cycle.

Saving cam tables Modified cam tables can be saved to the non-volatile memory of the PLC using
the MC_SaveCamTable instruction.

16.5.3.3 Cam Table Data Flow

The data execution flow of cam tables is shown in the following figure.

Electronic Cam

-528-

Data flow description

1. In the background, download a cam curve to the non-volatile memory.
2. In the background, upload a cam table file from the non-volatile memory.
3. When the cam table in the non-volatile memory switches from STOP to RUN after download, the

cam table is loaded to the cam table system variable and initialized to the backup area.
4. The cam table in the user area is updated to the EtherCAT memory when the execution of MC_CamIn

starts or after one cam motion cycle is completed. Then, EtherCAT works according to the updated
cam nodes.

5. With the user program, you can modify a cam key point in the system variable or copy a new cam
node array to an existing cam table, and then copy the modified cam table to the backup RAM by
using the MC_GenerateCamTable instruction.

6. After modifying or creating cam key points in the user program, call the MC_GenerateCamTable
instruction to check the rationality of the cam table.

7. Call the MC_SaveCamTable instruction to write the cam table in the backup area into the non-
volatile memory.

16.5.3.4 Creating Cam Tables

Cam table variables can only be created in the background. Every time a cam table is added, a cam
table variable is created by default. The name of the cam table variable is the name of the cam table in
the configuration. You can obtain the status of the cam table by using the variable and use the status
as an input parameter for cam instructions.

Electronic Cam

-529-

16.5.3.5 Switching Cam Tables

During cam execution, you can switch to a different cam table by triggering the MC_CamIn instruction.
After triggering, the cam table becomes buffered, and the buffered cam table takes effect in the next
cam cycle.
Only one cam table can be buffered. If multiple MC_CamIn instructions are triggered in succession, the
cam table triggered earlier will be overwritten by the cam table triggered later.

Here is an example of triggering two instructions.

● Trigger M110 first. After the instruction detects that the cam parameter is set correctly, M111 (Busy)
output becomes active, Axis_1 starts to move according to the cam curve set by the Ecam_0 cam
table, and M112 (Active) output becomes active. If M120 is triggered before one cam cycle is
completed, the Ecam_1 cam table becomes buffered and M121 (Busy) output becomes active.

● After Axis_1 completes the first cam cycle, the first cam instruction is aborted and M113
(CommandAborted) output becomes active. In this case, Axis_1 starts to move according to the cam
curve set by the Ecam_1 cam table and M122 (Active) output becomes active.

16.5.3.6 Modifying Cam Table Data

Cam data can be modified through the following three methods.

1. Modify values in the cam node array of the cam table through the PLC program, and then execute
the MC_GenerateCamTable instruction. The modification takes effect in the next cam cycle.

Here is a program example:

Electronic Cam

-530-

2. Modify the number of key points in the cam table, and then execute the MC_GenerateCamTable
instruction. The modification takes effect in the next cam cycle.

Here is a program example:

Electronic Cam

-531-

3. Create a completely new cam node array through the PLC program, and then copy the values in the
cam node array to the cam table by using the MC_GenerateCamTable instruction. The modified cam
table takes effect in the next cam cycle.

Here is a program example:

Electronic Cam

-532-

16.5.3.7 Saving Cam Tables

Modified cam tables can be written to the non-volatile storage space by using the MC_SaveCamTable
instruction.

16.5.4 Master Axis Phase Compensation

This function allows the master axis phase to be shifted (observed from the slave axis) for instructions
in operation.
Starting the MC_Phasing (master axis phase shift) instruction can compensate the phase for the
synchronized control instruction.

The MC_Phasing (master axis phase shift) instruction can specify parameters such as phase
compensation, target speed, acceleration rate, and deceleration rate.

Electronic Cam

-533-

16.5.5 Motion Superimposition

Call the MC_MoveSuperImposed instruction to implement motion superimposition on the motion
control axis.

The MC_MoveSuperImposed (motion superimposition) instruction can specify parameters such as
position compensation, target speed, acceleration rate, and deceleration rate.

Electronic Cam

-534-

16.5.6 Methods of Handling Single-Axis Configuration Parameters in Cam or

Gear

Methods of handling single-axis configuration parameters in cam or gear are shown in the following
table.

Table 16–8 Methods of handling single-axis configuration parameters

Para. Method of Handling

Gear ratio setting The master and slave axes of the cam and gear support gear ratio modification. Set gear ratios
in the "Unit conversion setting" interfaces of the cam and gear, respectively.

Encoder mode selection The master and slave axes of the cam and gear support drive encoder mode setting. The
encoder can be set to incremental or absolute mode. Set this parameter in the "Mode/
Parameter setting" interfaces of the cam and gear, respectively.

Circular/linear mode setting The master and slave axes of the cam and gear support linear and circular modes. Set this
parameter in the "Mode/Parameter setting" interfaces of the cam and gear, respectively.

Limit handling In linear mode, the slave axes of the cam and gear support software limit but do not support
limit-based deceleration. The slave axes stop immediately after encountering the limit.

In both linear and circular modes, the slave axes of the cam and gear support hard limit, and
stop immediately after encountering the limit.

Deceleration rate at axis fault When an abnormal instruction parameter causes a fault on a slave axis, the slave axis
decelerates according to the deceleration rate specified by the axis fault deceleration
parameter and then enters the ErrorStop state.

Following error The slave axes of the cam and gear support following error during operation.

Speed limit Instructions related to the cam and gear are not restricted by the maximum speed parameter
in the configuration.

Acceleration rate limit The deceleration rate of the MC_CamOut instruction is restricted by the maximum
acceleration parameter in the slave axis configuration. The instruction reports an error and
the axis enters the ErrorStop state when the deceleration rate exceeds the limit.

The acceleration rate and deceleration rate of the MC_GearIn instruction are restricted by the
maximum acceleration parameter in the slave axis configuration. The instruction reports an
error and the axis enters the ErrorStop state when the acceleration rate or deceleration rate
exceeds the limit.

The deceleration rate of the MC_GearOut instruction is restricted by the maximum
deceleration parameter in the slave axis configuration. The instruction reports an error and
the axis enters the ErrorStop state when the deceleration rate exceeds the limit.

Torque limit The torque limit value is written into the servo drive as a startup parameter and is controlled
by the servo drive.

Offline Commissioning

-535-

17 Offline Commissioning

17.1 Overview

Offline commissioning is available in AutoShop V4.2.0.0 and later versions.

Offline commissioning allows users to commission the logic, motion control, and communication
functions of the program.

Offline commissioning covers the motion control axis, module configuration, communication, and
online modification functions. It comes with a status display interface that facilitates real-time
monitoring of the status of the PLC and module I/O channels. In addition, offline commissioning can
be used with the online simulation function of the IT7000 series HMI to achieve simulation
commissioning, making commissioning more convenient.

The following table lists the functions supported or not supported in the offline commissioning mode.

Offline Commissioning

-536-

Supported or
Not

Function Description

Supported

Program

Supports main program, subprogram, and FB/FC.

Supports the "timed interrupt" subprogram.

Supports online modification.

Motion control
Supports local pulse axis and EtherCAT bus servo axis.

Supports local encoder axis; uses simulation of internal clock signal.

Communication

Supports serial communication configuration; uses the COM9 port of
computers; supports Modbus master/slave protocol; supports free
serial protocol.

Supports Ethernet Modbus-TCP protocol; supports Ethernet TCP/UDP
communication.
Supports online simulation with HMI. Communication is established
through specified ports. A communication variable table is generated
in the background and imported to the HMI. Monitoring objects
include all components and customized variables.

Directive Supports all instructions, except the HOUR, DHOUR/TWR, TRD
instructions.

Extension Supports extension module I/O, local DIDO, and function
virtualization.

Other functions
Supports RTC clock; uses the clock built in Windows; does not support
PLC time setting.

Keeps consistent with PLC.

Not supported

Basic

Does not support time setting.

Does not support "Set/Modify Login PLC Password" or "Delete Login
PLC Password".
Cannot enter or exit offline commissioning during compile, download,
or firmware upgrade process.

Program Does not support hard interruption, edge interruption, or comparison
interruption.

Motion control Does not support bus encoder axis.

Communication
Does not support CANlink or CANopen.

Does not support EtherCAT communication or instructions.

Note
● Offline commissioning of the operating system may result in some difference between the timer and the actual

PLC, involving the timed-interrupt subprogram and internal clock signal.
● In offline commissioning, the CPU and memory usage displayed is the CPU and memory usage of the PC.
● Functions that are not supported cannot be used normally, but they do not affect offline commissioning and

therefore need no special treatment.

17.2 Starting Offline Commissioning

Prerequisite: The project to be commissioned offline is created or opened.

1. In the toolbar, click to start the offline debugger. Run the PLC program that has been created or
opened.
The interface is comprised of the following parts.

Offline Commissioning

-537-

No. Description

① PLC status

② Status of I/O channels of the PLC. Green indicates active I/O, whereas gray indicates
inactive I/O.

③ Status of extension modules. Status of digital extension modules are consistent with the
PLC, whereas the section of analog extension modules shows the values in the current
mapped registers.

Note
After starting offline commissioning, you can perform the following operations:

● Monitor the status of the program online, including the inputs and outputs of the PLC.
● Modify or download the PLC program.
● Modify the program online.

2. Commission digital and analog terminals.

● Commission digital terminals: For any I/O point that is not controlled by the program, directly
click the I/O point to switch its ON/OFF state.
I/O points controlled by the program run according to the logic of the program.

● Commission analog terminals: Click a value input field to enter an analog value.
After the value is input, the parameter is written to the corresponding mapping element. Similar
to digital terminals, mapping elements controlled by the program run according to the logic of
the program.

Offline Commissioning

-538-

Note
Actual sensors cannot be connected during offline commissioning. Therefore, analog input values must be typed
manually for offline commissioning of analog terminals.

17.3 Motion Control Axes in Offline Commissioning

Local pulse axis and bus servo axis

● In offline commissioning, local pulse axis and bus servo axis can be used without special
modifications in the program.

● All functions, including probes and hardware limits, related to external input cannot be used in
offline commissioning.

● Using the homing instruction does not need special settings. When the homing instruction is used,
homing mode No. 35 is activated (that is, the current position is taken as the home).

Local encoder axis and bus encoder axis

● To use local encoder axis in offline commissioning, select the single-phase counting mode and
select internal clock signal (1 ms or 1 μs) as the signal source. If other modes are used, the local
encoder axis cannot start counting.

● In offline commissioning, only HC_Counter and HC_Preset instructions are supported for local
encoder axis.

Offline Commissioning

-539-

● Bus encoder axis is not supported in offline commissioning.

17.4 Simulation Commissioning with InoTouchPad

17.4.1 Overview

The H5U or Easy series PLC can work with the IT7000 series HMI to achieve simulation commissioning
without physical objects through the commissioning function of AutoShop and InoTouchPad software.

The PLC and HMI communicate with each other through TCP monitoring protocol, supporting
customized variables and read and write operations on soft elements.

17.4.2 PLC Configuration

The PLC and HMI employ internal communication for simulation commissioning. Therefore, there is no
need to configure the PLC's IP address. Users only need to export the PLC's variables to the HMI
monitoring variable table to complete the PLC configuration.

1. After compiling the user program, open the variable table, right-click any area of the variable table,
and select "Export HMI Monitoring Variable Table (H)" in the shortcut menu.

2. Select the path to save the file to be exported, enter the file name, and click "Save" to complete the
export.

17.4.3 HMI Configuration

To use simulation commissioning, add a PLC connection on the HMI and import the variable table. For
H5U, specific operation steps are as follows.

1. Create an HMI connection.

a. Double-click "Connection" to open the connection tab.
b. Click to add a connection.
c. In the "Communication protocol" column, select "H5U TCP monitoring protocol".
d. In the "IP Address" field, enter "127.0.0.1".

2. Import the HMI monitoring variable table.

a. Double-click "Add variable group" to add a variable group.
b. Right-click the newly created variable group and select "Import".
c. In the opened dialog box, select the HMI monitoring variable table exported from the PLC and click

"Open".
d. In the "Select device" field, select the HMI connection created in step 1.

After the import is completed, variables are automatically generated in the variable group.

Offline Commissioning

-540-

17.4.4 Starting Commissioning

After editing the program and importing the variable table for HMI and PLC, you can start the offline
commissioning function of AutoShop and the online simulation function of InoTouchPad for
commissioning.

Memory Management

-541-

18 Memory Management

18.1 Overview

Memory management includes customized variable and soft element variable memory management.
Variable memory data at a specific moment can be obtained and used as the basis for commissioning
and analysis. Variable memory data at a specific moment can also be saved as recipe data for commis-
sioning parameters of different processes or recipe parameters of multiple steps of one process.
Specifically, variable memory data can be used in the following scenarios:

● When the program encounters an exception, obtain the current variable memory data for problem
analysis.

● Obtain multiple sets of variable memory data parameters at a specific moment and save them as
recipe parameter files for use by other machines.

● Monitor the values of all the data in the current variable table in real time.
● Synchronize the current variable memory data parameters to the initial values.
● Save data of different recipe parameters when commissioning different processes of one program.
● Save different sets of recipe parameters when commissioning different steps of one process.

18.2 Memory Management of Customized Variable Tables

18.2.1 Expanding and Collapsing Complex Type Variables

Complex type variables contained in the customized variable table are arrays and structures. The
system supports expanding and collapsing sub-members of arrays and structures. For sub-members,
only the initial value, comment, and data columns are editable, while values in other columns are not
editable.

18.2.2 Monitoring Variables

The variable table supports monitoring. Click the "Download and monitoring" button in the user
project, and the system will monitor all variables displayed on the current variable table page without
the need to add variables to the monitoring table separately.

Memory Management

-542-

18.2.3 Reading and Writing Memory Data

In the running state, for a single variable table, select the specified array or structure, right-click it, and
select "Write Memory" to write non-null data to the PLC. In the monitoring state, right-click and select
"Read Memory" to read the current variable memory data from the PLC to the selected data column of
the variable table.

In the running state, you can upload or download newly-added variable values through one click.
Specifically, right-click "Global Variable", and select "Upload project variable value" to batch read the
current variable memory data from the PLC to the selected data columns of the variable table; or
select "Download project variable value" to batch write non-null data in the variable table to the PLC.

Note
● Select the "Auto stop for writing" option, and the PLC will automatically stop before memory data is written.
● If the "Auto stop for writing" option is not selected, memory data may not be written in the same scan cycle.

In the stop state, only retentive variables can be written.

18.2.4 Synchronizing and Clearing Data

Data values, current values, and initial values can be synchronized with each other.

Memory Management

-543-

Synchronizing data

For example, to synchronize initial values to current values, select the target initial value item (or select
multiple initial value items), right-click and select "Synchronize To" > "Value".

Note
Current values cannot be synchronized to initial values.

Clearing data

Select "Clear Column Data" to delete the currently selected data value. This operation can only be
performed on data values.

For example, to clear the Data3 column, select "Data3", right-click it, and select "Clear Column Data".

18.2.5 Saving and Loading Data

You can select "Save Values" in the shortcut menu to save specified data values in a CSV file. Then,
open the CSV file using EXCEL to edit the data values.

You can also select "Load Values" in the shortcut menu to import the edited CSV recipe file to the PLC.

Memory Management

-544-

18.2.6 Editing Initial Values and Comments of Variables

You can directly expand the variable table to edit initial values and comments of member data, or
define them in the customized variable box in the program. These two methods are equivalent to each
other.

Note
English characters and special characters such as commas (,), brackets ([]), and parentheses (()) in comments of var-
iable member data are automatically filtered out.

18.2.7 Switching and Displaying Number Systems

Customized variable tables allow switchover between decimal, binary, and hexadecimal displays.

18.3 Memory Management of Soft Elements

18.3.1 Operation Interface

The element table provides the comment and memory management functions, as shown in the
following figure.

Memory Management

-545-

① Soft element switchover area. Switch to different soft elements to manage their memories and
comments.

② This area is used to batch modify the data type of selected soft elements on the current page. To
select soft elements, enter the start and end numbers of the elements in the two edit boxes.

③ Click the drop-down box to select the data type to be changed to. For example, switch to the D
elements, enter 50 and 100 to select the D50 to D100 elements, and then click the drop-down box to
select REAL. The data type of D50, D52, D54...D100 is changed to REAL. (Note: REAL and DINT each are
composed of 32 bits, occupying two soft elements.)

④ This area can redirect you to a specific element. For example, switch to the D elements, enter 1000
in this box, and then click "Jump" or press Enter. The page automatically redirects to the D1000
element. (Note: For the X and Y elements, only octal numbers of up to five digits can be entered in an
input box. If the entered number exceeds the total number of elements, the page redirects to the end.)

⑤ This area is used to change the display format of the data value and current value columns. For
example, clicking the "Hex" option will switch all data to hexadecimal display.

18.3.2 Data Operation

The shortcut menu of soft elements provides multiple function options, as shown in the following
figure.

Memory Management

-546-

● The Cut, Copy, Paste, and Delete options are available for the value columns and the comment
column.

● The Edit option is available for only six columns, including the data type column, value columns,
and comment column.
The value columns can be edited in any mode, while other columns cannot be edited in the
monitoring mode. All these columns can be edited in the online modification mode.

● Import and Export: Only rows with modified data can be exported. If there is any data error in a row
during import, the system reports the error in the information output window and skips the row.
When the number of error rows exceeds 100, the import stops.

● Synchronize To: synchronizes all data in a selected column to a value column selected using the
menu. For example, right-click a cell in the "Value1" column and choose "Synchronize To" >
"Value2" to overwrite the Value2 column with the data in the Value1 column.

● Read Memory and Write Memory: Reading or writing soft element memories is allowed only in the
online modification mode or monitoring mode. On the interface of a single element, tick the header
of a value column, right-click and select "Read Memory" or "Write Memory" to read or write to the

Memory Management

-547-

specific column you ticked. To read or write data values to the entire soft element table in batch,
right-click "Global Variable", and select "Upload project variable value" to batch read the current
variable memory data from the PLC to the selected data columns of the variable table; or select
"Download project variable value" to batch write non-null data in the variable table to the PLC.

● Clear Column Data: clears all data in a column.

18.3.3 Bit Comments

Select word elements (D, R, or W) in the element table and then select a row. Bit comments of the row
are displayed in the toolbox area. You can edit the bit comments in the toolbox area.

For example, select D10, edit the comment of D10.3, and save the modification. As a result, the bit
comment is displayed in the ladder diagram.

18.3.4 Rules of Editing Data Types

1. For bit elements (X, Y, M, S, and B), the data type can only be set to BOOL, and the values are either
ON or OFF.

2. For word elements, the data type can be set to INT, DINT, or REAL. An INT element is composed of 16
bits, whereas a DINT or REAL element is composed of 32 bits.

3. A 32-bit word element occupies two element rows. Therefore, when a word element is set as the
REAL or DINT type, values in the row next to the word element are automatically cleared and data
type of that row cannot be edited. In addition, the data column of the row preceding the word
element cannot be edited. In memory reading, the row next to a REAL or DINT element are skipped.

18.4 Function Demonstration

Save different sets of recipe parameters when commissioning different steps of one process.

1. Create a standard project, define variables and structures and write the program for the project, and
then download the project to the PLC.

2. Enter project monitoring.

Memory Management

-548-

3. Open the variable table and tick "Value1". At a specific moment, right-click and select "Read
Memory" to read the variable memory as the recipe parameters for the step of the specific moment.
As a result, the variable memory values obtained at the specific moment are displayed in the
"Value1" column. In batch reading of memory values, the memory values read through right-click at
a specific moment will be read to the entire selected value column of the variable table, whether
open or not, and will be used as the recipe parameters for that step.

4. Similarly, tick "Value2". At another moment, right-click and select "Read Memory" to obtain recipe
parameters for another step and have them displayed in the "Value2" column. Batch reading of
memory values is similar to the previous operation. Values obtained through batch reading are used
as the recipe parameters for another step.

5. Save the recipe. Before saving the recipe, you can edit some of the obtained values (or export and
edit them in an EXCEL file and then load the file). After editing, right-click and select "Save" to save
the recipe data of different steps in a CSV file in the disk for backup.

6. Edit recipe values. Open the saved recipe CSV file in Excel and fine-tune the variable parameters.

7. Load the recipe. After saving the data modified in step 6, right-click in the variable table and click
"Load Values". As a result, the modified configuration parameters are displayed in the "Value1" and
"Value2" columns.

8. Write the recipe values. Tick "Value2", right-click and select "Write Memory" to write the recipe
parameters for the corresponding step into the memory.

Fault Diagnosis

-549-

19 Fault Diagnosis

19.1 Diagnosis Through the Panel

19.1.1 Indicators

States and meanings of the panel indicators of the H5U series are shown in the following table.

Indicator Meaning

RUN
Current system status (running or stopped)

ON: Running; OFF: Stopped

ERR System fault

BAT Battery alarm

BF EtherCAT bus fault
CRUN CAN running

CERR CAN error

States and meanings of the panel indicators of the Easy series are shown in the following table.

Port Type Interface Mark Definition Indicator Color Description

I/O indicator

IN/OUT I/O status Yellow-green

● Steady ON: Input or output
active
● OFF: Input or output
inactive

Status indicator

PWR Power supply Yellow-green

● Steady ON: Power supply
normal
● OFF: Power supply
abnormal

RUN Normal running Yellow-green
● Steady ON: User program
running
● OFF: User program stopped

ERR Running error Red
● OFF: No major error
● Flashing: Major error

ETH1 EtherNET1 Link Yellow-green

● Steady ON: Connected
● Flashing: Communication in
progress
● OFF: Disconnected

ETH2 EtherNET2 Link Yellow-green

● Steady ON: Connected
● Flashing: Communication in
progress
● OFF: Disconnected

19.1.2 MFK Key

19.1.2.1 Overview

The MFK key works with the LED display to support multi-function menu operations. Long-press the
MFK key, and the LED display will toggle between different function menus at an interval of 2 seconds,
as shown in the following figure.

Fault Diagnosis

-550-

When the function menu you want to enter is displayed on the LED display, release the MFK key and
then short-press the MFK key to enter the function menu. Note: Short-press is a brief press for less than
2 seconds.

If you enter a menu that cannot be executed, the LED display shows an error.

Display Code Name Description

E1
The PLC is in a non-secure state (running or downloading) and operation is
prohibited.

E2 No SD card or programming file is detected.

E3 Multiple programming files are detected in the SD card.

E4 Programming file data is abnormal or the device model is not compatible.

E5 Password verification error

19.1.2.2 Restoring the Factory Default IP Address

The factory default IP address of the CPU module is 192.168.1.88. If you forget the IP address after
modifying it, leading to a failure in networking and communication with another PC, you can enter the
"IP" menu and reset the IP address of the CPU module to the factory default.

Enter the "IP" menu, and the LED display will start counting down from 10 to 0.

Before the countdown reaches 0, a short-press on the MFK key can cancel the reset. When the
countdown ends, the IP is reset and the factory default IP address will be used.

19.1.2.3 Writing User Programs Through SD Cards

Save the SD card programming file compiled using AutoShop into the "PLCProgram" directory of the
SD card. Then, mount the SD card to the PLC main module. Enter the "Sd" menu to start writing the
user program in the SD card into the PLC host. The LED display shows the programming progress (00
to 99). When the programming is completed, the LED display shows "PP".

...

19.1.2.4 LED Display of the CPU Module

When a system fault occurs, the LED display of the CPU shows the fault code, with "Er" and the code of
the fault displayed alternately. For example, when the fault code is Er1501, the LED display is as
follows:

Fault Diagnosis

-551-

...
For detailed definitions of fault codes, see “19.3 Fault Codes” on page 552

19.2 Diagnosis Through Software

19.2.1 Obtaining Basic PLC Information

1. You can click in the toolbar to enter the monitoring mode. In the monitoring mode, the basic
information of the PLC is displayed in the lower right corner of the interface. The basic information
includes:

(1) PLC status indicator and fault indicator

(2) Current firmware version and program scan cycle

(3) CPU and memory utilization rates

Table 19–1 Indicator states and meanings

Current PLC status Status
Green Running Green No fault

Red Stopped Yellow Minor error
- - Red Major error

2. Double-click the fault indicator to enter the fault diagnosis page and obtain detailed fault
information.

19.2.2 Viewing Operation Logs

Operation logs include fault logs and system logs. To view operation logs, follow these steps:

1. In the toolbar, click "Debug" and then choose "System Run Log View".
2. The system operation log page is displayed.

Fault Diagnosis

-552-

● (1) Select which categories of information to display.
● (2) Select which elements to display, refresh the operation logs, or export the operation logs.

19.3 Fault Codes

The software tool prompts various categories of fault codes when faults occur in user programming.
The following table lists the fault codes and corresponding solutions.

Table 19–2 Fault codes

Fault Code Message Description Troubleshooting

Program

1500 User program watchdog
timed out

The user program
execution time is too long
and has exceeded the set
program watchdog time.

Increase the watchdog time as appropriate, or check
whether there is a program block with unexpectedly
long execution time in the user program.

1501 Undefined instruction
The instruction is not
supported.

Upgrade the PLC firmware to the version that
supports the instruction.

1502
Incomplete user
program, length error

The user program is
incomplete, and the length
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1503

Program authorization
protection identifier
error. Check whether the
identifier matches.

The program authorization
protection identifier is
incorrect. Check whether
the authorization
protection identifier of the
device is set correctly.

Contact the equipment provider.

1504 User program empty The user program is empty.
There is no valid program.

Re-download the user program.

Fault Diagnosis

-553-

Fault Code Message Description Troubleshooting

1505 Block POU identifier
error

The block POU identifier is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1510 Subprogram identifier
error

The subprogram identifier
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1511 Subprogram type error The subprogram type is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1512
Subprogram serial
number error or out of
range

The subprogram serial
number is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1513
Incorrect, duplicate, or
conflicting subprogram
address

The subprogram address is
incorrect, duplicated, or
conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1514
Interrupt subprogram
serial number error or
out of range

The interrupt subprogram
serial number is incorrect
or out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1515
Incorrect, duplicate, or
conflicting interrupt
subprogram address

The interrupt subprogram
address is incorrect,
duplicated, or conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1516
Interrupt subprogram
edge error (not rising
edge or falling edge)

The interrupt subprogram
edge is incorrect (not rising
edge or falling edge).

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1517

Interrupt timing
duration range error in
the interrupt
subprogram timer

The interrupt timing
duration range of the
interrupt subprogram timer
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1520
OBprog program
identifier error

The OBprog program
identifier is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1521
OBprog program type
error

The OBprog program type
is incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1522
OBprog program serial
number error or out of
range

The OBprog program serial
number is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1523
Incorrect, duplicate, or
conflicting OBprog
program address

The OBprog program
address is incorrect,
duplicated, or conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1524
OBprog program
variable quantity error

The variable quantity of the
OBprog program is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1525
OBprog program
variable length error

The variable length of the
OBprog program is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1526 OBprog program header
data error

The header data of the
OBprog program is
incorrect.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

1530
CJ-LBL instruction LBL
serial number error or
out of range

The LBL serial number of
the CJ-LBL instruction is
incorrect or out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

Fault Diagnosis

-554-

Fault Code Message Description Troubleshooting

1531
Incorrect, duplicate, or
conflicting LBL address
of CJ-LBL instruction

The LBL address of the CJ-
LBL instruction is incorrect,
duplicated, or conflicting.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5001

Exception in user
program execution or
instruction return value
error, some instructions
not executed

Execution of the user
program is abnormal or the
return value of the
instruction is incorrect, and
some instructions are not
executed, causing program
execution to end
abnormally.

Check the logic of the user program for any
exception in execution process or execution logic.

5010

CALL instruction
subprogram serial
number error or out of
range

The subprogram serial
number of the CALL
instruction is incorrect or
out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5011
CALL instruction
subprogram non-
existent or not initialized

The subprogram of the
CALL instruction does not
exist or is not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5012

CALL instruction
subprogram nesting
levels out of range or
less than or equal to 0

The number of subprogram
nesting levels of the CALL
instruction is out of range.

Modify the program logic to reduce the subprogram
nesting levels.

5013

Relationship error
returned by the
subprogram of the CALL
instruction

The subprogram of the
CALL instruction returns a
relationship error.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5014
Mismatch between
subprogram call and
subprogram return

Subprogram execution is
abnormal. The subprogram
call and subprogram return
do not match.

Check whether the subprogram call and return are
disordered due to the abnormal end of the user
program.

5015 Interrupt subprogram
undefined

The interrupt subprogram
is undefined or does not
exist.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5016

Interrupt queue full and
interrupt lost in the
interrupt subprogram
timer

The interrupt queue of the
interrupt subprogram timer
is full and the interrupt is
lost.

Modify the interrupt subprogram properties or logic,
and reduce the number of interrupts as appropriate.

5020
FBFC program serial
number error or out of
range

The FBFC program serial
number is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5021
FBFC program non-
existent or not initialized

The FBFC program does not
exist or is not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5022
FBFC program variable
non-existent or not
initialized

The variable of the FBFC
program does not exist or is
not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5023
FBFC program nesting
levels out of range or
less than or equal to 0

The number of FBFC
program nesting levels is
out of range.

Modify the program logic to reduce the FBFC
program nesting levels.

5024
Relationship error
returned by FBFC
program

The FBFC program returns
a relationship error.

Check whether the FBFC special instruction is used
in the wrong position, or recompile and download
the user program.

Fault Diagnosis

-555-

Fault Code Message Description Troubleshooting

5025
Mismatch between
OBprog program call
and program return

OBprog program execution
is abnormal. The program
call and program return do
not match.

Check whether the program call and return are
disordered due to the abnormal end of the user
program.

5030
CJ-LBL instruction LBL
serial number error or
out of range

The LBL serial number of
the CJ-LBL instruction is
incorrect or out of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5031
CJ-LBL instruction LBL
non-existent or not
initialized

The LBL of the CJ-LBL
instruction does not exist or
is not initialized.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5032

FOR-NEXT instruction
nesting levels out of
range or less than or
equal to 0

The number of nesting
levels of the FOR-NEXT
instruction is out of range.

Modify the program logic to reduce the FOR-NEXT
instruction nesting levels.

5033
FOR-NEXT instruction
loops out of range or
less than or equal to 0

The number of FOR-NEXT
instruction loops is out of
range or less than or equal
to 0.

Modify the program logic to change the number of
FOR-NEXT instruction loops.

5034
FOR-NEXT instruction
loops equal to 0

The number of FOR-NEXT
instruction loops is 0.

Modify the program logic to change the number of
FOR-NEXT instruction loops.

5035
FOR and NEXT not
paired

The FOR and NEXT
instructions are not paired.

Check whether the disorder is caused by abnormal
stop of the user program.

5080 Array subscript access
out of bounds

The array access subscript
is greater than the
maximum array subscript
value, and the subscript
value in use has been
changed to the maximum
array subscript value.

Double-click the fault code to go to the
corresponding program position to modify the
subscript value.

5081
Division-by-zero
protection, divisor 0
replaced by 1

The division-by-zero
protection is triggered and
the divisor 0 is replaced by
1 automatically.

Double-click the fault code to go to the
corresponding program position to modify the
divisor.

5082
Long-time no response
from program loop

The program loop has no
response for a long time.

Double-click the fault code to go to the
corresponding program position to modify the loop
statement.

5083 Array subscript access
out of bounds

The array access subscript
is less than 0, and the
subscript value in use has
been changed to 0.

Double-click the fault code to go to the
corresponding program position to modify the
subscript value.

5084 Invalid data
The floating-point data is
invalid.

Check whether the input values of functions such as
LN, LOG, SQRT are legal.

5101
Instruction parameter
variable address error,
or variable non-existent

The address of the
parameter variable of the
instruction is incorrect, or
the variable does not exist.

Check whether the address of the parameter
variable of the instruction is normal and whether the
variable exists.

5102

Instruction parameter
variable size error, or
variable non-existent or
out of range

The size of the parameter
variable of the instruction is
incorrect. The variable does
not exist or is out of range.

Check whether the data length of the parameter
variable of the instruction is out of range.

5104
Instruction parameter
sequence error or
relationship error

The instruction parameter
sequence or relationship is
incorrect.

Check whether the parameter sequence or
relationship of the instruction is correct.

Fault Diagnosis

-556-

Fault Code Message Description Troubleshooting

5105
String data error or
length error in string
instruction

The character string data or
length of the string
instruction is incorrect.

Check whether the character string data of the string
instruction is illegal.

5110
Pointer serial number
error or out of range

The serial number of the
Pointer is incorrect or out
of range.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

5111
Pointer not initialized or
not pointing to a valid
data variable

The Pointer is not initialized
or does not point to a valid
data variable.

Check whether the Pointer is initialized and whether
it points to a valid variable address.

5112
Variable pointed to by
the Pointer non-existent
or out of range

The variable pointed to by
the Pointer does not exist
or is out of range.

Check the variable address pointed to by the Pointer
or initialize the Pointer again.

5113
Pointer offset out of
range

The offset of the Pointer is
out of range.

Check whether the offset of the Pointer is too large.
If yes, reduce the offset.

5114

Variable pointed to by
the Pointer execution
result non-existent or
out of range

The variable pointed to by
the execution result of the
Pointer does not exist or is
out of range.

Check whether the variable address pointed to by
the execution result of the Pointer exists and
whether it is out of range.

5120
Counter instruction
instantiation failed

Failed to instantiate the
counter instruction.

Recompile and download the user program.

5121
Counter instruction
comparand error or out
of range

The comparand of the
counter instruction is
incorrect or out of range.

Check whether the comparand of the counter
instruction is incorrect or out of range.

5130
Timer instruction
instantiation failed

Failed to instantiate the
timer instruction.

Recompile and download the user program.

5131
Timer instruction
comparand error or out
of range

The comparand of the
timer instruction is
incorrect or out of range.

Check whether the comparand of the timer
instruction is incorrect or out of range.

5140

Number of SFC STL
parallel branch/parallel
recombination/selective
branch/selective
recombination lines out
of range

The number of SFC STL
parallel branch/parallel
recombination/selective
branch/selective
recombination lines is out
of range.

Ensure that the number of SFC STL parallel branch/
parallel recombination/selective branch/selective
recombination lines is within the specified range.

5150
Function block
instruction instantiation
failed

Failed to instantiate the
function block instruction.

Recompile and download the user program.

5160
Array subscript variable
code error or non-
existent

The subscript variable code
of the array is incorrect or
does not exist.

Recompile and download the user program.

5161
Array subscript variable
data error or out of
range

The subscript variable of
the array is incorrect or out
of range.

Modify the value of the subscript variable so that the
array falls within the allowable range.

5600 SerialSR instruction
instantiation failed

Failed to instantiate the
SerialSR instruction.

Recompile and download the user program.

5601
SerialSR instruction port
ID out of range

The port ID of the SerialSR
instruction is out of range.

Modify the port ID of the SerialSR instruction.

5602
SerialSR instruction
protocol error

The protocol of the SerialSR
instruction is incorrect.

Set the free protocol for the serial port by using the
software tool.

Fault Diagnosis

-557-

Fault Code Message Description Troubleshooting

5603 SerialSR instruction port
conflict

Multiple instructions call
the SerialSR instruction at
the same time, and the
instruction that fails to
preempt the port reports
an error.

Modify the instruction scheduling timing to
implement time division multiplexing.

5604
SerialSR instruction TX
data length out of range
or less than 0

The TX data length of the
SerialSR instruction is out
of range or less than 0.

Check whether the TX data length of the SerialSR
instruction is out of range or less than 0.

5605 SerialSR instruction TX
data buffer error

Failed to obtain the TX data
buffer of the SerialSR
instruction.

Enable this instruction again.

5606
SerialSR instruction RX
data length out of range
or less than 0

The RX data length of the
SerialSR instruction is out
of range or less than 0.

Check whether the RX data length of the SerialSR
instruction is out of range or less than 0.

5607 SerialSR instruction RX
data buffer error

Failed to obtain the RX data
buffer of the SerialSR
instruction.

Enable this instruction again.

6580
Invalid axis ID in the
CANopen axis instruction

The axis ID specified in the
CANopen axis instruction is
invalid.

Modify the axis ID.

6701
Invalid memory address:
element or variable non-
existent

The memory address is
invalid. The element or
variable to access does not
exist.

Modify the instruction parameter to use a valid
element or variable.

6705
Invalid memory size:
memory non-existent or
out of range

The memory size is invalid.
The number of elements or
variables to access is too
large or out of range.

Modify the instruction parameter to adjust the
number of elements or variables.

6706
Improper data or data
out of range

The instruction parameter
is improper or out of the
allowable range.

Refer to the instructions guide to modify the
instruction parameter value.

6711 Invalid variable address:
variable non-existent

The variable address is
invalid. The element or
variable to access does not
exist.

Modify the instruction parameter to use a valid
element or variable.

6712
Invalid variable size:
variable out of range

The variable size is invalid.
The number of elements or
variables to access is too
large or out of range.

Modify the instruction parameter to adjust the
number of elements or variables.

6713
Invalid variable
encoding

The variable encoding is
invalid.

Recompile and download the user program, or
recompile and download the user program after
replacing the software tool.

CPU

1011 FPGA initialization failed FPGA initialization failed.
The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

1012 Interrupt initialization
failed

Interrupt initialization
failed.

The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

1013
Timer interrupt
initialization failed

Failed to initialize the timer
interrupt of the user
program.

Restart the device and try again, or replace the
device and return the faulty device to the factory for
repair.

Fault Diagnosis

-558-

Fault Code Message Description Troubleshooting

5200
Error in data retention
upon power failure

An error occurs to data
retention upon power
failure.

Check whether the function of data retention upon
power failure works properly.

5238
2038 problem
imminence warning

The device will not work
normally after 11:14:07 on
January 19, 2038 (UTC+8).

Change the device time.

5250 Low RTC battery voltage

The battery voltage of the
RTC clock is low. If the
device is powered off at this
time, the system time will
be restored to the initial
value.

Replace the battery of the RTC clock while keeping
the device powered on.

5900 Network down: Ethernet
IP address conflict

When the device connects
to the network or starts
running after stop, or when
its IP address is modified, it
detects whether its IP
address is used by other
devices in the current
network. If yes, the device
automatically shuts down
the network to avoid
conflict.

Change the device IP address.

Local I/O

5300 Initialization failed Initialization failed.
The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

5301
Invalid DI filter
parameter configuration

The DI filter parameter
configuration data is
invalid.

Modify the DI filter parameter configuration data.

Extension Module

5400
Failed to initialize
extension module
interface hardware

The hardware of the
extension module interface
is faulty, which causes the
initialization to fail.

The device hardware is faulty. Replace the device
and return the faulty device to the factory for repair.

5401
Failed to parse extension
module configuration
data

The configuration data of
the extension module
cannot be parsed correctly
because its format does not
meet requirements.

Clear the compilation information using AutoShop
and recompile and download the program. If the
problem persists, delete the module configurations
and add modules and configurations again one by
one.

5402
Failed to initialize
extension module
interface slot

The slot of the extension
module interface is faulty,
which causes the
initialization to fail.

1. Check whether the extension module interface
slot is short-circuited. If yes, eliminate the short
circuit.

2. Check whether the installed module hardware
works properly. If not, replace the module.

5403 Extension module not
installed

The extension module is
configured but not
installed.

Install the extension module as required, or modify
the configuration of the extension module.

5404
Module installed
inconsistent with
module configured

The module installed in the
slot must be inconsistent
with the configured
module; otherwise, it
cannot work properly.

Install the extension module as required and modify
module configuration accordingly to ensure
consistency.

Fault Diagnosis

-559-

Fault Code Message Description Troubleshooting

5405
Extension module
interface hardware
exception

The extension module
interface is abnormal.

1. Check whether the extension module interface
slot is short-circuited. If yes, eliminate the short
circuit.

2. Check whether the installed module hardware
works properly. If not, replace the module.

5406 Extension module
interface software error

The extension module
interface software is
abnormal.

1. Upgrade the PLC firmware.

2. If the problem persists after the firmware
upgrade, replace the device and return the faulty
device to the factory for repair.

5411
Module in the slot not
powered

The module requires
external power supply to
function properly, but the
external power supply is
not on.

Connect the external power supply correctly
according to the module specifications.

5412 Slot module hardware
fault

The module has an internal
fault and cannot work
properly.

Replace the module and return the faulty module to
the factory for repair.

5413
Slot module over-
temperature

The module detected a
high internal temperature
that may lead to
malfunction.

1. Do not install the module in an environment that
does not meet the relevant temperature
requirements.

2. Replace the module and return the faulty module
to the factory for repair.

5419
Slot module channel
input or output overflow

For the input channel, the
input signal has exceeded
the upper sampling
threshold. Sampling cannot
be performed properly, and
there is a possibility that
the input port may be
burned. For the output
channel, the output value
of the corresponding
channel has exceeded the
set upper threshold, and
signals cannot be output
properly.

Input channel: Check the actual input signal value.

If the signal input to this channel has exceeded the
set sampling range under normal working
conditions, modify the sampling range as
appropriate.

If the signal is abnormal, check the output device or
instrument of the signal.

Output channel: Check the set output value and
ensure that the set output is within the set range. If
the set range cannot meet requirements, modify it
as appropriate.

5420
Slot module channel
input or output
underflow

For the input channel, the
input signal has fallen
below the lower sampling
threshold, and sampling
cannot be performed
properly. For the output
channel, the output value
of the corresponding
channel has fallen below
the set lower threshold,
and signals cannot be
output properly.

Input channel: Check the actual input signal value.

If the signal input to this channel has exceeded the
set sampling range under normal working
conditions, modify the sampling range as
appropriate.

If the signal is abnormal, check the output device or
instrument of the signal.

Output channel: Check the set output value and
ensure that the set output is within the set range. If
the set range cannot meet requirements, modify it
as appropriate.

Fault Diagnosis

-560-

Fault Code Message Description Troubleshooting

5421

Slot module channel
input upper limit
exceeded or current
output disconnected

For the input channel, the
input signal has exceeded
the upper sampling
threshold. At this time, the
signal can be sampled
normally but the accuracy
cannot be guaranteed. For
the current output channel,
the output port is not
connected to the load or
the impedance of the
connected load is too large,
so that the current cannot
be output normally.

Input channel: Check the actual input signal value.

If the signal input to this channel has exceeded the
set sampling range under normal working
conditions, modify the sampling range as
appropriate.

If the signal is abnormal, check the output device or
instrument of the signal.

Current output channel: Ensure that the load of the
output port is connected properly and reliably, and
that the load impedance is within the range
specified in the module specifications.

5422

Slot module channel
input lower limit
exceeded or voltage
output short-circuited

For the input channel, the
input signal has fallen
below the lower sampling
threshold. At this time, the
signal can be sampled
normally but the accuracy
cannot be guaranteed. For
the voltage output channel,
the output port is possibly
short-circuited or the
impedance of the
connected load is too
small, so that the voltage
cannot be output normally.

Input channel: Check the actual input signal value. If
the signal input to this channel has exceeded the set
sampling range under normal working conditions,
modify the sampling range as appropriate. If the
signal is abnormal, check the output device or
instrument of the signal. Voltage output channel:
Ensure that the load of the output port is connected
properly and reliably, and that the load impedance
is within the range specified in the module
specifications.

5423
Slot module channel
input disconnected or
output hardware faulty

For the input channel, no
input signal is connected to
the input port or the input
signal is too weak and
cannot be detected or
sampled. For the output
channel, the channel
hardware is faulty and may
have burned out.

Input channel: Ensure that the signal of the input
port is normal and valid and is connected properly
and reliably. Output channel: Replace the module
and return the faulty module to the factory for
repair.

Local Encoder Axis

6300
Input device not
assigned or assigned
input device invalid

The local encoder axis must
be assigned with a high-
speed counter, and each
high-speed counter can
only be assigned to one
axis, otherwise the axis
cannot work properly.

Assign a high-speed counter that has not been
assigned yet in "Input Device" on the "Basic
Settings" page of the axis.

Fault Diagnosis

-561-

Fault Code Message Description Troubleshooting

6301
Axis unit conversion
configuration invalid

After a high-speed counter
is assigned to an axis, its
count value (pulse unit) is
converted into the
equivalent in user unit
(Unit) according to the unit
conversion setting
parameter. If the number of
pulses per revolution of the
encoder, the displacement
of the encoder per
revolution, or the gear ratio
of the transmission device
is set incorrectly, the axis
cannot work properly.

Check the settings on the "Unit Conversion Settings"
page of the axis and correct the parameter values.

6302
Axis software limit or
revolution cycle
configuration invalid

In linear mode, the negative
limit must be less than 0,
and the positive limit must
be greater than 0. In rotary
mode, the revolution cycle
must be greater than 0.
Since the high-speed
counter is a 32-bit counter,
the negative limit, positive
limit, and revolution cycle
must be 32-bit integers in
the range of [–2147483648,
+2147483647] after being
converted into pulse units.

Linear mode: Modify the positive and negative limits
to ensure that the negative limit is less than 0, the
positive limit is greater than 0, and they are 32-bit
integers in the range of [–2147483648, +2147483647]
after being converted into pulse units. Rotary mode:
Modify the revolution cycle to ensure that it is
greater than 0 and is a 32-bit integer in the range of
[–2147483648, +2147483647] after being converted
into pulse units.

6303
Axis counting mode or
signal source
configuration invalid

The high-speed counter
supports the following
counting modes and signal
sources: A/B phase
frequency multiplication by
1: X0-A phase, X1-B phase,
X2-A phase, X3-B phase A/B
phase frequency
multiplication by 2: X0-A
phase, X1-B phase, X2-A
phase, X3-B phase A/B
phase frequency
multiplication by 4: X0-A
phase, X1-B phase, X2-A
phase, X3-B phase CW/
CCW: X0-CW, X1-CCW, X2-
CW, X3-CCW Pulse
+direction: X0-pulse, X1-
direction, X2-pulse, X3-
direction

Select a supported counting mode and signal
source.

6304
Axis preset function:
input terminal invalid

The preset function
supports the input
terminals X0, X1, X2, X3, X4,
X5, X6, and X7.

Select an input terminal supported by the preset
function.

Fault Diagnosis

-562-

Fault Code Message Description Troubleshooting

6305 Axis probe 1: input
terminal invalid

Probe 1 supports the input
terminals X0, X1, X2, X3, X4,
X5, X6, and X7.

Select an input terminal supported by probe 1.

6306 Axis probe 2: input
terminal invalid

Probe 2 supports the input
terminals X0, X1, X2, X3, X4,
X5, X6, and X7.

Select an input terminal supported by probe 2.

6307
Axis comparison output:
terminal invalid

The comparative output
supports the output
terminals Y0, Y1, Y2, and Y3.

Select an output terminal supported by the
comparison output.

6308
Axis comparison output:
pulse width invalid

When the unit is ms, the
time range is 0.1 ms to
6553.5 ms. When the unit is
Unit, the set value must fall
between 1 and 65535 after
being converted into pulse
units.

Modify the pulse width to ensure that it is within the
allowable range.

CANlink

6400
Station address conflict:
Station address already
exists in the network.

In CANlink communication,
the addresses of all stations
connected to the network
must be unique. Address
conflict detection is
performed after a device
node is powered on and
initialized or the station
address is modified. If the
address is duplicated, a
fault is reported and all
CANlink bus activities of the
node are stopped.

Change the station address to ensure that there are
no duplicate addresses in the network.

6401 Slave offline
Failed to communicate with
the slave because it is
offline.

Check whether the CAN network connection works
properly. Ensure that the connection is reliable
without short circuit or open circuit, CANH and CANL
are not reversely connected, and the terminal
resistance is normal.

6411

Slave configuration
exception response (1)
"Undefined encoding
used"

During configuration of a
slave, the slave returns
exception response (1)
"Undefined encoding
used".

Check whether the type/model of the connected
device is consistent with the configuration.

6412

Slave configuration
exception response (2)
"Configured index
exceeds the maximum
value supported by the
node"

During configuration of a
slave, the slave returns
exception response (2)
"Configured index exceeds
the maximum value
supported by the node".

Check whether the type/model of the connected
device is consistent with the configuration.

6413

Slave configuration
exception response (3)
"Register address non-
existent or inaccessible"

During configuration of a
slave, the slave returns
exception response (3)
"Register address non-
existent or inaccessible".

Check whether the type/model of the connected
device is consistent with the configuration.

Fault Diagnosis

-563-

Fault Code Message Description Troubleshooting

6415

Slave configuration
exception response (5)
"Register data length
invalid"

During configuration of a
slave, the slave returns
exception response (5)
"Register data length
invalid".

Check whether the type/model of the connected
device is consistent with the configuration.

6416
Waiting for slave
configuration command
response timed out

During configuration of a
slave, waiting for slave
response timed out.

Check whether the type/model of the connected
device is consistent with the configuration.

6421
Slave synchronization
exception response (1)
"Illegal command code"

When a synchronization
command is sent to a slave,
the slave returns exception
response (1) "Illegal
command code".

Check whether the type/model of the connected
device is consistent with the configuration.

6422

Slave synchronization
exception response (2)
"Register address non-
existent or inaccessible"

When synchronization data
is sent to a slave, the slave
returns exception response
(2) "Register address non-
existent or inaccessible".

Check whether the type/model of the connected
device is consistent with the configuration.

6423

Slave synchronization
exception response (3)
"Value beyond allowable
range"

When synchronization data
is sent to a slave, the slave
returns exception response
(3) "Value beyond allowable
range".

1. Check whether the set value in the corresponding
register address has exceeded the allowed range.

2. Check whether the type/model of the connected
device is consistent with the configuration.

6424

Slave synchronization
exception response (4)
"Operation unreachable
or not allowed in the
current state"

When synchronization data
is sent to a slave, the slave
returns exception response
(4) "Operation unreachable
or not allowed in the
current state".

Check whether the type/model of the connected
device is consistent with the configuration.

6425
Slave synchronization
exception response (5)
"Data length invalid"

When synchronization data
is sent to a slave, the slave
returns exception response
(5) "Data length invalid".

Check whether the type/model of the connected
device is consistent with the configuration.

6426

Waiting for slave
synchronization
command response
timed out

Waiting for slave response
to a synchronization
command timed out.

Check whether the type/model of the connected
device is consistent with the configuration.

CANopen

6401 Node offline
Failed to communicate with
the node because it is
offline.

Check whether the CAN network connection works
properly. Ensure that the connection is reliable
without short circuit or open circuit, CANH and CANL
are not reversely connected, and the terminal
resistance is normal.

Modbus Master

5500
8-bit data required for
Modbus-RTU serial port

The Modbus-RTU serial port
only supports 8-bit data.

Use 8-bit data for Modbus-RTU serial port.

Fault Diagnosis

-564-

Fault Code Message Description Troubleshooting

6001
Slave returned exception
response (01) "Illegal
function code"

The function code received
in the query is not an
allowable action for the
server (or slave). This may
be because the function
code is only applicable to
new devices, and is not
implementable in the unit
selected. It could also
indicate that the server (or
slave) is in the wrong state
to process a request of this
type, for example, because
it is unconfigured and is
being asked to return
register values.

Check whether the server (or slave) supports the
function code.

6002
Slave returned exception
response (02) "Illegal
data address"

The data address received
in the query is not an
allowable address for the
server (or slave). More
specifically, the
combination of reference
number and transfer length
is invalid. For a controller
with 100 registers, a
request with the offset 96
and the length 4 will
succeed, but a request with
the offset 96 and the length
5 will result in exception
code 02.

Check whether the corresponding function code of
the server (or slave) supports all the addresses
accessed by this configuration.

6003
Slave returned exception
response (03) "Illegal
data"

A value contained in the
query data field is not an
allowable value for server
(or slave). This indicates a
fault in the structure of the
remainder of a complex
request, such as that the
implied length is incorrect.
It specifically does not
mean that a data item
submitted for storage in a
register has a value outside
the expectation of the
application program, since
the Modbus protocol is
unaware of the significance
of any particular value of
any particular register.

Check whether the value is within the allowed
range.

6004
Slave returned exception
response (04) "Slave
device fault"

An unrecoverable error
occurred while the server
(or slave) was attempting to
perform the requested
action.

Check whether slave is abnormal or faulty.

Fault Diagnosis

-565-

Fault Code Message Description Troubleshooting

6128

Response station
number and requested
station number
mismatch

After the master sends a
request frame, the station
number in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6129
Response function code
and requested function
code mismatch

After the master sends a
request frame, the function
code in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6130
Response data address
and requested data
address mismatch

After the master sends a
request frame, the data
address in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6131
Response data value and
requested data value
mismatch

After the master sends a
request frame, the data
value in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6240
Cache address mapping
in configuration invalid

The cache address
mapping in the
configuration is invalid and
the configuration cannot be
executed correctly.

Modify the cache address mapping in the
configuration to a valid variable or element address.

6255 Request timed out

After sending a request
frame, if the master does
not receive a response from
the slave within the
specified timeout period, it
retries according to the set
number of retries. When the
retry attempts exceed the
set number, the master
considers the slave
abnormal and reports a
request timeout error.

1. Ensure that the communication network cable is
connected reliably.

2. Ensure that the slave station number is consistent
with the configured slave station number.

3. Modify the timeout period to ensure that the
master can receive the response frame within the
timeout period.

4. Check whether the connected slave is a normal
Modbus slave.

Modbus-TCP Master

6000 Configuration
disconnected

The Modbus-TCP client fails
to establish a TCP
connection with the server.

1. Ensure that the communication network cable is
connected reliably.

2. Check whether the slave IP address and port ID
are consistent with the configuration.

3. If the client and server are connected through a
network bridge, router, or gateway, make sure that
the client and server gateways are set correctly.

Fault Diagnosis

-566-

Fault Code Message Description Troubleshooting

6001
Slave returned exception
response (01) "Illegal
function code"

The function code received
in the query is not an
allowable action for the
server (or slave). This may
be because the function
code is only applicable to
new devices, and is not
implementable in the unit
selected. It could also
indicate that the server (or
slave) is in the wrong state
to process a request of this
type, for example, because
it is unconfigured and is
being asked to return
register values.

Check whether the server (or slave) supports the
function code.

6002
Slave returned exception
response (02) "Illegal
data address"

The data address received
in the query is not an
allowable address for the
server (or slave). More
specifically, the
combination of reference
number and transfer length
is invalid. For a controller
with 100 registers, a
request with the offset 96
and the length 4 will
succeed, but a request with
the offset 96 and the length
5 will result in exception
code 02.

Check whether the corresponding function code of
the server (or slave) supports all the addresses
accessed by this configuration.

6003
Slave returned exception
response (03) "Illegal
data"

A value contained in the
query data field is not an
allowable value for server
(or slave). This indicates a
fault in the structure of the
remainder of a complex
request, such as that the
implied length is incorrect.
It specifically does not
mean that a data item
submitted for storage in a
register has a value outside
the expectation of the
application program, since
the Modbus protocol is
unaware of the significance
of any particular value of
any particular register.

Check whether the value is within the allowed
range.

6004
Slave returned exception
response (04) "Slave
device fault"

An unrecoverable error
occurred while the server
(or slave) was attempting to
perform the requested
action.

Check whether slave is abnormal or faulty.

Fault Diagnosis

-567-

Fault Code Message Description Troubleshooting

6128

Response station
number and requested
station number
mismatch

After the master sends a
request frame, the station
number in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6129
Response function code
and requested function
code mismatch

After the master sends a
request frame, the function
code in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6130
Response data address
and requested data
address mismatch

After the master sends a
request frame, the data
address in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6131
Response data value and
requested data value
mismatch

After the master sends a
request frame, the data
value in the received
response frame is
inconsistent with that in
the transmitted request
frame.

Check whether the connected slave is a normal
Modbus slave.

6240
Cache address mapping
in configuration invalid

The cache address
mapping in the
configuration is invalid and
the configuration cannot be
executed correctly.

Modify the cache address mapping in the
configuration to a valid variable or element address.

6255 Request timed out

After sending a request
frame, if the master does
not receive a response from
the slave within the
specified timeout period, it
retries according to the set
number of retries. When the
retry attempts exceed the
set number, the master
considers the slave
abnormal and reports a
request timeout error.

1. Ensure that the communication network cable is
connected reliably.

2. Ensure that the slave station number is consistent
with the configured slave station number.

3. Modify the timeout period to ensure that the
master can receive the response frame within the
timeout period.

4. Check whether the connected slave is a normal
Modbus slave.

EtherNet/IP
6600 EtherNet/IP connection

instance: not connected
When the PLC is in the
"Stopped" state, the
connection instance is
displayed as not
connected.

Switch the PLC to the "Running" state.

Fault Diagnosis

-568-

Fault Code Message Description Troubleshooting

6602 EtherNet/IP connection
instance: connection
failed, target device
offline

1. The IP of the connection
instance is inconsistent
with the IP of the target
device.

2. The target device is
powered off or is in the
"Stopped" state.

3. Network device failure.

1. Set the IP of the connection instance to the IP of
the target device.

2. Switch the target device to the "Running" state.

3. Replace the switch or cable. In case of connection
across network segments, configure a gateway.

6603 EtherNet/IP connection
instance: connection
failed, target device not
responding

The target device is online,
but the EtherNet/IP
protocol of the target
device is abnormal.

Power off and on the target device.

6604 EtherNet/IP connection
instance: connection
failed, target device
returned an error
response

The specified connection
path does not exist, or the
specified data size does not
match.

Open the connection status page, check the
connection status code and status description, and
modify the connection path, data size, or other
relevant parameters.

6605 EtherNet/IP connection
instance: connection
timeout

1. High CPU load (reaching
90%) of the PLC or target
device can cause timeout in
packet message reception.

2. Network device failure.

1. Increase the PLC scan cycle, increase the RPI cycle
of the EtherNet/IP connection, and reduce the
number of EtherNet/IP connections to reduce the
CPU load.

Use a high-performance PLC or target device.

2. Replace the switch or cable.
6607 EtherNet/IP

configuration data
format inconsistent

The software version does
not match the board
version.

Select AutoShop software and PLC firmware that are
compatible with each other.

6631 EtherNet/IP display
label: cannot connect to
the path specified in the
request

1. The IP of the parameter
is inconsistent with the IP
of the target device.

2. The target device is
powered off or is in the
"Stopped" state.

3. Network device failure.

1. Use the target device IP as the request parameter.

2. Switch the target device to the "Running" state.

3. Network troubleshooting: Replace the switch or
cable. In case of connection across network
segments, configure a gateway.

6632 EtherNet/IP display
label: request timed out,
no response received

1. High CPU load (reaching
90%) of the PLC or target
device can cause timeout in
packet message reception.

2. Network device failure.

1. Reduce the CPU load or use a high-performance
PLC or target device.

2. Replace the switch or cable.

6633 EtherNet/IP display
label: request
succeeded, but error
response received

1. The name of the
specified label is
inconsistent with that of
the target label.

2. The element quantity of
the specified label is
inconsistent with that of
the target label, and
exceeds the limit.

1. Set the parameter according to the name of the
target label.

2. Set the element quantity to a value less than or
equal to the element quantity of the target label.

6634 EtherNet/IP display
label: request
succeeded, but data
type inconsistent

The data type of the
specified label is
inconsistent with that of
the target label.

Set the parameter according to the data type of the
target label.

Fault Diagnosis

-569-

Fault Code Message Description Troubleshooting

6635 EtherNet/IP display
label: request
succeeded, but data
length inconsistent

The data packet returned
by the target device is
abnormal.

Power off and on the target device.

EtherCAT

8001
Failed to read master
configuration

Failed to read the master
configuration information.

Check whether the board software and software tool
versions match.

8002
Failed to obtain slave
configuration
parameters

Failed to obtain slave
configuration parameters.

Check whether the board software and software tool
versions match.

8003 EtherCAT startup timed
out

EtherCAT startup timed out.

1. Check whether the network is properly
connected.

2. Check whether the connected slave is consistent
with the configuration.

3. Check whether the slave type matches.

8004 Failed to request the
master

Failed to request the
master.

Restart the PLC.

8200
Failed to write slave
startup parameters to
SDO

Failed to write the slave
startup parameters to the
SDO.

1. Check whether there is an object dictionary that is
not supported by the slave in the startup parameter
list.

2. Check whether the value of the object dictionary
is out of range.

8201
Slave lost during
operation

The slave is lost during
operation.

1. Check whether the network with the slave is
disconnected.

2. Check whether the slave is powered off.

8202
Slave state machine
switched to non-OP
mode

The slave state machine is
switched to non-OP mode.

1. Check whether the network with the slave is
disconnected.

2. Check whether the slave is powered off.

8203
Slave state machine
switching failed

Slave state machine
switching failed. -

8204 Slave type mismatch The slave type is incorrect.

1. Check whether the network cable is reversely
connected.

2. Check whether the connected device matches the
configuration.

8205 PDO address error
The PDO address is
incorrect.

1. Check whether the memory runs out.

2. Check whether the background and board
software versions match.

3. Power off and restart the PLC.

8206 PDO length error The PDO length is incorrect. Check whether the background and board software
versions match.

8301 Failed to switch to INIT
state

Failed to switch to INIT
state.

Check whether the slave station machine supports
state transition.

8302 Failed to switch to
PerOP state

Failed to switch to PerOP
state.

Check whether the slave supports the CoE protocol.

8304 Failed to switch to
SafeOP state

Failed to switch to SafeOP
state.

Check whether the PDO communication
configuration is correct.

8308 Failed to switch to OP
state

Failed to switch to OP state.

1. Check the network communication quality.

2. Check whether the EtherCAT task cycle is
appropriate.

Fault Diagnosis

-570-

Fault Code Message Description Troubleshooting

8310 FMMU unit configuration
error

An FMMU unit configuration
error occurs.

Check whether the slave supports the FMMU unit.

8311 Email configuration error An email configuration
error occurs.

Check whether the slave supports the SM unit.

8400 ECTA configuration error The ECTA configuration is
incorrect.

Check whether the configured extension module is
consistent with the actually connected extension
module.

8401 ECTA hardware error
An ECTA hardware error
occurs.

1. Check whether the connection between the ECTA
and the extension module is loose.

2. Replace the ECTA.

8402 ECTA extension module
error

An ECTA extension module
error occurs.

1. Locate the extension module with the ERR
indicator on.

2. Read the diagnosis object dictionary of the faulty
module by using ETC_ReadParameter_CoE.

3. Determine the fault type based on description of
the diagnosis object dictionary of the extension
module in the ECTA application guide and eliminate
the fault.

Motion Control Axis

9001
Local axis emergency
stop active

The emergency stop
terminal input is active, and
the pulse output is
stopped.

Disable the emergency stop terminal input and then
call the MC_Reset instruction to reset the fault.

9003 Overspeed The pulse output frequency
exceeds 200 kHz.

Check whether the pulse frequency obtained by
multiplying the target velocity by the gear ratio
exceeds 200 kHz.

9020 Homing error The negative limit is not
mapped.

Map the negative limit on the configuration
interface.

9021 Homing error The positive limit is not
mapped.

Map the positive limit on the configuration interface.

9022 Homing error The home signal is not
mapped.

Map the home switch on the configuration interface.

9023 Homing error

1. The output frequency
exceeds 200 kHz when the
axis runs at the homing
velocity.

2. The output frequency
exceeds 200 kHz when the
axis runs at the homing
approach velocity.

1. Modify the unit conversion setting to ensure that
the homing velocity and homing approach velocity
do not exceed 200 kHz.

2. Change the homing velocity to ensure that the
output frequency does not exceed 200 kHz.

3. Change the homing approach velocity to ensure
that the output frequency does not exceed 200 kHz.

9024 Homing error Homing timed out.

1. Check whether the limit signal and home signal
can be connected normally.

2. Check whether the homing timeout time is too
short.

9025 Homing error
The limit signal is incorrect
during homing.

Check whether the limit signal that is not applicable
to the current homing mode is triggered.

9030 Limiting active
The limit signal input is
active during positioning.

Check whether the limit is reached during normal
running.

Fault Diagnosis

-571-

Fault Code Message Description Troubleshooting

9031 Synchronization error

The target number of
transmitted pulses and the
actual number of
transmitted pulses do not
match.

Check whether the limit is reached during normal
positioning.

9101
Axis type error or non-
existent

1. The type of the axis
specified by AxisID is
incorrect.

2. The axis specified by
AxisID does not exist.

1. Check whether the instruction supports the axis
specified by AxisID.

2. Check whether the axis specified by AxisID exists.

9102 Axis configuration failed

1. The axis configuration
data is lost.

2. The axis configuration
parameters are improper.

Check whether the parameters are correct.

9103
MC_Reset called when
the axis is not faulty

The MC_Reset instruction is
called when the axis is not
faulty.

Check whether the MC_Reset instruction is called
when the axis is not switched to ErrorStop state.

9104
Axis state unknown
when MC_ReadStatus is
called

The axis is in unknown
state when the MC_
ReadStatus instruction is
called.

Check whether the current state of the axis is
uncontrollable by using the online monitoring
function.

9105
Current position setting
not allowed

The MC_SetPosition
instruction is called during
running or stop.

Set the current position when the axis is in
StandStill, Poweroff, or ErrorStop state.

9106 Stopping upon fault The axis is stopping upon a
fault.

Execute the instruction after stop upon fault is
completed, the fault is resolved, and the reset
instruction is executed.

9107 Improper parameter The parameters are
improper.

Check whether the parameters on the left of the
instruction are set properly.

9108
Improper PLCOpen state
machine

The PLCOpen state
machine is improper.

Check whether the current PLCOpen state machine
satisfies the execution conditions for this
instruction. If not, call the relevant instruction to
switch the axis to the required state.

9110
MC_Stop called
repeatedly during stop

The MC_Stop instruction is
called repeatedly during
stop.

Trigger only one MC_Stop instruction at a time.

9111 Instruction linked list
lost

The instruction linked list is
lost.

1. Check whether the background version and board
version match.

2. Contact the manufacturer.

9112 AxisID changed
The value of AxisID is
changed while the
instruction flow is active.

Do not change the axis number while the flow is
active for Enable instructions such as MC_Power and
MC_Jog.

9113 Reset by MC_Reset
timed out

Reset by executing the MC_
Reset instruction timed out.

1. Check whether the drive fault can be reset.

2. Check whether the axis fault type supports reset.

9114 Failed to write to 0x6060
The axis fails to write to
0x6060.

1. Check for interference in network communication.

2. Check whether the slave supports the object
dictionary 0x6060.

9115
MC_Halt called when the
axis is in Stopping state

The MC_Halt instruction is
called when the axis is in
Stopping state.

Do not call the MC_Halt instruction when the axis is
in Stopping state.

Fault Diagnosis

-572-

Fault Code Message Description Troubleshooting

9116
Axis in online
commissioning mode

The current axis is in online
commissioning mode.

Check whether the current axis is in online
commissioning mode. PLC motion control
instructions are invalid in online commissioning
mode.

9118
Maximum acceleration
(deceleration) exceeded

The acceleration
(deceleration) of the
instruction exceeds the
maximum acceleration.

Check whether the acceleration (deceleration) of the
instruction exceeds the maximum acceleration.

9119
MC_Jog target velocity
exceeded maximum
jogging velocity

The target velocity of the
MC_Jog instruction exceeds
the maximum jogging
velocity.

Check whether the target velocity of the MC_Jog
instruction exceeds the maximum jogging velocity.

9120
Target velocity exceeded
maximum velocity

The target velocity exceeds
the maximum velocity.

Check whether the target velocity of the instruction
exceeds the maximum velocity.

9121
Jog forward and reverse
motion signals both
active

The forward and reverse
motion signals of the jog
instruction are both active.

Ensure that the forward and reverse motion signals
of the jog instruction are not active at the same
time.

9122
Control word not
mapped to EtherCAT bus
axis

The control word is not
mapped to the EtherCAT
bus axis.

Add the control word in the PDO and map it to the
axis.

9123
Target position not
mapped to EtherCAT bus
axis

The target position is not
mapped to the EtherCAT
bus axis.

Add the target position in the PDO and map it to the
axis.

9124
Target torque not
mapped to EtherCAT bus
axis

The target torque is not
mapped to the EtherCAT
bus axis.

Add the target torque in the PDO and map it to the
axis.

9125 Status word not mapped
to EtherCAT bus axis

The status word is not
mapped to the EtherCAT
bus axis.

Add the status word in the PDO and map it to the
axis.

9126
Current position not
mapped to EtherCAT bus
axis

The current position is not
mapped to the EtherCAT
bus axis.

Add the feedback position in the PDO and map it to
the axis.

9127 0x60fd not mapped to
EtherCAT bus axis

0x60fd is not mapped to the
EtherCAT bus axis.

Add 0x60fd in the PDO and map it to the axis.

9128
Current torque not
mapped to EtherCAT bus
axis

The current torque is not
mapped to the EtherCAT
bus axis.

Add the current torque in the PDO and map it to the
axis.

9129
Probe control word not
mapped to EtherCAT bus
axis

The probe control word is
not mapped to the
EtherCAT bus axis.

Add the probe control word in the PDO and map it
to the axis.

9130
Probe status word not
mapped to EtherCAT bus
axis

The probe status word is
not mapped to the
EtherCAT bus axis.

Add the probe status word in the PDO and map it to
the axis.

9131
Probe position not
mapped to EtherCAT bus
axis

The probe position is not
mapped to the EtherCAT
bus axis.

Add the probe position in the PDO and map it to the
axis.

9132
Probe channel occupied
by interrupt positioning
instruction

An interrupt positioning
instruction is being
executed and the probe
channel is occupied.

The probe instruction and interrupt positioning
instruction must not occupy the same probe
channel at the same time. When the two instructions
are called simultaneously in the program, the
interrupt positioning instruction takes priority.

9133 Imaginary axis mode
enabled

The imaginary axis mode is
enabled.

The current instruction does not support the
imaginary axis mode.

Fault Diagnosis

-573-

Fault Code Message Description Troubleshooting

9134 Imaginary axis probe in
use

The imaginary axis probe is
being used.

The H5U supports two imaginary axis probes. Check
whether the current probe is out of range.

9135
Interrupt signal not
triggered in interrupt
positioning

The interrupt signal is not
triggered in the interrupt
positioning instruction.

During execution of the interrupt positioning
instruction, no interrupt signal is detected after
positioning is completed.

9136

Probe channel occupied
by another instruction
during interrupt
positioning

The probe channel is
occupied by another
instruction during the
interrupt positioning
process.

Ensure that the probe channel is not occupied
during the interrupt positioning process.

9137
Control mode 0x6060
not mapped to bus
driver

The control mode 0x6060 is
not mapped to the bus
driver.

Add 0x6060 in the PDO and map it to the axis.

9138
Control mode 0x6061
not mapped to bus
driver

The control mode 0x6061 is
not mapped to the bus
driver.

Add 0x6061 in the PDO and map it to the axis.

9139
MC_Home called
repeatedly during
homing

The MC_Home instruction
is called repeatedly during
homing.

Do not call the MC_Home instruction repeatedly
during homing.

9140 Target torque exceeded
maximum value

The target torque of the
instruction exceeds the
maximum value.

Check whether the target torque of the instruction
exceeds the positive and negative torque limits.

9141
Maximum velocity not
mapped to bus driver

The maximum velocity is
not mapped to the bus
driver.

Add 0x607f in the PDO and map it to the axis.

9142 Immediate stop
instruction active

The immediate stop
instruction is active.

Check whether the immediate stop instruction has
been called.

9143
Immediate stop
instruction called
repeatedly

The immediate stop
instruction is called
repeatedly.

Check whether the immediate stop instruction is
called repeatedly.

9144
Limit reached during
jogging

The limit is reached during
jogging. Check whether the limit is active.

9145
Target position
exceeded 9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target position must not
exceed this value.

1. Check whether the target position is correct. Set
the target position again.

2. Change the gear ratio to ensure that the target
position is not greater than 9999999.

9146 Target velocity exceeded
9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target velocity must not
exceed this value.

1. Check whether the target velocity is correct. Set
the target velocity again.

2. Change the gear ratio to ensure that the target
velocity is not greater than 9999999.

9147 Target acceleration
exceeded 9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target acceleration must
not exceed this value.

1. Check whether the target acceleration is correct.
Set the target acceleration again. 2. Change the gear
ratio to ensure that the target acceleration is not
greater than 9999999.

Fault Diagnosis

-574-

Fault Code Message Description Troubleshooting

9148 Target deceleration
exceeded 9999999

The precision is reduced if a
single-precision floating-
point number exceeds
9999999. Therefore, the
target deceleration must
not exceed this value.

1. Check whether the target deceleration is correct.
Set the target deceleration again.

2. Change the gear ratio to ensure that the target
deceleration is not greater than 9999999.

9149
Axis in sync control
mode, abortion not
allowed

1. A single-axis motion
instruction is called when
the axis is performing
interpolation in sync
control mode. The single-
axis motion instruction
reports an error.

1. Do not call single-axis motion instructions during
interpolation.

9150 MC_Halt in execution,
abortion not allowed

The MC_
MoveSuperImposer
instruction is called while
the MC_Halt instruction is
still active.

Do not call the MC_MoveSuperImposer instruction
while the MC_Halt instruction is still active.

9151
MC_MoveVelocityCSV
PulseWidth out of range

The variable PulseWidth of
the MC_MoveVelocityCSV
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9152

Object dictionary 60FFh
not associated in I/O
mapping of bus servo
axis when MC_
MoveVelocityCSV is
called

The object dictionary 60FFh
is not associated in I/O
mapping of the bus servo
axis when the MC_
MoveVelocityCSV
instruction is called.

Ensure that the object dictionary 60FFh is associated
in I/O mapping of the bus servo axis when the MC_
MoveVelocityCSV instruction is called.

9153
Probe terminal not
configured

The probe terminal is not
configured.

Check whether the software tool version supports
configuration of the probe terminal ID.

9154 MC_SetAxisConfigPara
ParameterIndex out of
range

The value of
ParameterIndex of the MC_
SetAxisConfigPara
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9155 Instruction execution
not allowed when axis
configuration
parameters are being
modified

The configuration
parameters of the axis are
being modified, and
execution of this instruction
is not allowed before the
modification is completed.

Perform the enable operation after axis initialization
is completed.

9156 Multi-execution of MC_
SetAxisConfigPara not
allowed

MC_SetAxisConfigPara does
not support multi-
execution.

Note that this instruction does not support re-
execution or multi-execution.

9157 Gear/cam motion
instruction not
supported by axis

The gear/cam motion
instruction is not supported
by the axis due to axis
properties.

Ensure that the axis is not in single-axis mode or
that the PLC supports the motion instruction.

9200
Failed to obtain cam
table configuration file

Failed to obtain the cam
table configuration file.

1. Check whether the board software and software
tool match.

2. Re-download the cam configuration table.

9201 Failed to obtain master
axis

Failed to obtain the master
axis.

1. Check whether the master axis called in the
program exists.

2. Check whether the master axis has reported an
error.

Fault Diagnosis

-575-

Fault Code Message Description Troubleshooting

9202 Failed to obtain slave
axis

Failed to obtain the slave
axis.

1. Check whether the slave axis called in the
program exists.

2. Check whether the slave axis has reported an
error.

9203 Failed to obtain cam
table

Failed to obtain the cam
table.

Check whether the cam table called exists.

9204

Number of cams
executed simultaneously
in the PLC program
exceeded maximum
value

The number of cams
executed simultaneously in
the PLC program exceeds
the maximum allowable
value.

Check whether the number of cams executed
simultaneously in the program exceeds the
threshold.

9205 No cam node found
The corresponding cam
node is not found.

This instruction can be called only when the slave
axis is in cam engagement state.

9206
Master axis changed
during cam engagement

The master axis is changed
during cam engagement.

Do not change the master axis during cam
engagement.

9207
MC_CamIn StartMode
out of range

StartMode of the MC_
CamIn instruction is out of
range.

Ensure that the parameter value is within the
specified range.

9208
MC_CamIn StartPosition
exceeded maximum
value

StartPosition of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9209

MC_CamIn
MasterStartDistance
exceeded maximum
value

MasterStartDistance of the
MC_CamIn instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9210
MC_CamIn
MasterScaling exceeded
maximum value

MasterScaling of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9211
MC_CamIn SlaveScaling
exceeded maximum
value

SlaveScaling of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9212
MC_CamIn MasterOffset
exceeded maximum
value

MasterOffset of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9213
MC_CamIn SlaveOffset
exceeded maximum
value

SlaveOffset of the MC_
CamIn instruction exceeds
the maximum allowable
value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9214
MC_CamIn
MasterScaling not
positive

MasterScaling of the MC_
CamIn instruction is not a
positive number.

Set this parameter to a positive number.

9215
MC_CamIn SlaveScaling
not positive

SlaveScaling of the MC_
CamIn instruction is not a
positive number.

Set this parameter to a positive number.

9216
MC_CamIn/MC_GearIn
ReferenceType out of
range

ReferenceType of the MC_
CamIn/MC_GearIn
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9217
MC_CamIn Direction out
of range

Direction of the MC_CamIn
instruction is out of range.

Ensure that the parameter value is within the
specified range.

Fault Diagnosis

-576-

Fault Code Message Description Troubleshooting

9218
MC_CamIn BufferMode
out of range

BufferMode of the MC_
CamIn instruction is out of
range.

Ensure that the parameter value is within the
specified range.

9219
Master axis phases in
cam table node array
not in ascending order

The master axis phases in
the node array of the cam
table are not sorted in
ascending order.

Sort the master axis phases in ascending order when
customizing cam table nodes.

9220
Curve type setting of
cam table node array
out of range

The curve type setting of
the node array of the cam
table is out of range.

Check whether the curve type of the cam node array
is set incorrectly.

9221
MC_CamOut target
deceleration exceeded
maximum value

The target deceleration of
the MC_CamOut instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9222
MC_CamOut target
deceleration out of
range

The target deceleration of
the MC_CamOut instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9223
MC_Phasing target
acceleration exceeded
maximum value

The target acceleration of
the MC_Phasing instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9224
MC_Phasing target
acceleration out of range

The target acceleration of
the MC_Phasing instruction
is out of range.

Ensure that the target acceleration is within the
specified range.

9225
MC_Phasing target
velocity exceeded
maximum value

The target velocity of the
MC_Phasing instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9226
MC_Phasing target
velocity out of range

The target velocity of the
MC_Phasing instruction is
out of range.

Ensure that the target deceleration is within the
specified range.

9227
MC_CamOut curve type
setting out of range

The curve type setting of
the MC_CamOut instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9228
MC_CamOut Mode out of
range

The value of Mode of the
MC_CamOut instruction is
out of range.

Ensure that the value of Mode is within the specified
range.

9229
Cam node array empty
detected by MC_
GenerateCamTable

The MC_GenerateCamTable
instruction detects that the
cam node array is empty.

Contact Inovance for technical support.

9230

MC_GenerateCamTable
node quantity input
exceeded maximum
value

The node quantity specified
by the MC_
GenerateCamTable
instruction exceeds the
maximum allowable value.

Check whether the target node quantity specified in
the instruction is beyond the specified range.

9231
MC_GenerateCamTable
Mode out of range

The value of Mode of the
MC_GenerateCamTable
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9232
MC_GenerateCamTable
node quantity input too
small

The node quantity specified
by the MC_
GenerateCamTable
instruction is too small.

Ensure that the node quantity is 2 or more.

Fault Diagnosis

-577-

Fault Code Message Description Troubleshooting

9233
MC_GearIn
RatioNumerator equal to
0

The value of
RatioNumerator of the MC_
GearIn instruction is 0.

Set this parameter to a non-zero floating-point
number.

9234
MC_GearIn
RatioDenominator not
greater than 0

The value of
RatioDenominator of the
MC_GearIn instruction is
not greater than 0.

Set this parameter to a floating-point number
greater than 0.

9235
MC_GenerateCamTable
in execution when MC_
SaveCamTable is called

The MC_GenerateCamTable
instruction is being
executed when the MC_
SaveCamTable instruction
is called.

Do not call the MC_SaveCamTable instruction
before the cam table data update operation is
completed.

9236

MC_SaveCamTable in
execution when MC_
GenerateCamTable is
called

The MC_SaveCamTable
instruction is being
executed on the cam table
when the MC_
GenerateCamTable
instruction is called.

Do not call the MC_GenerateCamTable instruction
before the cam table is saved.

9237
Failed to open cam table
during execution of MC_
SaveCamTable

Failed to open the cam
table file during execution
of the MC_SaveCamTable
instruction.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

9238
Failed to write cam point
quantity when saving
the cam table

Failed to write the cam
point quantity when the
cam table is being saved.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

9239
Failed to write data
when saving cam table

Failed to write data when
the cam table is being
saved.

1. Check whether the PLC memory runs out.

2. Replace the PLC.

9240 Phase of the first point
not 0

The phase of the first point
is not 0.

Ensure that the phase of the first point is 0.

9241
Displacement of the first
point not 0

The displacement of the
first point is not 0.

Ensure that the displacement of the first point is 0.

9242
MC_GearOut Mode out
of range

The value of Mode of the
MC_GearOut instruction is
out of range.

Ensure that the value of Mode is within the specified
range.

9243
MC_Phasing target
deceleration exceeded
maximum value

The target deceleration of
the MC_Phasing instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9244
MC_GearIn target
deceleration exceeded
maximum value

The target deceleration of
the MC_GearIn instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9245
MC_CamIn Periodic out
of range

The value of Periodic of the
MC_CamIn instruction is
out of range.

Ensure that the parameter value is within the
specified range.

9246
Cam table phase
exceeded maximum
value

The phase in the cam table
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number does not exceed 9999999.

9247

Absolute value of cam
table displacement
exceeded maximum
value

The absolute value of the
displacement in the cam
table exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-point
number does not exceed 9999999.

Fault Diagnosis

-578-

Fault Code Message Description Troubleshooting

9248

Absolute value of cam
table link velocity
exceeded maximum
value

The absolute value of the
link velocity in the cam
table exceeds the
maximum allowable value.

Ensure that the absolute value of the floating-point
number does not exceed 9999999.

9249 Gear node empty The gear node is empty. Contact Inovance for technical support.

9250
Master axis same as
slave axis

The master axis and slave
axis are the same.

Do not use the same axis as both the master axis
and slave axis of the cam gear.

9251

Master axis
configuration address
greater than or equal to
slave axis address

The configuration address
of the master axis is greater
than or equal to that of the
slave axis.

When ReferenceType is set to set position of the
current cycle, ensure that the configuration address
of the master axis is less than that of the slave axis.

9252

Master axis filter
coefficient fFilter[0]
corresponding to the
slave axis out of range

The master axis filter
coefficient fFilter[0]
corresponding to the slave
axis is out of range.

Ensure that the value of this variable is between 0
and 1 (0 and 1 included).

9253

Master axis filter
coefficient fFilter[1]
corresponding to the
slave axis out of range

The master axis filter
coefficient fFilter[1]
corresponding to the slave
axis is out of range.

Ensure that the value of this variable is between 0
and 1 (0 and 1 included).

9254

Master axis filter
coefficient fFilter[2]
corresponding to the
slave axis out of range

The master axis filter
coefficient fFilter[2]
corresponding to the slave
axis is out of range.

Ensure that the value of this variable is between 0
and 1 (0 and 1 included).

9255

Sum of master axis filter
coefficients
corresponding to the
slave axis not 1

The sum of the master axis
filter coefficients
corresponding to the slave
axis is not 1.

Ensure that the sum of the master axis filter
coefficients corresponding to the slave axis is 1.

9256
Improper StartPosition
and MasterStartDistance
in MC_CamIn

The start position and start
distance of the master axis
in the MC_CamIn
instruction are improper.

If the master axis works in linear mode and Direction
in the instruction is set to positive, ensure that the
cam synchronization point is not less than the cam
engagement point.

9257
Improper StartPosition
and MasterStartDistance
in MC_CamIn

The start position and start
distance of the master axis
in the MC_CamIn
instruction are improper.

If the master axis works in linear mode and Direction
in the instruction is set to negative, ensure that the
cam synchronization point is not greater than the
cam engagement point.

9258
MC_GearOut target
deceleration exceeded
maximum value

The target deceleration of
the MC_GearOut instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9259
MC_Phasing target
deceleration out of
range

The target deceleration of
the MC_Phasing instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9260
MC_GearIn target
deceleration out of
range

The target deceleration of
the MC_GearIn instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

9261
MC_GearOut target
deceleration out of
range

The target deceleration of
the MC_GearOut instruction
is out of range and causes
stop upon a fault.

Ensure that the target deceleration is within the
specified range.

Fault Diagnosis

-579-

Fault Code Message Description Troubleshooting

9262
MC_GearIn target
acceleration exceeded
maximum value

The target acceleration of
the MC_GearIn instruction
exceeds the maximum
allowable value.

Ensure that the absolute value of the floating-point
number in the motion control instruction does not
exceed 9999999.

9263
MC_GearIn target
acceleration out of range

The target acceleration of
the MC_GearIn instruction
is out of range.

Ensure that the target acceleration is within the
specified range.

9264
MC_Phasing curve type
setting out of range

The curve type setting of
the MC_Phasing instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9265
MC_GearIn curve type
setting out of range

The curve type setting of
the MC_GearIn instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9266
MC_GearOut curve type
setting out of range

The curve type setting of
the MC_GearOut instruction
is out of range.

Ensure that the curve type setpoint in the
instruction is within the specified range.

9267
Slave axis changed
during cam operation

The slave axis is modified
during the cam operation.

Do not modify the slave axis during the cam
operation.

9268
MC_Phasing
PhasingMode out of
range

The value of PhasingMode
of the MC_Phasing
instruction is out of range.

Ensure that the value of the parameter is within the
specified range.

9269
Axis not in cam control
mode when MC_CamOut
is called

The current axis is not in
cam control mode when
the MC_CamOut instruction
is called.

Ensure that the axis works in cam control mode
when the MC_CamOut instruction is called.

9270
Axis not in gear control
mode when MC_GearOut
is called

The current axis is not in
gear control mode when
the MC_GearOut instruction
is called.

Ensure that the axis works in gear control mode
when the MC_GearOut instruction is called.

9271

Master axis position
change too large within
a single EtherCAT cycle
during cam/gear
operation

The position change of the
master axis is too large
within a single EtherCAT
cycle during cam/gear
operation.

Ensure that the position change of the master axis is
not greater than half a cam cycle within a single
EtherCAT cycle.

9272
MC_
GetCamTableDistance
Phase out of range

The point specified by
Phase in the MC_
GetCamTableDistance
instruction does not fall
between the start and end
points.

Ensure that the point specified by Phase is within
the specified curve.

9273
Slave axis changed
during execution of MC_
GearIn

The slave axis is changed
during execution of the
MC_GearIn instruction.

Do not change the slave axis during execution of the
MC_GearIn instruction.

9274 MC_DigitalCamSwitch
Channel out of range

The value of Channel of the
MC_DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9275 No axis found The axis is not found. Ensure that the axis specified by Axis exists.

9276 Number of tappets
allowed to be executed
at the same time out of
range

The number of tappets
allowed to be executed at
the same time is out of
range.

Ensure that the number of tappets allowed to be
executed at the same time is within the allowable
range.

Fault Diagnosis

-580-

Fault Code Message Description Troubleshooting

9277 MC_DigitalCamSwitch
ReferenceType out of
range

The value of ReferenceType
of the MC_
DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9278 MC_DigitalCamSwitch
Number out of range

The value of Number of the
MC_DigitalCamSwitch
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9279 MC_DigitalCamSwitch
Switches array empty

The Switches array of the
MC_DigitalCamSwitch
instruction is empty.

Check whether the length of the Switches array
meets requirements.

9280 Tappet array fPosition
out of range

The value of fPosition of the
tappet array is out of range.

Ensure that the parameter value is within the
specified range.

9281 Tappet array iMode out
of range

The value of iMode of the
tappet array is out of range.

Ensure that the parameter value is within the
specified range.

9282 Tappet array iDirection
out of range

The value of iDirection of
the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

9283 Tappet array fParameter
out of range

The value of fParameter of
the tappet array is out of
range.

Ensure that the parameter value is within the
specified range.

9284 Time setting out of
range in time mode

When the tappet
comparison point is set to
time mode, the time setting
is out of range.

Ensure that the parameter value is within the
specified range.

9285 Selected axis not under
cam control when MC_
DigitalCamSwitch
ReferenceType is set to 3

The selected axis is not
under cam control when
ReferenceType of the MC_
DigitalCamSwitch
instruction is set to 3.

Call the MC_DigitalCamSwitch instruction after cam
control takes effect.

9286 Axis communication
interrupted during
tappet execution

Axis communication is
interrupted during tappet
execution.

Ensure that axis communication is not interrupted
during tappet execution.

9287 Duplicate comparison
position start points

The comparison position
start points are the same
during tappet execution.

Ensure that the start points are not duplicate.

9288 Comparison position
start point same as end
point

The comparison position
start and end point are the
same during tappet
execution.

Ensure that the start and end points are not
duplicate.

9289 Selected tappet terminal
in use

The selected tappet
terminal is being used by
another function.

Check whether the terminal is set as the pulse
output axis.

9290 Failed to execute MC_
DigitalCamSwitch due to
improper motion control
axis state

The MC_DigitalCamSwitch
instruction cannot be
executed because the state
of the motion control axis is
improper.

Do not execute the MC_DigitalCamSwitch
instruction in homing mode.

9291 MasterSyncPosition
setting in MC_GearInPos
out of range

The MasterSyncPosition
setting in the MC_
GearInPos instruction is out
of range.

Ensure that the parameter value is within the
specified range.

Fault Diagnosis

-581-

Fault Code Message Description Troubleshooting

9292 SlaveSyncPosition
setting in MC_GearInPos
out of range

The SlaveSyncPosition
setting in the MC_
GearInPos instruction is out
of range.

Ensure that the parameter value is within the
specified range.

9293 MasterStarDistance in
MC_GearInPos out of
range

The MasterStarDistance
setting in the MC_
GearInPos instruction is out
of range.

Ensure that the parameter value is within the
specified range.

9294 Velocity setting in MC_
GearInPos over system
limit

The Velocity setting in the
MC_GearInPos instruction
exceeds the system limit.

Ensure that the parameter value is within the
specified range.

9295 Velocity setting in MC_
GearInPos over setting
limit

The Velocity setting in the
MC_GearInPos instruction
exceeds the setting limit.

Ensure that the parameter value is within the
specified range.

9296 Acceleration setting in
MC_GearInPos over
system limit

The Acceleration setting in
the MC_GearInPos
instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

9297 Acceleration setting in
MC_GearInPos over
setting limit

The Acceleration setting in
the MC_GearInPos
instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

9298 Deceleration setting in
MC_GearInPos over
system limit

The Deceleration setting in
the MC_GearInPos
instruction exceeds the
system limit.

Ensure that the parameter value is within the
specified range.

9299 Deceleration setting in
MC_GearInPos over
setting limit

The Deceleration setting in
the MC_GearInPos
instruction exceeds the
setting limit.

Ensure that the parameter value is within the
specified range.

9300 AvoidReversal in MC_
GearInPos out of range

The AvoidReversal setting
in the MC_GearInPos
instruction is out of range.

Ensure that the parameter value is within the
specified range.

9301 Zero master axis speed
when MC_GearInPos
instruction is started

The master axis speed is
zero when the MC_
GearInPos instruction is
started.

Ensure that the master axis speed is not zero when
starting this instruction.

9302 Zero master axis
displacement in
catching phase of MC_
GearInPos

The master axis did not
move during the catching
phase of the MC_GearInPos
instruction.

When MasterStarDistance is set to 0, ensure that the
input MasterSyncPosition does not overlap with the
current position of the master axis.

9303 Slave axis speed not zero
before entering chasing
phase after MC_
GearInPos is started

When the MC_GearInPos
instruction is started, the
speed of the slave axis is
not zero before entering the
catching phase.

Ensure that the slave axis remains stationary before
entering the catching phase.

9304 Failed to enter catching
phase of MC_GearInPos

The MC_GearInPos
instruction cannot enter
the catching phase.

Ensure that the master axis can enter the catching
phase under the current position and motion
direction conditions.

9305 Slave axis over-speed
during MC_GearInPos
operation

During the operation of the
MC_GearInPos instruction,
the speed of the slave axis
exceeds the limit.

Ensure that the parameter value is within the
specified range.

Fault Diagnosis

-582-

Fault Code Message Description Troubleshooting

9400
Maximum axis group
quantity exceeded

The number of axis groups
exceeds the maximum
allowable value.

Reduce the number of axis groups in the project so
that it does not exceed the maximum value.

9401 Faulty axis in axis group
An axis in the axis group is
faulty.

Locate the faulty axis, view the fault codes of the
axis, and rectify the fault.

9402
Number of buffered
interpolation
instructions exceeded 8

The number of buffered
interpolation instructions is
greater than 8.

Check whether the number of buffered interpolation
instructions is greater than 8.

9403 Axis reused
An axis in the axis group is
reused.

Each axis can be used in only one axis group. Check
whether there is a reused axis in the axis group and
replace it with an unused axis.

9404
Failed to create axis
group

The x-axis or y-axis does
not exist.

Check whether the x-axis and y-axis exist. An axis
group consists of at least the x-axis and y-axis.

9405 Specified z-axis non-
existent

The z-axis is specified in the
instruction but does not
exist in the configuration.

Check whether the z-axis specified in the instruction
exists.

9406 Specified auxiliary axis
non-existent

The auxiliary axis is
specified in the instruction
but does not exist in the
configuration.

Check whether the auxiliary axis specified in the
instruction exists.

9407 Axis group ID duplicated The specified axis group ID
has been used.

Change the axis group ID because the axis group ID
must be unique.

9408 Axis configuration failed Failed to configure the axis.
Check whether any axis in the axis group fails to be
configured. If yes, check whether the board software
and the background match.

9409 Axis ID less than 0 The axis ID is less than 0.
Check whether the ID of an axis in the axis group is
less than 0.

9410 Axis group not released

The axis group is not
released because the same
MC_SetAxesGroup
instruction is triggered
repeatedly in a short time
period.

Do not re-trigger the MC_SetAxesGroup instruction
while its Busy signal output is still active.

9411 MC_GroupStop aborted The MC_GroupStop
instruction is aborted.

Check whether an instruction with higher priority is
called while the MC_GroupStop instruction is still
active.

9412
Circular interpolation
instruction CircAxes out
of range

The value of CircAxes of the
circular interpolation
instruction is out of range.

Check whether the value of CircAxes of the circular
interpolation instruction is out of range.

9413
Circular interpolation
instruction CircMode out
of range

The value of CircMode of
the circular interpolation
instruction is out of range.

Check whether the value of CircMode of the circular
interpolation instruction is out of range.

9414
Circular interpolation
instruction PathChoice
out of range

The value of PathChoice of
the circular interpolation
instruction is out of range.

Check whether the value of PathChoice of the
circular interpolation instruction is out of range.

9415
Stop instruction
StopMode out of range

The value of StopMode of
the stop instruction is out
of range.

Check whether the value of StopMode of the stop
instruction is out of range.

9416 X-axis set to ring mode The x-axis is set to ring
mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9417 Y-axis set to ring mode The y-axis is set to ring
mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

Fault Diagnosis

-583-

Fault Code Message Description Troubleshooting

9418 Z-axis set to ring mode The z-axis is set to ring
mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9419 Auxiliary axis set to ring
mode

The auxiliary axis is set to
ring mode.

Do not set the motion control axis to the ring mode
in an interpolation instruction.

9420
Circular interpolation
instruction triggered
repeatedly

The circular interpolation
instruction is triggered
repeatedly.

Do not re-trigger the same circular interpolation
instruction while its Busy signal output is still active.

9421
Linear interpolation
instruction triggered
repeatedly

The linear interpolation
instruction is triggered
repeatedly.

Do not re-trigger the same linear interpolation
instruction while its Busy signal output is still active.

9422
Failed to obtain the axis
group

Failed to obtain the axis
group.

Check whether the axis group specified by GroupID
has been created by calling MC_SetAxesGroup.

9423 Axis configuration failed Failed to configure the axis.

Check whether an instruction is triggered when axis
configuration is not completed. Check whether the
communication state of all axes in the axis group is
Axis ready.

9424 Axis disabled An axis is disabled.
Do not call the interpolation instruction when any
axis is in Disabled state.

9425
Axis in execution of
single-axis motion
instruction

The interpolation
instruction is triggered
when an axis is executing a
single-axis motion
instruction.

Do not call the interpolation instruction when any
axis is executing single-axis motion instructions and
not in StandStill state.

9426 Axis in Stopping state An axis is in Stopping state.
Do not call the interpolation instruction when any
axis is in Stopping state after executing the MC_Stop
instruction.

9427
Axis group in Stopping
state

The axis group is in
Stopping state.

Do not call the interpolation instruction while the
MC_GroupStop instruction is still active.

9428 Axis in Homing state An axis is in Homing state.
Do not call the interpolation instruction when any
axis is in Homing state after executing the MC_Home
instruction.

9429
Axis in execution of the
position setting
instruction

An axis is executing the
position setting instruction.

Do not call the interpolation instruction when any
axis is setting the current position by executing the
MC_SetPosition instruction.

9430
Axis in commissioning
state

An axis is in commissioning
state.

Do not call the interpolation instruction when any
axis is in commissioning state.

9431

Axis in commissioning
state during
interpolation, aborted
instruction execution of
other axes

An axis enters the
commissioning state during
interpolation, which aborts
instruction execution of
other axes.

Check whether any axis enters the commissioning
state during interpolation and aborts instruction
execution of other axes.

9432
Failed to request
memory

Failed to request the
memory.

Check whether the memory runs out. Contact the
manufacturer.

9433
Target velocity less than
or equal to 0

The target velocity is 0 or
less than 0.

Ensure that the target velocity of the instruction is
greater than 0.

9434
Target acceleration less
than or equal to 0

The target acceleration is 0
or less than 0.

Ensure that the target acceleration of the instruction
is greater than 0.

9435
Target deceleration less
than or equal to 0

The target deceleration is 0
or less than 0.

Ensure that the target deceleration of the
instruction is greater than 0.

9436
Curve type setting out of
range

The curve type setting is
out of range.

Check whether the curve type is set to a value other
than the T-shaped curve for the interpolation
instruction.

Fault Diagnosis

-584-

Fault Code Message Description Troubleshooting

9437 Improper AbsRelMode
AbsRelMode is set
incorrectly.

Check whether the parameter is set to a value other
than the absolute positioning and relative
positioning modes.

9438 Improper BufferMode
BufferMode is set
incorrectly.

Check whether the value of BufferMode is proper.

9439 Improper InsertMode
InsertMode is set
incorrectly.

Check whether the value of InsertMode is proper.

9440 Axis stopped due to a
fault

An axis stops due to a fault. Locate the faulty axis and rectify the fault based on
the fault code.

9441
MC_GroupStop called
repeatedly

The MC_GroupStop
instruction is called
repeatedly.

Do not re-trigger an MC_GroupStop instruction or
call other MC_GroupStop instructions while an MC_
GroupStop instruction is still active.

9442
Data buffer area not
empty

The data buffer area is not
empty. It is an internal
fault.

Contact the manufacturer.

9443 Not a circle
No circle can be drawn due
to improper parameter
settings.

Update the parameter settings.

9444 Not a circle

The start, end, and border
points in the circular
interpolation instruction
are the same point, and no
circle can be drawn.

Check the input parameters of the circular
interpolation instruction and ensure that the start,
end, and border points can form a circle.

9445 Instruction buffer area
full

The instruction buffer area
is full.

Contact Inovance for technical support.

9446
X-axis exceeded
maximum velocity

The velocity of the x-axis
exceeds the maximum
allowable velocity.

Ensure that the target velocity of the x-axis is not
greater than the maximum allowable velocity.

9447
Y-axis exceeded
maximum velocity

The velocity of the y-axis
exceeds the maximum
allowable velocity.

Ensure that the target velocity of the y-axis is not
greater than the maximum allowable velocity.

9448
Z-axis exceeded
maximum velocity

The velocity of the z-axis
exceeds the maximum
allowable velocity.

Ensure that the target velocity of the z-axis is not
greater than the maximum allowable velocity.

9449
Auxiliary axis exceeded
maximum velocity

The velocity of the auxiliary
axis exceeds the maximum
allowable velocity.

Ensure that the target velocity of the auxiliary axis is
not greater than the maximum allowable velocity.

9450
Failed to obtain the
number of axis groups

Failed to obtain the number
of axis groups. Update the software tool to the latest version.

9451 Internal fault An internal fault occurs. Contact the manufacturer.

9452
Instruction called when
the axis is in StandStill
state

The instruction is called
when the axis is in
StandStill state.

Do not call this instruction when the axis is
StandStill state.

9453 Maximum velocity
exceeded

The maximum velocity
specified on the axis group
configuration interface is
exceeded.

Check whether the target velocity of the instruction
is greater than the maximum velocity specified on
the axis group configuration interface.

9454
Maximum acceleration
(deceleration) exceeded

The maximum allowable
acceleration (deceleration)
is exceeded.

Check whether the target acceleration
(deceleration) of the instruction is greater than the
maximum acceleration (deceleration) specified on
the axis group configuration interface.

Fault Diagnosis

-585-

Fault Code Message Description Troubleshooting

9455
Axis group fault due to
linear interpolation
instruction error

The axis group becomes
faulty due to an error
reported by the linear
interpolation instruction.

Identify the first linear interpolation instruction that
reports the error and troubleshoot the fault based
on the fault code.

9456
Axis group fault due to
circular interpolation
instruction error

The axis group becomes
faulty due to an error
reported by the circular
interpolation instruction.

Identify the first circular interpolation instruction
that reports the error and troubleshoot the fault
based on the fault code.

9457
Axis group fault due to
axis group stop
instruction error

The axis group becomes
faulty due to an error
reported by the axis group
stop instruction.

Identify the first axis group stop instruction that
reports the error and troubleshoot the fault based
on the fault code.

9458
Axis group fault due to
axis group pause
instruction error

The axis group becomes
faulty due to an error
reported by the axis group
pause instruction.

Identify the first axis group pause instruction that
reports the error and troubleshoot the fault based
on the fault code.

9459
X-axis performing the
interpolation algorithm
of another axis group

The x-axis in the axis group
is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9460
Y-axis performing the
interpolation algorithm
of another axis group

The y-axis in the axis group
is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9461
Z-axis performing the
interpolation algorithm
of another axis group

The z-axis in the axis group
is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9462

Auxiliary axis performing
the interpolation
algorithm of another
axis group

The auxiliary axis in the axis
group is performing the
interpolation algorithm of
another axis group.

An axis can be configured in different axis groups at
the same time. However, ensure that it executes the
interpolation instruction of only one axis group at
the same time.

9463

Axes in synchronous
mode but not under axis
group control when the
MC_GroupStop
instruction is called

When the MC_GroupStop
instruction is called, the
axes are in synchronous
mode but not under axis
group control, such as
interpolation control or
cam control.

Note that the MC_GroupStop instruction can be
called only when the axes in the axis group are in
synchronous mode under axis group control. Do not
call the MC_GroupStop instruction when the axes
enter the synchronous mode due to other
instructions.

9464

Axes in synchronous
mode but not under axis
group control when the
linear or circular
interpolation instruction
is called

When the linear or circular
interpolation instruction is
called, the axes are in
synchronous mode but not
under axis group control,
such as interpolation
control or cam control.

Note that the linear or circular interpolation
instruction can be called only when the axes in the
axis group are in synchronous mode under axis
group control. Do not call the linear or circular
interpolation instruction when the axes enter the
synchronous mode due to other non-axis-group
instructions.

9465

Axes in synchronous
mode but not under axis
group control when the
MC_GroupHalt
instruction is called

When the MC_GroupHalt
instruction is called, the
axes are in synchronous
mode but not under axis
group control, such as
interpolation control or
cam control.

Note that the MC_GroupHalt instruction can be
called only when the axes in the axis group are in
synchronous mode under axis group control. Do not
call the MC_GroupHalt instruction when the axes
enter the synchronous mode due to other
instructions.

Fault Diagnosis

-586-

Fault Code Message Description Troubleshooting

9466 Unreasonable
NumOfTurns in MC_
MoveEllipse

The NumOfTurns
parameter in the MC_
MoveEllipse instruction is
set unreasonably.

Ensure that the parameter value is within the
allowable range.

9467 Unreasonable
AddLength in MC_
MoveEllipse

The AddLength parameter
in the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9468 Shutdown due to MC_
MoveEllipse failure

MC_MoveEllipse instruction
fails and causes shutdown.

Find the MC_MoveEllipse instruction that caused the
failure and check the fault code of the instruction to
further confirm the fault.

9469 Unreasonable CircAxes
in MC_MoveEllipse

The CircAxes parameter in
the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9470 Unreasonable CircMode
in MC_MoveEllipse

The CircMode parameter in
the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9471 Unreasonable
PathChoice in MC_
MoveEllipse

The PathChoice parameter
in the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9472 Unreasonable Velocity in
MC_MoveEllipse

The Velocity parameter in
the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9473 Unreasonable
Acceleration in MC_
MoveEllipse

The Acceleration parameter
in the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9474 Unreasonable
Deceleration in MC_
MoveEllipse

The Deceleration
parameter in the MC_
MoveEllipse instruction is
set unreasonably.

Ensure that the parameter value is within the
allowable range.

9475 Unreasonable
BufferMode in MC_
MoveEllipse

The BufferMode parameter
in the MC_MoveEllipse
instruction is set
unreasonably.

Ensure that the parameter value is within the
allowable range.

9476 Cannot form ellipse due
to unreasonable center
point, long axis length,
and short axis length

The set center point, long
axis length, and short axis
length are unreasonable
and cannot form an ellipse.

Ensure that the parameter value is within the
allowable range.

9477 Interpolation not
supported by X-axis

The property of the X-axis
in the axis group instruction
does not support
interpolation motion.

Ensure that the X-axis is not in single-axis mode.

9478 Interpolation not
supported by Y-axis

The property of the Y-axis in
the axis group instruction
does not support
interpolation motion.

Ensure that the Y-axis is not in single-axis mode.

Fault Diagnosis

-587-

Fault Code Message Description Troubleshooting

9479 Interpolation not
supported by Z-axis

The property of the Z-axis
in the axis group instruction
does not support
interpolation motion.

Ensure that the Z-axis is not in single-axis mode.

9480 Interpolation not
supported by auxiliary
axis

The property of the
auxiliary axis in the axis
group instruction does not
support interpolation
motion.

Ensure that the auxiliary axis is not in single-axis
mode.

9501 EtherCAT bus drive error

A drive error occurs. The
fault code in the object
dictionary 0x603F of the
drive is 0x%x{16:16}.

1. Determine the drive fault type according to the
bus drive guide and rectify the fault.

9502 Drive disabled The drive is disabled.

1. Check whether the drive status word 0x6041
switches to the disabled state during motion.

2. Check whether communication is disconnected
during motion.

9503 Limit reached The limit is reached.
1. Check whether the software limit is configured
and reached.

2. Check whether the hardware limit is reached.

9505 Failed to modify the
control mode

Failed to modify the control
mode.

1. Check for interference in network communication.

2. Check whether the drive supports the object
dictionary 0x6060.

9508 Homing failed Homing failed.
1. Identify the cause of the drive homing failure
based on the fault code.

2. Check whether homing timed out.

9509
Axis internal calculation
precision error

An axis internal calculation
precision error occurs.

Check whether the floating-point data of the
instruction falls beyond the single-precision floating-
point number range.

9510
Following error out of
range

The following error is out of
range.

1. Check whether the acceleration is too large.

2. Check whether the set following error is too small.

9512
Servo drive
disconnected during
operation

The servo drive is
disconnected during
operation.

1. Check whether the drive works properly.

2. Check whether the network cable is properly
connected.

3. Check for strong interference in communication.

9513 Homing failed due to a
drive fault

Homing failed due to a
drive fault.

Check the fault code of the drive to eliminate the
fault.

9514
Homing failed because
the homing offset
exceeded 32 bits

Homing failed because the
homing offset exceeded 32
bits.

Check whether the homing offset multiplied by the
gear ratio exceeds 32 bits; if yes, change the gear
ratio.

9515 Homing failed due to
loss of the slave

Homing failed because the
EtherCAT drive is lost.

Contact Inovance for technical support.

9516

Homing failed because
the SDO failed to write
to object dictionary
0x607C

Homing failed because the
SDO failed to write to
object dictionary 0x607C.

1. Check whether the drive supports 0x607C.

2. Check the network communication quality.

9517

Homing failed because
the SDO failed to write 6
to object dictionary
0x6060

Homing failed because the
SDO failed to write 6 to
object dictionary 0x6060.

1. Set 0x6060 in the PDO.

2. Check the network communication quality.

Fault Diagnosis

-588-

Fault Code Message Description Troubleshooting

9518
Homing failed because
the SDO failed to read
object dictionary 0x6061

Homing failed because the
SDO failed to read object
dictionary 0x6061.

1. Set 0x6061 in the PDO.

2. Check the network communication quality.

9519

Homing failed because
the SDO failed to write 8
into object dictionary
0x6060

Homing failed because the
SDO failed to write 8 into
object dictionary 0x6060.

1. Set 0x6060 in the PDO.

2. Check the network communication quality.

9551 Failed to switch the
control mode

Failed to switch the control
mode.

Check for interference in network communication.

9552 Target velocity equal to
0

The target velocity is 0. Check whether the target velocity of position
instructions is appropriate.

9601
Axis stopped due to MC_
MoveAbsolute
parameter exception

The axis stops due to
parameter exception of the
MC_MoveAbsolute
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9602
Axis stopped due to MC_
MoveRelative parameter
exception

The axis stops due to
parameter exception of the
MC_MoveRelative
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9603
Axis stopped due to MC_
MoveVelocity exception

The axis stops due to
exception of the MC_
MoveVelocity instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9604
Axis stopped due to MC_
Jog exception

The axis stops due to
exception of the MC_Jog
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9605
Axis stopped due to MC_
MoveVelocityCSV
exception

The axis stops due to
exception of the MC_
MoveVelocityCSV
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9606
Axis stopped due to MC_
MoveBuffer exception

The axis stops due to
exception of the MC_
MoveBuffer instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9607
Axis stopped due to MC_
MoveFeed parameter
exception

The axis stops due to
parameter exception of the
MC_MoveFeed instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9608
Axis stopped due to MC_
Stop parameter
exception

The axis stops due to
parameter exception of the
MC_Stop instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9609
Axis stopped due to MC_
MoveTorque parameter
exception

The axis stops due to
parameter exception of the
MC_MoveTorque
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9610
Axis stopped due to MC_
Halt parameter
exception

The axis stops due to
parameter exception of the
MC_Halt instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9611
Axis stopped due to MC_
MoveSuperImposed
parameter exception

The axis stops due to
parameter exception of the
MC_MoveSuperImposed
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9612
Axis stopped due to MC_
SyncMoveVelocity error

The axis stops due to an
error reported by the MC_
SyncMoveVelocity
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

Fault Diagnosis

-589-

Fault Code Message Description Troubleshooting

9613
Axis stopped due to MC_
SyncTorqueControl error

The axis stops due to an
error reported by the MC_
SyncTorqueControl
instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9614 Axis stopped due to MC_
FollowVelocity error

The axis stops due to an
error reported by the MC_
FollowVelocity instruction.

Check the instruction that reports the error, and
further determine the fault based on the fault code
of the instruction.

9701
Failed to request
memory for the encoder
axis instruction

The encoder axis
instruction failed to request
the memory.

1. Check whether the PLC memory runs out.

2. Contact the manufacturer.

9702

1. Encoder axis type
error

2. Requested encoder
axis non-existent

3. Instruction not
supported in offline
commissioning

1. The encoder axis type is
incorrect.

2. The requested encoder
axis does not exist.

3. The instruction is not
supported in offline
commissioning.

1. This instruction does not support the set axis
type. Check whether the axis type setting is
incorrect.

2. The instruction is not supported in offline
commissioning.

9703 Axis configuration failed Failed to configure the axis. Check whether the board software and the software
tool match.

9704

Counter operation
command not
configured in I/O
mapping of encoder axis

Counter operation
command is not configured
in I/O mapping of the
encoder axis.

Configure Counter operation command in I/O
mapping of the encoder axis.

9705
Counter status not
configured in I/O
mapping of encoder axis

Counter status is not
configured in I/O mapping
of the encoder axis.

Configure Counter status in I/O mapping of the
encoder axis.

9706

Encoder present
position not configured
in I/O mapping of
encoder axis

Encoder present position is
not configured in I/O
mapping of the encoder
axis.

Configure Encoder present position in I/O mapping
of the encoder axis.

9707
Pulse rate not
configured in I/O
mapping of encoder axis

Pulse rate is not configured
in I/O mapping of the
encoder axis.

Configure Pulse rate in I/O mapping of the encoder
axis.

9708
Positive limit not greater
than negative limit

The positive limit of the
encoder axis is not greater
than the negative limit.

Ensure that the positive limit of the encoder axis is
greater than the negative limit.

9709

Positive limit greater
than 2147483647 after
being converted into the
pulse unit

The positive limit of the
encoder axis is greater than
2147483647 after being
converted into the pulse
unit.

Ensure that the positive limit of the encoder axis is
less than or equal to 2147483647 after being
converted into the pulse unit.

9710

Negative limit less than –
2147483648 after being
converted into the pulse
unit

The negative limit of the
encoder axis is less than –
2147483648 after being
converted into the pulse
unit.

Ensure that the negative limit of the encoder axis is
greater than or equal to –2147483648 after being
converted into the pulse unit.

9711

revolution cycle in ring
mode greater than
2147483647 after being
converted into the pulse
unit

The revolution cycle of the
encoder axis in ring mode is
greater than 2147483647
after being converted into
the pulse unit.

Ensure that the revolution cycle of the encoder axis
in ring mode is less than or equal to 2147483647
after being converted into the pulse unit.

Fault Diagnosis

-590-

Fault Code Message Description Troubleshooting

9712
Encoder axis changed
while ENC_Counter is
active

The encoder axis is
changed while the ENC_
Counter instruction is still
active.

Do not change the encoder axis while the ENC_
Counter instruction is still active.

9713
GR10-2HCE module
faulty

The GR10-2HCE module is
faulty.

Check the fault code object dictionary of the GR10-
2HCE module and troubleshoot the fault according
to the fault code.

9714 Failed to reset the
encoder axis fault

Failed to reset the encoder
axis fault.

1. The current fault of the encoder axis does not
support reset.

2. The encoder shaft enters the faulty state
immediately after the fault is reset. Check the axis
fault codes and slave fault codes to further
determine the fault type.

9715
ENC_Reset called when
the encoder axis is not
faulty

The ENC_Reset instruction
is called when the encoder
axis is not faulty.

Do not call the ENC_Reset instruction when the
encoder axis is not faulty.

9716
ENC_Preset TriggerMode
out of range

The value of TriggerMode of
the ENC_Preset instruction
is out of range.

Ensure that the parameter value is within the
allowable range.

9717
ENC_Preset Position
greater than 9999999

The value of Position of the
ENC_Preset instruction is
greater than 9999999.

Set Position of the ENC_Preset instruction to a value
less than or equal to 9999999.

9718

Physical output
command not
configured in I/O
mapping of encoder axis

Physical output command
is not configured in I/O
mapping of the encoder
axis.

Configure Physical output command in I/O mapping
of the encoder axis.

9719

Preset position or
comparison output
position greater than
positive limit

The preset position or
comparison output position
of the encoder axis
instruction is greater than
the positive limit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
less than or equal to the positive limit.

9720

Preset position or
comparison output
position less than
negative limit

The preset position or
comparison output position
of the encoder axis
instruction is less than the
negative limit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
greater than or equal to the negative limit.

9721

Preset position or
comparison output
position greater than
2147483647 or less than
–2147483648 after being
converted into the pulse
unit

The preset position or
comparison output position
of the encoder axis
instruction is greater than
2147483647 or less than –
2147483648 after being
converted into the pulse
unit.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
between –2147483648 and +2147483647 after being
converted into the pulse unit.

9722

Preset position or
comparison output
position greater than or
equal to revolution cycle
in ring mode

The preset position or
comparison output position
of the encoder axis
instruction is greater than
or equal to the revolution
cycle in ring mode.

Ensure that the preset position or comparison
output position of the encoder axis instruction is
less than the revolution cycle in ring mode.

9723
ENC_TouchProbe
ProbeID out of range

The value of ProbeID of the
ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

Fault Diagnosis

-591-

Fault Code Message Description Troubleshooting

9724
ENC_TouchProbe
TriggerEdge out of range

The value of TriggerEdge of
the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9725
ENC_TouchProbe
TerminalSource out of
range

The value of
TerminalSource of the
ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9726
ENC_TouchProbe
TriggerMode out of
range

The value of TriggerMode of
the ENC_TouchProbe
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9727

Probe status word not
associated in I/O
mapping of the encoder
axis

The probe status word is
not associated in I/O
mapping of the encoder
axis.

Ensure that the probe status word is associated in I/
O mapping of the encoder axis.

9728

Probe feedback position
not associated in I/O
mapping of the encoder
axis

The probe feedback
position is not associated in
I/O mapping of the encoder
axis.

Ensure that the probe feedback position is
associated in I/O mapping of the encoder axis.

9729

Control word not
associated in I/O
mapping of the encoder
axis

The control word is not
associated in I/O mapping
of the encoder axis.

Ensure that the control word is associated in I/O
mapping of the encoder axis.

9730
Window start position
not less than end
position

The probe window function
of the encoder axis is
enabled, but the start
position of the window is
not less than the end
position.

Ensure that the start position of the probe window is
less than the end position.

9731
Xn0 not assigned with
probe function

The Xn0 terminal is not
assigned with the probe
function.

Assign the probe function to the Xn0 terminal.

9732
Xn1 not assigned with
probe function

The Xn1 terminal is not
assigned with the probe
function.

Assign the probe function to the Xn1 terminal.

9742
Compare mode not
configured in I/O
mapping of encoder axis

Compare mode is not
configured in I/O mapping
of the encoder axis.

Configure Compare mode in I/O mapping of the
encoder axis.

9743
Compare pulse/time not
configured in I/O
mapping of encoder axis

Compare pulse/time is not
configured in I/O mapping
of the encoder axis.

Configure Compare pulse/time in I/O mapping of the
encoder axis.

9744
Compare size/step not
configured in I/O
mapping of encoder axis

Compare size/step is not
configured in I/O mapping
of the encoder axis.

Configure Compare size/step in I/O mapping of the
encoder axis.

9745
Compare point value 1
not configured in I/O
mapping of encoder axis

Compare point value 1 is
not configured in I/O
mapping of the encoder
axis.

Configure Compare point value 1 in I/O mapping of
the encoder axis.

9746
Compare point value 2
not configured in I/O
mapping of encoder axis

Compare point value 2 is
not configured in I/O
mapping of the encoder
axis.

Configure Compare point value 2 in I/O mapping of
the encoder axis.

Fault Diagnosis

-592-

Fault Code Message Description Troubleshooting

9747
Physical output status
not configured in I/O
mapping of encoder axis

Physical output status is
not configured in I/O
mapping of the encoder
axis.

Configure Physical output status in I/O mapping of
the encoder axis.

9748
Compare error code not
configured in I/O
mapping of encoder axis

Compare error code is not
configured in I/O mapping
of the encoder axis.

Configure Compare error code in I/O mapping of the
encoder axis.

9749

Current compare
number/position not
configured in I/O
mapping of encoder axis

Current compare number/
position is not configured in
I/O mapping of the encoder
axis.

Configure Current compare number/position in I/O
mapping of the encoder axis.

9750

Failed to obtain the
array start address of the
single-axis array
comparison output
instruction

Failed to obtain the start
address of the array of the
single-axis array
comparison output
instruction.

1. Check whether the PLC memory is sufficient.

2. Check whether the background and board
software match.

3. Check whether the array of the instruction is out
of bounds.

9751

Failed to obtain the axis
group start address of
the axis group array
comparison output
instruction

Failed to obtain the start
address of the axis group of
the axis group array
comparison output
instruction.

1. Check whether the PLC memory is sufficient.

2. Check whether the background and board
software match.

3. Check whether the array of the instruction is out
of bounds.

9752 Bus encoder axis not
associated with slave

The bus encoder axis is not
associated with any slave. Associate the bus encoder axis with a slave.

9753

X-axis and y-axis of the
axis group array
comparison instruction
not associated with the
same slave

The x-axis and y-axis of the
axis group array
comparison instruction are
not associated with the
same slave.

Associate the x-axis and y-axis of the axis group
comparison output instruction with the same slave.

9754

X-axis of the axis group
array comparison
instruction not
associated with the first
channel of the slave

The x-axis of the axis group
array comparison
instruction is not
associated with the first
channel of the slave.

Associate the x-axis of the axis group comparison
output instruction with the first channel of the slave.

9755

Y-axis of the axis group
array comparison
instruction not
associated with the
second channel of the
slave

The y-axis of the axis group
array comparison
instruction is not
associated with the second
channel of the slave.

Associate the y-axis of the axis group comparison
output instruction with the second channel of the
slave.

9756

Yn0 not assigned with
the one-dimensional
comparison output
function

The Yn0 terminal is not
assigned with the one-
dimensional comparison
output function.

Assign the one-dimensional comparison output
function to the Yn0 output terminal corresponding
to the channel.

9757

Absolute value of start
value of encoder axis
step comparison output
instruction greater than
9999999

The absolute value of the
start value of the encoder
axis step comparison
output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9758

Absolute value of end
value of encoder axis
step comparison output
instruction greater than
9999999

The absolute value of the
end value of the encoder
axis step comparison
output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

Fault Diagnosis

-593-

Fault Code Message Description Troubleshooting

9759

Absolute value of the
step of the encoder axis
step comparison output
instruction greater than
9999999

The absolute value of the
step of the encoder axis
step comparison output
instruction is greater than
9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9760

Absolute value of
Parameter of the
encoder axis step
comparison output
instruction greater than
9999999

The absolute value of
Parameter of the encoder
axis step comparison
output instruction is
greater than 9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

9761
Mode of the encoder axis
comparison output
instruction out of range

The value of Mode of the
encoder axis comparison
output instruction is out of
range.

Ensure that the parameter value is within the
allowable range.

9762

Time for time control of
the encoder axis
comparison output out
of range

The time for time control of
the encoder axis
comparison output is out of
range.

Ensure that the parameter value is within the
allowable range.

9763
Step of the encoder axis
step comparison output
instruction equal to 0

The step of the encoder
axis step comparison
output instruction is 0.

Set the step of the step comparison output
instruction to a value other than 0.

9764

Start position of the step
comparison output
instruction equal to end
position

The start position of the
step comparison output
instruction of the encoder
axis is equal to the end
position.

Ensure that the start position of the step
comparison output instruction is not equal to the
end position.

9765

Start position of the step
comparison output
instruction less than end
position, but step
negative

The start position of the
step comparison output
instruction of the encoder
axis is less than the end
position, but the step is
negative.

Set the step to a positive value.

9766

Start position of the step
comparison output
instruction greater than
end position, but step
positive

The start position of the
step comparison output
instruction of the encoder
axis is greater than the end
position, but the step is
positive.

Set the step to a negative value.

9767
Size of the encoder axis
array comparison output
instruction out of range

The value of Size of the
encoder axis array
comparison output
instruction is out of range.

Ensure that the parameter value is within the
allowable range.

9768

Absolute value of the
target position of the
encoder axis array
comparison output
instruction greater than
9999999

The absolute value of the
target position of the
encoder axis array
comparison output
instruction is greater than
9999999.

Ensure that the absolute value of the floating-point
number in the motion instruction does not exceed
9999999.

Fault Diagnosis

-594-

Fault Code Message Description Troubleshooting

9769

Axis performing one-
dimensional comparison
output, must not be
aborted by a two-
dimensional comparison
output instruction

The axis is performing one-
dimensional comparison
output and must not be
aborted by a two-
dimensional comparison
output instruction.

Wait for the one-dimensional comparison output to
complete or stop the one-dimensional comparison
output before executing the two-dimensional
comparison output instruction.

9770
EtherCAT slave
disconnected during
operation

The EtherCAT slave is
disconnected during
operation.

Check whether the EtherCAT slave is disconnected
during operation.

9771
Bus encoder axis in
offline commissioning
mode

The bus encoder axis is in
offline commissioning
mode.

The bus encoder axis does not support the offline
commissioning mode.

9772
DI terminal not assigned
with the preset position
function

The DI terminal is not
assigned with the preset
position function.

Assign the preset position function to the DI
terminal before calling the preset position
instruction.

9773

Parameter in
comparison instruction
out of range when the
pulse output mode is
selected

The value of Parameter in
the comparison instruction
is out of range when the
pulse output mode is
selected.

Do not set Parameter to 0 or a negative value when
the pulse output mode is selected in the comparison
instruction.

9774

2HCE module failed
when the comparison
output instruction is
called

The 2HCE module fails
when the comparison
output instruction is called.

1. Ensure that the input parameters are within the
allowable range.

2. Check whether I/O mapping of the encoder axis is
manually modified and whether it meets the I/O
mapping configuration requirements of the
comparison output instruction.

9775
Set position in ring
mode less than 0

The set position in ring
mode is less than 0.

Set the position in ring mode to a value greater than
or equal to 0.

9776

Y00 not assigned with
the two-dimensional
comparison output
function

The Y00 terminal is not
assigned with the two-
dimensional comparison
output function.

Assign the two-dimensional comparison output
function to the Y00 output terminal corresponding
to the channel.

9777

Axis performing two-
dimensional comparison
output, cannot be
aborted by a one-
dimensional comparison
output instruction

The axis is performing two-
dimensional comparison
output and cannot be
aborted by a one-
dimensional comparison
output instruction.

Wait for the two-dimensional comparison output to
complete or stop the two-dimensional comparison
output before calling the one-dimensional
comparison output instruction.

9800
Failed to read the
number of motion
control axes

Failed to read the number
of motion control axes.

Change the background version.

9801
Motion control axis
quantity out of range

The number of motion
control axes is out of range.

Reduce the number of axes since the H5U supports
at most 32 axes.

9802
Axis failed to request
internal space

The axis failed to request
internal storage space.

1. Check whether the memory runs out.

2. Contact the manufacturer.

9803
Failed to obtain axis
parameters

Failed to obtain axis
parameters.

Change the background version.

9804 Failed to obtain the
slave

Failed to obtain the slave. Change the background version.

9805 Failed to obtain the
system variable

Failed to obtain the system
variable.

1. Check whether the memory runs out. 2. Return
the machine to the manufacturer for analysis.

Fault Diagnosis

-595-

Fault Code Message Description Troubleshooting

9806 Improper gear ratio
settings

Parameters related to the
gear ratio are set
improperly.

1. Ensure that the numerator and denominator of
the gear ratio are greater than 0.

2. Ensure that the number of pulses per revolution
of the motor/encoder is greater than 0.

3. Ensure that the displacement per revolution of
the rotary table is between 0.000001 and 9999999.

9807 Improper software
limiting parameters

The software limiting
parameters are set
improperly.

1. Ensure that the positive limit is not greater than
9999999.

2. Ensure that the negative limit is not greater than
9999999.

3. Ensure that the negative limit is not greater than
the positive limit.

9808 Improper linear/rotary
mode

The linear/rotary mode
parameter is set
improperly.

Note that only the linear mode and rotary mode are
supported.

9809 Improper revolution
cycle

The revolution cycle is set
improperly.

Ensure that the revolution cycle is between 0.01 and
9999999.

9810 Improper encoder mode The encoder mode is set
improperly.

Ensure that the encoder mode is set properly. Note
that only the incremental mode and absolute value
mode are supported.

9811 Improper homing
parameter setting

The homing parameter is
set improperly.

1. Do not modify the homing mode of the bus servo
axis. If you want to modify the homing mode of the
bus servo axis, write to the SDO.

2. Check whether the homing mode is set properly.
Note that only the values 17 to 30 and 35 are
supported.

9812 Limit, home, or probe
terminal Modbus
address out of range

The Modbus address
setting of the limit, home,
or probe terminal is out of
range.

1. Check whether the set address is out of the range
of Modbus addresses.

2. Select an address among X0 to X7 for the home
signal. 3. Select an address among X0 to X7 for the
probe signal.

9813 Improper pulse output
mode setting of the local
pulse axis

The pulse output mode of
the local pulse axis is set
improperly.

Check whether the pulse output mode of the local
pulse axis is set improperly.

9814 Improper limiting
deceleration

The limiting deceleration is
set improperly.

Ensure that the limiting deceleration is between
0.0001 and 9999999.

9815 Improper deceleration
upon axis fault

The deceleration upon axis
fault is set improperly.

Ensure that the deceleration upon axis fault is
between 0.0001 and 999999.

9816 Improper maximum
velocity

The maximum velocity is
set improperly.

Ensure that the maximum velocity is between 0.0001
and 999999.

9817 Improper maximum
positive torque

The maximum positive
torque is set improperly.

Ensure that the maximum positive torque is
between 1 and 65534.

9818 Improper maximum
negative torque

The maximum negative
torque is set improperly.

Ensure that the maximum negative torque is
between 1 and 65534.

9819 Improper maximum
jogging velocity

The maximum jogging
velocity is set improperly.

Ensure that the maximum jogging velocity is
between 0.0001 and the maximum velocity.

9820 Improper maximum
acceleration

The maximum acceleration
is set improperly.

Ensure that the maximum acceleration is between
0.0001 and 9999999.

9821 Improper following error
threshold

The following error
threshold is set improperly.

Ensure that the following error threshold is between
0.0001 and 9999999.

Fault Diagnosis

-596-

Fault Code Message Description Troubleshooting

9822 Improper velocity reach
threshold

The velocity reach
threshold is set improperly.

Ensure that the velocity reach threshold is between
0.0001 and 9999999.

9823 Improper homing
velocity

The homing velocity is set
improperly.

1. Ensure that the homing velocity is between 0.0001
and 9999999. 2. Ensure that the homing velocity is
not greater than the maximum velocity. 3. Ensure
that the value obtained by multiplying the homing
velocity by the gear ratio is between 1 and
2148483647.

9824 Improper homing
approach velocity

The homing approach
velocity is set improperly.

1. Ensure that the homing approach velocity is
between 0.0001 and 9999999. 2. Ensure that the
homing approach velocity is not greater than the
maximum velocity. 3. Ensure that the value obtained
by multiplying the homing approach velocity by the
gear ratio is between 1 and 2148483647. 4. Ensure
that the homing approach velocity is less than the
homing velocity.

9825 Homing position mode
setting out of range

The homing position mode
setting is out of range.

Ensure that the parameter value is within the
allowable range.

9826 Improper homing
acceleration

The homing acceleration
setting is improper.

1. Ensure that the homing acceleration is between
0.0001 and 9999999. 2. Ensure that the homing
acceleration is not greater than the maximum
acceleration.

9827 Homing timeout time
out of range

The homing timeout time is
out of range.

Ensure that the homing timeout time is greater than
or equal to 1.

Appendix

-597-

20 Appendix

20.1 Modbus Protocol

20.1.1 Modbus Message Description

The Modbus application protocol defines a simple protocol data unit (PDU) independent of the
underlying communication layers.

The mapping of Modbus protocol on different buses or networks can introduce some additional fields
on the protocol data unit. The client initiating a Modbus transaction builds a Modbus PDU and then
adds an additional field to build an appropriate communication PDU.

Data encoding

Modbus uses a "big-Endian" representation for addresses and data items. This means that when
multiple bytes are transmitted, the most significant bit is sent first. Example:

Register Size Value Description

16-bit 0x1234 The first byte sent is 0x12, then 0x34.

20.1.2 Modbus-RTU Message Frame

When a device communicates over a Modbus serial link in the Remote Terminal Unit (RTU) mode, each
8-bit byte in the message consists of two 4-bit hexadecimal characters. The RTU mode features high
data density, leading to higher throughput than the ASCII mode at the same baud rate. However, each
message must be transmitted as a continuous character stream.

20.1.3 Modbus-ASCII Message Frame

When a device on a Modbus serial link is configured to communicate in the American Standard Code
for Information Interchange (ASCII) mode, each 8-bit byte in the message is sent as two ASCII
characters. This mode is used when a communication link or device cannot comply with the timing
management of the RTU mode.

Note
Note: This mode is less efficient than the RTU mode because one byte requires two characters.

Appendix

-598-

For example, the byte 0x5B is encoded as two characters: 0x35 and 0x42 (0x35 = "5" and 0x42 = "B" in
ASCII encoding).

In the ASCII mode, a message is delimited by special characters at the beginning and end of the frame.
A message must start with a colon (:) (ASCII hexadecimal 3A) and end with a carriage return–line feed
(CR LF) pair (ASCII hexadecimal 0D and 0A).

20.1.4 Modbus-TCP Message Frame

The following figure illustrates the encapsulation of Modbus requests or responses in a Modbus-TCP/IP
network.

TCP/IP uses a special message header to identify the Modbus application data unit. Such a message
header is called the Modbus Protocol Application Header (MBAP).

In the MBAP header, a single-byte unit identifier is used instead of the Modbus slave address field that
is commonly used on a Modbus serial link. The unit identifier is used for communication between
devices (such as bridges, routers, and gateways) that support multiple independent Modbus terminal
units through a single IP address.

The MBAP header includes the following fields.

Field Length Description Client Server

Transaction meta
identifier

2 bytes
Identifier of the Modbus
request/response
transaction being processed

Started by the client
Copied by the server from the
received request

Protocol identifier 2 bytes 0: Modbus protocol Started by the client
Copied by the server from the
received request

Length 2 bytes Number of bytes of the next
field

Started by the client
(request)

Started by the server
(response)

Unit identifier 1 byte
Identifier of the remote
slave connected on a serial
link or other bus

Started by the client
Copied by the server from the
received request

● The header contains 7 bytes.
● Transaction processing identifier: used to pair transaction processing. In the response, the Modbus

server copies the transaction identifier from the request.
● Protocol identifier: used for multiplexing within the system. The value 0 indicates the Modbus

protocol.
● Length: indicates the number of bytes of the next field, including the unit identifier and data field.

Appendix

-599-

● Unit identifier: used for routing within the system. This field is specifically used for communication
with Modbus or Modbus+ serial link slaves through gateways between Ethernet TCP-IP networks
and Modbus serial links. The Modbus client sets this field in the request, and the server must return
the same value in the response.

20.1.5 Function Code Definitions

20.1.5.1 Modbus Data Model

Modbus bases its data model on a series of tables that have distinguishing characteristics. The four
primary tables are:

Table Object Type Access Type Comments

Discrete inputs Single bit Read-only This type of data can be provided by an I/O system.

Coils Single bit Read-write This type of data can be altered by an application program.

Input registers 16-bit Read-only This type of data can be provided by an I/O system.

Holding registers 16-bit Read-write This type of data can be altered by an application program.

20.1.5.2 Function Code List

Function Code Definition
01 (0x01) Read coils

02 (0x02) Read discrete inputs

03 (0x03) Read multiple registers

04 (0x04) Read input registers

05 (0x05) Write single coil

06 (0x06) Write single register

15 (0x0F) Write multiple coils

16 (0x10) Write multiple registers

20.1.5.3 Function Code Explanation

01 (0x01): Read coils/02 (0x02): Read discrete inputs

This function code is used to read 1 to 2000 contiguous status of coils (or discrete inputs) in a remote
device.

Table 20–1 Request PDU

No. Meaning of Data
(Byte)

Number of Bytes Description

1 Function code 1 0x01: Read coils/0x02: Read discrete inputs
2 Coil starting address 2 Upper bits are followed by lower bits. See coil

addressing. For details, see . “7.5.2 Parameters and
Addresses” on page 256

3 Number of coils 2 Upper bits are followed by lower bits (N). The
maximum value of N is 2000.

Appendix

-600-

Table 20–2 Response PDU

No.
Meaning of Data

(Byte)
Number of Bytes Description

1 Function code 1 0x01: Read coils/0x02: Read discrete inputs

2 Number of bytes 1 Value: (N + 7)/8

3 Coil status (N + 7)/8

Every 8 coils are combined into one byte. If the
number of coils is not a multiple of 8, undefined
bits are filled with 0. The first 8 coils are in the
first byte, and the coil with the smallest address
is in the least significant bit. This pattern
continues for the rest of the coils.

Table 20–3 Error response PDU

No. Meaning of Data
(Byte)

Number of Bytes Description

1 Function code 1 Function code + 0x80; 0x81: Read coils/0x82: Read
discrete inputs

2 Exception code 1 0x01, 0x02, 0x03, or 0x04. See the exception code
list.

03 (0x03): Read multiple registers/04 (0x04): Read input registers

This function code is used to read the content of a contiguous block of holding registers (or input
registers) in a remote device.

Table 20–4 Request PDU

No. Meaning of Data (Byte) Number of Bytes Description

1 Function code 1 0x03: Read multiple registers/0x04: Read input
registers

2 Register starting
address

2 Upper bits are followed by lower bits. See register
addressing. For details, see . “7.5.2 Parameters
and Addresses” on page 256

3 Number of registers 2 Upper bits are followed by lower bits (N). The
maximum value of N is 125.

Table 20–5 Response PDU

No. Meaning of Data (Byte) Number of Bytes Description

1 Function code 1 0x03: Read multiple registers/0x04: Read input
registers

2 Number of bytes 1 Value: N x 2

3 Register value N x 2 Every two bytes represents one register value,
with upper bits followed by lower bits. The
register with the minimum address is in the
foremost.

Appendix

-601-

Table 20–6 Error response PDU

No. Meaning of Data
(Byte)

Number of
Bytes

Description

1 Function code 1 Function code + 0x80; 0x83: Read multiple registers/0x84:
Read input registers

2 Exception code 1 0x01, 0x02, 0x03, or 0x04. See the exception code list.

05 (0x05): Write single coil

This function code is used to write a single output to either ON or OFF in a remote device.

Table 20–7 Request PDU

No. Meaning of Data
(Byte)

Number of Bytes Description

1 Function code 1 0x05: Write single coil

2 Coil address 2 Upper bits are followed by lower bits. See coil
addressing. For details, see . “7.5.2 Parameters and
Addresses” on page 256

3 Coil status 2 Upper bits are followed by lower bits. ON is 0xFF00,
while OFF is 0x0000.

Table 20–8 Response PDU

No. Meaning of Data (Byte) Number of Bytes Description

1 Function code 1 0x05: Write single coil

2 Coil address 2 Upper bits are followed by lower bits. See coil
addressing. For details, see . “7.5.2 Parameters
and Addresses” on page 256

3 Coil status 2 Upper bits are followed by lower bits. Active when
the value is other than 0

Table 20–9 Error response PDU

No. Meaning of Data
(Byte)

Number of
Bytes

Description

1 Function code 1 Function code + 0x80; 0x85: Write single coil

2 Exception code 1 0x01, 0x02, 0x03, or 0x04. See the exception code list.

06 (0x06): Write single register

This function code is used to write a single holding register in a remote device.

Table 20–10 Request PDU

No. Meaning of Data
(Byte)

Number of Bytes Description

1 Function code 1 0x06: Write single register

2 Register address 2 Upper bits are followed by lower bits. See register
addressing. For details, see . “7.5.2 Parameters and
Addresses” on page 256

3 Register value 2 Upper bits are followed by lower bits.

Appendix

-602-

Table 20–11 Response PDU

No. Meaning of Data (Byte) Number of Bytes Description

1 Function code 1 0x06: Write single register

2 Register address 2 Upper bits are followed by lower bits. See register
addressing. For details, see . “7.5.2 Parameters
and Addresses” on page 256

3 Register value 2 Upper bits are followed by lower bits.

Table 20–12 Error response PDU

No. Meaning of Data
(Byte)

Number of
Bytes

Description

1 Function code 1 Function code + 0x80; 0x86: Write single register

2 Exception code 1 0x01, 0x02, 0x03, or 0x04. See the exception code list.

15 (0x0F): Write multiple coils

This function code is used to force each coil in a sequence of coils to either ON or OFF in a remote
device.

Table 20–13 Request PDU

No.
Meaning of Data

(Byte)
Number of Bytes Description

1 Function code 1 0x0F: Write multiple coils

2 Coil starting address 2
Upper bits are followed by lower bits. See coil
addressing. For details, see . “7.5.2 Parameters and
Addresses” on page 256

3 Number of coils 2 Upper bits are followed by lower bits (N). The
maximum value of N is 1968.

4 Number of bytes 1 Value: (N + 7)/8

5 Coil status (N + 7)/8

Every 8 coils are combined into one byte. If the
number of coils is not a multiple of 8, undefined bits
are filled with 0. The first 8 coils are in the first byte,
and the coil with the smallest address is in the least
significant bit. This pattern continues for the rest of the
coils.

Table 20–14 Response PDU

No. Meaning of Data (Byte) Number of Bytes Description

1 Function code 1 0x0F: Write multiple coils
2 Coil starting address 2 Upper bits are followed by lower bits. See coil

addressing. For details, see . “7.5.2 Parameters
and Addresses” on page 256

3 Number of coils 2 Upper bits are followed by lower bits.

Appendix

-603-

Table 20–15 Error response PDU

No. Meaning of Data
(Byte)

Number of
Bytes

Description

1 Function code 1 Function code + 0x80; 0x8F: Write multiple coils

2 Exception code 1 0x01, 0x02, 0x03, or 0x04. See the exception code list.

16 (0x10): Write multiple registers

This function code is used to write a block of contiguous registers (1 to 123 registers) in a remote
device.

Table 20–16 Request PDU

No.
Meaning of Data

(Byte)
Number of Bytes Description

1 Function code 1 0x10: Write multiple registers

2 Register starting
address

2 Upper bits are followed by lower bits. See register
addressing. For details, see . “7.5.2 Parameters and
Addresses” on page 256

3 Number of registers 2 Upper bits are followed by lower bits (N). The
maximum value of N is 123.

4 Number of bytes 1 Value: N x 2
5 Register value N x 2 Register value

Table 20–17 Response PDU

No. Meaning of Data (Byte) Number of Bytes Description

1 Function code 1 0x10: Write multiple registers

2 Register starting
address

2 Upper bits are followed by lower bits. See register
addressing. For details, see . “7.5.2 Parameters
and Addresses” on page 256

3 Number of registers 2 Upper bits are followed by lower bits.

Table 20–18 Error response PDU

No. Meaning of Data
(Byte)

Number of
Bytes

Description

1 Function code 1 Function code + 0x80; 0x90: Write multiple registers

2 Exception code 1 0x01, 0x02, 0x03, or 0x04. See the exception code list.

Appendix

-604-

20.1.6 Exception Code List

Code Name Description
0x01 Illegal function code The function code received in the query is not an allowable action for the server (or

slave). This may be because the function code is only applicable to new devices, and is
not implementable in the unit selected. It could also indicate that the server (or slave) is
in the wrong state to process a request of this type, for example, because it is
unconfigured and is being asked to return register values.

0x02 Illegal data address The data address received in the query is not an allowable address for the server (or
slave). More specifically, the combination of reference number and transfer length is
invalid. For a controller with 100 registers, a request with the offset 96 and the length 4
will succeed, but a request with the offset 96 and the length 5 will result in exception
code 0x02.

0x03 Illegal data value A value contained in the query data field is not an allowable value for server (or slave).
This indicates a fault in the structure of the remainder of a complex request, such as
that the implied length is incorrect. It specifically does not mean that a data item
submitted for storage in a register has a value outside the expectation of the application
program, since the Modbus protocol is unaware of the significance of any particular
value of any particular register.

0x04 Slave device failure An unrecoverable error occurred while the server (or slave) was attempting to perform
the requested action.

20.2 Firmware Programming and Upgrade

20.2.1 Firmware Programming

● The PLC firmware programming function of AutoShop is only available for the Easy series.
● When multiple AutoShop software applications are opened, only one of them is allowed to perform

programming, while others cannot access the "Firmware burning" function.
● The Easy series models involve two programming files: one for the Easy30X, Easy32X, and Easy50X models, and

the other for the Easy52X models.

Prerequisite: USB cable and firmware programming file are ready. You can log in to the official
website of Inovance (www.inovance.com) to obtain the firmware programming file.

1. Turn off the PLC power.
2. In the menu bar, choose "Tools" > "Firmware burning". The "Firmware burning" page is displayed.

https://www.inovance.com/portal/product/details?productId=350

Appendix

-605-

3. Click "..." and select the firmware programming file.
4. Plug the USB cable (if the USB cable is already connected, remove and re-plug it). A dialog box pops

up to prompt whether to program. Click "OK" to start programming.
After the programming succeeds, a prompt box indicating the programming is succeeded will be
displayed.

20.2.2 Firmware Upgrade

20.2.2.1 Firmware Upgrade Through Ethernet

1. In the menu bar, choose "Tools" > "Firmware upgrade". The "Firmware upgrade" dialog box is
displayed.

2. Select the firmware version to be upgraded, enter the verification code, and click "Upgrade".
3. Wait for the "Upgrade successful" prompt box to pop up, and the firmware upgrade is completed.

Appendix

-606-

Note
During firmware upgrade, ensure that the PLC is powered normally. Powering off the PLC during upgrade may cause
the PLC to fail to start or function normally. In most of such cases, firmware upgrade can still be done by using an
SD card. Otherwise, the PLC needs to be returned to the factory for repair.

20.2.2.2 Firmware Upgrade Through SD Cards

During upgrade using an SD card, power-off is strictly prohibited. Otherwise, the PLC may become unusable or other
serious abnormalities may occur.

To upgrade the firmware using an SD card, program the SD card first according to the following steps.

1. Prepare hardware.
Prepare an SD (TF) card as shown in the figure, with the card storage capacity no more than 32 G.

2. Insert the SD card into a card reader and plug the card reader into the USB port of the computer.
3. Double-click the SD card programming tool to open it.

Tool download address: http://bbs.inovance.com/t-1797.html

4. The following interface is displayed and shows which disk the card reader is located, as shown in the
following figure.

Appendix

-607-

5. Select the MLO file in the upgrade package and click “Open”.
6. Click the button specified in the following figure to open the folder where the programming content

is located. Press Ctrl+A to select all the files and then click "Open".

Appendix

-608-

7. Click "Proceed". After the following interface appears, click "Format" and then "Start" to format the
SD card.

8. After the formatting, click "Close" to start programming. After the programming is completed, the
following interface is displayed.

Appendix

-609-

9. Insert the SD card into the SD card slot of the controller.
10. Power off the PLC and then power it on. When the LED display shows UU, it indicates that the

upgrade has started. The upgrade process may take about one minute. When the upgrade succeeds,
the LED display shows 00 or CC. Remove the SD card to complete the upgrade.

Note
● During firmware upgrade, ensure that the PLC is powered normally. Powering off the PLC during upgrade may

cause the PLC to fail to start or function normally. In such a case, try again to upgrade the firmware using the SD
card. If the upgrade fails, send the PLC to the factory for repair.

● During firmware upgrade, if the LED display shows flashing ER, it means that the upgrade is successful but the
PLC detects a program error or communication error during running.

20.3 Applying the Function of Download File Generation

20.3.1 Generating Down Files

20.3.1.1 Overview

The download file function refers to the ability of the PLC project to compile and generate a Down file,
which can be downloaded without opening the original project.

● Batch update or upgrade PLC projects using an SD card.

Appendix

-610-

● Update a PLC project using AutoShop software tool.

20.3.1.2 Generating Down Files

Generating Down files

Before downloading a Down file, generate the Down file in the AutoShop background. The specific
steps are as follows.

1. Open the PLC project and choose "File" > "Generate download file (D)".
2. In the "Download Settings" dialog box that is displayed, set the download file properties, and then

click "Generate download file (.down)".

Interface:

● "Download the source project": Select this option to enable project uploading, or deselect this
option to disable project uploading.

● "Retain variable properties"
Retain existing values of retentive variables when downloading; or

Re-initialize retentive variables when downloading.

● "Logon password"
If the PLC does not have a login password, leave this option deselected.

If the PLC has a login password, this option must be selected and the PLC login password must be
entered. If this option is not selected or the password is incorrect, the upgrade will fail.

● "Set/modify login password"

Appendix

-611-

To modify the current login password of the PLC, fill out the "Logon Password", "New Login
Password", and "Confirm New Password" fields.

To set a login password when the PLC does not have a login password, just fill out the "New Login
Password" and "Confirm New Password" fields.

● : shows or hides passwords.

Note
The password takes effect immediately after the Down file is upgraded.

After the password takes effect, the PLC will log out the current user.

3. Select the archive path for the Down file and click "OK".

20.3.1.3 Upgrading Down Files Through SD Cards

Put the Down file compiled using AutoShop in the "PLCProgram" directory of the SD card, and then
insert the SD card into the PLC main module. Press and hold the MFK key on the PLC panel for three
seconds to enter the "Sd" menu. Press the MFK key again to start programming the user program in
the SD card into the PLC host. The LED display shows the programming progress (00 to 99), and shows
"PP" after the programming is completed.

...
If the password is incorrect, the indicator prompts E5, indicating a password verification error.

20.3.1.4 Downloading Down Files Through AutoShop

To download the generated Down file, close the project first, as shown in the following figure.

Click the Download button and select the PLC type connected.

Appendix

-612-

Click "Download". If the password verification fails, the system pops up a prompt box, and you need to
enter the correct password.

Note
If the PLC is in the logged-in state when the Down file is downloaded in the background, the PLC will be logged out
first.

20.3.1.5 Compatibility

When a Down file generated by AutoShop V4.0.0.0 is downloaded to PCB software of V3.0.0.0 or earlier
version, errors such as Down upgrade failure, file format error, and parsing failure may occur.

20.3.2 Generating Updown Files

20.3.2.1 Overview

Updown files are Down files that can be uploaded. Updown files enable upload and download of user
programs.
AutoShop allows you to compile a project into an Updown file, and open the Updown file in AutoShop
to further edit the project.

Updown files can be downloaded and uploaded through HMI, enabling quick copy and transfer of
projects between different PLCs.

Updown files can be downloaded and uploaded using SD cards.

Updown files can also be downloaded and uploaded through AutoShop, making project management
flexible.

Operations involved are:

Function Tool
Compile and generate Updown files AutoShop

Open and edit Updown files AutoShop

Upload and download Updown files through AutoShop AutoShop

Upload and download Updown files through HMI HMI (IT7000)

Upload and download Updown files through SD cards SD card

20.3.2.2 Generating Updown Files

Follow these steps to generate an Updown file:

1. In the programmed and compiled project, choose "File" > "Generate download file". The "Download
Settings" dialog box is displayed.

2. Click "Generate download file(.updown support open)" to generate an Updown file.

Appendix

-613-

Interface:

● "Download the source project": When this option is selected, the Updown file generated includes
the project source code. Only Updown files with this option selected can be opened and edited.

● "Retain variable properties"
Retain existing values of retentive variables when downloading; or

Re-initialize retentive variables when downloading.

● "Logon password"
The PLC login password, which must be consistent with the login password of the target PLC to
complete the download of the Updown file.

If the target PLC does not have a login password, do not select the "Logon Password" option.

● "Set/modify login password"
After a successful Updown file download, the target PLC's login password is updated to the "New
Login Password".

● : shows or hides passwords.

3. Select the archive path for the Updown file and click "OK".

20.3.2.3 Opening Updown Files

Follow these steps to open and edit an Updown file:

1. Choose "File" > "Open Project".
2. In the "Open" window that is displayed, select the "*.updown" file you want to open.

Appendix

-614-

3. After selecting the file, click "Open" to open the Updown file. If the Updown file is password-
protected, enter the password for verification before the file can be opened.

Note
If the Updown file has "Set/modify login password" enabled, use the "Set/modify login password" of the Updown
file for verification.

If the Updown file only has "Logon Password" enabled, use the "Logon Password" of the Updown file for
verification.

20.3.2.4 Uploading and Downloading Updown Files Through HMI

Uploading or downloading Updown files through HMI requires a firmware version of 0.8.8.27 or later.
Downloading Updown files

1. Enter the control panel of the IT7000 series HMI.

● In InoTouchPad, create an IT7000 project, configure a button, and configure the system function
"OpenControlPanel" for the button to enter the control panel.

● Power on the IT7000 HMI and press and hold the screen to enter the control panel.

2. Click the "Download" menu in the control panel.
3. In the window that is displayed, select the corresponding mounted device and the Updown file to be

downloaded.
4. Select the target device series and click "Download".

5. In the window that is displayed, enter the IP address of the PLC device and click "OK".

Appendix

-615-

Uploading Updown files

The steps for upload are similar to those for download. The control panel interface is as shown in the
following figure.

Note
To upload a file, you need to enter the device IP and rename the file to make the file name end with ".updown", for
example, "test.updown".

The password for upload is the password of the uploaded Updown file.

Both Down and Updown files can be downloaded, but only Updown files can be uploaded.

20.3.2.5 Uploading and Downloading Updown Files Through AutoShop

Downloading Updown files

Close the project. Click the Download button in the toolbar. After connecting to the PLC, select the "*.
updown" file to be downloaded in the window that is displayed, as shown in the following figure.

Uploading Updown files

Close the project. Choose "PLC" > "Upload Updown File".

Appendix

-616-

Note
If an Updown file that has been downloaded to the PLC is downloaded again in the Down format or through the
background, inconsistency may occur between the Updown file uploaded and the actual project running in the PLC.

20.3.2.6 Uploading and Downloading Updown Files Through SD Cards

Put the Updown file compiled using AutoShop in the "PLCProgram" directory of the SD card, and then
insert the SD card into the PLC main module. Press and hold the MFK key on the PLC panel for three
seconds to enter the "Sd" menu. Press the MFK key again to start programming the user program in
the SD card into the PLC host. The LED display shows the programming progress (00 to 99), and shows
"PP" after the programming is completed.

...
If the password is incorrect, the indicator prompts E5, indicating a password verification error.

20.4 Applying Customized Variables in Communication

20.4.1 Overview

In the function of customized variables, addresses of variables are automatically allocated by the
software. Therefore, the variables cannot be accessed directly using fixed addresses. Customized
variables can be accessed in the following two ways:

● HMI tag communication: only available for Inovance IT7000 series touch screens
● Mapping address: applicable to all devices that support the Modbus protocol

Appendix

-617-

20.4.2 Example Project Requirements

Write an H5U marquee program and have the corresponding bit elements and control word status
displayed through the IT7000 HMI.

20.4.3 PLC Programming

20.4.3.1 Accessing Customized Variables Through HMI Tag Communication

Creating a PLC project

Create a PLC project. For details, see “2.4.2 Creating a Project” on page 38.

Writing a PLC program

Write a program as shown in the following figure, where "light" is an array containing eight Bool-type
variables and "light_control" is an INT-type variable used for HMI display.

Compiling the project and export the variable table

1. After writing the project, click the compile button to complete the program compilation.
2. After the compilation is completed, double-click "Variable Table" in the project management pane

on the left to enter the variable table interface.

3. Right-click the variable table and click "Export HMI Monitoring Variable Table".

Appendix

-618-

4. In the window that is displayed, set an archive path and file name, and then click "Save" to complete
the export of the variable table.

5. (Optional) To export all customized variables, right-click "Global Variables" and select "Export As
HMI Variable".

Downloading the PLC program

After exporting the variable table, click the download button to download the program to the
PLC.

Setting the PLC IP address

For setting the PLC IP address, see "2.2 Communication Connection".

20.4.3.2 Accessing Customized Variables Through Mapping Address

1. Create a project and write a PLC program.
2. Allocate variable addresses.

Appendix

-619-

a. In the project management pane, double-click "Variable Table" to enter the variable table
interface.

b. Allocate soft element addresses for custom variables.
The light variable is a BOOL-type array and occupies M0 to M7, a total of eight bits, after being
mapped to M0.

c. Compile the project to automatically generate the allocated addresses.

Click the compile button to compile the program. After the compilation is completed, the
software automatically generates the allocated addresses.

3. Download the PLC program and set the PLC IP address.

20.4.4 HMI Configuration

20.4.4.1 Accessing Customized Variables Through HMI Tag Communication

1 Creating an HMI project

Open InoTouchPad. Create a project. Set an archive path, name, and device type for the project, and
then click "OK".

Appendix

-620-

2 Creating a communication connection

1. In the project management pane on the left, double-click the connection tab.

2. On the connection management page, click the "+" icon to add a connection, and select the H5U
TCP monitoring protocol.

3. Enter the IP address of the connected PLC to complete the setup.

Appendix

-621-

3 Adding variables

1. Click "Variable" to expand the variable menu. Click "Add variable group" to add a variable group.

2. Right-click the newly added variable group and select "Import".

3. In the pop-up window, select the variable table exported from the PLC, and click "Open".
4. Select the created H5U connection and click "OK".

Appendix

-622-

5. The variables are successfully added to the HMI variable table.

4 Configuring HMI

The HMI allows you to directly drag variables for programming. Drag variables from the detailed view
to the programming interface one by one to complete programming.

Double-click the value I/O field, set the display format to binary, and set the character field length to
eight bits for easy observation.

Appendix

-623-

Downloading the HMI program

Click . In the window that is displayed, set the target HMI IP and click "Download". Wait for the
progress bar to reach 100% to complete the HMI program download.

20.4.4.2 Accessing Customized Variables Through Mapping Address

1. Create an HMI project.
2. Create a communication connection.

a. In the project management pane on the left, double-click the connection tab.

Appendix

-624-

b. On the connection management page, click the "+" icon to add a connection, and select the
Modbus-TCP monitoring protocol.

c. Enter the IP address of the connected PLC and set the port number to 502 to complete the setup.

3. Add variables.

Appendix

-625-

a. Click "Variable" to expand the variable menu. Click "Add variable group" to add a variable group.
b. Double-click the newly created variable group to open it.
c. Add variables to be monitored.

Addresses of the added variables depend on the addresses allocated in the PLC.

4. Configure HMI and download the HMI project.

20.4.5 Example Running Results

After communication is established through the tag communication function, the bit states of
customized variables and the corresponding status words can be monitored through the HMI.

19012249A11

	Preface
	1 Overview
	1.1 Introduction
	1.1.1 Product Introduction
	1.1.2 Software Introduction
	1.1.3 Networking Schemes

	1.2 Obtaining and Installing the Software
	1.2.1 How to Obtain
	1.2.2 Installation Environment Requirements
	1.2.3 Installing the Software
	1.2.4 Uninstalling the Software

	1.3 Software Interface

	2 Quick Start
	2.1 Overview
	2.2 Communication Connection
	2.2.1 Overview
	2.2.2 Ethernet Connection
	2.2.3 USB Connection

	2.3 Programming Process
	2.4 Programming Example
	2.4.1 Example Requirements
	2.4.2 Creating a Project
	2.4.3 Connecting to Target PLC
	2.4.4 (Optional) Configuring Hardware
	2.4.5 Programming and Compiling
	2.4.6 (Optional) Logging In to PLC
	2.4.7 Downloading Program
	2.4.8 HMI Monitoring

	2.5 Switching PLC Working Modes
	2.6 Modifying Program Online
	2.7 Setting Program Scan Cycles
	2.8 Setting EtherCAT Task Cycles
	2.9 Packing and Decompressing Project Archives
	2.10 Logging in to PLC
	2.10.1 Overview
	2.10.2 Logging In to and Logging Out of PLC
	2.10.3 Managing Login Password

	2.11 Trace Monitor Variables
	2.11.1 Overview
	2.11.2 Adding Trace Monitor Variables
	2.11.3 Importing or Exporting Trace Data

	3 Programming Basics
	3.1 Overview
	3.2 Elements
	3.2.1 Bit Elements
	3.2.2 Word Elements
	3.2.3 Special Elements
	3.2.4 Bit-based Operation on Word Elements

	3.3 Variables
	3.3.1 Custom Variables
	3.3.2 Defining Variables
	3.3.3 Defining Arrays
	3.3.4 Defining Structures
	3.3.5 Defining IP Variables
	3.3.6 Defining Strings
	3.3.7 Defining Specific Unions
	3.3.8 Using Variables

	3.4 Binding Variables to Addresses
	3.4.1 Overview
	3.4.2 Variable Property
	3.4.3 Binding Basic Variables to Soft Elements
	3.4.4 Binding Array Variables to Soft Elements
	3.4.5 Binding Structure Variables to Soft Elements
	3.4.6 Binding Specific Union Variables to Soft Elements

	3.5 Using Variables as Array Subscripts
	3.5.1 Rules of Use
	3.5.2 Programming Example

	3.6 Pointer Type Variables
	3.6.1 Definition of Pointer Type Variables
	3.6.2 Obtaining Directing Addresses of Pointer Type Variables
	3.6.3 Operations on PT Pointer Addresses
	3.6.4 Indirect Addressing Operations on Pointer Type Variables
	3.6.5 Use Example

	3.7 System Variables
	3.7.1 Overview
	3.7.2 System Variable Categories
	3.7.3 _SYS_CAN for CAN Interface Running Information
	3.7.4 _SYS_COM for Serial Port Running Information
	3.7.5 _SYS_COM_SAVE for Serial Port Parameter Settings
	3.7.6 _SYS_ECAT_Master for Operation Status
	3.7.7 _SYS_ECAT_Slave for Operation Status
	3.7.8 _SYS_EncAxis for Encoder Axis Information
	3.7.9 _SYS_Ethernet for Ethernet Information
	3.7.10 _EthIPScanner for Status Information
	3.7.11 _SYS_INFO PLC for Operation Information
	3.7.12 _SYS_MC_Axis for Motion Control Axis Information
	3.7.13 _sGROUPAXIS_INFO for Status of Coordinate Axes within Axis Group
	3.7.14 _sMCGROUP_INFO for Axis Group Status
	3.7.15 _sGROUPPOS_INFO for Target Positions of Coordinate Axes within Axis Group

	3.8 Timer
	3.8.1 Overview
	3.8.2 Pulse Timer - TPR
	3.8.3 Connection Delay Timer - TONR
	3.8.4 Off Delay Timer - TOFR
	3.8.5 Accumulation Timer - TACR

	3.9 Graphical Block Instructions
	3.9.1 Instruction Composition
	3.9.2 Programming
	3.9.3 Labeling Function

	3.10 Subprograms
	3.10.1 Overview
	3.10.1.1 Subprogram Overview
	3.10.1.2 Subprogram Execution Mechanism

	3.10.2 General Subprogram Application
	3.10.2.1 Creating a General Subprogram
	3.10.2.2 Calling a General Subprogram

	3.10.3 Encrypted Subprogram Application
	3.10.3.1 Encrypting a General Subprogram
	3.10.3.2 Calling an Encrypted Subprogram

	3.10.4 Interrupt Subprogram Application
	3.10.4.1 External Interrupt Subprogram
	3.10.4.2 Timed Interrupt Subprogram
	3.10.4.3 Comparison Interrupt Subprogram

	3.11 Function Blocks and Functions (FB/FC)
	3.11.1 Function Blocks (FB)
	3.11.2 Functions (FC)
	3.11.3 Authorization Function Block
	3.11.4 FB Initial Values
	3.11.5 Encrypting FB or FC

	3.12 Folder

	4 Programming Languages
	4.1 Programming Language (LiteST)
	4.1.1 Overview
	4.1.2 Expressions
	4.1.3 Variables
	4.1.4 Constants
	4.1.5 FB, FC, Subprogram, and Interrupt
	4.1.6 Intelligent Input and Prompts
	4.1.6.1 Quick Input
	4.1.6.2 Mouse Hover Prompt

	4.1.7 Syntax Instructions
	4.1.7.1 Overview
	4.1.7.2 Assignment Instructions
	4.1.7.3 Function Block Calls
	4.1.7.4 IF
	4.1.7.5 CASE
	4.1.7.6 WHILE
	4.1.7.7 REPEAT
	4.1.7.8 FOR
	4.1.7.9 EXIT
	4.1.7.10 CONTINUE
	4.1.7.11 RETURN
	4.1.7.12 Comments

	4.1.8 PLC Instructions Supported by LiteST
	4.1.8.1 Basic Axis Control Instructions
	4.1.8.2 Cam and Gear Instructions
	4.1.8.3 Encoder Instructions
	4.1.8.4 Communication Instructions
	4.1.8.5 Timer Instructions
	4.1.8.6 Interrupt Instructions
	4.1.8.7 Operation Instructions
	4.1.8.8 Other Instructions
	4.1.8.9 Instruction Examples

	4.1.9 Exception Protection and Handling
	4.1.9.1 Division-by-zero Protection
	4.1.9.2 Array Out-of-bounds
	4.1.9.3 Infinite Loop
	4.1.9.4 Array Subscript Considerations

	4.2 Programming Language (LD)
	4.3 Programming Language (SFC)

	5 Extension Modules
	5.1 H5U Local Extension Modules
	5.1.1 Overview
	5.1.2 Configuring Hardware
	5.1.3 Configuring Extension Modules
	5.1.3.1 DI Modules
	5.1.3.2 DO Modules
	5.1.3.3 AI Modules
	5.1.3.4 AO Modules
	5.1.3.5 Temperature Detection Modules

	5.2 Easy Local Extension Modules and Extension Cards
	5.2.1 System Variables
	5.2.1.1 System Variables of Extension Modules
	5.2.1.2 System Variables of Extension Cards

	5.2.2 Local Extension Modules
	5.2.2.1 Overview
	5.2.2.2 Configuring Hardware
	5.2.2.3 Configuring Extension Modules

	5.2.3 Extension Cards
	5.2.3.1 Overview
	5.2.3.2 Configuring Extension Cards

	5.2.4 Application Examples

	5.3 GL20-RTU-ECT Local Extension Module
	5.3.1 Overview
	5.3.2 Configuring Extension Modules

	5.4 GR10-EC-6SW Branch Module
	5.4.1 Overview
	5.4.2 Adding the Branch Module and Its Slave
	5.4.3 Deleting the Branch Module and Its Slave

	5.5 GS20-ECT-8L Module
	5.5.1 Overview
	5.5.2 Configuring the GS20-ECT-8L Module
	5.5.3 Fault Diagnosis
	5.5.3.1 EtherCAT Diagnosis
	5.5.3.2 IO-Link Diagnosis

	5.5.4 Object List
	5.5.4.1 Process Data
	5.5.4.2 EtherCAT Object Dictionary Data (CoE Object)
	5.5.4.3 Configuration Data for Process Data Communication
	5.5.4.4 IO-Link Slave Configuration Data

	5.6 Basic Operations of Local Modules
	5.6.1 Scanning Local Modules Automatically (Easy)
	5.6.2 Disabling Local Modules
	5.6.3 Enabling Local Modules

	6 Serial Communication
	6.1 Overview
	6.2 Serial Communication Network
	6.3 Free Protocol Configuration
	6.3.1 Free Protocol Configuration
	6.3.2 Free Protocol Cancellation (SerialSR Instruction)

	6.4 Master Configuration
	6.4.1 Modbus-RTU or Modbus-ASCII Master
	6.4.2 Modbus Master Configuration Table
	6.4.3 Modbus-RTU Slave Disable

	6.5 Slave Configuration
	6.5.1 Modbus-RTU or Modbus-ASCII Slave
	6.5.2 Parameters and Addresses

	6.6 Example of Modbus-RTU Communication Application
	6.7 Modifying Serial Port Parameters
	6.7.1 Modifying COM Port Parameters
	6.7.2 Modifying Slave Address Parameters

	7 Ethernet Communication
	7.1 Overview
	7.2 Hardware Ports
	7.3 IP Address Settings
	7.4 Master Configuration
	7.4.1 Modbus-TCP Master
	7.4.2 Modbus Master Configuration Table
	7.4.3 Modbus-TCP Slave Disable

	7.5 Slave Configuration References
	7.5.1 Modbus-TCP Slave
	7.5.2 Parameters and Addresses

	7.6 Example of Modbus-TCP Communication Application

	8 CAN Communication
	8.1 Overview
	8.2 Hardware Ports
	8.3 CAN Network
	8.3.1 CAN Communication Networking
	8.3.2 Relationship Between CAN Communication Distance and Baud Rate
	8.3.3 CAN Port System Variables

	8.4 CANlink Communication
	8.4.1 CANlink3.0 Communication Principles
	8.4.2 CANlink Configuration
	8.4.3 AC Drive Communication Example
	8.4.4 CANlink Indicator
	8.4.5 CANlink Communication Troubleshooting

	8.5 CANopen Communication
	8.5.1 CANopen Communication Protocol
	8.5.2 CANopen Axis Control Instruction List
	8.5.3 CANopen Terminology
	8.5.4 CANopen Indicator
	8.5.5 CANopen Configuration
	8.5.5.1 Master Configuration
	8.5.5.2 Slave Configuration
	8.5.5.3 PDO Enable
	8.5.5.4 PDO Mapping Edit
	8.5.5.5 PDO Property Settings
	8.5.5.6 Service Data Object (SDO)
	8.5.5.7 Online Commissioning
	8.5.5.8 I/O Mapping
	8.5.5.9 Device Information

	8.5.6 CANopen Communication Troubleshooting
	8.5.6.1 General Troubleshooting Steps
	8.5.6.2 Fault Code List

	9 EtherCAT Communication
	9.1 Overview
	9.2 Master Configuration
	9.2.1 Importing Device Description (XML)
	9.2.2 Scanning Devices
	9.2.3 Master Configuration
	9.2.4 Start/Stop, Disable, and Enable
	9.2.5 Master Status Monitoring
	9.2.6 Summary of System Variables

	9.3 Slave Configuration
	9.3.1 General Settings
	9.3.2 Process Data
	9.3.3 Startup Parameters
	9.3.4 I/O Function Mapping
	9.3.5 Start/Stop, Disable, and Enable
	9.3.6 Disabling Slaves Using Instructions
	9.3.7 System Variables

	9.4 Faults and Diagnosis
	9.4.1 Learning Faults
	9.4.2 Fault Codes

	10 EtherNet/IP Communication
	10.1 Overview
	10.2 Technical Specifications
	10.2.1 EtherNet/IP Transmission Specifications
	10.2.2 EtherNet/IP Communication Specifications
	10.2.3 Quick Reference Table of EtherNet/IP Solutions
	10.2.4 EtherNet/IP Solution Selection Example

	10.3 Class 1 Communication
	10.3.1 Master Configuration
	10.3.1.1 EtherNet General Settings
	10.3.1.2 EtherNet/IP Device IP Settings
	10.3.1.3 Adding EtherNet/IP Slaves
	10.3.1.4 Exporting EDS Files

	10.3.2 Slave Configuration
	10.3.2.1 General Settings
	10.3.2.2 Connection Settings
	10.3.2.3 Configuring I/O Variable Mapping

	10.3.3 EtherNet/IP Master Application Example
	10.3.4 EtherNet/IP Slave Application Example
	10.3.5 Tag Communication
	10.3.5.1 Configuring Producer Tag Data
	10.3.5.2 EtherNet/IP Consumer Tag Connection
	10.3.5.3 Setting Tag Data Set

	10.3.6 Tag Communication Example

	10.4 Service Message Tag Communication
	10.4.1 Configuring Service Message Tags on Server
	10.4.2 Configuring Service Message Tags on Client
	10.4.3 Application Example

	11 PROFINET Communication
	11.1 Overview
	11.2 Configuration Process
	11.2.1 TIA Portal Configuration
	11.2.2 AutoShop Configuration

	11.3 Enable and Disable

	12 Motion Control
	12.1 Introduction to Motion Control Axes
	12.1.1 Overview
	12.1.2 PLCOpen State Machine
	12.1.3 Axis Units
	12.1.4 Axis Configuration Parameters
	12.1.5 Axis System Variables
	12.1.6 List of Axis Control Instructions

	12.2 Setting Motion Control Axes
	12.2.1 Creating a Project
	12.2.2 Creating Project Configuration
	12.2.3 Setting Axis Parameters
	12.2.3.1 Bus Servo Axis
	12.2.3.2 Local Pulse Axis

	12.2.4 Writing a Program
	12.2.5 Downloading a Project
	12.2.6 Basic Motions
	12.2.6.1 Pre-conditions
	12.2.6.2 PLC Program Control
	12.2.6.3 Online Commissioning

	12.3 Configuring Motion Control Axes
	12.3.1 Bus Servo Axis versus Local Pulse Axis
	12.3.2 Basic Settings
	12.3.3 Mode/Parameter Settings
	12.3.3.1 Configuration Interface
	12.3.3.2 Encoder Mode
	12.3.3.3 Mode Setting
	12.3.3.4 Software Limits
	12.3.3.5 Deceleration upon Axis Fault
	12.3.3.6 Following Error
	12.3.3.7 Axis Speed Setting
	12.3.3.8 Torque Setting
	12.3.3.9 Probe Setting
	12.3.3.10 Output Setting
	12.3.3.11 Not Entering ErrorStop State upon a Limit Activation
	12.3.3.12 Hardware Limit Logic

	12.3.4 Homing

	12.4 Online Monitoring
	12.5 Axis Control Functions
	12.5.1 Overview
	12.5.2 Online Commissioning
	12.5.3 Instruction Control Rules
	12.5.4 Limit Handling
	12.5.5 Positioning Curve

	12.6 Dragging Motion Control Axes
	12.7 Modifying Axis Configuration Parameters Using Instructions
	12.8 Fault Categories

	13 High-speed Counter
	13.1 Introduction to High-speed Counter Axes
	13.2 Creating Counter Axes
	13.3 Counter Axis User Unit and Conversion
	13.4 Setting Working Modes
	13.4.1 Linear Mode
	13.4.2 Rotary Mode

	13.5 Setting Counter Parameters
	13.5.1 Overview
	13.5.2 Count Modes
	13.5.2.1 Overview
	13.5.2.2 Phase A/B Mode
	13.5.2.3 CW or CCW Mode
	13.5.2.4 Pulse+Direction Mode
	13.5.2.5 Single-phase Count

	13.5.3 Probe Terminal Settings
	13.5.4 Preset Terminal Settings
	13.5.5 Comparison Output Terminal Settings

	13.6 Counter Axis Instruction Application (H5U)
	13.6.1 Overview
	13.6.2 Axis Position Count and Speed Measurement Instructions
	13.6.3 Axis Position Preset Instructions
	13.6.4 Probe Instructions
	13.6.5 Comparison Instructions
	13.6.6 High-speed Hardware Comparison Output
	13.6.7 Comparison Interruption

	13.7 Counter Axis Instruction Application (Easy)
	13.7.1 Overview
	13.7.2 Axis Position Count and Speed Measurement Instructions
	13.7.3 Axis Position Preset Instructions
	13.7.4 Probe Instructions
	13.7.5 Comparison Instructions
	13.7.6 High-speed Hardware Comparison Output
	13.7.7 Comparison Interruption
	13.7.8 Setting the Gear Ratio of the Axis
	13.7.9 Setting the Linear/Rotary Mode of the Axis

	14 Interpolation Function
	14.1 Introduction to the Interpolation Function
	14.1.1 Overview
	14.1.2 List of Axis Group Control Instructions
	14.1.3 Configuration Interface

	14.2 Interpolation Operations
	14.2.1 Overview
	14.2.2 Creating an Axis Group
	14.2.3 Enabling an Axis Group
	14.2.4 Linear Interpolation
	14.2.5 Circular Interpolation
	14.2.6 Axis Group Stop
	14.2.7 Axis Group Pause
	14.2.8 Single-axis Motion
	14.2.9 Setting the Current Position
	14.2.10 Reading the Current Status
	14.2.11 Resetting Axis Group Faults
	14.2.12 Homing

	14.3 Buffer and Transition
	14.3.1 Overview
	14.3.2 Interrupt+No Transition
	14.3.3 Buffer+No Transition
	14.3.4 Previous Velocity+No Transition
	14.3.5 Additional Angle Transition

	14.4 Methods of Handling Single-Axis Configuration Parameters in Interpolation
	14.5 System Variables
	14.5.1 _sGROUPAXIS_INFO for Status of Coordinate Axes within Axis Group
	14.5.2 _sMCGROUP_INFO for Axis Group Status
	14.5.3 _sGROUPPOS_INFO for Target Positions of Coordinate Axes within Axis Group

	14.6 Fault Codes

	15 Bus Encoder Axes
	15.1 Introduction to Bus Encoder Axes
	15.2 Software Configuration
	15.2.1 Basic Settings
	15.2.2 Unit Conversion
	15.2.3 Mode/Parameter Settings
	15.2.3.1 Configuration Interface
	15.2.3.2 Selection of Linear or Rotary Mode
	15.2.3.3 Counter Mode Selection
	15.2.3.4 Frequency Sampling Period
	15.2.3.5 Input Filter Time
	15.2.3.6 Input Terminal Function Selection
	15.2.3.7 Output Terminal Function Selection

	15.3 System Variables
	15.4 Function Demonstration
	15.4.1 Establishing the Configuration
	15.4.2 Counter Enabling
	15.4.3 Counter Presetting
	15.4.4 Probe Function
	15.4.5 One-dimensional Comparison Output
	15.4.6 Two-dimensional Comparison Output
	15.4.7 DO Terminal Control
	15.4.8 Obtaining Axis Status

	16 Electronic Cam
	16.1 Introduction to Electronic Cam
	16.2 Software Configuration
	16.2.1 Overview
	16.2.2 Cam Node Settings
	16.2.3 Cam Curve Settings
	16.2.4 Import and Export
	16.2.5 Uploading Cam Tables
	16.2.6 Calling System Variables and Instructions

	16.3 System Variables
	16.3.1 Cam Nodes
	16.3.2 Cam Tables
	16.3.3 Cam Contact Nodes

	16.4 State Machines
	16.5 Electronic Cam Operations
	16.5.1 Gear Operation
	16.5.2 Cam Operation
	16.5.3 Cam Tables
	16.5.3.1 Introduction to Cam Tables
	16.5.3.2 Cam Table Specifications
	16.5.3.3 Cam Table Data Flow
	16.5.3.4 Creating Cam Tables
	16.5.3.5 Switching Cam Tables
	16.5.3.6 Modifying Cam Table Data
	16.5.3.7 Saving Cam Tables

	16.5.4 Master Axis Phase Compensation
	16.5.5 Motion Superimposition
	16.5.6 Methods of Handling Single-Axis Configuration Parameters in Cam or Gear

	17 Offline Commissioning
	17.1 Overview
	17.2 Starting Offline Commissioning
	17.3 Motion Control Axes in Offline Commissioning
	17.4 Simulation Commissioning with InoTouchPad
	17.4.1 Overview
	17.4.2 PLC Configuration
	17.4.3 HMI Configuration
	17.4.4 Starting Commissioning

	18 Memory Management
	18.1 Overview
	18.2 Memory Management of Customized Variable Tables
	18.2.1 Expanding and Collapsing Complex Type Variables
	18.2.2 Monitoring Variables
	18.2.3 Reading and Writing Memory Data
	18.2.4 Synchronizing and Clearing Data
	18.2.5 Saving and Loading Data
	18.2.6 Editing Initial Values and Comments of Variables
	18.2.7 Switching and Displaying Number Systems

	18.3 Memory Management of Soft Elements
	18.3.1 Operation Interface
	18.3.2 Data Operation
	18.3.3 Bit Comments
	18.3.4 Rules of Editing Data Types

	18.4 Function Demonstration

	19 Fault Diagnosis
	19.1 Diagnosis Through the Panel
	19.1.1 Indicators
	19.1.2 MFK Key
	19.1.2.1 Overview
	19.1.2.2 Restoring the Factory Default IP Address
	19.1.2.3 Writing User Programs Through SD Cards
	19.1.2.4 LED Display of the CPU Module

	19.2 Diagnosis Through Software
	19.2.1 Obtaining Basic PLC Information
	19.2.2 Viewing Operation Logs

	19.3 Fault Codes

	20 Appendix
	20.1 Modbus Protocol
	20.1.1 Modbus Message Description
	20.1.2 Modbus-RTU Message Frame
	20.1.3 Modbus-ASCII Message Frame
	20.1.4 Modbus-TCP Message Frame
	20.1.5 Function Code Definitions
	20.1.5.1 Modbus Data Model
	20.1.5.2 Function Code List
	20.1.5.3 Function Code Explanation

	20.1.6 Exception Code List

	20.2 Firmware Programming and Upgrade
	20.2.1 Firmware Programming
	20.2.2 Firmware Upgrade
	20.2.2.1 Firmware Upgrade Through Ethernet
	20.2.2.2 Firmware Upgrade Through SD Cards

	20.3 Applying the Function of Download File Generation
	20.3.1 Generating Down Files
	20.3.1.1 Overview
	20.3.1.2 Generating Down Files
	20.3.1.3 Upgrading Down Files Through SD Cards
	20.3.1.4 Downloading Down Files Through AutoShop
	20.3.1.5 Compatibility

	20.3.2 Generating Updown Files
	20.3.2.1 Overview
	20.3.2.2 Generating Updown Files
	20.3.2.3 Opening Updown Files
	20.3.2.4 Uploading and Downloading Updown Files Through HMI
	20.3.2.5 Uploading and Downloading Updown Files Through AutoShop
	20.3.2.6 Uploading and Downloading Updown Files Through SD Cards

	20.4 Applying Customized Variables in Communication
	20.4.1 Overview
	20.4.2 Example Project Requirements
	20.4.3 PLC Programming
	20.4.3.1 Accessing Customized Variables Through HMI Tag Communication
	20.4.3.2 Accessing Customized Variables Through Mapping Address

	20.4.4 HMI Configuration
	20.4.4.1 Accessing Customized Variables Through HMI Tag Communication
	20.4.4.2 Accessing Customized Variables Through Mapping Address

	20.4.5 Example Running Results

