
PositionServo (MVCD)
Users Manual

Copyright ©2005 by Lenze AC Tech Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any
form without written permission from Lenze AC Tech Corporation. The information and
technical data in this manual are subject to change without notice. Lenze AC Tech
makes no warranty of any kind with respect to this material, including, but not limited
to, the implied warranties of its merchantability and fitness for a given purpose. Lenze
AC Tech assumes no responsibility for any errors that may appear in this manual and
makes no commitment to update or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks
or trademarks of Lenze AG in the United States and other countries.

This document printed in the United States of America.

S94P01G 1

Contents
1 Introduction. 5

1.1 About These Instructions .6

1.2 Scope of Supply. .6

1.3 Legal Regulations .6

1.4 Part Number Designation. .7

2 Technical Data . 9
2.1 Electrical Characteristics .9

2.2 Power Ratings .10

2.3 Fuse Recommendations .10

2.4 Digital I/O Ratings .11

2.5 Environment. .11

2.6 Operating Modes .11

2.7 Connections and I/O .11

2.8 PositionServo Dimensions .12

2.9 Clearance for Cooling Air Circulation. .13

3 Installation . 14
3.1 Wiring. .15

3.2 Shielding and Grounding .15
3.2.1	 General	Guidelines	. .15
3.2.2	 EMI	Protection .16
3.2.3	 Enclosure. .16

3.3 Line Filtering .17

3.4 Heat Sinking. .17

3.5 Line (Mains) Fusing .17

4 Interface . 18
4.1 External Connectors .18

4.1.1	 P1	&	P7	-	Input	Power	and	Output	Power	Connections	18
4.1.2	 P2	-	Ethernet	Communications	Port	 .19
4.1.3	 P3	-	Controller	Interface	 .20
4.1.4	 P4	-	Motor	Feedback	/	Second	Loop	Encoder	Input	21
4.1.5	 P5	-	24	VDC	Back-up	Power	Input	 .22
4.1.6	 P6	-	Braking	Resistor	and	DC	Bus	 .22
4.1.7	 Connector	and	Wiring	Notes .23
4.1.8	 P11	-	Resolver	Interface	Module	(option)	. .24
4.1.9	 P12	-	Second	Encoder	Interface	Module	(option).25

4.2 Digital I/O Details .26
4.2.1	 Step	&	Direction	/	Master	Encoder	Inputs	(P3,	pins	1-4)	26
4.2.2	 Buffered	Encoder	Output	(P3,	pins	7-12)	. .27
4.2.3	 Digital	Outputs. .27
4.2.4	 Digital	Inputs .28

4.3 Analog I/O Details .29
4.3.1	 Analog	Reference	Input	 .29
4.3.2	 Analog	Output .30

4.4 Communication Interfaces .30
4.4.1	 Ethernet	Interface	(standard)	 .30
4.4.2	 RS485	Interface	(option) .30
4.4.3	 RS485	Communication	Setup .31
4.4.4	 MODBUS	RTU	Support .31
4.4.5	 CAN	Interface	(option)	 .31

4.5 Motor Selection .31
4.5.1	 Motor	Connection	 .31
4.5.2	 Motor	Over-temperature	Protection. .32
4.5.3	 Motor	Setup. .32

S94P01G2

Contents
4.6 Using a Custom Motor .33

4.6.1	 Creating	Custom	Motor	Parameters	. .33
4.6.2	 Autophasing	 .34
4.6.3	 Custom	Motor	Data	Entry	 .34

5 Parameters. 39
5.1 Parameter Storage and EPM Operation .39

5.1.1	 Parameter	Storage	 .39
5.1.2	 EPM	Operation	 .39
5.1.3	 EPM	Fault	 .39

5.2 Motor Group. .40

5.3 Parameters .40
5.3.1	 Drive	Operating	Modes. .40
5.3.2	 Drive	PWM	frequency	. .41
5.3.3	 Current	Limit	 .41
5.3.4	 Peak	Current	Limit	(8	kHz	and	16	kHz) .41
5.3.5	 Analog	Input	Scale	(current	scale)	. .41
5.3.6	 Analog	Input	Scale	(velocity	scale). .41
5.3.7	 ACCEL/DECEL	Limits	(velocity	mode	only)	42
5.3.8	 Reference	 .42
5.3.9	 Step	Input	Type	(position	mode	only) .42
5.3.10	 Fault	Reset	Option. .42
5.3.11	 Motor	Temperature	Sensor	. .42
5.3.12	 Motor	PTC	Cut-off	Resistance. .42
5.3.13	 Second	Encoder	. .42
5.3.14	 Regeneration	Duty	Cycle	 .43
5.3.15	 Encoder	Repeat	Source	 .44
5.3.16	 System	to	Master	Ratio	. .44
5.3.17	 Second	to	Prime	Encoder	Ratio	 .44
5.3.18	 Autoboot	 .44
5.3.19	 Group	ID	. .44
5.3.20	 Enable	Switch	Function. .44
5.3.21	 User	Units	. .44
5.3.22	 Resolver	Track. .44
5.3.23	 Current	Limit	Max	Overwrite	. .45

5.4 Communication .45
5.4.1	 Ethernet	Interface	 .45
5.4.2	 RS-485	Configuration	 .48
5.4.3	 Modbus	Baud	Rate .48
5.4.4	 Modbus	Reply	Delay .48

5.5 Analog I/O .48
5.5.1	 Analog	Output .48
5.5.2	 Analog	Output	Current	Scale	(Volt	/	amps).49
5.5.3	 Analog	Output	Current	Scale	(mV/RPM) .49
5.5.4	 Analog	Input	Dead	Band. .49
5.5.5	 Analog	Input	Offset	Parameter	. .49
5.5.6	 Adjust	Analog	Input	Zero	Offset	. .49

5.6 Digital I/O .49
5.6.1	 Digital	Input	De-bounce	Time .49
5.6.2	 Hard	Limit	Switch	Action .50

5.7 Velocity Limits .50
5.7.1	 Zero	Speed	. .50
5.7.2	 Speed	Window	 .50
5.7.3	 At	Speed	. .50

5.8 Position Limits .50
5.8.1	 Position	Error .50
5.8.2	 Max	Error	Time	 .50
5.8.3	 Second	Encoder	Position	Error .50
5.8.4	 Second	Encoder	Max	Error	Time	 .50

S94P01G 3

Contents
5.9 Compensation .51

5.9.1	 Velocity	P-gain	(proportional)	. .51
5.9.2	 Velocity	I-gain	(integral)	 .51
5.9.3	 Position	P-gain	(proportional)	. .51
5.9.4	 Position	I-gain	(integral)	 .51
5.9.5	 Position	D-gain	(differential)	 .51
5.9.6	 Position	I-limit	 .51
5.9.7	 Gain	Scaling	Window	 .52

5.10 Tools .52
5.10.1	 Oscilloscope	Tool	. .52
5.10.2	 Run	Panels	 .52

5.11 Faults .52

6 Operation . 53
6.1 Minimum Connections .53

6.2 Configuration of the PositionServo .53

6.3 Position Mode Operation (gearing) .55

6.4 Dual-loop Feedback. .55

6.5 Enabling the PositionServo .56

6.6 Drive Tuning. .56
6.6.1	 Tuning	the	Drive	in	Velocity	Mode. .57
6.6.2	 Tuning	the	Drive	in	Position	Mode. .62

7 Quick Start Reference . 68
7.1 Quick Start - External Torque Mode .68

7.2 Quick Start - External Velocity Mode .69

7.3 Quick Start - External Positioning Mode .71

8 Diagnostics. 73
8.1 Display .73

8.2 LEDs .74

8.3 Faults .74
8.3.1	 Fault	Codes .74
8.3.2	 Fault	Event. .76
8.3.3	 Fault	Reset. .76

8.4 Troubleshooting .76

S94P01G4

Safety Information
All safety information given in these Operating Instructions has a similar layout:

Signal Word! (Characteristics the severity of the danger)

Note (describes the danger and informs on how to proceed)

Pictographs used in these instructions:

Icon Signal Words

Warning of
hazardous
electrical
voltage

DANGER! Warns of impending danger.
Consequences if disregarded:
Death or severe injuries.

Warning of
a general
danger

WARNING! Warns of potential, very hazardous situations.
Consequences if disregarded:
Death or severe injuries.

Warning of
damage to
equipment

STOP! Warns of potential damage to material and
equipment.
Consequences if disregarded:
Damage to the controller/drive or its environment.

Information NOTE Designates a general, useful note.
If you observe it, handling the controller/drive
system is made easier.

S94P01G 5

Introduction

1 Introduction
The PositionServo line of advanced general purpose servo drives utilizes the latest
technology in power semiconductors and packaging. The PositionServo uses Field
Oriented control to enable high quality motion.

The PositionServo is available in four mains (input power) configurations:

1. 400/480V (nominal) three phase input. An external input mains (line) filter is
available. Actual voltage can range from 320 - 528 VAC.

2. 120/240V (nominal) Single Phase input with integrated input mains (line)
filter, Actual input voltage can range from 80VAC to 264VAC. The maximum
output voltage is approximately equal to the input voltage.

3. 120V or 240V (nominal) Single or Three Phase input. Actual input voltage
can range from 80VAC to 264VAC. The maximum output voltage is
approximately equal to the input voltage. An external input mains (line) filter
is available.

4. 120V or 240V (nominal) single phase input. When wired for Doubler mode
(L1-N), the input is for 120V nominal only and can range from 45VAC to 132
VAC and the maximum output voltage is double the input voltage. When
wired to terminals L1-L2/N, the input can range from 80 VAC to 264 VAC and
the maximum output voltage is equal to the input voltage.

The PositionServo drive can operate in one of three mode settings, torque (current),
velocity, or position (step & direction or master encoder). The drive’s command or
reference signal can come from one of three sources. The first is an external reference.
An external reference can be an analog input signal, a step and direction input or an
input from a master encoder. The second reference is an internal reference. An internal
reference is when the commanded move is derived from the drive’s user program.
The third reference is when the commanded move is done via a host device over a
communications network. This Host device can be an external motion controller, PLC,
HMI or PC. The communication network can be RS485 (Point-to-Point or Modbus RTU),
Ethernet (using MotionView DLL’s), Modbus over TCP/IP, or CANopen (DS301).

Depending on the primary feedback, there are two types of drives: the Model 940
PositionServo encoder-based drive which accepts an incremental encoder with Hall
channel inputs and the Model 941 PositionServo resolver-based drive which accepts
resolver inputs. The feedback signal is brought back to the P4 connector on the drive.
This connector will be a 15 pin D-sub for the encoder version and a 9 pin D-sub for the
resolver version. A second encoder can be used in position and velocity modes.

The MotionView software is the setup and management tool for PositionServo drives.
All parameters can be set and monitored via this user-friendly tool. It has a real-time
oscilloscope tool for analysis and optimum tuning. The users program written with
SimpleMotion Programming Language (SML) can be utilized to command motion and
handle the drive’s inputs/outputs (I/O). The programming language is designed to be
very intuitive and easy to implement. For programming details, refer to the PositionServo
Programming Manual. All PositionServo related manuals can be downloaded from the
Technical Library on the AC Tech website (http://www.lenze-actech.com).

On each PositionServo drive, there is an Electronic Programming Module (EPM), which
stores all drive setup and tuning information. This module can be removed from the drive
and reinstalled into another drive, making the field replacement of the drive extremely
easy. This also makes it easy to duplicate the settings for several drives.

The PositionServo drive supports a variety of communication protocols, including Point-
to-Point (PPP), Modbus RTU over RS485, Ethernet TCP/IP, Modbus over TCP/IP and
CANopen (DS301).

S94P01G6

Introduction

1.1 About These Instructions
These Operating Instructions are provided to assist the user in connecting and
commissioning the PositionServo drive with model number ending in “EX” or “RX”. Read
this manual in its entirety and observe all safety instructions contained in this document.

All persons working on or with the controller must have the Operating Instructions
available and must observe the information and notes relevant for their work.

C A B D E F

Type:
E94P120Y2NEX
ID-No: 13014745

INPUT: 1(3)/PE
120/240 V
24.0 (13.9) A
50-60 HZ

OUTPUT: 3/PE
0 - 230 V
12.0 A

For detailed information
refer to instruction
Manual: S94P01

SN 13014745012345678
E94P120Y2NEX0XX## ##

Made in USA

Model 940 13014745012345678

A B C D E F

Certifications Type Input Ratings Output
Ratings

Hardware
Version

Software
Version

1.2 Scope of Supply
Scope of Supply Important

• 1 Model PositionServo type E94P
or E94R.

• 1 Users Manual (English)
• 1 MotionView CD ROM including:

- configuration software
- documentation (Adobe Acrobat)

After reception of the delivery, check immediately
whether the scope of supply matches the accompanying
papers. Lenze- AC Tech does not accept any liability for
deficiencies claimed subsequently.
Claim
• visible transport damage immediately to the

forwarder
• visible deficiencies / incompleteness immediately to

your Lenze representative.

1.3 Legal Regulations
Identification Nameplate CE Identification Manufacturer

Lenze controllers are
unambiguously designated
by the contents of the
nameplate

In compliance with
the EC Low-Voltage
Directive

AC Technology Corp.
member of the Lenze Group
630 Douglas Street
Uxbridge, MA 01569 USA

Application
as directed

E94P or E94R servo controller
• must only be operated under the conditions prescribed in these Instructions.
• are components for:

- closed loop control of variable speed/torque applications with PM synchronous motors.
- installation in a machine.
- assembly with other components to form a machine.

• are electric units for installation in control cabinets or similarly enclosed housing.
• comply with the requirements of the Low-Voltage Directive.
• are not machines for the purpose of the Machinery Directive.

• are not to be used as domestic appliances, but only for industrial purposes.
Drive systems with E94P or E94R servo inverters
• comply with the EMC Directive if they are installed according to the guidelines of CE-

typical drive systems.
• can be used for:

- for operation on public and non-public mains
- for operation in industrial premises and residential areas.

• The user is responsible for the compliance of his application with the EC directives.
Any other use shall be deemed as inappropriate!

S94P01G 7

Introduction

Liability • The information, data, and notes in these instructions met the state of the art at the time
of publication. Claims on modifications referring to controllers that have already been
supplied cannot be derived from the information, illustrations, and descriptions.

• The specifications, processes and circuitry described in these instructions are for guidance
only and must be adapted to your own specific application. Lenze does not take
responsibility for the suitability of the process and circuit proposals.

• The specifications in these Instructions describe the product features without guaranteeing
them.

• Lenze does not accept any liability for damage and operating interference caused by:
- Disregarding the operating instructions
- Unauthorized modifications to the controller
- Operating errors
- Improper working on and with the controller

Warranty • Warranty conditions: see Sales and Delivery Conditions of Lenze Drive Systems GmbH.
• Warranty claims must be made to Lenze immediately after detecting the deficiency or fault.
• The warranty is void in all cases where liability claims cannot be made.

Disposal Material Recycle Dispose

Metal • -

Plastic • -

Assembled PCB’s - •

1.4 Part Number Designation
The table herein describes the part number designation for the PositionServo drive. The
available filter and communication options are detailed in separate tables.

E94 P 020 S 1 N E X
Electrical Products in the 94 Series

P = PositionServo Model 940 with Encoder Feedback
R = PositionServo Model 941 with Resolver Feedback

Drive Rating in Amps:
020 = 2 Amps 090 = 9 Amps
040 = 4 Amps 100 = 10 Amps
050 = 5 Amps 120 = 12 Amps
060 = 6 Amps 180 = 18 Amps
080 = 8 Amps

Input Phase:
S = Single Phase Input only
Y = Single or Three Phase Input
T = Three Phase Input only

Input Voltage:
1 = 120 VAC Doubler (120V, 1~ in/ 240V, 3~ out)
2 = 200/240 VAC
4 = 400/480 VAC

Line Filter
N = No Line Filter
F = Integrated Line Filter

Secondary Feedback
E = Incremental Encoder
R = Standard Resolver

EN954-1 Safety Circuit
X = No EN954 Safety Circuit

S94P01G8

Introduction
Filter Part Number Designation

E94Z F 4 T 4 A1
Electrical Option in the 94 Series

F = EMC Filter
Filter Current Rating in Amps:

04 = 4.4 Amps 12 = 12 Amps
07 = 6.9 Amps 15 = 15 Amps
10 = 10 Amps 24 = 24 Amps

Input Phase:
S = Single Phase
T = Three Phase

Max Voltage:
2 = 240 VAC
4 = 400/480 VAC

Degree of Filtering/Variation
A1 = Industrial/1st Variation
A2 = Industrial/2nd Variation

Servo Option Part Number Designation

E94Z A CAN 1
Electrical Option in the 94 Series

A = COMM, Feedback or Breakout Module
Module Type:

CAN = CANopen COMM Module ENC = 2nd Encoder Feedback Module
RS4 = RS485 COMM Module RSV = Resolver Feedback Module
ETH = Ethernet COMM Module HBK = Motor Brake Terminal Module

TBO = Terminal Block I/O Module
SCA = Panel Saver I/O Module

Variations
1 = 1st Variation
2 = 2nd Variation
3 = 3rd Variation

S94P01G 9

Technical Data

2 Technical Data

2.1 Electrical Characteristics
Single-Phase Models

Type (1) Mains Voltage (2)

1~ Mains
Current

(doubler)

1~ Mains
Current
(Std.)

Rated
Output

Current (5)

Peak
Output

Current (6)

E94_020S1N_X
120V(3) or 240V(4) 9.7 5.0 2.0 6

E94_040S1N_X 15 8.6 4.0 12

E94_020S2F_X

120 / 240V(4)

(80 V -0%...264 V +0%)

-- 5.0 2.0 6

E94_040S2F_X -- 8.6 4.0 12

E94_080S2F_X -- 15.0 8.0 24

E94_100S2F_X -- 18.8 10.0 30

Single/Three-Phase Models

Type (1) Mains Voltage (2)

1~
Mains

Current

3~
Mains

Current

Rated
Output

Current (5)

Peak
Output

Current (6)

E94_020Y2N_X

120 / 240V(4)

1~ or 3~
(80 V -0%...264 V +0%)

5.0 3.0 2.0 6

E94_040Y2N_X 8.6 5.0 4.0 12

E94_080Y2N_X 15.0 8.7 8.0 24

E94_100Y2N_X 18.8 10.9 10.0 30

E94_120Y2~_X 24.0 13.9 12.0 36

E94_180T2~_X 240V 3~
(180 V -0%...264 V +0%)

-- 19.6 18.0 54

E94_020T4N_X

400 / 480V
3~

(320 V -0%...528 V +0%)

-- 2.7 2.0 6

E94_040T4N_X -- 5.5 4.0 12

E94_050T4N_X -- 6.9 5.0 15

E94_060T4~_X -- 7.9 6.0 18

E94_090T4~_X -- 12.0 9.0 27

(1) The first “_” equals “P” for the 940 encoder based drive or “R” for the 941 resolver based drive.
 When the 10th digit is marked by “~”, “N” = No line filter or “F” = Integrated line filter
 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver

(must have E94R drive).
(2) Mains voltage for operation on 50/60 Hz AC supplies (48 Hz -0% … 62Hz +0%).
(3) Connection of 120VAC (45 V … 132 V) to input power terminals L1 and N on these models doubles the voltage

on motor output terminals U-V-W for use with 230VAC motors.
(4)

 Connection of 240VAC or 120VAC to input power terminals L1 and L2 on these models delivers an equal voltage
as maximum to motor output terminals U-V-W allowing operation with either 120VAC or 230VAC motors.

(5)
 Drive rated at 8kHz Carrier Frequency. Derate Continuous current by 17% at 16kHz.

(6) Peak RMS current allowed for up to 2 seconds. Peak current rated at 8kHz. Derate by 17% at 16kHz.

Applies to all models:
Acceleration Time Range (Zero to Max Speed) 0.1 … 5x106 RPM/sec
Deceleration Time Range (Max Speed to Zero) 0.1 … 5x106 RPM/sec
Speed Regulation (typical) ± 1 RPM
Input Impedance (AIN+ to COM and AIN+ to AIN-) 47 kΩ
Power Device Carrier Frequency (sinusoidal commutation) 8,16 kHz
Encoder Power Supply (max) +5 VDC @ 300 mA
Maximum Encoder Feedback Frequency 2.1 MHz (per channel)
Maximum Output Frequency (to motor) 400Hz
Resolver Carrier Frequency 4.5 - 5.5kHz (5kHz nominal)
Resolver Turns Ratio between Reference and SIN/COS signal 2:1

S94P01G10

Technical Data

2.2 Power Ratings

Type(1)

Output kVA at
Rated Output

Current (8kHz)(2)

Leakage Current

Power Loss at
Rated Output

Current
(8kHz)

Power Loss at
Rated Output

Current
(16 kHz)(3)

Units kVA mA Watts Watts

E94_020S1N_X 0.8

Typically >3.5 mA.
Consult factory for

applications requiring
<3.5 mA.

19 21

E94_040S1N_X 1.7 29 30

E94_020S2F_X 0.8 19 21

E94_040S2F_X 1.7 29 30

E94_080S2F_X 3.3 61 63

E94_100S2F_X 4.2 80 85

E94_020Y2N_X 0.8 19 21

E94_040Y2N_X 1.7 29 30

E94_080Y2N_X 3.3 61 63

E94_120Y2~_X 5.0 114 129

E94_180T2~_X 7.5 171 195

E94_020T4N_X 1.7 31 41

E94_040T4N_X 3.3 50 73

E94_050T4N_X 4.2 70 90

E94_060T4~_X 5.0 93 122

E94_090T4~_X 7.5 138 182

2.3 Fuse Recommendations

Type(1)

AC Line
Input Fuse

(1ø/3ø)

Miniature
Circuit Breaker(6)

(1ø/3ø)

AC Line Input
Fuse (4) or
Breaker (5)

(N. America)

DC Bus Input
Fuse(7)

Amp Ratings
E94_020S1N_X M20/M10 C20/C10 20/10 10

E94_040S1N_X M32/M20 C32/C20 30/20 20

E94_020S2F_X M20 C20 20 15

E94_040S2F_X M20 C20 20 20

E94_080S2F_X M32 C32 32 40

E94_100S2F_X M40 C40 40 45

E94_020Y2N_X M20/M16 C20/C16 20/15 15

E94_040Y2N_X M20/M16 C20/C16 20/15 20

E94_080Y2N_X M32/M20 C32/C20 30/20 40

E94_120Y2~_X M50/M32 C50/C32 50/30 55

E94_180T2~_X M40 C40 40 80

E94_020T4N_X M10 C10 10 10

E94_040T4N_X M10 C10 10 20

E94_050T4N_X M16 C16 15 25

E94_060T4~_X M20 C20 20 30

E94_090T4~_X M25 C25 25 40

(1) The first “_” equals “P” for the Model 940 encoder based drive or “R” for the Model 941 resolver based drive.

 When the 10th digit is marked by “~”, “N” = No line filter or “F” = Integrated line filter

 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver (must have E94R drive).

(2)

At 240 VAC line input for drives with suffixes “S1N”, “S2F”, “Y2N”. At 480 VAC line input for drives with suffixes “T4N”.

a. The output power is calculated from the formula: output kVA = [(3) x ULL x I rated] / 1000

b. The actual output power (kW) depends on the motor in use due to variations in motor rated voltage, rated speed and power factor, as well as
actual max operating speed and desired overload capacity.

c. Typical max continuous power (kW) for PM servo motors runs 50-70% of the kVA ratings listed.

(3) At 16 kHz, de-rate continuous current by 17%

(4) Installations with high fault current due to large supply mains may require a type D circuit breaker.

(5) UL Class CC or T fast-acting current-limiting type fuses, 200,000 AIC, preferred. Bussman KTK-R, JJN, JJS or equivalent.

(6) Thermal-magnetic type breakers preferred.

(7) DC-rated fuses, rated for the applied voltage. Examples Bussman KTM or JJN as appropriate.

S94P01G 11

Technical Data

2.4 Digital I/O Ratings
Scan
Times Linearity Temperature Drift Offset Current Input

Impedance
Voltage
Range

Units ms % % % mA Ohm VDC

Digital Inputs(1) 512 Depend on load 2.2 k 5-24

Digital Outputs 512 15 max N/A 30 max

Analog Inputs 512 ± 0.013 0.1% per °C rise ± 0 adjustable Depend on load 47 k ± 18

Analog Outputs 512 0.1% per °C rise ± 0 adjustable 10 max N/A ± 10

(1) Inputs do not have scan time. Their values are read directly by indexer program statement.
 De-bounce time is programmable and can be set as low as 0. Propagation delay is typical 20 us

2.5 Environment
Vibration 2 g (10 - 2000 Hz)
Ambient Operating Temperature Range 0 to 40ºC
Ambient Storage Temperature Range -10 to 70ºC
Temperature Drift 0.1% per ºC rise
Humidity 5 - 90% non-condensing
Altitude 1500m/5000ft [derate by 1% per 300m (1000 ft) above

1500m (5000 ft)]

2.6 Operating Modes
Torque
Reference ± 10 VDC 16-bit; scalable
Torque Range 100:1
Current-Loop Bandwidth Up to 1.5 kHz*

Velocity
Reference ± 10 VDC or 0…10 VDC; scalable
Regulation ± 1 RPM
Velocity-Loop Bandwidth Up to 200 Hz*
Speed Range 5000:1 with 5000 ppr encoder

Position
Reference 0…2 MHz Step & Direction or 2 channels quadrature input; scalable
Minimum Pulse Width 500 nanoseconds
Loop Bandwidth Up to 200 Hz*
Accuracy ±1 encoder count for encoder feedabck
 ±1.32 arc-minutes for resolver feedback (14-bit resolution)
* = motor and application dependent

2.7 Connections and I/O
Mains Power 4-pin removable terminal block (P1)
Ethernet Port Standard RJ45 Connector (P2)
I/O Connector Standard 50-pin SCSI. (P3)
- Buffered Encoder Output A, B & Z channels with compliments (5V @ 20mA) (P3)
- Digital Inputs 11 programmable, 1 dedicated (5-24V) (P3)
- Digital Outputs 4 programmable, 1 dedicated(5-24V @ 15mA) (P3)
- Analog Input 2 differential; ±10 VDC (one16 bit, one 10 bit) (P3)
- Analog Output 1 single ended; ±10 VDC (10-bit) (P3)
Encoder Feedback (E94P drive) Feedback connector, 15-pin D-shell (P4)
Resolver Feedback (E94R drive) Feedback connector, 9-pin D-shell (P4)
24VDC Power “Keep Alive” 2-pin removable terminal block (P5)
Regen and Bus Power 5-pin removable terminal block (P6)
Motor Power 6-pin pin removable terminal block (P7)
Resolver Feedback (option bay) Option module with standard 9-pin D-shell (P11)
Encoder Feedback (option bay) Option module with standard 9-pin D-shell (P12)
Comm Option Bay Optional Comm Modules (CAN, RS485) (P21)
Windows® Software: MotionView (Windows 98, NT, 2000, XP)

S94P01G12

Technical Data

2.8 PositionServo Dimensions

C

15

12

12

A

38

D B

34 dia = 4.57

4.57

S923

Type (1) A (mm) B (mm) C (mm) D (mm) Weight (kg)

E94_020S1N_X 68 190 190 182 1.1

E94_040S1N_X 69 190 190 182 1.2

E94_020S2F_X 68 190 235 182 1.3

E94_040S2F_X 69 190 235 182 1.5

E94_080S2F_X 87 190 235 182 1.9

E94_100S2F_X 102 190 235 182 2.2

E94_020Y2N_X 68 190 190 182 1.3

E94_040Y2N_X 69 190 190 182 1.5

E94_080Y2N_X 95 190 190 182 1.9

E94_100Y2N_X 114 190 190 182 2.2

E94_120Y2~_X 68 190 235 182 1.5

E94_180T2~_X 68 242 235 233 2.0

E94_020T4N_X 68 190 190 182 1.5

E94_040T4N_X 95 190 190 182 1.9

E94_050T4N_X 114 190 190 182 2.2

E94_060T4~_X 68 190 235 182 1.4

E94_090T4~_X 68 242 235 233 2.0

(1) The first “_” equals “P” for the Model 940 encoder based drive or “R” for the Model 941 resolver based drive.
 When the 10th digit is marked by “~”, “N” = No line filter, “F” = Integrated line filter or “C” = Cold plate drive.
 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver

(must have E94R drive).

S94P01G 13

Technical Data

2.9 Clearance for Cooling Air Circulation

>25mm
>3mm

>25mm

S924

S94P01G14

Installation

3 Installation
Perform the minimum system connection. Please refer to section 6.1 for minimum
connection requirements. Observe the rules and warnings below carefully:

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or
with circuit elements to prevent the risk of serious injury or fatality.
Disconnect incoming power and wait 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

STOP!
• The PositionServo must be mounted vertically for safe operation

and to ensure enough cooling air circulation.

• Printed circuit board components are sensitive to electrostatic
fields. Avoid contact with the printed circuit board directly. Hold
the PositionServo by its case only.

• Protect the drive from dirt, filings, airborne particles, moisture,
and accidental contact. Provide sufficient room for access to the
terminal block.

• Mount the drive away from any and all heat sources. Operate
within the specified ambient operating temperature range.
Additional cooling with an external fan may be recommended in
certain applications.

• Avoid excessive vibration to prevent intermittent connections

• DO NOT connect incoming (mains) power to the output motor
terminals (U, V, W)! Severe damage to the drive will result.

• Do not disconnect any of the motor leads from the PositionServo
drive unless (mains) power is removed. Opening any one motor
lead may cause failure.

• Control Terminals provide basic isolation (insulation per EN
61800-5-1). Protection against contact can only be ensured by
additional measures, e.g., supplemental insulation.

• Do not cycle mains power more than once every 2 minutes.
Otherwise damage to the drive may result.

WARNING!
For compliance with EN 61800-5-1, the following warning applies.

This product can cause a d.c. current in the protective earthing conductor.
Where a residual current-operated protective (RCD) or monitoring
(RCM) device is used for protection in case of direct or indirect contact,
only an RCD or RCM of Type B is allowed on the supply side of this
product.

UL INSTALLATION INFORMATION
• Suitable for use on a circuit capable of delivering not more than

200,000 rms symmetrical amperes, at the maximum voltage
rating marked on the drive.

• Use Class 1 wiring with minimum of 75ºC copper wire only.

• Shall be installed in a pollution degree 2 macro-environment.

S94P01G 15

Installation

3.1 Wiring

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or
with circuit elements to prevent the risk of serious injury or fatality.
Disconnect incoming power and wait 60 seconds before servicing the
drive. Capacitors retain charge after power is removed.

WARNING!
Leakage current may exceed 3.5mA AC. Minimum size of the protective
earth conductor shall comply with local safety regulations for high
leakage current equipment.

STOP!
Under no circumstances should power and control wiring be bundled
together. Induced voltage can cause unpredictable behavior in any
electronic device, including motor controls.

Refer to section 4.1.1 for power wiring specifications.

3.2 Shielding and Grounding

3.2.1 General Guidelines
Lenze recommends the use of single-point grounding (SPG) for panel-mounted controls.
Serial grounding (a “daisy chain”) is not recommended. The SPG for all enclosures
must be tied to earth ground at the same point. The system ground and equipment
grounds for all panel-mounted enclosures must be individually connected to the SPG
for that panel using 14 AWG (2.5 mm2) or larger wire.

In order to minimize EMI, the chassis must be grounded to the mounting. Use 14 AWG
(2.5 mm2) or larger wire to join the enclosure to earth ground. A lock washer must
be installed between the enclosure and ground terminal. To ensure maximum contact
between the terminal and enclosure, remove paint in a minimum radius of 0.25 in (6
mm) around the screw hole of the enclosure.

Lenze recommends the use of the special PositionServo drive cables provided by
Lenze. If you specify cables other than those provided by Lenze, please make certain
all cables are shielded and properly grounded.

It may be necessary to earth ground the shielded cable. Ground the shield at both the
drive end and at the motor end.

If the PositionServo drive continues to pick up noise after grounding the shield, it may
be necessary to add an AC line filtering device and/or an output filter (between the drive
and servo motor).

S94P01G16

Installation

EMC

Compliance with EN 61800-3:2004
In a domestic environment this product may cause radio interference. The user may
be required to take adequate measures
Noise emission

Drive Models ending in the suffix “2F” are in
compliance with class A limits according to
EN 55011 if installed in a control cabinet and
the motor cable length does not exceed 10m.
Models ending in “N” will require an appropriate
line filter.

Installation according to EMC
Requirements

E

D

B C

A

F

S930

A Screen clamps

B Control cable

C Low-capacitance motor cable
(core/core < 75 pF/m, core/screen < 150 pF/m)

D Earth grounded conductive mounting plate

E Encoder Feedback Cable

F Footprint or Sidemount Filter (optional)

3.2.2 EMI Protection
Electromagnetic interference (EMI) is an important concern for users of digital
servo control systems. EMI will cause control systems to behave in unexpected and
sometimes dangerous ways. Therefore, reducing EMI is of primary concern not only
for servo control manufacturers such as Lenze, but the user as well. Proper shielding,
grounding and installation practices are critical to EMI reduction.

3.2.3 Enclosure
The panel in which the PositionServo is mounted must be made of metal, and must be
grounded using the SPG method outlined in section 3.2.1.

Proper wire routing inside the panel is critical; power and logic leads must be routed in
different avenues inside the panel.

You must ensure that the panel contains sufficient clearance around the drive. Refer to
section 2.9 for the recommended cooling air clearance.

S94P01G 17

Installation

3.3 Line Filtering
In addition to EMI/RFI safeguards inherent in the PositionServo design, external filtering
may be required. High frequency energy can be coupled between the circuits via
radiation or conduction. The AC power wiring is one of the most important paths for both
types of coupling mechanisms. In order to comply with IEC61800-3:2004, an appropriate
filter must be installed within 20cm of the drive power inputs.

Line filters should be placed inside the shielded panel. Connect the filter to the
incoming power lines immediately after the safety mains and before any critical control
components. Wire the AC line filter as close as possible to the PositionServo drive.

NOTE
The ground connection from the filter must be wired to solid earth
ground, not machine ground.

If the end-user is using a CE-approved motor, the AC filter combined with the
recommended motor and encoder cables, is all that is necessary to meet the EMC
directives listed herein. The end user must use the compatible filter to comply with CE
specifications. The OEM may choose to provide alternative filtering that encompasses
the PositionServo drive and other electronics within the same panel. The OEM has this
liberty because CE requirements are for the total system.

3.4 Heat Sinking
The PositionServo drive contains sufficient heat sinking within the specified ambient
operating temperature in its basic configuration. There is no need for additional heat
sinking. However, the user must ensure that there is sufficient clearance for proper air
circulation. As a minimum, an air gap of 25 mm above and below the drive is necessary.

3.5 Line (Mains) Fusing
External line fuses must be installed on all PositionServo drives. Connect the external
line fuse in series with the AC line voltage input. Use fast-acting fuses rated for 250
VAC or 600 VAC (depending on model), and approximately 200% of the maximum RMS
phase current. Refer to section 2.3 for fuse recommendations.

S94P01G18

Interface

4 Interface
The standard PositionServo drive contains seven connectors: four quick-connect
terminal blocks, one SCSI connector and one subminiature type “D” connector. These
connectors provide communications from a PLC or host controller, power to the drive,
and feedback from the motor. Prefabricated cable assemblies may be purchased from
Lenze to facilitate wiring the drive, motor and host computer. Contact your Lenze Sales
Representative for assistance.

As this manual makes reference to specific pins on specific connectors, we will use the
convention PX.Y where X is the connector number and Y is the pin number.

4.1 External Connectors

4.1.1 P1 & P7 - Input Power and Output Power Connections
P1 is a 3 or 4-pin quick-connect terminal block used for input (mains) power. P7 is a
6-pin quick-connect terminal block used for output power to the motor. P7 also has a
thermistor (PTC) input for motor over-temperature protection. The tables in this section
identify the connector pin assignments.

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or with
circuit elements to prevent the risk of serious injury or fatality. Disconnect
incoming power and wait 60 seconds before servicing drive. Capacitors
retain charge after power is removed.

STOP!
DO NOT connect incoming power to the output motor terminals (U, V,
W)! Severe damage to the PositionServo will result.

Check phase wiring (U, V, W) and thermal input (T1, T2) before powering
up drive. If miswired, severe damage to the PositionServo will result.

All conductors must be enclosed in one shield with a jacket around them. The shield on
the drive end of the motor power cable should be terminated to the conductive machine
panel using screen clamps as shown in section 3.2. The other end should be properly
terminated at the motor shield. Feedback cable shields should be terminated in a like
manner. Lenze recommends Lenze cables for both the motor power and feedback.
These are available with appropriate connectors and in various lengths. Contact your
Lenze representative for assistance.

Wire Size

Current
A (rms)

Terminal
Torque (lb-in)

Wire Size

I<8 4.5 16 AWG (1.5mm2) or 14 AWG (2.5mm2)

8<I<12 4.5 14 AWG (2.5mm2) or 12 AWG (4.0mm2)

12<I<15 4.5 12 AWG (4.0mm2)

15<I<20 5.0 - 7.0 10 AWG (6.0mm2)

20<I<24 11.0 - 15.0 10 AWG (6.0mm2)

S94P01G 19

Interface
P1 Pin Assignments (Input Power)

Standard Models Doubler Models

1
2

3
4

L3

L2

L1

Pin Name Function Name Function

1 PE
Protective Earth
(Ground)

PE Protective Earth (Ground)

2 L1 AC Power in N
AC Power Neutral
(120V Doubler only)

3 L2 AC Power in L1 AC Power in

4 L3
AC Power in
(3~ models only)

L2/N
AC Power in
(non-doubler operation)

P7 Pin Assignments (Output Power)
Pin Terminal Function

12
3

4
5

W

V

U

6

T2 T1

1 T1 Thermistor (PTC) Input

2 T2 Thermistor (PTC) Input

3 U Motor Power Out

4 V Motor Power Out

5 W Motor Power Out

6 PE Protective Earth (Chassis Ground)

4.1.2 P2 - Ethernet Communications Port
P2 is a RJ45 Standard Ethernet connector that is used to communicate with a host
computer via Ethernet TCP/IP.

P2 Pin Assignments (Communications)

Pin Name Function

ET
H

ER
N

ET

1

8

P2
1 + TX Transmit Port (+) Data Terminal

2 - TX Transmit Port (-) Data Terminal

3 + RX Receive Port (+) Data Terminal

4 N.C.

5 N.C.

6 - RX Receive Port (-) Data Terminal

7 N.C.

8 N.C.

NOTE
To communicate from the PC directly to the drive a crossover cable is
required. If using a hub or switch, use a regular patch cable.

S94P01G20

Interface

4.1.3 P3 - Controller Interface
P3 is a 50-pin SCSI connector for interfacing to the front-end of the controllers. It is
strongly recommended that you use OEM cables to aid in satisfying CE requirements.
Contact your Lenze representative for assistance.

P3 Pin Assignments (Controller Interface)

Pin Name Function Connector

1 MA+ Master Encoder A+ / Step+ input (2)

C
O

N
TR

O
LL

E
R

 I/
O

1

25

P3

50

26

2 MA- Master Encoder A- / Step- input (2)

3 MB+ Master Encoder B+ / Direction+ input (2)

4 MB- Master Encoder B- / Direction- input (2)

5 GND Drive Logic Common

6 5+ +5V output (max 100mA)

7 BA+ Buffered Encoder Output: Channel A+ (1)

8 BA- Buffered Encoder Output: Channel A- (1)

9 BB+ Buffered Encoder Output: Channel B+ (1)

10 BB- Buffered Encoder Output: Channel B- (1)

11 BZ+ Buffered Encoder Output: Channel Z+ (1)

12 BZ- Buffered Encoder Output: Channel Z- (1)

13-19 Empty

20 AIN2+ Positive (+) of Analog signal input

21 AIN2- Negative (-) of Analog signal input

22 ACOM Analog common

23 AO Analog output (max 10 mA)

24 AIN1+ Positive (+) of Analog signal input

25 AIN1 - Negative (-) of Analog signal input

26 IN_A_COM Digital input group ACOM terminal (3)

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3 (3)

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group BCOM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group CCOM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter
(1) See Note 1, Section 4.1.7 - Connector and Wiring Notes
(2) See Note 2, Section 4.1.7 - Connector and Wiring Notes
(3) See Note 3, Section 4.1.7 - Connector and Wiring Notes

S94P01G 21

Interface

4.1.4 P4 - Motor Feedback / Second Loop Encoder Input
For encoder-based 940 drives, P4 is a 15-pin DB connector that contains connections
for an incremental encoder with Hall emulation tracks or Hall sensors. For synchronous
servo motors, Hall sensors or Hall emulation tracks are necessary for commutation. If
an asynchronous servo motor is used, it is not necessary to connect Hall sensor inputs.
Encoder inputs on P4 have 26LS32 or compatible differential receivers for increased
noise immunity. Inputs have all necessary filtering and line balancing components so no
external noise suppression networks are needed.

For resolver-based 941 drives, P4 is a 9-pin DB connector for connecting resolver
feedback and thermal sensor. For pin assignments, refer to the table P4B. The resolver
feedback is translated to 65,536 counts per revolution.

All conductors must be enclosed in one shield with a jacket around them. Lenze
recommends that each and every pair (for example, EA+ and EA-) be twisted. In order
to satisfy CE requirements, use of an OEM cable is recommended.

The PositionServo buffers encoder/resolver feedback from P4 to P3. For example,
when encoder feedback is used, channel A on P4, is Buffered Encoder Output channel
A on P3. For more information on this refer to section 4.2.2 “Buffered Encoder Outputs”.

STOP!
Use only +5 VDC encoders. Do not connect any other type of encoder to the
PositionServo reference voltage terminals. When using a front-end controller, it is
critical that the +5 VDC supply on the front-end controller NOT be connected to the
PositionServo’s +5 VDC supply, as this will result in damage to the PositionServo.

NOTE
• The PositionServo encoder inputs are designed to accept differentially

driven hall signals. Single-ended or open-collector type hall signals are also
acceptable by connecting “HA+”, “HB+”, “HC+” and leaving “HA-,HB-,HC-”
inputs unconnected. The user does not need to supply pull-up resistors for
open-collector hall sensors. The necessary pull-up circuits are already
provided.

• Encoder connections (A, B and Z) must be full differential. The PositionServo
does not support single-ended or open-collector type outputs from the encoder.

• An encoder resolution of 2000 PPR (pre-quadrature) or higher is recommended.

Using P4 as second encoder input for dual-loop operation:
P4 can be used as a second loop encoder input in situations where the motor is
equipped with a resolver as the primary feedback. If such a motor is used, the drive
must have a resolver feedback option module installed. A second encoder can then be
connected to the A and B lines of the P4 connector for dual loop operation. Refer to
section 6.4 (“Dual-loop Feedback Operation”) for details.

P4A Pin Assignments (Encoder Feedback - E94P Drives)

Pin Name Function Pin Name Function

E
N

C
O

D
E

R

1

8

P4

15

9

1 EA+ Encoder Channel A+ Input (1) 9 PWR Encoder supply (+5VDC)

2 EA- Encoder Channel A- Input (1) 10 HA- Hall Sensor A- Input (2)

3 EB+ Encoder Channel B+ Input (1) 11 HA+ Hall Sensor A+ Input (2)

4 EB- Encoder Channel B- Input (1) 12 HB+ Hall Sensor B+ Input (2)

5 EZ+ Encoder Channel Z+ Input (1) 13 HC+ Hall Sensor C+ Input (2)

6 EZ- Encoder Channel Z- Input (1) 14 HB- Hall Sensor B- Input (2)

7 GND Drive Logic Common/Encoder GND 15 HC- Hall Sensor C- Input (2)

8 SHLD Shield

(1) See Note 1, Section 4.1.7 - Connector and Wiring Notes

(2) For asynchronous servo motor, an incremental encoder without Hall effect sensors (commutation tracks) can be used.

S94P01G22

Interface
P4B Pin Assignments (Resolver Feedback - E94R Drives)

Pin Name Function

R
E

S
O

LV
E

R 1

5

P4

9

6

1 Ref +
Resolver reference connection

2 Ref -

3 N/C No Connection

4 Cos+
Resolver Cosine connections

5 Cos-

6 Sin+
Resolver Sine connections

7 Sin-

8 PTC+
Motor PTC Temperature Sensor

9 PTC-

4.1.5 P5 - 24 VDC Back-up Power Input
P5 is a 2-pin quick-connect terminal block that can be used with an external 24 VDC
(500mA) power supply to provide “Keep Alive” capability: during a power loss, the logic
and communications will remain active. Applied voltage must be greater than 20VDC.

P5 Pin Assignments (Back-up Power)

Pin Name Function +
-

+
-

24
1 +24 VDC Positive 24 VDC Input

2 Return 24V power supply return

WARNING!
Hazard of unintended operation! The “Keep Alive” circuit will restart the
motor upon restoration of mains power when the enable input remains
asserted. If this action is not desired, then the enable input must be
removed prior to re-application of input power.

4.1.6 P6 - Braking Resistor and DC Bus
P6 is a 5-pin quick-connect terminal block that can be used with an external braking
resistor (the PositionServo has the regen circuitry built-in). The Brake Resistor connects
between the Positive DC Bus (either P6.1 or 2) and P6.3.

P6 Terminal Assignments (Brake Resistor and DC Bus)

Pin Terminal Function B+

B-

BR

B-

B+1 B+
Positive DC Bus / Brake Resistor

2 B+

3 BR Brake Resistor

4 B-
Negative DC Bus

5 B-

DANGER!
Hazard of electrical shock! Circuit potentials are up to 680 VAC above
earth ground. Avoid direct contact with the printed circuit board or
with circuit elements to prevent the risk of serious injury or fatality.
Disconnect incoming power and wait 60 seconds before servicing the
drive. Capacitors retain charge after power is removed.

S94P01G 23

Interface

4.1.7 Connector and Wiring Notes
Note 1 - Buffered Encoder Inputs
Each of the encoder output pins on P3 is a buffered pass-through of the corresponding
input signal on P4, Refer to section 4.2.2 “Buffered Encoder Outputs”. This can be
either from a motor mounted encoder/resolver, (primary feedback), or from an auxiliary
encoder/resolver when an optional feedback module is used.

Via software, these pins can be re-programmed to be a buffered pass through of the
signals from a feedback option card. This can be either the second encoder option
module (E94ZAENC1) or an encoder emulation of the resolver connected to the resolver
option module (E94ZARSV2 or E94ZARSV3).

Note 2 - Master Encoder Inputs or Step/Direction Inputs
An external pulse train signal (“step”) supplied by an external device, such as a PLC or
stepper indexer, can control the speed and position of the servomotor. The speed of the
motor is controlled by the frequency of the “step” signal, while the number of pulses that
are supplied to the PositionServo determines the position of the servomotor. Direction
input controls direction of the motion.

Note 3 - Digital Input A3
For the drive to function, an ENABLE input must be wired to the drive, and should be
connected to IN_A3, (P3.29), which is, by the default the ENABLE input on the drive.
This triggering mechanism can either be a switch or an input from an external PLC or
motion controller. The input can be wired either sinking or sourcing (section 4.2.3). The
Enable circuit will accept 5-24V control voltage.

Wiring the Enable Input:

Pin 6 +5V
P n 5 GND

Pin 26 IN A COM

Pin 29 N A3

C
O

N
TR

O
LL

E
R

 /
O

1

25

P3

50

26

Power Supply

Pin 26 IN A COM

Pin 29 IN A3

+

C
O

N
TR

O
LL

E
R

 /
O

1

25

P3

50

26

S94P01G24

Interface

4.1.8 P11 - Resolver Interface Module (option)
PositionServo drives can operate motors equipped with resolvers from either the (P4)
connection, for a resolver-based (E94R) drive, or from the Resolver option module for
an encoder-based (E94P) drive. The option module connections are made to a 9 pin
D-shell female connector (P11) on the resolver option module E94ZARSV2 (scalable)
or E94ZARSV3 (standard). When the motor profile is loaded from the motor database
or from a custom motor file, the drive will select the primary feedback source based on
the motor data entry.

The E94ZARSV3 has a fixed resolution of 1024 PPR prequadrature or 4096
postquadrature. The E94ZARSV2 has a selectable set of 15 resolutions. The resolution
refers to the pulses per revolution (PPR) of the Buffered Encoder Outputs (P3-7 to P3-
12) if the Encoder Repeat Source is set as “Optional Feedback Input” in MotionView.

When using the E94ZARSV2, the default resolution is 1024 PPR prequadrature.
Depending on the hardware/software revision of the E94ZARSV2 module, the available
PPRs are different. Refer to the table below for the Dip Switch settings for SW1 and the
different resolutions.

SW1 DIP Switch Settings

Dip Switch SW1 PPR prequadrature(1)

Position 1 Position 2 Position 3 Position 4 Hardware/Software
Revision(2) 1A10,

1A11, 1B11, 1C11

Hardware/Software
Revision(2) 1C12

and higher

OFF OFF OFF OFF 250 1024 (default)

OFF OFF OFF ON 256 256

OFF OFF ON OFF 360 360

OFF OFF ON ON 400 400

OFF ON OFF OFF 500 500

OFF ON OFF ON 512 512

OFF ON ON OFF 720 720

OFF ON ON ON 800 800

ON OFF OFF OFF 1000 1000

ON OFF OFF ON 1024 (default) 1024 (default)

ON OFF ON OFF 2000 2000

ON OFF ON ON 2048 2048

ON ON OFF OFF 2500 2500

ON ON OFF ON 2880 2880

ON ON ON OFF 4096 250

ON ON ON ON 4096 4096

(1) For PPR postquadrature, multiply by 4.
(2) Hardware/Software Revision can be found on the dataplate label attached to the plastic cover of the module.
 For example, the revision in the example below is 1B11.

TYPE: E94ZARSV2
ID NO: 13127865

SN 13127865012345678
E94ZARSV2000XX1B11

Made in USA

94/940

Scalable Resolver

Feedback Option

P
11

S94P01G 25

Interface
Setting the Dip Switches

To change the DIP SWITCH SETTING

1. Loosen the three set screws on the module
2. Detach the PCB board from the plastic cover
3. Change the SW1 positions according to the table above
4. Put the PCB board back in the plastic cover
5. Tighten the three set screws

When using a Lenze motor with resolver feedback and a Lenze resolver cable, the
pins are already configured for operation. If a non-Lenze motor is used, the resolver
connections are made as follows:

P11 Pin Assignments (Resolver Feedback)
Pin Name Function

1

5 9

6

1 Ref +
Resolver reference connection

2 Ref -

3 N/C No Connection

4 Cos+
Resolver Cosine connections

5 Cos-

6 Sin+
Resolver Sine connections

7 Sin-

8 PTC+
Motor PTC Temperature Sensor

9 PTC-

STOP!
Use only 10 V (peak to peak) or less resolvers. Use of higher voltage resolvers may
result in feedback failure and damage to the resolver option module.

4.1.9 P12 - Second Encoder Interface Module (option)
PositionServo drives can support a second incremental encoder interface for dual-loop
systems. Regardless of whether the motor’s primary feedback type is an encoder or
resolver, a 2nd Encoder Option Module, E94ZAENC1, can be installed at Option Bay
2, (P12). Once installed the optional feedback card can be selected as the primary
encoder repeat source from the “Parameter” folder in MotionView. The 2nd Encoder
Option Module includes a 9 pin D-shell male connector. When using a Lenze motor
with encoder feedback and a Lenze encoder cable, the pins are already configured for
operation. If a non-Lenze motor is used, the encoder connections are made as follows:

P12 Pin Assignments (Second Encoder Feedback)
Pin Name Function

1

5 9

6

1 E2B+ Second Encoder Channel B+ Input

2 E2A- Second Encoder Channel A- Input

3 E2A+ Second Encoder Channel A+ Input

4 +5v Supply voltage for Second Encoder

5 COM Supply common

6 E2Z- Second Encoder Channel Z- Input

7 E2Z+ Second Encoder Channel Z+ Input

8 N/C No Connection

9 E2B- Second Encoder Channel B- Input

The second encoder needs to be enabled using MotionView software. (section 6.4).

STOP!
Use only +5 VDC encoders. Do not connect any other type of encoder to the option
module. Otherwise, damage to drive’s circuitry may result.

S94P01G26

Interface

4.2 Digital I/O Details

4.2.1 Step & Direction / Master Encoder Inputs (P3, pins 1-4)
You can connect a master encoder with quadrature outputs or a step and direction
pair of signals to control position in step / direction operating mode (stepper motor
emulation). These inputs are optically isolated from the rest of the drive circuits and from
each other. Both inputs can operate from any voltage source in the range of 5 to 24 VDC
and do not require additional series resistors for normal operation.

CCWCW
DIRECTION

STEP

S904Timing characteristics for Step And Direction signals

CCWCW

A

B

S905

Timing characteristics for Master Encoder signals

Input type/ output compatibility Insulated, compatible with Single-ended or
 differential outputs (5-24 VDC)
Max frequency (per input) 2 MHz
Min pulse width (negative or positive) 500nS
Input impedance 700 Ω (approx)

MA+/STEP+
MB+/DIR+

MA-/STEP-
MB-/DIR-

600Ω 100Ω

5.6V

S906

Master encoder/step and direction input circuit

Differential signal inputs are preferred when using Step and Direction. Single ended
inputs can be used but are not recommended. Sinking or sourcing outputs may also be
connected to these inputs. The function of these inputs “Master Encoder” or “Step and
Direction” is software selectable. Use the MotionView set up program to choose the
desirable function.

S94P01G 27

Interface
4.2.2 Buffered Encoder Output (P3, pins 7-12)
There are many applications where it is desired to close the feedback loop to an
external device. This feature is built into the PositionServo drive and is referred to as
the “Buffered Encoder Output”. If a motor with encoder feedback is being used, the A+,
A-, B+, B-, Z+ and Z- signals are directly passed through the drive through pins 7-12
with no delays, up to a speed of 25MHz. If a motor with resolver feedback is being used
a simulated encoder feedback is transmitted. The default resolution of the simulated
encoder is 1024 pulses per revolution, pre-quad. If a different resolution is desired refer
to section 5.3.22 “Resolver Tracks”.

4.2.3 Digital Outputs
There are a total of five digital outputs (“OUT1” - “OUT4” and “RDY”) available on the
PositionServo drive. These outputs are accessible from the P3 connector. Outputs are
open collector type that are fully isolated from the rest of the drive circuits. See the
following figure for the electrical diagram. These outputs can be either used via the
drives internal User Program or they can be configured as Special Purpose outputs.
When used as Special Purpose, each output (OUT1-OUT4) can be assigned to one of
the following functions:

• Not assigned
• Zero speed
• In-speed window
• Current limit
• Run-time fault
• Ready
• Brake (motor brake release)

Please note that if you assign an output as a Special Purpose Output then that output
can not be utilized by the User Program. The “RDY” Output has a fixed function,
“ENABLE”, which will become active when the drive is enabled and the output power
transistors becomes energized.

Digital outputs electrical characteristics
Circuit type Isolated Open Collector
Digital outputs load capability 15mA
Digital outputs Collector-Emitter max voltage 30V

The inputs on drive can be wired as either sinking (NPN) or sourcing (PNP),
as illustrated in wiring examples mb101 and mb102.

NPN Sinking

OUT 1-C

Gnd

+24V

49

44

45

46

OUT 1-E

OUT 2-C

OUT 2-E

mb101

PNP Sourcing

OUT 1-C

Gnd

+24V

49

44

45

46

OUT 1-E

OUT 2-C

OUT 2-E

mb102

S94P01G28

Interface

4.2.4 Digital Inputs
IN_Ax, IN_Bx, IN_Cx (P3.26-30, P3.31-35, P3.36-40)

The PositionServo Drive has 12 optically isolated inputs. These inputs are compatible
with a 5 - 24V voltage source. No additional series resistors are needed for circuit
operation. The 12 inputs are segmented into three groups of 4, Inputs A1 - A4, Inputs
B1 - B4, and Inputs C1 - C4. Each group, (A, B and C) have their own corresponding
shared common, (ACOM, BCOM and CCOM). Each group or bank can be wired as
sinking or sourcing. Refer to wiring examples mb103 and mb104. All inputs have a
separate software adjustable de-bounce time. Some of the inputs can be set up as
Special Purpose Inputs. For example inputs A1 and A2 can be configured as limit inputs,
input A3 is always set up as an Enable input and input C3 can be used as a registration
input. Refer to the PositionServo Programming Manual (PM94P01) for more detail.

For the registration input (C3), the registration time is 3µs for an encoder and 7µs for
a resolver.

PNP Sourcing

Digital inputs circuit.

Gnd

+24V 27

IN A1

26

28

IN A2

IN A COM

2.2 k

2.2 k

mb103

NPN Sinking

Digital inputs circuit.

Gnd

+24V

27

IN A1

26

28

IN A2

IN A COM

2.2 k

2.2 k

mb104

S94P01G 29

Interface

4.3 Analog I/O Details

4.3.1 Analog Reference Input
AIN1+, AIN1- (P3.24 and P3.25)

The analog reference input can accept up to a ±10V analog signal across AIN1+ and
AIN1-. The maximum limit with respect to analog common (ACOM) on each input is
±18VDC. The analog signal will be converted to a digital value with 16 bit resolution (15
bit plus sign). This input is used to control speed or torque of the motor in velocity or
torque mode. The total reference voltage as seen by the drive is the voltage difference
between AIN1+ and AIN1-. If used in single-ended mode, one of the inputs must
be connected to a voltage source while the other one must be connected to Analog
Common (ACOM). If used in differential mode, the voltage source is connected across
AIN1+ and AIN1- and the driving circuit common (if any) needs to be connected to the
drive Analog Common (ACOM) terminal. Refer to wiring examples mb105 and mb106.

Reference as seen by drive: Vref = (AIN1+) - (AIN1-) and -10V < Vref < +10V

External Reference
(Di�erential Con�guration)

ACOM

Analog Command Output

Analog Command Return

ACOM

P3.24

P3.25

P3.22

AIN

AIN+

PostionServo
Drive

940 Servo Drive

+

Analog input +

Analog input -

A
na

lo
g

In
pu

t

Motion
Controller

mb105

Single-ended Configuration

ACOM

AOut P3.20

P3.21

P3.22

AIN

AIN+

PositionServo
Drive

ACOM

As the dancer arm goes up and down
a 0 - 10 volt signal is transmitted

to the PositionServo Drive.

+

mb106

AIN2+, AIN2- (P3.20 and P3.21)

The analog reference input can accept up to a ±10V analog signal across AIN2+ and
AIN2-. The maximum limit with respect to analog common (ACOM) on each input is
±18VDC. The analog signal will be converted to a digital value with 10 bit resolution
(9 bit plus sign). This input is available to the User’s program. This input does not have
a predefined function. Scaling of this input is identical to AIN1.

S94P01G30

Interface

4.3.2 Analog Output
AO (P3.23)

The analog output is a single-ended signal (with reference to Analog Common (ACOM)
which can represent the following motor data:

• Not Assigned • Phase R Current • Iq Current

• RMS Phase Current • Phase S Current • Id Current

• Peak Phase Current • Phase T Current

• Motor Velocity

Motor phase U, V and W corresponds to R, S and T respectively.

MotionView Setup program can be used to select the signal source for the analog
output as well as its scaling.

If the output function is set to “Not Assigned” then the output can be controlled directly
from user’s program. Refer to the PositionServo Programming Manual (PM94P01) for
programming details.

STOP!
Upon application of power to the PositionServo, the Analog Output supplies
-10VDC until bootup is complete. Once bootup is complete, the Analog Output will
supply the commanded voltage.

4.4 Communication Interfaces

4.4.1 Ethernet Interface (standard)
Programming and diagnostics of the drive are performed over the standard Ethernet
communication port. The Drives IP address can be displayed from the drive’s front
panel display. The last octet of the drive’s IP address can be set from the drive’s display.
Changes do not take affect until after a power cycle. The interface supports both 100
BASE-TX as well as 10 BASE-T. This configuration allows the user to monitor and
program multiple drives from MotionView. Refer to section 5.4.1 for PC configuration
information.

4.4.2 RS485 Interface (option)
PositionServo drives can be equipped with an RS485 communication interface option
module (E94ZARS41) which is optically isolated from the rest of the drive’s circuitry.
This option module can be used for two functions: drive programming and diagnostics
using MotionView from a PC (with RS485 port) or as a Modbus RTU slave. The
PositionServo drives support 5 different baud rates, ranging from 9600 to 115200.
Drives are addressable with up to 32 addresses from 0-31. The factory setting for
the baud rate is 38,400 with a node address of “1”. The drives address must be set
from the front panel display of the drive. When used with MotionView software, the
communication speed is also set from the front panel display. If used for Modbus RTU
communications, the Modbus baud rate is set as a parameter within MotionView.

Pin Assignments (RS485 interface)

Pin Name Function

1
23

TXA
TXB

COM

1
2

31 ICOM Isolated Common

2 TXB Transmit B(+)

3 TXA Transmit A(-)

S94P01G 31

Interface

4.4.3 RS485 Communication Setup
When establishing communication between MotionView and a PositionServo drive, a
communication method must be selected. The connection choice can be either “UPP
over RS485/RS232” or “Ethernet”. The “UPP over RS485/RS232” selection establishes
a RS485 connection between MotionView and the first drive on the network. Multiple
drives can then be added to the network via RS485. Each drive on the network must
have a different Node Address. When setting up communications the node address of
the target drive must be set. MotionView will then send out a communications packet
to the drives on the network, via the RS485 connection. The message, “Device with
address # not present in the network” will appear If the target node could not be found.

4.4.4 MODBUS RTU Support
As a default, the Ethernet and RS485 interfaces are configured to support MotionView
program operations. In addition, the Ethernet port can support MODBUS TCP/IP slave
protocals and the RS485 interface can be configured to support the MODBUS RTU
slave protocol. These interfaces are configured through the MotionView program
environment. When configured for MODBUS operation, the baud rate for RS485 is
set by the parameter “Modbus baud rate” in MotionView. MODBUS RTU requires 8
data bits. The MODBUS RTU slave interface protocol definitions can be found in the
MotionView help menu under “Product Manuals”.

4.4.5 CAN Interface (option)
An optional CANopen communication module (E94ZACAN1) is available for the
PositionServo drive. Installed in Option Bay 1 as P21, the CANopen module is optically
isolated from the rest of the drive’s circuitry. The 3-pin CANopen module is for HW/SW
1A10 and the 5-pin CANopen module is for HW/SW 1B10 or higher. Refer to the PS
CANopen Reference Guide (P94CAN01) for more information.

CANopen Interface Pin Assignments
3-Terminal Pin Name Function Pin Name Function 5-Terminal

1
23

CAN H
CAN L

ICOM

12
3

1 ICOM Isolated Common 1 ICOM Isolated Common

ICOM
CAN L

Sh eld
CAN H

NC

12
3

4
52 CAN L CAN Bus Low 2 CAN L CAN Bus Low

3 CAN H CAN Bus High 3 Shield

4 CAN H CAN Bus High

5 NC No connection

4.5 Motor Selection
The PostionServo drive is compatible with many 3-phase AC synchronous servo motors
as well as 3-phase AC asynchronous servo motors. MotionView is equipped with a
motor database that contains over 600 motors for use with the PositionServo drive.
If the desired motor is in the database, no data to set it up is needed. Just select the
motor and click “OK”. However, if your motor is not in the database, it can still be used,
but some electrical and mechanical data must be provided to create a custom motor
profile. The auto-phasing feature of the PositionServo drive allows the user to correctly
determine the relationship between phase voltage and hall sensor signals, eliminating
the need to use a multi-channel oscilloscope.

4.5.1 Motor Connection
Motor phase U, V, W (or R, S, T) are connected to terminal P7. It is very important
that motor cable shield is connected to Earth ground terminal (PE) or the drive’s case.
The motor’s encoder/resolver feedback cable must be connected to terminal P4. If a
resolver option module is used, connect to terminal P11, and if a second encoder option
module is used, connect to terminal P12.

S94P01G32

Interface

4.5.2 Motor Over-temperature Protection
If using a motor equipped with an encoder and PTC thermal sensor, the encoder
feedback cable will have flying leads exiting the P4 connector to be wired to the P7.1
(T1) and P7.2 (T2) terminals. If using a motor equipped with a Resolver and a PTC
sensor, the thermal feedback is pased directly to the drive via the resolver 9-pin D shell
connector.

Use parameter “Motor PTC cut-off resistance” (refer to section 5.3.12) to set the
resistance that corresponds to maximum motor allowed temperature. The parameter
“Motor temperature sensor” must also be set to ENABLE. If the motor doesn’t have a
PTC sensor, set this parameter to DISABLE. This input will also work with N.C. thermal
switches which have only two states; Open or Closed. In this case “Motor PTC cut-off
resistance” parameter can be set to the default value.

4.5.3 Motor Setup
Once you are connected to the PostionServo via MotionView a “Parameter Tree” will
appear in the “Parameter Tree Window”. The various parameters of the drive are shown
here as folders and files. If the “Motor” folder is selected, all motor parameters can
be viewed in the “Parameter View Window”. To view selected motor parameters or to
select a new motor click the section marked “CLICK HERE TO CHANGE”.

 S911MotionView’s “Motor Group” folder and its contents

NOTE
If the drive is ENABLED, a new motor cannot be set. You can only set a new motor
when the drive is DISABLED.

To View selected motor parameters or to make a new motor selection:
• Click “Click here to change the motor” from the Parameter View Window (see

figure above). If just viewing the motor parameters click Cancel on the Motor
Parameters dialog box when done to dismiss the box.

• Select motor Vendor from the right list box and desired motor from the left list box.

• If you will be using a “custom” motor (not listed in our motor database) go to ”Using
a custom motor” topic in the next section.

• Finally, click the OK button to dismiss the dialog box and return to MotionView’s main
program.

NOTE
To help prevent the motor from drawing to much current and possibility overheating
it is recommended that the drives “Current Limit” be checked against the motors
“Nominal Phase Current” and set accordingly.

S94P01G 33

Interface

4.6 Using a Custom Motor
You can load a custom motor from a file or you can create a new custom motor.

• To create a custom motor click “CREATE CUSTOM” and follow the instructions in
the next section “Creating custom motor parameters”.

• To load a custom motor click “OPEN CUSTOM” button then select the motor file
and click the “OPEN“ button to select or click the “CANCEL“ button to return to the
previous dialog box.

• Click OK to load the motor data and return to the main MotionView menu or Cancel
to abandon changes. When clicking OK for a custom motor, a dialog box will
appear asking if you want to execute “Autophasing” (refer to section 4.6.2).

4.6.1 Creating Custom Motor Parameters

STOP!
Use extreme caution when entering custom parameters! Incorrect
settings may cause damage to the drive or motor! If you are unsure of
the settings, refer to the materials that were distributed with your motor,
or contact the motor manufacturer for assistance.

1. Enter custom motor data in the Motor Parameters dialog fields. Complete all
sections of dialog: Electrical, Mechanical, Feedback. Refer to section 4.6.3
for explanation of motor parameters and how to enter them.

NOTE
If unsure of the motor halls order and encoder channels A and B
relationship, leave “B leads A for CW”, “Halls order” and “inverted” fields
as they are. You can execute autophasing (refer to section 4.6.2) to set
them correctly.

2. Enter motor model and vendor in the top edit boxes. Motor ID cannot be
entered, this is set to 0 for custom motors.

3. Click “Save File” button and enter filename without extension. Default
extension .cmt will be given when you click OK on file dialog box.

NOTE
Saving the file is necessary even if the autophasing feature will be used
and some of the final parameters are not known. After autophasing is
completed the corrected motor file can be updated before loading it to
memory.

4. Click OK to exit from the Motor Parameters dialog.
5. MotionView will ask if you want to autophase your custom motor. If you

answer “No”, the motor data will be loaded immediately to the drive’s
memory. If you answer “Yes”, the motor dialog will be dismissed and
the drive will start the autophasing sequence. Refer to section 4.6.2 for
autophasing information.

6. If you answered “Yes” for autophasing, you will be returned to the same
motor selection dialog box after autophasing is complete. For motors with
incremental encoders, the fields “B leads A for CW”, “Halls order” and
“inverted” will be assigned correct values. For motors with resolvers, the
fields “Offset in degree” and “CW for positive” will be assigned correct values.

7. Click “Save File” to save the custom motor file and then click “OK” to exit the
dialog box and load the data to the drive.

S94P01G34

Interface

4.6.2 Autophasing
The Autophasing feature determines important motor parameters when using a motor
that is not in MotionView’s database. For motors equipped with incremental encoders,
Autophasing will determine the Hall order sequence, Hall sensor polarity and encoder
channel relationship (B leads A or A leads B for CW rotation). For motors equipped
with resolvers, Autophasing will determine resolver angle offset and angle increment
direction (“CW for positive”).

To perform autophasing:

1. Complete the steps in the previous section “Setting custom motor
parameters”. If the motor file you are trying to autophase already exists,
simply load it as described under “Using a custom motor” at the beginning of
this section.

2. Make sure that the motor’s shaft is not connected to any mechanical load
and can freely rotate.

STOP!
Autophasing will energize the motor and will rotate the shaft. Make sure
that the motor’s shaft is not connected to any mechanical load and can
freely and safely rotate.

3. Make sure that the drive is not enabled.
4. It is not necessary to edit the field “Hall order” and check boxes “inverted”

and “B leads A for CW” as these values are ignored for autophasing.
5. Click OK to dismiss motor selection dialog. MotionView responds with the

question “Do you want to perform autophasing?”
6. Click OK. A safety reminder dialog appears. Verify that it is safe to run the

motor then click “Proceed” and wait until autophasing is completed.

NOTE
If there is a problem with the motor connection, hall sensor connection or resolver
connection, MotionView will respond with an error message. Problems commonly
occur with power, shield and ground terminations or when an improper cable is
used. Correct the wiring problem(s) and repeat steps 1 - 6.
If the error message repeats, exchange motor phases U and V (R and S) and
repeat. If problems persist, contact the factory.

7. If autophasing is completed with no error then MotionView will return to the
motor dialog box. For motors with incremental encoders, the parameter field
“Hall order” and the check boxes “inverted”, “B leads A for CW” will be filled
in with correct values. For resolver equipped motors, fields “Offset ” and “CW
for positive” will be correctly set.

8. Click “Save File” to save the completed motor file (you can use the same
filename as you use to save initial data in step 1) and click OK to load the
motor data to the drive.

4.6.3 Custom Motor Data Entry
A Custom Motor file is created by entering motor data into the “Motor Parameters”
dialog box. This box is divided up into the following three sections, or frames:
 Electrical constants
 Mechanical constants
 Feedback

When creating a custom motor you must supply all parameters listed in these sections.
All entries are mandatory except the motor inertia (Jm) parameter. A value of 0 may be
entered for the motor inertia if the actual value is unknown.

S94P01G 35

Interface

4.6.3.1 Electrical constants
Motor Torque Constant (Kt)

Enter the value and select proper units from the drop-down list.

NOTE
Round the calculated result to 3 significant places.

Motor Voltage Constant (Ke)

The program expects Ke to be entered as a phase-to-phase Peak voltage. If you have
Ke as an RMS value, multiply this value by 1.414 for the correct Ke Peak value.

Phase-to-phase winding Resistance (R) in Ohms

This is also listed as the terminal resistance (Rt). The phase-to-phase winding
Resistance (R) will typically be between 0.05 and 200 Ohms.

Phase-to-phase winding Inductance (L)

This must be set in millihenries (mH). The phase-to-phase winding Inductance (L) will
typically be between 0.1 and 200.0 mH.

NOTE
If the units for the phase-to-phase winding Inductance (L) are given in
micro-henries (µH), then divide by 1000 to get mH.

Nominal phase current (RMS Amps)

Nominal continuous phase current rating (In) in Amps RMS. Do not use the peak current
rating.

NOTE
Sometimes the phase current rating will not be given. The equation
below may be used to obtain the nominal continuous phase-to-phase
winding current from other variables.

In= Continuous Stall Torque / Motor Torque Constant (Kt)

The same force x distance units must be used in the numerator and denominator in the
equation above. If torque (T) is expressed in units of pound-inches (lb-in), then Kt must
be expressed in pound-inches per Amp (lb-in/A). Likewise, if T is expressed in units of
Newton-meters (N-m), then units for Kt must be expressed in Newton-meters per Amp
(N-m/A).

Example:
Suppose that the nominal continuous phase to phase winding current (In) is not
given. Instead, we look up and obtain the following:
 Continuous stall torque T = 3.0 lb-in
 Motor torque constant Kt = 0.69 lb-in/A
 Dividing, we obtain:

In = 3.0 lb-in / 0.69 lb-in/A =4.35 (A)

Our entry for (In) would be 4.35.
Note that the torque (lb-in) units are cancelled in the equation above leaving just
Amps (A). We would have to use another conversion factor if the numerator and
denominator had different force x distance units.

S94P01G36

Interface
Nominal Bus Voltage (Vbus)

The Nominal Bus Voltage can be calculated by multiplying the Nominal AC mains
voltage supplied by 1.41. When using a model with the suffix “S1N” where the mains
are wired to the “Doubler” connection, the Nominal Bus Voltage will be doubled.

Example:
If the mains voltage is 230VAC, Vbus = 230 x 1.41 = 325V

This value is the initial voltage for the drive and the correct voltage will be
calculated dynamically depending on the drive’s incoming voltage value.

Rotor Moment of Inertia (Jm)

From motor manufacturer or nameplate.

NOTE
Round the calculated result to 3 significant places.

Maximum Motor Speed in RPM

This is also listed as “Speed @ Vt” (motor speed at the terminal voltage rating). The
maximum motor speed will typically be a round even value between 1000 - 6000 RPM.

Number of Poles

This is a positive integer number that represents the number of motor poles, normally
2, 4, 6 or 8.

4.6.3.2 For Incremental Encoder - Equipped Motors Only
Encoder Line Count

The Encoders for servomotors normally have Line Counts of 1000, 1024, 2000, 2048,
4000, or 4096. The Encoder Line Count must be a positive integer and must be pre-
quadrature.

Index pulse offset. Enter 0 (zero)

Index marker pulse position. This field is reserved for backward compatibility. All
PositionServo drives determine actual marker pulse position automatically.

Halls Order

Each hall signal is in phase with one of the three phase-phase voltages from the motor
windings. Hall order number defines which hall sensor matches which phase-phase
voltage. Motor phases are usually called R-S-T or U-V-W or A-B-C. Phase-Phase
voltages are called Vrs, Vst, Vtr. Halls are usually called HALL-A, HALL-B, HALL-C or
just Halls 1, 2, 3. A motor’s phase diagram is supplied by motor vendor and usually can
be found in the motor data sheet or by making a request to the motor manufacturer. A
sample phase diagram is illustrated in Figure S912.

S912

S94P01G 37

Interface
The Halls Order is obtained as follows:

1. Look at the “Vrs” Output Voltage and determine the Hall Voltage that is lined
up with (or in phase with) this voltage. To determine which Hall Voltage is in
phase with the Vrs Output Voltage draw vertical lines at those points where
it crosses the horizontal line (zero). The dashed lines at the zero crossings
(above) indicate that Hall B output is lined up with (and in phase with) the Vrs
Output Voltage.

2. Look at the “Vst” Output Voltage. Determine which Hall Voltage is in phase
with this Voltage. Per Figure S912, the Hall C output is in phase with the Vst
Output Voltage.

3. Look at the “Vtr” Output Voltage. Determine which Hall Voltage is in phase
with this Voltage. Per Figure S912, the Hall A output is in phase with the Vtr
Output Voltage.

NOTE
If hall sensors are in phase with the corresponding phase voltage
but are inverted 180 degrees (hall sensor waveform edge aligns with
the phase-phase voltage waveform but the positive hall sensor cycle
matches the negative phase-phase waveform or visa-versa), you must
check the “Inverted” check box.

4. The phases that correspond to the Vrs, Vst and Vtr voltages are Hall B then
Hall C then Hall A or Halls number 2 then 3 then 1. Referring to the following
table, we find that 2-3-1 sequence is Halls Order number 3. We would then
enter 3 for the Halls Order field in the motor dialog box.

Hall Order Numbers for Different Hall Sequences

Halls Order Hall Sequence

0 1-2-3

1 1-3-2

2 2-1-3

3 2-3-1

4 3-1-2

5 3-2-1

NOTE
Each Hall Voltage is in phase with one and only one Output Voltage.

B leads A for CW
This is the encoder phase relationship for CW/CCW shaft rotation. When you obtain the
diagram for your motor phasing similar to shown above, it’s assumed by the software
that the motor shaft rotates CW when looking at the mounting face of the motor. For that
rotation Encoder phase A must lead phase B. If it does leave the check box unchecked.
Otherwise (if B leads A), check B leads A in the CW box.

NOTE
Lenze convention references the shaft direction of rotation from the
front (shaft end) of the motor. Some manufacturer’s timing diagrams
are CW when viewed from the “rear” of the motor.

S94P01G38

Interface
4.6.3.3 For Resolver Equipped Motors Only
If parameter “Resolver” is checked, following parameters appear on the form:

Offset in degree (electrical)
This parameter represents offset between resolver’s “0 degree” and motor’s windings
“0 degree”.

CW for positive
This parameter sets the direction for positive angle increment.

“Offset in degree” and “CW for positive” will be set during Auto-Phasing of the motor.

4.6.3.4 For Asynchronous Servo Motors Only
Four additional parameters need to be defined for asynchronous motors:

Power Factor Cos Phi (cos f)
The power factor is defined as the ratio of the active (true or real) power to apparent
power. The power factor range is from 0 to1.

Base Frequency in Hz
The motor base frequency defines the output frequency, when operating at rated
voltage, rated current, rated speed, and rated temperature.

Velocity Nominal in RPM
Also called rated velocity or speed, velocity nominal is obtained when the motor is
operated at the base frequency, rated current, rated voltage, and rated temperature.

Velocity Max in RPM
This is the maximum speed of the motor. The maximum velocity is usually limited by
mechanical construction.

S94P01G 39

Parameters

5 Parameters
The PositionServo drive is configured through an RS485 or Ethernet interface. The
drive has many programmable features and parameters accessible via a universal
software called MotionView. Refer to the MotionView Manual for details on how to
make a connection to the drive and change parameter values. This chapter covers the
PositionServo’s programmable features and parameters in the order they appear in
the Parameter Tree of MotionView. Programmable parameters are divided into groups.
Each group holds one or more user adjustable parameters.

All drives can execute a User Program in parallel with motion. Motion can be specified
by variety of sources and in three different modes: Torque, Velocity and Position.

In Torque and Velocity mode Reference can be taken from Analog Input AIN1 or from
the User Program by setting a particular variable (digital reference). In Position mode,
the reference could be taken from MA/MB master encoder/step and directions inputs
(available in terminal P3) or from trajectory generator. Access to the trajectory generator
is provided through the User Program’s motion statements, MOVEx and MDV. Refer to
the PositionServo Programming Manual for details on programming.

Whether the reference comes from an external device, (AIN1 or MA/MB) or from the
drives internal variables (digital reference and trajectory generator) will depend on the
parameter settings. Refer to “Parameters” group in MotionView.

5.1 Parameter Storage and EPM Operation

5.1.1 Parameter Storage
All settable parameters are stored in the drive’s internal non-volatile memory. Parameters
are saved automatically when they are changed and are copied to the EPM memory
module located on the drive’s front panel. In the unlikely event of drive failure, the EPM
can be removed and inserted into the replacement drive, thus making an exact copy
of the drive being replaced. This shortens down time by eliminating the configuration
procedure. The EPM can also be used for replication of the drive’s settings.

5.1.2 EPM Operation
When the drive is powered up it first checks for a white EPM in the EPM Port. If the EPM
Port is empty, no further operation is possible until a white EPM is installed into the EPM
Port. The drive will display “-EP-” until an EPM is inserted. Never install or remove the
EPM module while the drive is powered.

If a different color EPM is inserted the drive may appear to function however, some
operations will not be correct and the drive may hang. The white EPM is the only
acceptable EPM for the PositionServo drive. If a white EPM is detected, the drive
compares data in the EPM to that in its internal memory. In order for the drive to operate,
the contents of the drive’s memory and EPM must be the same. If “FEP?” is displayed
press the enter button to load the EPM’s data to the drive. Wait. The drive will display
“BUSY” during loading and will return to normal display once the update is completed.

STOP!
If the EPM contains any data from an inverter drive, that data will be overwritten during this procedure.

5.1.3 EPM Fault
If the EPM fails during operation or the EPM is removed from the EPM Port, the drive
will generate a fault and will be disabled (if enabled). The fault is logged to the drives
fault history. Further operation is not possible until the EPM is replaced (inserted) and
the drive’s power is cycled. The fault log on the display shows “F_EP” fault.

S94P01G40

Parameters

5.2 Motor Group
The motor group shows the data for the currently selected motor. Refer to section 4.5
for details on how to select another motor from the motor database or to configure a
custom motor.

5.3 Parameters

5.3.1 Drive Operating Modes
The PositionServo has 3 operating mode selections: Torque, Velocity and Position.

For Torque and Velocity modes the drive will accept an analog input voltage on the
AIN1+ and AIN1- pins of P3 (refer to section 4.3.1). This voltage is used to provide a
torque or speed reference.

For Position mode the drive will accept step and direction logic signals or a quadrature
pulse train on pins P3.1- P3.4.

5.3.1.1 Torque Mode
In torque mode, the servo control provides a current output proportional to the analog
input signal at input AIN1, if parameter “Reference” is set to “External”. Otherwise the
reference is taken from the drive’s internal variable, IREF. (Refer to the PositionServo
Programming Manual for details). For analog reference “Set Current”, (current the drive
will try to provide), is calculated using the following formula:

Set Current(A) = Vinput(Volt) X Iscale (A/Volt)

where: Vinput is the voltage at analog input

Iscale is the current scale factor (input sensitivity) set by the Analog input
(Current Scale) parameter (section 5.3.5).

5.3.1.2 Velocity Mode
In velocity mode, the servo controller regulates motor shaft speed (velocity) proportional
to the analog input voltage at input AIN1, if parameter “Reference” is set to “External”.
Otherwise the reference is taken from the drive’s internal variable, IREF. (Refer to the
PositionServo Programming Manual for details). For analog reference, Target speed
(set speed) is calculated using the following formula:

Set Velocity (RPM) = Vinput (Volt) x Vscale (RPM/Volt)

where: Vinput is the voltage at analog input (AIN1+ and AIN1-)

Vscale is the velocity scale factor (input sensitivity) set by the Analog input
(Velocity scale) parameter (section 5.3.6).

5.3.1.3 Position Mode
In this mode the drive reference is a pulse-train applied to P3.1-4 terminals, if the
parameter “Reference” is set to “External”. Otherwise the reference is taken from the
drive’s internal variables. (Refer to the PositionServo Programming Manual for details).

P3.1-4 inputs can be configured for two types of signals: step and direction and Master
encoder quadrature signal. Refer to section 4.2.1 for details on these inputs connections.
Refer to section 6.3 for details about positioning and gearing.

When the Reference is set to Internal, the drives reference position, (theoretical or
Target position), is generated by trajectory generator. Access to the trajectory generator
is provided by motion statements, MOVEx and MDV, from the User Program.

S94P01G 41

Parameters

5.3.2 Drive PWM frequency
This parameter sets the PWM carrier frequency. Frequency can be changed only when
the drive is disabled. Maximum overload current is 300% of the drive rated current when
the carrier is set to 8kHz. It is limited to 250% at 16kHz.

5.3.3 Current Limit
The CURRENT LIMIT setting determines the nominal currents, in amps RMS per phase,
which output to the motor phases. To prevent the motor from overloading, this parameter
is usually set equal to the motor nominal (or rated) phase current. If MotionView (6.04)
or higher is used, the Current Limit is set equal to the nominal motor phase current by
default when a motor model is selected. To modify this parameter, refer to section 5.3.23.

5.3.4 Peak Current Limit (8 kHz and 16 kHz)
Peak Current Limit sets the motor RMS phase current that is allowed for up to 2
seconds. After this two second limit, the drive output current to motor will be reduced
to the value set by the Current Limit parameter. When the motor current drops below
nominal current for two seconds, the drive will automatically re-enable the peak current
level. This technique allows for high peak torque on demanding fast moves and fast
start/stop operations with high regulation bandwidth. If 8 kHz is used for Drive PWM
frequency, use the parameter 8 kHz Peak Current Limit, otherwise, use 16 kHz Peak
Current Limit.

If MotionView (6.04) or higher is used, the Peak Current Limit is set equal to 2.5 times
the nominal motor phase current by default when a motor model is selected. To prevent
motor from overloading, the Peak Current Limit shall be set no higher than the maximum
motor current. Otherwise, the motor may be damaged due to overheating. To modify
this parameter, refer to section 5.3.23.

5.3.5 Analog Input Scale (current scale)
This parameter sets the analog input sensitivity for current reference used when the
drive operates in torque mode. Units for this parameter are A/Volt. To calculate this
value use the following formula:

Iscale = Imax / Vin max
 Imax maximum desired output current (motor phase current RMS)
 Vin max max voltage fed to analog input at Imax

 Example: Imax = 5A (phase RMS)
 Vin max = 10V
 Iscale = Imax / Vin max
 = 5A / 10V = 0.5 A / Volt (value to enter)

5.3.6 Analog Input Scale (velocity scale)
This parameter sets the analog input sensitivity for the velocity reference used when the
drive operates in velocity mode. Units for this parameter are RPM/Volt. To calculate this
value use the following formula:

Vscale = VELOCITYmax / Vin max
 VELOCITYmax maximum desired velocity in RPM
 Vin max max voltage fed to analog input at Velocitymax

 Example: VELOCITYmax = 2000 RPM
 Vin max = 10V
 Vscale = VELOCITYmax / Vin max
 = 2000 / 10V
 = 200 RPM / Volt (value to enter)

S94P01G42

Parameters

5.3.7 ACCEL/DECEL Limits (velocity mode only)
The ACCEL setting determines the time the motor takes to ramp to a higher speed.
The DECEL setting determines the time the motor takes to ramp to a lower speed. If
the ENABLE ACCEL/DECEL LIMITS is set to DISABLE, the drive will automatically
accelerate and decelerate at maximum acceleration limited only by the current limit
established by the PEAK CURRENT LIMIT and CURRENT LIMIT settings.

5.3.8 Reference
The REFERENCE setting selects the reference signal being used by the drive. This
reference signal can be either External or Internal. An External Reference can be one
of three types, an Analog Input signal, a Step and Direction Input or an Input from a
external Master Encoder. The Analog Input reference is used when the drive is either
in torque or velocity mode. The Master Encoder and Step and Direction reference is
used when the drive is in position mode. An Internal Reference is used when the motion
being generated is derived from drive’s internal variable(s), i.e., User Program, (Refer
to the PositionServo Programming Manual).

5.3.9 Step Input Type (position mode only)
This parameter sets the type of input for position reference the drive expects to see.
Signal type can be step and direction (S/D) type or quadrature pulse-train (Master
Encoder / Electronic Gearing). Refer to section 4.2.1 for details on these inputs.

5.3.10 Fault Reset Option
The FAULT RESET OPTION selects the type of action required to reset the drive after
a FAULT signal has been generated by the drive. ON DISABLE clears the fault when
the drive is disabled. This is useful if you have a single drive and motor connected
in a single drive system. The ON ENABLE option clears the fault when the drive is
re-enabled. Choose ON ENABLE if you have a complex servo system with multiple
drives connected to an external controller. This makes troubleshooting easier since the
fault will not be reset until the drive is re-enabled. Thus, a technician can more easily
determine which component of a complex servo system has caused the fault.

5.3.11 Motor Temperature Sensor
This parameter enables / disables motor over-temperature detection. It must be
disabled if the motor PTC sensor is not wired to either P7.1-2 or to the resolver option
module (P11).

5.3.12 Motor PTC Cut-off Resistance
This parameter sets the cut-off resistance of the PTC which defines when the motor
reaches the maximum allowable temperature. See section 4.5.2 for details how to
connect motor’s PTC.

5.3.13 Second Encoder
Disables or enables second encoder. Effectively selects single-loop or double-loop
configuration in position mode. The second encoder connects to the Encoder Option
Module (E94ZAENC1) connector P12, refer to section 6.4 for details on dual loop
operation.

S94P01G 43

Parameters

5.3.14 Regeneration Duty Cycle
This parameter sets the maximum duty cycle for the brake (regeneration) resistor. This
parameter can be used to prevent brake resistor overload. Use the following formula
to calculate the maximum value for this parameter. If this parameter is set equal to
the calculated value, the regeneration resistor is most effective without overload. One
may set this parameter with a value smaller than the calculated one if the drive will not
experience over voltage fault during regeneration.

 D = P * R / (Umax)2 * (1/Dapplication) * 100%

Where:

D (%) regeneration duty cycle

Umax (VDC) bus voltage at regeneration conditions

 Umax = 390 VDC for 120/240 VAC drives and 770 VDC for
 400/480 VAC drives.

R (Ohm) regeneration resistor value

P (W) regeneration resistor rated power

Dapplication (%) application duty cycle. For the continuous regeneration applications,
use Dapplication = 1. For the intermittent regeneration applications, use
Dapplication = t/T, where t is the duration when regeneration is needed
and T is the time interval between two regenerations. Both t and T must
use the same time unit, e.g., seconds

t, regeneration

T-t, regeneration
is not needed

T

If calculation of D is greater than 100% set it to 100% value. If calculation of D is
less than 10% then resistor power rating is too low. For more information refer to the
PositionServo Dynamic Braking Manual (G94BR01).

Minimum Required Dynamic Braking Resistance

Drive Model DB Resistor
Minimum Resistance (Ω)

E94_180T2N~~ 15

E94_080S2F~~, E94_080Y2N~~,
E94_100S2F~~, E94_100Y2N~~

20

E94_120Y2N 30

E94_020S1N~~, E94_020S2F~~,
E94_020Y2N~~, E94_040S1N~~,
E94_040S2F~~, E94_040Y4N~~

40

E94_090T4N~~ 45

E94_040T4N~~, E94_050T4N~~,
E94_060T4N~~

75

E94_020T4N~~ 150

S94P01G44

Parameters

5.3.15 Encoder Repeat Source
This parameter sets the feedback source signal for the buffered encoder outputs (P3.7
-P3.12). The source can be the drive’s feedback input (P4) or an optional feedback
module (resolver, second encoder etc.)

5.3.16 System to Master Ratio
This parameter is used to set the scale between the reference pulse train (when operating
in position mode) and the system feedback device. In a single loop configuration, the
system feedback device is the motor encoder or resolver. In a dual-loop system the
system encoder is the second encoder. See sections 6.3 and 6.4 for details.

5.3.17 Second to Prime Encoder Ratio
This parameter sets the ratio between the secondary encoder and the primary feedback
device when the drive is configured to operate in dual-loop mode. When the primary
feedback device is a resolver, the pulse count is fixed at 65,536. The resolutions of
encoders are “post quadrature” (PPR x 4). See section 6.4.

NOTE
Post quadrature pulse count is 4X the pulses-per-revolution (PPR) of the encoder.

5.3.18 Autoboot
When set to “Enabled” the drive will start to execute the user’s program immediately
after cold boot (reset). Otherwise the user program has to be started from MotionView
or from the Host interface.

5.3.19 Group ID
Refer to the PositionServo Programming Manual for details. This parameter is only
needed for operations over Ethernet network.

5.3.20 Enable Switch Function
If set to “Run”, input IN_A3 (P3.29) acts as an “Enable” input when the user program
is not executing. If the user program is executing, the function will always be “Inhibit”
regardless of the setting. This parameter is needed so the drive can be Enabled/
Disabled without running a user’s program.

5.3.21 User Units
This parameter sets up the relationship between User Units and motor revolutions.
From here you can determine how many User Units there is in one motor revolution.
This parameter allows the user to scale motion moves to represent a desired unit of
measure, (inches, meters, in/sec, meters/sec, etc). For example: A linear actuator
allows a displacement of 2.5” with every revolution of the motor’s shaft.

Units = Units / Revolutions
Units = 2.5 Inches / Revolution
Units = 2.5

5.3.22 Resolver Track
The Resolver Track parameter is used in conjunction with the resolver motors and
Buffered Encoder Outputs, (section 4.2.2). If a motor with resolver feedback is being
used a simulated encoder feedback is transmitted out the Buffered Encoder Outputs,
P3.7 to P3.12. The default resolution of this feedback is 1024 pulses per revolution, pre
quad. If a different resolution is required then the Resolver Track parameter is utilized.

S94P01G 45

Parameters
The number entered into this field, 0-15, directly correlates to a different encoder
resolution. Please reference the table herein.

Resolver Track Configuration

Resolver
Track

Resolution
Before Quad

Resolver Track Resolution
Before Quad

0 1024 8 1000

1 256 9 1024

2 360 10 2000

3 400 11 2048

4 500 12 2500

5 512 13 2880

6 720 14 250

7 800 15 4096

5.3.23 Current Limit Max Overwrite
If this parameter is set to “Disable”, the parameters “Current limit”, “8 kHz peak current
limit” and “16 kHz peak current limit” cannot be overwritten. If you want to overwrite
the above three current limit parameters, this parameter must be set as “Enable”. To
prevent the motor from overloading, the “current Limit”, “8 kHz peak current limit” and
“16 kHz peak current limit” shall be set to values no higher than the corresponding
current limits of the motor in use. Note that this parameter applies to firmware version
(3.06) or higher.

5.4 Communication

5.4.1 Ethernet Interface
Programming and diagnostics of the PositionServo drive are done over the standard
10/100 Mbps Ethernet communication port. All devices on an Ethernet network have an
IP address. Before connecting MotionView software to the PositionServo drive, set up
the IP address of the drive and configure the PC as well.

The IP address of the PositionServo drive is composed of four sub-octets that are
separated by three dots. This conforms to the Class C Subnet structure. The sub-octets
IP_1, IP_2, IP_3 and IP_4 can be found by using “UP” and “DOWN” buttons of the LED
panel and are organized in the following order:

IP_1.IP_2.IP_3.IP_4

where each sub-octet IP_x can be any number between 1-254. On the LED display,
only IP_4 can be changed. IP_1, IP_2 and IP_3 can be changed once the PositionServo
drive is connected to the MotionView software. As shipped from the factory the default
IP address is 192.168.124.120.

If using the default PC Ethernet port on your computer for internal use (email, web
browsing, etc,) AC Tech recommends that you add an additional Ethernet port to
your PC. The most common and cost effective way to do this is by using a USB /
Ethernet dongle or a PCMCIA Ethernet card. Then configure this Ethernet port to the
PositionServo Subnet address and leave your local connection for your internal use.

There are two modes to obtain the IP address of the PositionServo drive by setting
DHCP equal to either 0 or 1. These modes are described herein. It is important to know
that the drive must be rebooted after changing any Ethernet settings such as IP address
and DHCP.

S94P01G46

Parameters

5.4.1.1 Manually Obtain the PositionServo Drive’s IP Address
The PositionServo drive can be connected to a local PC or a private network if setting
DHCP=0. In this mode, make sure to set DHCP = 0 via the diagnostic display LED,
refer to section 7.1 for details. One can also verify the IP address of the drive via the
display LED. When shipped from the factory the default IP address of the PositionServo
drive is 192.168.124.120. Before MotionView can establish communications to the
drive, both the PC and the PositionServo drive must be on the same subnet, but have
different addresses. That is, both the PC and PositionServo drive shall have the same
sub-octects IP_1, IP_2 and IP_3 and different IP_4. When connecting MotionView to a
brand-new PositionServo drive out of box, set the PC’s IP address as 192.168.124.1.
Refer to section 6.4.1.3 on how to set up your PC IP address. Every time dHCP, or any
IP sub-octect IP_x is changed, one must reboot the PositionServo drive so that the
change can take effect.

Once the MotionView software is connected to the PositionServo drive, one can change
the DHCP setting and the drive IP address via the communication option “Ethernet” –
“IP setup” in MotionView. If one wants to configure the PositionServo drive’s IP address
under a specific subnet, for example, 10.135.110.xxx as shown below. One can pick
an available IP_4, e.g., 246 is used below, then click “OK” to confirm. After this change,
make sure to reboot the drive. After the drive reboot, the IP address stored in the EPM
before last power-off will be the drive’s IP address. In the meantime, one needs to
configure the PC’s IP address under the same subnet. In case, one may choose “Obtain
an IP Address Automatically” for the PC or pick up an available IP address, refer to
section 5.4.1.3 for details.

5.4.1.2 Automatically Obtain the PositionServo’s IP Address
To use this mode set dHCP = 1 via the diagnostic display LED (refer to section 7.1 for
details). After setting this parameter, cycle the input power to the PositionServo drive
so that the setting can take effect. The LED display will be “----“ if one checks the IP
address octets IP_1, IP_2, IP_3 and IP_4. This means that the drive is still trying to
acquire an IP address from the dHCP server. To obtain the PositionServo drive’s IP
address automatically, there must be a dHCP server available.

5.4.1.3 Set the PC’s IP Address
Follow these steps to set up the PC’s IP address:

To display the IP address of your PC, from the Start menu, select “Control Panel” and
then select “Network Connections”.

S94P01G 47

Parameters

Select the connection you wish to set: “Local Area Connection”, the PC Default Port
or “Local Area Connection x” your additional Ethernet port. Then double-click the icon
to open the [Connection Status] details. To view the connection properties click the
[Properties] button.

Select [Internet Protocol (TCP/IP)] and click the [Properties] button.

S94P01G48

Parameters

Select “Use the following IP address” and enter [192.168.124.1] for the IP address. Now
enter the subnet mask [255.255.255.0], and then click the [OK] button. Note that one
can use “Obtain an IP address automatically” after the PositionServo drive’s IP address
has been configured under the same subnet to which the PC is connected.

5.4.2 RS-485 Configuration
This parameter sets how the optional RS485 interface will function. The RS485
interface can be configured for normal operation (programming and diagnostics using
MotionView software) or as a Modbus RTU slave. Refer to section 4.4 for details on
communication interfaces.

5.4.3 Modbus Baud Rate
This parameter sets the baud rate for RS485 interface in Modbus RTU mode. When
the drive is operating in normal mode the baud rate is set to the same setting as the
RS232 interface.

5.4.4 Modbus Reply Delay
This parameter sets the time delay between the drives reply to the Modbus RTU master.
This delay is needed for some types of Modbus masters to function correctly.

5.5 Analog I/O

5.5.1 Analog Output
The PositionServo has one analog output with 10-bit resolution on P3 pin 23. The signal
is scaled to ±10V. The analog output can be assigned to following functions:

• Not Assigned

• Phase current RMS

• Phase current Peak

• Motor Velocity

• Phase R current

• Phase S current

• Phase T current

• Iq current (Torque component)

• Id current (Direct component)

S94P01G 49

Parameters

5.5.2 Analog Output Current Scale (Volt / amps)
Applies scaling to all functions representing CURRENT values.

5.5.3 Analog Output Current Scale (mV/RPM)
Applies scaling to all functions representing VELOCITY values. (Note: that mV/RPM
scaling units are numerically equivalent to volts/kRPM).

5.5.4 Analog Input Dead Band
Allows the setting of a voltage window (in mV) at the reference input AIN1+ and AIN1-
(P3 pins 24 and 25) such that any voltage within that window will be treated as zero
volts. This is useful if the analog input voltage drifts resulting in motor rotation when
commanded to zero.

5.5.5 Analog Input Offset Parameter
Allows you to adjust the offset voltage at AIN1+ and AIN1- (P3 pins 24 and 25). This
function is equivalent to the balance trim potentiometer found in analog drives. Lenze
recommends that this adjustment be made automatically using the “Adjust analog
voltage offset” button while the external analog reference signal commands zero speed.

5.5.6 Adjust Analog Input Zero Offset
This control button is useful to allow the drive to automatically adjust the analog input
voltage offset. To use it, command the external reference source input at AIN1+ and
AIN1- (P3 pins 24 and 25) to zero volts and then click this button. Any offset voltage
at the analog input will be adjusted out and the adjustment value will be stored in the
“Analog input offset” parameter.

5.6 Digital I/O
The PositionServo has four digital outputs. These outputs can be either assigned to one
of the following functions, or be used by the drives internal User Program

• Not Assigned No special function assigned. Output can be used by the User Program.

• Zero Speed Output activated when drive is at zero speed, refer to “Velocity Limits”
(section 5.7) for settings.

• In Speed Window Output activated when drive is in set speed window, refer to “Velocity
Limits” (section 5.7) for settings.

• Current Limit Output activated when drive detects current limit.

• Run Time Fault A fault has occurred. Refer to section 8.3 for details on faults.

• Ready Drive is enabled.

• Brake Command for the holding brake option (E94ZAHBK2) for control of a
motor with a holding brake. This output is active 10ms after the drive is
enabled and deactivates 10ms before the drive is disabled.

• In position Position mode only. Refer to the Programming Manual.

5.6.1 Digital Input De-bounce Time
Sets de-bounce time for the digital inputs to compensate for bouncing of the switch or
relay contacts. This is the time during an input transition that the signal must be stable
before it is recognized by the drive.

S94P01G50

Parameters

5.6.2 Hard Limit Switch Action
Digital inputs IN_A1 and IN_A2 can be used as limit switches if their function is set
to “Fault” or “Stop and Fault”. Activation of these inputs while the drive is enabled
will cause the drive to Disable and go to a Fault state. The “Stop and Fault” action is
available only in Position mode when the “Reference” parameter is set to “Internal”, i.e.,
when the source for the motion is the Trajectory generator. Refer to the PositionServo
Programming Manual for details on “Stop and Fault” behavior. IN_A1 is the negative
limit switch. IN_A2 is the positive limit switch. Both are treated as normally open.

5.7 Velocity Limits
These parameters are active in Velocity Mode Only.

5.7.1 Zero Speed
Specifies the upper threshold for motor zero speed in RPM. When the motor shaft
speed is at or below the specified value the zero speed condition is set to true in the
internal controller logic. The zero speed condition can also trigger a programmable
digital output, if selected.

5.7.2 Speed Window
Specifies the speed window width used with the “In speed window” output.

5.7.3 At Speed
Specifies the speed window center used with the “In speed window” output.

These last two parameters specify speed limits. If motor shaft speed is within these
limits then the condition AT SPEED is set to TRUE in the internal controller logic. The
AT SPEED condition can also trigger a programmable digital output, if selected. For
example if “AT SPEED” is set for 1000 RPM, and the “SPEED WINDOW” is set for
100, then “AT SPEED” will be true when the motor velocity is between 950 -1050 RPM.

5.8 Position Limits

5.8.1 Position Error
Specifies the maximum allowable position error in the primary (motor mounted)
feedback device before enabling the “Max error time” clock. When using an encoder,
the position error is in post-quadrature encoder counts. When using a resolver, position
error is measured at a fixed resolution of 65,536 counts per motor revolution.

5.8.2 Max Error Time
Specifies maximum allowable time (in mS) during which a position error can exceed
the value set for the “Position error” parameter before a Position Error Excess fault is
generated.

5.8.3 Second Encoder Position Error
Specifies the maximum allowable error of the second encoder in post quadrature
encoder counts before enabling the “Second encoder max error time” clock.

5.8.4 Second Encoder Max Error Time
Specifies maximum allowable time (in mS) during which the second encoder’s position
error can exceed the value set for the “Second encoder position error” parameter before
a Position Error Excess fault is generated.

S94P01G 51

Parameters

5.9 Compensation

5.9.1 Velocity P-gain (proportional)
Proportional gain adjusts the system’s overall response to a velocity error. The velocity
error is the difference between the commanded velocity of a motor shaft and the actual
shaft velocity as measured by the primary feedback device. By adjusting the proportional
gain, the bandwidth of the drive is more closely matched to the bandwidth of the control
signal, ensuring more precise response of the servo loop to the input signal.

5.9.2 Velocity I-gain (integral)
The output of the velocity integral gain compensator is proportional to the accumulative
error over cycle time, with I-gain controlling how fast the error accumulates. Integral
gain also increases the overall loop gain at the lower frequencies, minimizing total error.
Thus, its greatest effect is on a system running at low speed, or in a steady state without
rapid or frequent changes in velocity.

NOTE
The following four position gain settings are only active if the drive is operating in
Position mode. They have no effect in Velocity or Torque modes.

5.9.3 Position P-gain (proportional)
Position P-gain adjusts the system’s overall response to position error. Position error is
the difference between the commanded position of the motor shaft and the actual shaft
position. By adjusting the proportional gain, the bandwidth of the drive is more closely
matched to the bandwidth of the control signal, ensuring more precise response of the
servo loop to the input signal.

5.9.4 Position I-gain (integral)
The output of the Position I-gain compensator is proportional to accumulative error over
cycle time, with I-gain controlling how fast the error accumulates. Integral gain also
increases overall loop gain at the lower frequencies, minimizing total error. Thus, its
greatest effect is on a system running at low speed, or in a steady state without rapid or
frequent changes in position.

5.9.5 Position D-gain (differential)
The output of the Position D-gain compensator is proportional to the difference between
the current position error and the position error measured in the previous servo cycle.
D-gain decreases the bandwidth and increases the overall system stability. It is
responsible for removing oscillations caused by load inertia and acts similar to a shock-
absorber in a car.

5.9.6 Position I-limit
The Position I-limit will clamp the Position I-gain compensator to prevent excessive
torque overshooting caused by an over accumulation of the I-gain. It is defined in terms
of percent of maximum drive velocity. This is especially helpful when position error is
integrated over a long period of time.

S94P01G52

Parameters

5.9.7 Gain Scaling Window
Sets the total velocity loop gain multiplier (2n) where n is the velocity regulation window.
If, during motor tuning, the velocity gains become too small or too large, this parameter
is used to adjust loop sensitivity. If the velocity gains are too small, decrease the total
loop gain value, by deceasing this parameter. If gains are at their maximum setting and
you need to increase them even more, use a larger value for this parameter.

5.10 Tools

5.10.1 Oscilloscope Tool
The oscilloscope tool gives real time representation of different signals inside the
PositionServo drive and is helpful when debugging and tuning drives. Operation of
the oscilloscope tool is described in greater detail in the MotionView User’s Manual
(IM94MV01). The following signals can be observed with the oscilloscope tool:

Phase Current (RMS): Motor phase current

Phase Current (Peak): Motor peak current

Iq Current: Measures the motor Iq (torque producing) current

Motor Velocity: Actual motor speed in RPM

Commanded Velocity: Desired motor speed in RPM (velocity mode only)

Velocity Error: Difference in RPM between actual and commanded motor speed

Position Error: Difference between actual and commanded position (Step & Direction mode only)

Bus Voltage: DC bus voltage

Analog Input: Voltage at drive’s analog input

Absolute Position: Absolute (actual) position

Absolute Position Pulses: Absolute position expressed in pulses of the primary feedback device

Secondary Abs Position: Absolute (actual) position of secondary feedback device

Secondary Position Error: Difference between actual and commanded position of secondary feedback device

Target Position: Requested position

Target Position Pulses: Requested position expressed in pulses of the primary feedback device

Position Increment: Commanded position increment

5.10.2 Run Panels
Check Phasing

This button activates the Autophasing feature as described in section 4.6.2. However, in
this panel only the motor phasing is checked, the motor data is not modified.

5.11 Faults
The Faults Group loads the fault history from the drive. The 8 most recent faults are
displayed with the newer faults replacing the older faults in a first-in, first-out manner.
In all cases fault # 0 is the most recent fault. To clear the faults history from the drive’s
memory click on the “Reset Fault history” button. Each fault has its code and explanation
of the fault. Refer to section 8.3 for details on faults.

S94P01G 53

Operation

6 Operation
This section offers guidance on configuring the PositionServo drive for operations in
torque, velocity or position modes without requiring a user program. To use advanced
programming features of PositionServo please perform all steps below and then refer
to the PositionServo Programming Manual for details on how to write motion programs.

6.1 Minimum Connections
For the most basic operation, connect the PositionServo to mains (line) power at
terminal P1, the servomotor power at P7 and the motor feedback as appropriate.

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or with
circuit elements to prevent the risk of serious injury or fatality. Disconnect
incoming power and wait at least 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

As a minimum these connections must be made:

• Connect an Ethernet crossover cable between PositionServo’s P2 and your PC’s
Ethernet port. A straight patch cable can be used if using a hub or switch.

• Connect mains power to terminal P1. Mains power must be as defined on the
drive’s data label (section 2.1).

• When connecting to an encoder-based drive, take the encoder feedback cable
and connect it to the15 pin D-sub connector located at P4. When connecting to a
resolver-based drive, take the resolver feedback cable and connect it to the 9 pin
D-sub connector located at P4.

• Connect motor windings U, V, W (also known as R, S, T) to terminal P7 according
to Section 4.1.1. Make sure that motor cable shield is connected as described in
section 3.2.

• Provide an Enable switch (IN_A3) according to Section 6.5.

• Perform drive configuration as described in the next section.

Note
When using an encoder-based drive and operating with a resolver option module
as the primary feedback, a second encoder can be connected to P4.

6.2 Configuration of the PositionServo
The PositionServo must first be configured for the specific motor that will be used, the
mode of operation, and then any additional features that will be used.

Drive configuration consists of following steps:

• Motor Selection
• Mode of operation selection
• Reference source selection (Very Important)
• Drive parameters (i.e. current limit, acceleration / deceleration) setup
• Operational limits (velocity or position limits) setup
• Input / Output (I/O) setup
• Velocity / position compensator (gains) setup
• Optionally store drive settings in a PC file and exit the MotionView program.

S94P01G54

Operation
To configure drive:

1. Ensure that the control is properly installed and mounted. Refer to section 4
for installation instructions.

2. Perform wiring to the motor and external equipment suitable for desired
operating mode and your system requirements.

3. Connect the Ethernet port P2 on the drive to your PC Ethernet port. If
connecting directly to the drive from the PC, a crossover cable is required.

4. Make sure that the drive is disabled.
5. Apply power to the drive and wait until “diS” shows on the display. For

anything other than this, refer to the chart below before proceeding.

Drive Display Meaning

-EP- EPM missing. Refer to 6.1.2

EPM EPM data. Refer to 6.1.2

- - - - No valid firmware
- - - - Monitor mode

6. Confirm that the PC and the drive have the correct IP setting. Refer to
section 5.4.1.1 - Setting Your PC IP Address.

7. Launch MotionView software on your computer.
8. From the MotionView menu, select <Project> <Connection setup>.
9. Select “Ethernet UDP”, then click the OK button.
10. From the MotionView menu, select <Node> <Connect Drive>.
11. Click the Discover button to ping the network for any drives. If a drive

is located the address will appear on the screen. If no address appears
then you can type the IP address in. The default address for the drive is
192.168.124.120. Click the Connect button to connect to the drive.

12. Once MotionView connects to the drive, its node icon will appear in the upper
left-hand corner of the Parameter Tree Window. Refer to the PositionServo
Programming Manual for more details.

Note
MotionView’s “Connection setup” properties need only be
configured the first time MotionView is operated or if the port
connection is changed. Refer to MotionView User’s Manual
for details on how to make a connection to the drive.

13. Double-click on the drive’s icon to expand parameter group’s folders.
14. Select the motor to be used according to the section 4.5.
15. Expand the folder “Parameters” and choose the operating mode for the drive.

Refer to section 5.3.1 for details on operating modes.
16. Click on the “Current limit” parameter, refer to section 5.3.3 and enter current

limit (in Amp RMS per phase) appropriate for the motor.
17. Click on the appropriate “Peak current limit” parameter, refer to section 5.3.4,

based on the “Drive PWM frequency” parameter, refer to section 5.3.2, used
and enter the peak current limit (in Amps RMS per phase) appropriate for
your motor.

18. Set up additional parameters suitable for the operating mode selected in step 17.
19. After you configure the drive, proceed to the tuning procedure if operating

in “Velocity”, or “Position” mode. “Torque” mode doesn’t require additional
tuning or calibration. Refer to section 6.6 for details on tuning.

S94P01G 55

Operation

6.3 Position Mode Operation (gearing)
In position mode the drive will follow the master reference signals at the 1-4 inputs of
P3. The distance the motor shaft rotates per each master pulse is established by the
ratio of the master signal pulses to motor encoder pulses (in single loop configuration).
The ratio is set by “System to Master ratio” parameter (see section 5.3.16).

Example 1

Problem: Setup the drive to follow a master encoder output where 1 revolution of
the master encoder results in 1 revolution of the motor

Given: Master encoder: 4000 pulses / revolution (post quadrature)
 Motor encoder: 8000 pulses / revolution (post quadrature)

Solution: Ratio of System (motor encoder) to Master Encoder is 8000/4000 = 2/1
 Set parameter “System to master ratio” to 2:1

Example 2

Problem: Setup drive so motor can follow a master encoder wheel where 1
revolution of the master encoder results in 3 revolutions of the motor

Given: Motor encoder: 4000 pulses / revolution (post quadrature)
 Master encoder: 1000 pulses / revolution (post quadrature).
 Desired “gear ratio” is 3:1
Solution: Ratio is motor encoder PPR divided by master encoder PPR times the

“gear ratio”:
 (Motor PPR / Master PPR)*(3/1) => (4000/1000)*(3/1) => 12/1
 Set parameter “System to master ratio” to 12:1

6.4 Dual-loop Feedback
In dual-loop operation (position mode only) the relationship between the Master input
and mechanical system movement requires that two parameters be set:

1. “System to master ratio” sets the ratio between the second encoder pulses (system
encoder) and the master input pulses.

2. “Prime to second encoder ratio” sets the ratio between the second and primary
(motor) encoder. If the motor is equipped with a resolver connected to the resolver
option module, the primary encoder resolution of 65536 (post quadrature) must
be used.

When operating in this mode the second encoder input is applied to integral portion of
the position compensator. Therefore it is important that the Position I-gain and Position
I-limit parameters are set to non 0 values. Always start from very small values of Position
I-limit values.

Note
When using an encoder-based drive and operating with the Resolver
Option Module as the primary feedback, a second encoder can be
connected to P4.

S94P01G56

Operation

6.5 Enabling the PositionServo
Regardless of the selected operating mode, the PositionServo must be enabled before
it can operate. A voltage in the range of 5-24 VDC connected between P3 pins 26 and
29 (input IN_A3) is used to enable the drive, refer to section 4.1.7, note 3. The behavior
of input IN_A3 differs depending on the setting of “Enable switch function”.

TIP!
If using the onboard +5VDC power supply for this purpose, wire your switch between
pins P3.6 and P3.29. Jumper P3.5 to P3.26. If doing this, all inputs in group A must
be powered by P3.6.

When the “Enable switch function” is set to “RUN”:

IN_A3 acts as positive logic ENABLE or negative logic INHIBIT input depending on:

If user program is not running: Activating IN_A3 enables the drive

User program running: Activating IN_A3 acts as negative logic
 “Inhibit” and operates exactly as if parameter
 “Enable switch function” set to “Inhibit” (see below)

When the “Enable switch function’ set to “Inhibit”:

IN_A3 acts as negative logic INHIBIT input regardless of mode or program status.

Activating input IN_A3 doesn’t enables the drive. The drive can be enabled from the
user’s program or interface only when IN_A3 is active. Attempt to enable drive by
executing the program statement “ENABLE” or from interface will cause the drive to
generate a fault, F_36. Regardless of the mode of operation, if the input is deactivated
while the drive is enabled, the drive will be disabled and will generate a fault, F_36.

WARNING!
Enabling the servo drive allows the motor to operate depending on the reference
command. The operator must ensure that the motor and machine are safe to operate
prior to enabling the drive and that moving elements are appropriately guarded.
Failure to comply could result in damage to equipment and/or injury to personnel!

6.6 Drive Tuning
The PositionServo Drive will likely require some tuning of its gains parameters in order
to achieve best performance in the application in which it is being applied. Only when
the drive is placed in Torque Mode are the gain values not required to be tuned. The
table herein lists the gains parameters that should be adjusted for each of the drive
operating modes. These parameters are found within the ‘Compensation’ folder.

MotionView Parameter Torque Mode Velocity Mode Positioning Mode

Velocity P Gain No Yes Yes

Velocity I Gain No Yes Yes

Position P Gain No No Yes

Position I Gain No No Yes

Position D Gain No No Yes

Position I-Limit No No Yes

Gain Scaling No Yes Yes

Before using the tuning procedures detailed in the next sections, ensure that the system
is in a safe condition for tuning to be carried out. It is often beneficial to first tune the
motor off-load to obtain approximate gains setting before fine tuning in the application.

Check that the drive output to the motor is disabled (via Input A3) and that the drive
is powered up. Make sure any user program code previously entered into the [Indexer
Program] folder in MotionView has been saved prior to tuning so it can be easily recalled
after tuning is complete.

S94P01G 57

Operation

WARNING!
During both the Velocity and Position tuning procedures the PositionServo
drive will perform rotation (motion) of the motor shaft in the forward and
reverse directions at velocities based on the settings made by the user.
Ensure that the motor and associated mechanics of the system are safe
to operate in the way specified during these procedures.

6.6.1 Tuning the Drive in Velocity Mode
1) Parameter Setup

Set up the motor as per the instructions given in the relevant section of this manual. The
motor must be configured correctly prior to tuning taking place.

The parameters Drive Mode, Reference and Enable Switch Function are configured
automatically by the velocity tuning program. They are not required to be set at this
stage.

2) Importing the Velocity Tuning Program

Before importing the Velocity Tuning Program, the example programs must be installed
from the Documentation CD that shipped with the drive. If this has not been done then
please do so now.

To load the TuneV program file to the drive, select [Indexer Program] in the MotionView
Parameter Tree. Select [Import program from file] on the main toolbar. Navigate to
[C:\Program Files\AC Technology\MotionView6.xx\Help\940Examples]. If during the
installation of the Documentation CD files a different default directory was selected,
then navigate to that directory. Click on the [TuneV.txt] file and select [Open].

3) Editing the Velocity Tuning Program

The Tune Velocity Program creates a step velocity demand in the forward and reverse
directions that the drive will attempt to follow (based on its velocity gain settings). The
drive will run for a set time in the forward direction and then reverse the reference and
run for the same set time in the reverse direction, showing the acceleration, deceleration
and steady state performance.

The speed and period (time for one complete cycle - forward and reverse) is set in the
Indexer program with the following statements:

; Motion Parameters
Define SpeedReference 5 ; speed reference in Rps
Define Period 500 ; time in millisec

Adjust these parameters to values suitable to the application in which the drive is used
before going to the next step.

S94P01G58

Operation
4) Compile and Download Indexer Program to Drive

In the [Indexer program] folder in MotionView, select [Compile and Load with Source]
from the pull down menu. The TuneV program will be compiled and sent to the drive.
Select [Run] from the pull down menu to run the TuneV program. Do NOT enable the
drive (via input A3) at this stage.

5) Oscilloscope Settings

Open the [Tools] folder in MotionView and select the [Oscilloscope] tool. Click the [Set
on Top] box to place a checkmark in it and keep the scope on top.

In the Scope Tool Window make the following settings:

Channel 1: Signal = “Commanded Velocity”

 Scale = appropriate to “SpeedReference” value set in Indexer Program

Channel 2: Signal = “Motor Velocity”

 Scale = appropriate to “SpeedReference” value set in Indexer Program

Timebase: = as appropriate to “Period” value of Indexer Program

Trigger: = Channel 1, Rising Edge

Level: = 10 RPM

For better resolution, adjust these scaling factors during the tuning procedure.

6) Compensation Folder

In MotionView, open the [Compensation] folder for the drive. Set [Gain Scaling] to a
relatively low value, e.g. -6 for Encoder motor and -8 for a Resolver Motor. Set the
[Velocity P-gain] to a mid-value (16000) and set the [Velocity I-Gain] to 0.

7) Gain Tuning

The system should now be ready to start tuning the velocity gains. Start the Oscilloscope
by clicking [Run]. Apply the Enable input to Input A3 to enable the drive. At this point of
the procedure it is desirable to have little to no motion until we start to increase the gain
settings. If the motor vibrates uncontrollably disable the drive, lower the Gain Scaling
parameter value and repeat the input enable.

Step 1: Setting the Gain Scaling Parameter

The gain scaling parameter is a ‘course adjustment’ of the other gain’s parameter
values. Steadily increase the value of the gain scaling parameter until a reasonable
response is obtained from the motor (motor velocity starts to resemble the commanded
velocity).

Gain Scaling set too LOW
Motor Velocity significantly different than

Commanded Velocity.

S94P01G 59

Operation

Gain Scaling set OK
Motor Velocity resembles Commanded

Velocity. Motor Velocity is reasonably close
with a slight overshoot.

Gain Scaling set too HIGH
Motor Velocity shows significant overshoot

following the acceleration periods.

Gain Scaling set significantly too HIGH
Motor Velocity exhibits instability throughout

the steady state Commanded Velocity.

Depending on the system begin tuned, the motor may go from stable operation (little to
no overshoot with stable steady state velocity) to instability (continuous and pronounced
oscillations during steady state command) very quickly as gains scaling is increased.
The bandwidth for allowing some overshoot with a quick settle time may be very small
and may only be achieved through adjustment of the Velocity P-Gain, as described in
Step 2. Set the gain scaling parameter to the value preceding that where significant
overshoot or continuous instability occurs. With the Gain scaling parameter set move
onto tuning the velocity P and I gains.

S94P01G60

Operation
Step 2: Fine Tuning the Velocity P-Gain

Slowly alter the Velocity P-Gain (increase and decrease) and observe the motor velocity
waveform on the oscilloscope. As the P-Gain increases the gradient of the velocity
during acceleration and deceleration will also increase as will the final steady state
velocity that is achieved. The application of too much P-Gain will eventually result in an
overshoot in the motor velocity, and further increases will result in larger overshooting
to the point that instability (continuous oscillation) occurs.

Increase the velocity P-gain until some overshoot occurs. Some overshoot is generally
ok, and the objective is typically to achieve the shortest possible settle time (steady
state velocity). When the system appears to have reached the shortest possible settle
time, with acceptable overshoot, cease from increasing the P-Gain.

Scope traces will be similar to those shown in Step 1, however the P-gain will now be
given a more precise adjustment in order to obtain the best possible tuning.

Good Fine Tuning of the P-Gain
Small overshoot with excellent settle time and

steady state velocity regulation.

Step 3: Setting the Velocity I-Gain

The purpose of the velocity I-gain is to correct any error that is present between
the commanded velocity and the steady state velocity that could not be rectified by
adjustment of the velocity P-gain. Adjustment of the velocity I-gain can also reduce the
steady state ripple that may occur in the velocity waveform. Lastly, velocity I-gain has a
positive effect on the holding torque produced by the motor.

Slowly increase the “Velocity I-Gain” and check for correction of the steady state error
in the velocity waveform. Continuing to increase the velocity I-gain will eventually result
in increased overshoot and instability in the motor velocity waveform. Stop increasing
the I-Gain when additional overshoot or instability starts to occur.

I-Gain set too LOW
Error exists between Commanded steady

state velocity and Actual steady state velocity

S94P01G 61

Operation

I-Gain set OK
No error between Commanded steady state
velocity and Actual steady state velocity with

excellent stability.

I-Gain set too HIGH
Additional overshoot and oscillations are
starting to occur. Steady state velocity

regulation

Step 4: Check Motor Currents

Finally check the motor currents on the Oscilloscope. Make the following settings to the
oscilloscope.

Channel 1:

Signal = “Phase Current RMS”

Scale = as appropriate to peak current limit set in drive parameters (MotionView)

Timebase: = as appropriate to “Period” value of Indexer Program

Trigger: = Channel 2, Rising Edge

Level: = 10 RPM

Observe the waveforms to insure there are no significant oscillations. Reduce the gains
values if necessary.

The current waveform should be showing spikes of current during acceleration /
deceleration and steady state current during any steady state velocity. The maximum
value (peak value) of the current waveform is shown at the top of the oscilloscope
screen. This maximum value can be compared to the drive nominal current and peak
current settings to check how much of the motors potential performance is being used
and if optimum performance is being achieved.

S94P01G62

Operation

Good Current Trace
Uniform current pulses during accel/

deceleration and stable current during steady
state velocity.

Instability in Drive Output Current
(Note: Channel 2 trace has been removed for

clarity).

8) End Velocity Tuning

Remove the Enable Input from input A3 (disable the drive). In MotionView, click on
the [Indexer] folder for the drive. Click [Reset] on the program toolbar. If the drive is to
be run in just velocity mode then tuning is now complete. If the drive is to be used in
Positioning mode continue with ‘Tuning the Drive in Position Mode’, section 6.6.2.

6.6.2 Tuning the Drive in Position Mode
Velocity Tuning should be carried out prior to the tuning of the position loop. Refer to the
Velocity Tuning section, 6.6.1.

1) Parameter Set up

In MotionView, open the [Limits] folder and then the [Position Limits] sub-folder. Set the
[Position Error] and [Max Error Time] parameters to their maximum values to effectively
disable the position error trip while tuning takes place. Ensure the system is safe to
operate in this manner.

Position Error = 32767

Max Error Time = 8000

The Drive Mode, Reference and Enable Switch Function parameters are automatically
configured by the velocity tuning program. They do not require setting at this stage.

S94P01G 63

Operation
2) Importing the Position Tuning Program

Before importing the Position Tuning Program, the example programs must be installed
from the Documentation CD that shipped with the drive. If this has not been done then
please do so now.

To load the TuneP program file to the drive, select [Indexer Program] in MotionView.
Select [Import program from file] on the main toolbar. Navigate to [C:\Program Files\
AC Technology\MotionView6.xx\Help\940Examples]. If during the installation of the
Documentation CD files a different default directory was selected, then navigate to that
directory. Click on the [TuneP.txt] file and select [Open].

3) Editing the Position Tuning Program

The Tune Position Program performs trapezoidal moves in the forward and reverse
direction separated by a defined pause (or time delay).

The Accel, Decel, and MaxV variables within the TuneP program define the ramps and
steady state velocity that will be used to execute the motion commands.

ACCEL = 500 ;500 rps*s Accel = Acceleration speed

DECEL = 500 ;500 rps*s Decel = Deceleration speed

MAXV = 20 ;20 Rps MaxV = Maximum

The size of each move and the pause between the moves is defined in the following
lines of code. There are two moves and pauses for the forward and reverse moves to
be performed.

MOVED 0.25 ;move 1 rev MoveD = Move distance

wait time 200 ;wait time to analyze ‘standstill’ stability wait time = Delay period

MOVED -0.25 ;move opposite direction 1 rev

wait time 200 ;wait time to analyze ‘standstill’ stability

Adjust these parameters if required to best suit the application before going to the next
step.

4) Compile and Download Indexer Program to Drive

In the [Indexer Program] folder in MotionView, select [Compile and Load with Source]
from the pull down menu. The TuneP program will be compiled and sent to the drive.
Select [Run] from the pull down menu to run the TuneP program. Do NOT enable the
drive (via input A3) at this stage.

S94P01G64

Operation
5) Oscilloscope Settings

Open the [Tools] folder]in MotionView and select the [Oscilloscope] tool. Click the [Set
on Top] box to place a checkmark in it and keep the scope on top.

In the Scope Tool Window, make the following settings:

Channel 1:

Signal = “Position Error”

Scale = as appropriate to the Error that results once the TuneP program is run.

Channel 2:

Signal = “Target Position”

Scale = as appropriate to the position move generated by the TuneP program

Timebase: = as appropriate to the “Period” of the moves being generated.

Trigger: = Channel 1, Rising Edge.

Level: = 10 Pulses

6) Compensation Folder

Open the [Compensation] folder in MotionView.

Leave the Velocity P-Gain and Velocity I Gain unchanged, as they should already have
been setup during velocity tuning. Do not adjust the Gain Scaling Parameter during this
procedure.

Set the [Position P-gain] to a low value (e.g. 100) and set the [Position I-Gain] and
[Position D-Gain] to 0.

7) Gain Tuning

The system should now be ready to start tuning the position loop. Start the Oscilloscope
by clicking [Run]. Apply the Enable input A3 to enable the drive.

The general goal in tuning the position loop is to achieve the minimum position error
while maintaining system stability. Some experimentation with gain values will be
required to achieve the best performance for the application.

Step 1: Setting the Position P-Gain

Slowly increase the Position P-Gain while watching the position error waveform on
oscilloscope Channel 1. It is important to watch both the Max Error as well as the
Average Error. While increasing Position P-gain, it should be apparent that both the
Max Error as well as the Average Error decrease.

Position P-Gain set too LOW
Large Position Error occuring and large error

in final positioning achieved

S94P01G 65

Operation

Increased Position P-Gain
Shows improvement to the maximum error

and the final positioning accuracy

At some point while increasing the P-Gain, additional oscillations (Average Error) will
start to appear on the position error waveform.

Further Increased Position P-Gain
Shows very good reduction to the maximum
error but with additional oscillations starting

to occur.

Step 2: Setting the Position D-Gain

Slowly increase the D-Gain while watching the position error waveform on oscilloscope
Channel 1. As the D-Gain is increased, the position error oscillation caused by the
P-Gain, should start to decrease. Continue to increase the D-Gain until oscillation is
gone or until D-Gain is no longer having any apparent effect.

Adjustment of Position D-Gain
in conjunction with the P-Gain dampens

out additional oscillations while improving
position error.

For optimum tuning, it is sometimes required to repeat the process of increasing the
P-Gain until a slight oscillation occurs and then increase the D-Gain to suppress that
oscillation. This procedure can be repeated until the increasing of D-Gain has negligible
effect on the position error waveform.

S94P01G66

Operation
Step 3: Setting the Position I-Gain and Position I-Gain Limit

The objective here is to minimize the position error during steady state operation and
improve positioning accuracy. Start to increase the Position I-gain. Increasing the I-gain
will increase the drive’s reaction time while the I-Limit will set the maximum influence
that the I-Gain can have on the Integral loop. When adjusting the I-gain start with a very
small value for the I-gain (e.g. 1) then increase the I-gain parameter value until stand-
still error is compensated and positioning accuracy is satisfactory. Remember that large
values of Position I-limit can cause a large instability in the control loop and unsettled
oscillation of the system mechanics.

Position Error trace following the tuning of
Position P-, I- and D-Gains

Step 4: Check Motor Currents

Set the oscilloscope channel 2 to ‘Phase Current RMS’

Channel 2:

Signal = “Phase Current RMS”

Scale = as appropriate to peak current limit set in drive parameters (MotionView)

Timebase: = as appropriate to the “Period” of the moves being generated

Trigger: = Ch1 Rising Edge

Level: = 10 Pulses

Observe the Current waveform to make sure that there are no significant oscillations
during the steady state sections of the position profile (times when target position is not
changing). If so then decrease the gains values until the oscillations are either removed
or reduced to an acceptable level.

Minimal oscillation when motor positioned to
target position.

S94P01G 67

Operation
8) Setting the Position Error Limits

Look at the position error waveform on the oscilloscope. Note the maximum time that
position errors exist (from the time axis of the scope) and the maximum peak errors
being seen (from the value at the top of the screen). Use this values to set the position
error limits to provide suitable position error protection for the application.

Open the ‘Limits’ folder and ‘Position Limits’ sub-folder within the MotionView node tree
and set suitable values for the ‘Position Error’ and ‘Max Error Time’ parameters.

Maximum error and time period for error
existing.

In this particular example maximum error in pulses is 95.0. The time this peak error
occurs can be read from the oscilloscope at approximately ½ of a division with each
division equal to 100ms, hence the error pulse lasts approximately 50mS. Suitable
settings for position error within this application might be as follows, although looser or
tighter limits could be applied depending on the requirements of the application.

Description Value

Position Error 100

Max Error Time 50

9) End Tuning

Remove the Enable Input from input A3 (disable the drive).

Click on the [Indexer Program] folder in MotionView. Click the [Reset] button at the top
of the indexer programming screen.

Tuning is now complete.

S94P01G68

Reference

7 Quick Start Reference
This section provides instructions for External Control, Minimum Connections and
Parameter Settings to quickly setup a PositionServo drive for External Torque,
Velocity or Positioning Modes. The sections are NOT a substitute for reading the entire
PositionServo User Manual. Observe all safety notices in this manual.

7.1 Quick Start - External Torque Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector - Pin Input Name Description

P3-22 ACOM Analog Common Reference from Controller

P3-24 AIN1+ Analog Torque Reference from Controller – Positive

P3-25 AIN1- Analog Torque Reference from Controller – Negative

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z- Buffered Encoder Output

P3-23 AO Analog Output

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

Mandatory Parameter Settings:
These Parameters are required to be set prior to running the drive

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Torque]

Reference Set to [External]

IO / Analog IO Analog Input (Current Scale) Set to required current per 1V input from controller

Analog Input Dead band Set zero torque Dead band in mV

Analog Input Offset Set Analog Offset for Torque Reference

IO / Digital IO Enable Switch Function Set to [Run]

S94P01G 69

Reference
Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of a Zero Speed Output

At Speed Set Target Speed for activation of a At Speed Output

Speed Window Set bandwidth for activation of a At Speed Output

7.2 Quick Start - External Velocity Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector - Pin Input Name Description

P3-22 ACOM Analog Common Reference from Controller

P3-24 AIN1+ Analog Velocity Reference from Controller – Positive

P3-25 AIN1- Analog Velocity Reference from Controller – Negative

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z- Buffered Encoder Output

P3-23 AO Analog Output

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

S94P01G70

Reference
Mandatory Parameter Settings:
These parameters are required to be set prior to running the drive.

Folder/Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Velocity]

Reference Set to [External]

Enable Velocity Accel / Decel Limits Enable Ramp rates for Velocity Mode

Velocity Accel Limit Set required Acceleration Limit for Velocity command

Velocity Decel Limit Set required Deceleration Limit for Velocity command

IO / Analog IO Analog Input (Velocity Scale) Set to required velocity per 1 volt input from controller

Analog Input Dead band Set zero velocity Dead band in mV

Analog Input Offset Set Analog Offset for velocity Reference

IO / Digital IO Enable Switch Function Set to [Run]

Compensation Velocity P-Gain Set P-Gain for Velocity loop

(see tuning section) Velocity I_Gain Set I-Gain for Velocity loop

Gain Scaling Set Gain Scaling Parameter

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of Zero Speed Output

At Speed Set Target Speed for activation of At Speed Output

Speed Window Set bandwidth for activation of At Speed Output

S94P01G 71

Reference

7.3 Quick Start - External Positioning Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector-Pin Input Name Description

P3-1 MA+ Position Reference Input for Master Encoder / Step-Direction Input

P3-2 MA- Position Reference Input for Master Encoder / Step-Direction Input

P3-3 MB+ Position Reference Input for Master Encoder / Step-Direction Input

P3-4 MB- Position Reference Input for Master Encoder / Step-Direction Input

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z- Buffered Encoder Output

P3-22 ACOM Analog Common Reference from Controller

P3-23 AO Analog Output

P3-27 IN_A1 Positive Limit Switch: Required if Limit Switch Function is used

P3-28 IN_A2 Negative Limit Switch: Required if Limit Switch Function is used

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

S94P01G72

Reference
Mandatory Parameter Settings:
These parameters are required to be set prior to running the drive.

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Position]

Reference Set to [External]

Step Input Type Set to [S/D] or [Master Encoder]. (S/D = Step + Direction)

System to Master Ratio
Set ‘Master’ and ‘Slave’ values to gear position input

pulses to pulse revolution of the motor shaft

IO / Digital IO Enable Switch Function Set to [Run]

Limits / Position Limits Position Error Set Position Error Limit specific to application

Max Error Time Set Position Error Time specific to application

Compensation Velocity P-Gain Set P-Gain for Velocity loop

(see tuning section) Velocity I_Gain Set I-Gain for Velocity loop

Position P-Gain Set P-Gain for Position Loop

Position I-Gain Set I-Gain for Position Loop

Position D-Gain Set D-Gain for Position Loop

Position I-Limit Set I-Limit for Position Loop

Gain Scaling Set Gain Scaling Parameter

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

Hard Limit Switch Actions Set if Hard Limit Switches used in Application

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of a Zero Speed Output

At Speed Set Target Speed for activation of a At Speed Output

Speed Window Set bandwidth for activation of a At Speed Output

S94P01G 73

Diagnostics

8 Diagnostics

8.1 Display
The PositionServo drives are equipped with a diagnostic LED display and 3 push
buttons to select displayed information and to edit a limited set of parameter values.

Parameters can be scrolled by using the “UP” and “DOWN” () buttons. To view
a value, press “Enter”(). To return back to scroll mode press “Enter” again. After
pressing the ”Enter” button on editable parameters, the yellow LED “C” (see figure in
the next section) will blink indicating that parameter value can be changed. Use “UP”
and “DOWN” buttons to change the value. Press “Enter” to store new setting and return
back to scroll mode.

Display Description

StAt current drive status - to view:
run - drive running
diS - drive disabled
F_XX - drive fault. Where XX is the fault code (section 8.3.2)

Hx.xx Hardware revision (e.g. H2.00)

Fx.xx Firmware revision (e.g. F2.06)

bAUd RS232/RS485(normal mode) baud rate - to set

 selects from 2400 to 115200 baudrates

Adr Drive’s address - to set

 sets 0 - 31 drive’s address

FLtS Stored fault’s history - to view

 scroll through stored faults F0XX - F7XX, “XX” is the fault code (section 8.3.2)

Ht Heatsink temperature - to view
Shows heatsink temperature in ºC if greater than 40ºC. Otherwise shows “LO” (low).

EnC Encoder activity - to view
Shows primary encoder counts for encoder diagnostics activity

HALL Displays motor’s hall sensor states - to view
Shows motor hall states in form XXX , where X is 1 or 0 - sensor logic states.

boot 0 = Autoboot disabled 1 = Autoboot enabled (Feature available in FW 3.50 or higher)

buS Displays drive DC bus voltage - to view
Shows DC bus voltage value

Curr Displays motor’s phase current (RMS)
Shows current value if drive is enabled, otherwise shows “DiS”

CAnb CAN Baudrate

CAnA CAN Address

CAno CAN Operational Mode

CAnd CAN Delay

CAnE CAN Enable/disable

dHCP Ehternet DHCP Configuration: 0=”dHCP” is disabled; 1=”dHCP is enabled.

IP_4 IP Adress Octet 4

IP_3 IP Adress Octet 3

IP_2 IP Adress Octet 2

IP_1 IP Adress Octet 1

S94P01G74

Diagnostics

8.2 LEDs
The PositionServo has five diagnostic LEDs located around the periphery of the front
panel display as shown in the drawing below. These LEDs are designed to help monitor
system status and activity as well as troubleshoot any faults.

S913

LED Function Description

A Enable Orange LED indicates that the drive is ENABLED (running).

B Regen Yellow LED indicates the drive is in regeneration mode.

C Data Entry Yellow LED will flash when changing.

D Comm Fault Red LED illuminates upon a communication fault. (in CANbus only)

E Comm Activity Green LED flashes to indicate communication activity.

8.3 Faults

8.3.1 Fault Codes
Listen herein are fault codes caused mostly by hardware operations. Refer to the
PositionServo Programming Manual for additional fault codes related to programming.

Fault
Code

(Display) Fault Description

F_OU Over voltage
Drive bus voltage reached the maximum level, typically due to motor
regeneration

F_FB Feedback error
Invalid Hall sensors code; Resolver signal lost or at least one motor hall
sensor is inoperable or not connected.

F_OC Over current
Drive exceeded peak current limit. Software incapable of regulating current
within 15% for more than 20mS. Usually results in wrong motor data or
poor tuning.

F_Ot Over temperature
Drive heatsink temperature has reached maximum rating.
Trip Point = 100°C for all drives except 480V 6A & 9A drives
Trip Point = 108°C for 480V 6A & 9A drives

F_OS Over speed Motor has reached velocity above its specified limit

F_PE
Position Error

Excess
Position error has exceeded maximum value.

F_bd Bad motor data Motor profile data is invalid or no motor is selected.

F_EP EPM failure EPM failure on power up

-EP- EPM missing EPM not recognized (connected) on power up

F_09
Motor over

temperature

Motor over temperature switch activated; Optional motor temperature
sensor (PTC) indicates that the motor windings have reached maximum
temperature

F_10
Subprocessor

failure
Error in data exchange between processors. Usually occurs when EMI
level is high due to poor shielding and grounding.

F_14 Under voltage
Occurs when the bus voltage level drops below 50% of nominal bus
voltage while drive is operating. An attempt to enable the drive with low bus
voltage will also result in this fault

S94P01G 75

Diagnostics

Fault
Code

(Display) Fault Description

F_15
Hardware overload

protection
Occurs when the phase current becomes higher than 400% of total drive’s
current capability for more then 5ms.

F_18
Arithmetic Error
Division by zero

Statement executed within the Indexer Program results in a division by 0
being performed. Drive programming error (error in drive source code).

F_19
Arithmetic Error

Register overflow

Statement executed within the Indexer Program results in a value being
generated that is too big to be stored in the requested register. Drive
programming error (error in drive source code).

F_20
Subroutine stack

overflow

Exceeded 32 levels subroutines stack depth. Caused by executing
excessive subroutine calls without a RETURN statement. Drive
programming error (error in drive source code).

F_21
Subroutine stack

underflow
Executing RETURN statement without preceding call to subroutine. Drive
programming error (error in drive source code).

F_22
Arithmetic stack

overflow
Variable evaluation stack overflow. Expression too complicated for
compiler to process. Drive programming error (error in drive source code).

F_23
Motion Queue

overflow
32 levels depth exceeded. Drive programming error (error in drive source
code).

F_24
Motion Queue

underflow
Relates to the MDV statements in the Indexer Program. Drive programming
error (error in drive source code).

F_25
Unknown
opcode

Byte code interpreter error; May occur when program is missing the closing
END statement; when subroutine has no RETURN statement; or if data in
EPM is corrupted at run-time

F_26
Unknown
byte code

Byte code interpreter error; May occur when program is missing the closing
END statement; when subroutine has no RETURN statement; or if data in
EPM is corrupted at run-time

F_27 Drive disabled
Attempt to execute motion while drive is disabled. Drive programming error
(error in drive source code).

F_28 Accel too high
Motion statement parameters calculate an Accel value above the system
capability. Drive programming error (error in drive source code).

F_29 Accel too low
Motion statement parameters calculate an Accel value below the system
capability. Drive programming error (error in drive source code).

F_30 Velocity too high
Motion statement parameters calculate a velocity above the system
capability. Drive programming error (error in drive source code).

F_31 Velocity too low
Motion statement parameters calculate a velocity below the system
capability. Drive programming error (error in drive source code).

F_32
Positive Limit

Switch
Positive limit switch is activated.
(Only available while drive is in position mode)

F_33
Negative Limit

Switch
Negative limit switch is activated.
(Only available while drive is in position mode)

F_34
Positive motion w/
Pos Lim Sw ON

Attempt at positive motion with engaged positive limit switch

F_35
Negative motion w/

Neg Lim Sw ON
Attempt at negative motion with engaged negative limit switch

F_36

Drive Disabled by
User at Enable

Input

The drive is disabled while operating or an attempt is made to enable the
drive without deactivating “Inhibit input”. “Inhibit” input has reverse polarity

F_39
Positive soft limit

reached
Programmed (Soft) absolute limits reached during motion

F_40
Negative soft limit

reached
Programmed (Soft) absolute limits reached during motion

F_41
Unknown Variable

ID
Attempt to use variable with unknown ID from user program. Drive
programming error (error in drive source code).

F_45
2nd Encoder
Position Error

Secondary encoder position error has exceeded maximum value

S94P01G76

Diagnostics

8.3.2 Fault Event
When drive encounters any fault, the following events occur:

• Drive is disabled

• Internal status is set to “Fault”

• Fault number is logged in the drive’s internal memory for later interrogation

• Digital output(s), if configured for “Run Time Fault”, are asserted

• Digital output(s), if configured for READY, are de asserted

• If the display is in the default status mode, the LEDs display F0XX where XX is
current fault code.

• “Enable” LED turns OFF

8.3.3 Fault Reset
Fault reset is accomplished by disabling or re-enabling the drive depending on the
setting of the “Reset option” parameter (section 5.3.10).

8.4 Troubleshooting

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or with
circuit elements to prevent the risk of serious injury or fatality. Disconnect
incoming power and wait at least 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

Before troubleshooting

Perform the following steps before starting any procedure in this section:

• Disconnect AC or DC voltage input from the PositionServo. Wait at least 60
seconds for the power to discharge.

• Check the PositionServo closely for damaged components.

• Check that no foreign material has fallen or become lodged in the PositionServo.

• Verify that every connection is correct and in good condition.

• Verify that there are no short circuits or grounded connections.

• Check that the drive’s rated phase current and RMS voltage are consistent
with the motor ratings.

For additional assistance, contact your local PositionServo® authorized distributor.

Problem External line fuse blows

Possible Cause Line fuses are the wrong size
Motor leads or incoming power leads are shorted to ground.

Nuisance tripping caused by EMI noise spikes caused by poor
grounding and/or shielding.

Suggested Solution • Check that line fuses are properly sized for the motor being used.
• Check motor cable and incoming power for shorts.
• Check that you follow recommendation for shielding and grounding

listed in section “shielding and grounding” early in this manual.

S94P01G 77

Diagnostics

Problem Ready LED is on but motor does not run.

Suggested Solution If in Torque or Velocity mode:
Reference voltage input signal is not applied.

Reference	signal	is	not	connected	to	the	PositionServo	input	
properly;	connections	are	open.
In	MotionView	program	check	<Parameters>	<Reference>	set	
to	<External>

For Velocity mode only:
In	MotionView	check	<Parameters>	<Compensation><Velocity				
loop	filter>	P-gain	must	be	set	to	value	more	then	0	in	order	to	
run.	Without	load	motor	will	run	with	P-gain	set	as	low	as	20	but	
under	load	might	not.	If	P-gain	is	set	to	0	motor	will	not	run	at	all.

In Position mode with master encoder motion source (no program)
Reference	voltage	input	signal	source	is	not	properly	selected.
In	MotionView	program	check	<Parameters>	<Reference>	set	
to	<External>

In Position mode using indexing program
Variables	ACCEL,	DECEL,MAXV,	UNITS		are	not	set	or	set	to	
0.	Before	attempting	the	move	set	values	of	motion	parameters	
ACCEL,	DECEL,MAXV,	UNITS	

Problem In velocity mode, the motor runs away.

Possible Cause • Hall sensors or encoder mis-wired.
• PositionServo not programmed for motor connected.

Suggested Solution • Check Hall sensor and encoder connections.
• Check that the proper motor is selected.

S94P01G78

Notes

S94P01G 79

Notes

S94P01G80

Notes

Lenze AC Tech Corporation
630 Douglas Street • Uxbridge, MA 01569 • USA
Sales: (800) 217-9100 • Service (508) 278 9100

www.lenze-actech.com

Document
S94P01G-e1

PositionServo with MVOB
Users Manual
Valid for Hardware Version 2

Copyright ©2013 - 2010 by Lenze AC Tech Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written
permission from Lenze AC Tech Corporation. The information and technical data in this manual are
subject to change without notice. Lenze AC Tech makes no warranty of any kind with respect to this
material, including, but not limited to, the implied warranties of its merchantability and fitness for a given
purpose. Lenze AC Tech assumes no responsibility for any errors that may appear in this manual and
makes no commitment to update or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks or trademarks
of Lenze AG in the United States and other countries.

Windows™ and all related indicia are registered trademarks of Microsoft Corporation.

Java™ and all related indicia are registered trademarks of Sun Microsystems, Incorporated.

CANopen® is a registered trademark of ‘CAN in Automation (CiA)’.

DeviceNet™, EtherNet/IP™, and all related indicia are trademarks of ODVA (Open Device Vendors
Association).

PROFIBUS DP™ is a registered trademark of PROFIBUS International.

S94H201E_13426446_EN L 1

Contents

1 Introduction. 5
1.1 Safety Information . 5
1.2 Legal Regulations. 5
1.3 General Drive Information. 6

1.3.1 Mains Configuration . 6
1.3.2 Operating Modes. 6
1.3.3 Feedback . 7
1.3.4 Software . 7

1.4 Part Number Designation . 8
1.4.1 Drive Part Number. 8
1.4.2 Filter Part Number. 8
1.4.3 Option Part Number. 9

2 Technical Data . 10
2.1 Electrical Characteristics . 10
2.2 Power Ratings . 11
2.3 Fuse Recommendations . 12
2.4 Digital and Analog I/O Ratings . 12
2.5 Environment. 12
2.6 Operating Modes . 12
2.7 Connections and I/O . 13
2.8 PositionServo Dimensions . 14
2.9 Clearance for Cooling Air Circulation. 15

3 Installation . 16
3.1 Wiring . 17
3.2 Shielding and Grounding . 17

3.2.1 General Guidelines . 17
3.2.2 EMI Protection. 18
3.2.3 Enclosure . 18

3.3 Line Filtering . 18
3.4 Heat Sinking. 19
3.5 Line (Mains) Fusing . 19

4 Interface . 20
4.1 External Connectors . 20

4.1.1 P1 & P7 - Input Power and Output Power Connections . 20
4.1.2 P2 - Ethernet Communications Port. 21
4.1.3 P3 - Controller I/O . 22
4.1.4 P4 - Motor Feedback. 23
4.1.5 P5 - 24 VDC Back-up Power Input. 24
4.1.6 P6 - Braking Resistor and DC Bus . 24
4.1.7 Connector and Wiring Notes . 25
4.1.8 P8 - ISO 13849-1 Safety Circuit (option) . 26

4.2 Digital I/O Details . 31
4.2.1 Step & Direction/Master Encoder Inputs (P3, pins 1-4) . 31
4.2.2 Buffered Encoder Output (P3, pins 7-12) . 32
4.2.3 Digital Outputs . 32
4.2.4 Digital Inputs. 33

4.3 Analog I/O Details. 34
4.3.1 Analog Reference Input . 34
4.3.2 Analog Output . 35

4.4 Communication Interfaces . 35
4.4.1 Ethernet Interface (standard) . 35
4.4.2 RS485 Interface (option) . 35
4.4.3 Modbus RTU Support . 36
4.4.4 CANopen Interface . 36
4.4.5 DeviceNet Interface. 36
4.4.6 PROFIBUS DP Interface . 37

4.5 Motor Selection . 37
4.5.1 Motor Connection . 37
4.5.2 Motor Over-Temperature Protection . 37

2 L S94H201E_13426446_EN

Contents

5 Parameters . 38
5.1 Drive Identification . 39

5.1.1 Drive Name . 39
5.1.2 Group ID . 39

5.2 Motor . 40
5.2.1 Motor Setup . 40
5.2.2 Using a Custom Motor . 41
5.2.3 Creating Custom Motor Parameters. 41
5.2.4 Autophasing . 42
5.2.5 Custom Motor Data Entry . 43

5.3 Parameters . 47
5.3.1 Drive Mode . 48
5.3.2 Reference . 48
5.3.3 Drive PWM Frequency . 49
5.3.4 Current Limit . 49
5.3.5 To Change Current Limits . 49
5.3.6 Peak Current Limit (8 kHz and 16 kHz) . 49
5.3.7 Accel/Decel Limits (velocity mode only) . 49
5.3.8 Fault Reset . 49
5.3.9 Motor Temperature Sensor . 50
5.3.10 Motor PTC Cutoff Resistance . 50
5.3.11 Regen Duty Cycle . 50
5.3.12 Master Encoder Input Type (position mode only) . 51
5.3.13 Master Encoder - System to Master Ratio . 51
5.3.14 Autoboot . 51
5.3.15 User Units . 51
5.3.16 Rotation Direction . 51
5.3.17 Resolver Tracks. 51

5.4 Communication . 52
5.4.1 Ethernet . 52
5.4.2 RS-485 . 52
5.4.3 CAN . 52
5.4.4 PROFIBUS . 52

5.5 Analog I/O . 53
5.5.1 Analog Output . 53
5.5.2 Analog Output Current Scale (Volt/Amps). 53
5.5.3 Analog Output Velocity Scale (mV/RPM). 53
5.5.4 Analog Input Current Scale (Amps/Volt) . 53
5.5.5 Analog Input Velocity Scale (RPM/Volt). 53
5.5.6 Analog Input Dead Band . 54
5.5.7 Analog Input Offset . 54

5.6 Digital I/O . 54
5.6.1 Digital Output . 54
5.6.2 Digital Input De-bounce Time . 54
5.6.3 Hard Limit Switch Action . 54
5.6.4 Enable Switch Function . 54
5.6.5 Brake Release Delay . 55

5.7 Velocity Limits . 55
5.7.1 Zero Speed . 55
5.7.2 Speed Window . 55
5.7.3 At Speed . 55

5.8 Position Limits . 56
5.8.1 Position Error . 56
5.8.2 Max Error Time . 56
5.8.3 Soft Limits. 56

S94H201E_13426446_EN L 3

Contents

5.9 Compensation . 56
5.9.1 Velocity P-gain (proportional). 56
5.9.2 Velocity I-gain (integral). 56
5.9.3 Position P-gain (proportional) . 57
5.9.4 Position I-gain (integral) . 57
5.9.5 Position D-gain (differential) . 57
5.9.6 Position I-limit . 57
5.9.7 Gain Scaling Window. 57
5.9.8 Disable High Performance Mode . 57
5.9.9 Auto Tuning. 57
5.9.10 Set Default Gains. 58
5.9.11 Feedback and Loop Filters. 58

5.10 Tools . 59
5.10.1 Oscilloscope . 59
5.10.2 Parameter & I/O View . 60

5.11 Faults. 61
5.12 Monitor . 62

6 Operation . 63
6.1 Minimum Connections . 63
6.2 Ethernet Connection . 63

6.2.1 PositionServo Ethernet Port Configuration . 64
6.2.2 Configuring the PC IP Address (Windows XP) . 66
6.2.3 Initial Connection to the Drive . 69
6.2.4 Launching MotionView & Communicating to the PS Drive . 70

6.3 Parameter Storage and EPM Operation. 73
6.3.1 Parameter Storage . 73
6.3.2 EPM Operation . 73
6.3.3 EPM Fault . 73

6.4 Configuration of the PositionServo . 74
6.5 Position Mode Operation (gearing) . 75
6.6 Enabling the PositionServo . 75
6.7 Drive Tuning. 76

6.7.1 Auto Tuning the Drive . 76
6.7.2 Manually Tuning the Drive in Velocity Mode. 77
6.7.3 Manually Tuning the Drive in Position Mode . 82

6.8 Upgrading Firmware. 87
7 Quick Start Reference . 88

7.1 Quick Start - External Torque Mode . 88
7.2 Quick Start - External Velocity Mode. 89
7.3 Quick Start - External Positioning Mode . 91

8 Diagnostics . 93
8.1 Diagnostic Display . 93
8.2 Diagnostic LEDs . 94
8.3 Stop/Reset . 94
8.4 Faults. 95

8.4.1 Fault Codes . 95
8.4.2 Fault Event . 97
8.4.3 Fault Reset . 97

8.4 Troubleshooting . 97

4 L S94H201E_13426446_EN

About These Instructions

This documentation pertains to the PositionServo drive with Hardware Version 2. This documentation contains
important technical data regarding the installation, operation and commissioning of the drive. Observe all
safety instructions. Read this document in its entirety before operating or servicing a PositionServo drive.

Drive Hardware Version

For hardware version 2, the drive dataplate (identification label) displays “2” in the fourth to last digit of the
drive indentification number. Refer to “E” designation in the drive identification label. Upon power-up the
drive LED display will read “9402” to indicate 940 PositionServo, hardware version 2.

If upon power-up the drive LED reads “940”, the drive has hardware version 1. Refer to User Manual
S94PM01 for hardware version 1 drives.

Drive Identification Label

C A B D E F

Type:
E94P120Y2NES
ID-No: 13014745

INPUT: 1(3)/PE
120/240 V
24.0 (13.9) A
50-60 HZ

OUTPUT: 3/PE
0 - 230 V
12.0 A

For detailed information
refer to instruction
Manual: S94H201

SN: 13014745012345678
E94P120Y2NES0XX2# ##

Made in USA

Model 940 13014745012345678

A B C D E F

Certifications Model
Number

Input
Ratings

Output
Ratings

Hardware
Version

Software
Version

Package Contents

Scope of Supply Important

1 Model PositionServo:
Type E94P or E94R

1 Mounting Instructions (English)
1 MotionView CD ROM including:

- configuration software
- documentation

After reception of the delivery, immediately check whether the scope
of supply matches the accompanying papers. Lenze- AC Tech does
not accept any liability for deficiencies claimed subsequently.
Claim:

- visible transport damage immediately to the forwarder
- visible deficiencies / incompleteness immediately to your Lenze

representative.

Related Documents

The documentation listed herein contains information relevant to the operation of the PositionServo and
MotionView OnBoard. To obtain the latest documentation, visit the Technical Documentation section of
http://www.lenze.com.

Table 1: Reference Documentation

Document # Description

P94MI01 PositionServo (with MVOB) Mounting Instructions

PM94H201 PositionServo (with MVOB) Programming Manual

P94MOD01 Position Servo ModBus RTU over RS485 ; Modbus TCP/IP

P94CAN01 PositionServo CANopen Communications Reference Guide

P94DVN01 PositionServo DeviceNet Communications Reference Guide

P94ETH01 PositionServo EtherNet/IP Communications Reference Guide

P94PFB01 PositionServo PROFIBUS Communications Reference Guide

S94H201E_13426446_EN L 5

Introduction

1 Introduction
1.1 Safety Information
The safety information provided in this documentation has the layout shown herein.

Signal Word! (Characteristics the severity of the danger)

Note (describes the danger and informs on how to proceed)

Table 2: Pictographs used in these Instructions

Icon Signal Words
Warning of
hazardous
electrical voltage

DANGER! Warns of impending danger.
Consequences if disregarded:
Death or severe injuries.

Warning of a
general danger

WARNING! Warns of potential, very hazardous situations.
Consequences if disregarded:
Death or severe injuries.

Warning of
damage to
equipment

STOP! Warns of potential damage to material and
equipment.
Consequences if disregarded:
Damage to the controller/drive or its environment.

Information NOTE Designates a general, useful note.
If you observe it, handling the controller/drive system is
made easier.

1.2 Legal Regulations
Table 2 lists the identification, application, liability, warranty and disposal information for the PositionServo
drive.

Table 3: Legal Disclaimers

Claim Description
Identification Nameplate CE Identification Manufacturer

Lenze controllers are unambiguously
designated by the contents of the
nameplate

In compliance with the EC
Low-Voltage Directive

Lenze AC Tech Corporation
630 Douglas Street
Uxbridge, MA 01569 USA

Application
as directed

E94P or E94R servo controller
•	must only be operated under the conditions prescribed in these Instructions.

•	are components for:

- Closed loop control of Velocity, Torque, or Positioning applications with AC synchronous motors.
- installation in a machine.
- assembly with other components to form a machine.

•	are electric units for installation in control cabinets or similarly enclosed housing.

•	comply with the requirements of the Low-Voltage Directive.

•	are not machines for the purpose of the Machinery Directive.

•	are not to be used as domestic appliances, but only for industrial purposes.

Application
as directed

Drive systems with E94P or E94R servo inverters
•	 comply with the EMC Directive if they are installed according to the guidelines of CE-typical drive

systems.

•	 can be used for:

- for operation on public and non-public mains
- for operation in industrial premises and residential areas.

•	 The user is responsible for the compliance of his application with the EC directives.

Any other use shall be deemed as inappropriate!

Note: Table 3 continued on next page.

6 L S94H201E_13426446_EN

Introduction

Claim Description

Liability •	The	information,	data,	and	notes	in	these	instructions	met	the	latest	design	and	implementation	of	the	
drive at the time of publication. Claims on modifications referring to controllers that have already been
supplied cannot be derived from the information, illustrations, and descriptions.

•	The	specifications,	processes	and	circuitry	described	in	these	instructions	are	for	guidance	only	and	
must be adapted to your own specific application. Lenze does not take responsibility for the suitability
of the process and circuit proposals.

•	The	specifications	in	these	Instructions	describe	the	product	features	without	guaranteeing	them.

•	Lenze	does	not	accept	any	liability	for	damage	and	operating	interference	caused	by:

- Disregarding the operating instructions
- Unauthorized modifications to the controller
- Operating errors
- Improper working on and with the controller

Warranty •	Warranty	conditions:	refer	to	Lenze	AC	Tech	Terms	and	Conditions	of	Sale,	document	TD03.

Disposal Material Recycle Dispose

Metal • -

Plastic • -

Assembled PCB’s - •

1.3 General Drive Information

1.3.1 Mains Configuration
The PositionServo is available in four mains (input power) configurations:

1. 120/240V Single Phase (Voltage Doubler) Units

When wired for Doubler mode (L1-N), the input is for 120V nominal only and can range from 70 VAC to
132 VAC and the maximum output voltage is double the input voltage. When wired to terminals L1-L2/N,
the input can range from 80 VAC to 264 VAC and the maximum output voltage is equal to the input
voltage.

2. 120/240V Single Phase (Filtered) Units

120/240V (nominal) single phase input with integrated input mains (line) filter. Actual input voltage range:
80VAC to 264VAC. The maximum output voltage is approximately equal to the input voltage.

3. 120/240V Single or Three Phase Units

120V or 240V (nominal) single or three phase input. Actual input voltage range: 80VAC to 264VAC. The
maximum output voltage is approximately equal to the input voltage. An external input mains (line) filter is
available.

4. 400/480V Three phase Units

400/480V (nominal) three phase input. An external input mains (line) filter is available. Actual voltage
range: 320 - 528 VAC.

1.3.2 Operating Modes

The PositionServo drive can operate in one of three mode settings, torque (current), velocity, or positioning. The
drive’s command or reference signal can come from one of three sources. The first is an external reference. An
external reference can be an analog input signal, a step and direction input or an input from a master encoder.
The second reference is an internal reference. An internal reference is when the commanded reference is
derived from the drive’s user program. The third reference is when the commanded reference is given by a
host device over a communications network. This Host device can be an external motion controller, PLC, HMI
or PC. The communication network can be over, RS485 (Point-to-Point or Modbus RTU), Modbus over TCP/IP,
CANopen (DS301), EtherNet/IP, DeviceNet or PROFIBUS DP.

S94H201E_13426446_EN L 7

Introduction

1.3.3 Feedback
Depending on the primary feedback, there are two types of drives: the Model 940 PositionServo encoder-
based drive which accepts an incremental encoder with Hall channel inputs and the Model 941 PositionServo
resolver-based drive which accepts resolver inputs. The feedback signal is brought back to the P4 connector
on the drive. This connector will be a 15 pin D-sub for the encoder version and a 9 pin D-sub for the resolver
version.

1.3.4 Software
MotionView software is the setup and management tool for the PositionServo drive. All parameters can be
set and monitored via this software tool. It has a real-time oscilloscope tool for analysis and optimum tuning.
The users program, written with SimpleMotion Programming Language (SML), can be utilized to command
motion and handle the drive’s analog and digital I/O (inputs and outputs). The programming language is a
Basic-like language designed to be very intuitive and easy to implement. For programming details, refer to the
PositionServo Programming Manual. All PositionServo related manuals can be downloaded from the Technical
Documentation section on the Lenze website (http://www.lenze.com).

On each PositionServo drive, there is an Electronic Programming Module (EPM), which stores all drive setup
and tuning gain settings. This module can be removed from the drive and reinstalled into another drive, making
the field replacement of the drive extremely easy. This also makes it easy to duplicate the settings for several
drives.

The PositionServo drive supports a variety of communication protocols, including Point-to-Point (PPP), Modbus
RTU over RS485, Ethernet TCP/IP, Modbus over TCP/IP, CANopen (DS301), EtherNet/IP, DeviceNet and
PROFIBUS DP.

8 L S94H201E_13426446_EN

Introduction

1.4 Part Number Designation
The table herein describes the part number designation for the PositionServo drive. The available filter and
communication options are detailed in separate tables.

1.4.1 Drive Part Number

E94 P 020 S 1 N E M
Electrical Products in the 94x Series

P = PositionServo Model 940 with Encoder Feedback
R = PositionServo Model 941 with Resolver Feedback

Drive Rating in Amps:
020 = 2 Amps 090 = 9 Amps
040 = 4 Amps 100 = 10 Amps
060 = 6 Amps 120 = 12 Amps
080 = 8 Amps 180 = 18 Amps

Input Phase:
S = Single Phase Input only
Y = Single or Three Phase Input
T = Three Phase Input only

Input Voltage:
1 = 120 VAC Doubler (120V, 1~ in/ 240V, 3~ out)
2 = 200/240 VAC
4 = 400/480 VAC

Line Filter:
N = No Line Filter*
F = Integrated Line Filter

Secondary Feedback:
E = Incremental Encoder
R = Standard Resolver

Safety Option:
M = MotionView OnBoard, no ISO 13849-1 safety compliance
S = MotionView OnBoard, with ISO 13849-1 safety compliance

* For 3-phase EMC installation, model 940 EMC footprint/side mount filters are required.

1.4.2 Filter Part Number

E94Z F 4 T 4 A1
Electrical Option in the 94x Series

F = EMC Filter
Filter Current Rating in Amps:

04 = 4.4 Amps 12 = 12 Amps
07 = 6.9 Amps 15 = 15 Amps
10 = 10 Amps 24 = 24 Amps

Input Phase:
S = Single Phase
T = Three Phase

Max Voltage:
2 = 240 VAC
4 = 400/480 VAC

Degree of Filtering/Variation
A1 = Industrial/1st Variation
A2 = Industrial/2nd Variation

S94H201E_13426446_EN L 9

Introduction

1.4.3 Option Part Number

E94Z A CAN 1
Electrical Option in the 94x Series

A = Communication or Breakout Module
Module Type:

Communication: Breakout:
CAN = CANopen COMM Module HBK = Motor Brake Terminal Module
RS4 = RS485 COMM Module TBO = Terminal Block I/O Module
DVN = DeviceNet COMM Module SCA = Panel Saver I/O Module
PFB = PROFIBUS COMM Module

Variations
1 = 1st Variation
2 = 2nd Variation
3 = 3rd Variation

10 L S94H201E_13426446_EN

Technical Data

2 Technical Data
2.1 Electrical Characteristics

Single-Phase Models

Type (1) Mains Voltage (2)

1~ Mains
Current

(doubler)

1~ Mains
Current
(Std.)

Rated
Output

Current (5)

Peak
Output

Current (6)

E94_020S1N_~
120V (3) or 240V (4)

9.7 5.0 2.0 6

E94_040S1N_~ 15 8.6 4.0 12

E94_020S2F_~

120 / 240V (4)

(80 V -0%...264 V +0%)

-- 5.0 2.0 6

E94_040S2F_~ -- 8.6 4.0 12

E94_080S2F_~ -- 15.0 8.0 24

E94_100S2F_~ -- 18.8 10.0 30

Single/Three-Phase Models

Type (1) Mains Voltage (2)

1~
Mains

Current

3~
Mains

Current

Rated
Output

Current (5)

Peak
Output

Current (6)

E94_020Y2N_~

120 / 240V (4)

1~ or 3~
(80 V -0%...264 V +0%)

5.0 3.0 2.0 6

E94_040Y2N_~ 8.6 5.0 4.0 12

E94_080Y2N_~ 15.0 8.7 8.0 24

E94_100Y2N_~ 18.8 10.9 10.0 30

E94_120Y2N_~ 24.0 13.9 12.0 36

E94_180T2N_~
240V 3~

(180 V -0%...264 V +0%)
-- 19.6 18.0 54

E94_020T4N_~

400 / 480V
3~

(320 V -0%...528 V +0%)

-- 2.7 2.0 6

E94_040T4N_~ -- 5.5 4.0 12

E94_060T4N_~ -- 7.9 6.0 18

E94_090T4N_~ -- 12.0 9.0 27

(1) The first “_” equals “P” for the 940 encoder based drive or “R” for the 941 resolver based drive.

 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver (must have E94R drive).

 The last digit “~” equals “M” for MV OnBoard and no ISO 13849-1 circuit or “S” for MV OnBoard plus the ISO 13849-1 circuit.
(2) Mains voltage for operation on 50/60 Hz AC supplies (48 Hz -0% … 62Hz +0%).

(3) Connection of 120VAC (70 V … 132 V) to input power terminals L1 and N on these models doubles the voltage on motor output
terminals U-V-W for use with 230VAC motors.

(4)
 Connection of 240VAC or 120VAC to input power terminals L1 and L2 on these models delivers an equal voltage as maximum to motor

output terminals U-V-W allowing operation with either 120VAC or 230VAC motors.

(5)
 Drive rated at 8kHz Carrier Frequency. Derate Continuous current by 17% at 16kHz.

(6) Peak RMS current allowed for up to 2 seconds. Peak current rated at 8kHz. Derate by 17% at 16kHz.
(7) Derate rated output current and peak output current by 2.5% for every ºC above 40ºC up to 55ºC maximum.

S94H201E_13426446_EN L 11

Technical Data

Electrical Specifications applicable to all models:

Acceleration Time Range (Zero to Max Speed) 0.1 … 5x106 RPM/sec

Deceleration Time Range (Max Speed to Zero) 0.1 … 5x106 RPM/sec

Speed Regulation (typical) ± 1 RPM

Input Impedance (AIN+ to COM and AIN+ to AIN-) 47 kΩ

Power Device Carrier Frequency (sinusoidal commutation) 8, 16 kHz

Power Supply (max) +5 VDC @ 300 mA

Maximum Encoder Feedback Frequency 2.1 MHz (per channel)

Maximum Output Frequency (to motor) 400 Hz

Resolver Carrier Frequency 4.5 - 5.5kHz (5kHz nom)

Resolver Turns Ratio: Reference to SIN/COS signal 2:1

Resolver Voltage 10V peak to peak

Maximum Resolver Feedback Speed 6500 rpm

2.2 Power Ratings

Type (1)

Output Power
at Rated Output
Current (8kHz) (2)

Leakage Current

Power Loss at
Rated Output

Current
(8kHz)

Power Loss at
Rated Output

Current
(16 kHz) (3)

Units kVA mA Watts Watts

E94_020S1N_~ 0.8

Typically >3.5 mA.
Consult factory for

applications requiring
<3.5 mA.

19 21

E94_040S1N_~ 1.7 29 30

E94_020S2F_~ 0.8 19 21

E94_040S2F_~ 1.7 29 30

E94_080S2F_~ 3.3 61 63

E94_100S2F_~ 4.2 80 85

E94_020Y2N_~ 0.8 19 21

E94_040Y2N_~ 1.7 29 30

E94_080Y2N_~ 3.3 61 63

E94_120Y2N_~ 5.0 114 129

E94_180T2N_~ 7.5 171 195

E94_020T4N_~ 1.7 31 41

E94_040T4N_~ 3.3 50 73

E94_060T4N_~ 5.0 93 122

E94_090T4N_~ 7.5 138 182

(1) The first “_” equals “P” for the Model 940 encoder based drive or “R” for the Model 941 resolver based drive.

 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver (must have E94R drive).

 The last digit “~” equals “M” for MV OnBoard and no ISO 13849-1 circuit or “S” for MV OnBoard plus the ISO 13849-1 circuit.

(2)

At 240 VAC line input for drives with suffixes “S1N”, “S2F”, “Y2N”. At 480 VAC line input for drives with suffixes “T4N”.

a. The output power is calculated from the formula: output kVA = [(3) x ULL x I rated] / 1000

b. The actual output power (kW) depends on the motor in use due to variations in motor rated voltage, rated speed and power factor, as well as actual max
operating speed and desired overload capacity.

c. Typical max continuous power (kW) for PM servo motors run 50-70% of the kVA ratings listed.

(3) At 16 kHz, de-rate continuous current by 17%

12 L S94H201E_13426446_EN

Technical Data

2.3 Fuse Recommendations

Type(1)

AC Line
Input Fuse

(1ø/3ø)

Miniature
Circuit Breaker (4)

(1ø/3ø)

AC Line Input Fuse
or Breaker (5) (6)
(N. America)

DC Bus Input
Fuse(7)

Amp Ratings
E94_020S1N_~ M20/M10 C20/C10 20/10 10
E94_040S1N_~ M32/M20 C32/C20 30/20 20

E94_020S2F_~ M20 C20 20 15
E94_040S2F_~ M20 C20 20 20
E94_080S2F_~ M32 C32 32 40
E94_100S2F_~ M40 C40 40 45

E94_020Y2N_~ M20/M16 C20/C16 20/15 15
E94_040Y2N_~ M20/M16 C20/C16 20/15 20
E94_080Y2N_~ M32/M20 C32/C20 30/20 40
E94_120Y2N_~ M50/M32 C50/C32 50/30 55
E94_180T2N_~ M40 C40 40 80

E94_020T4N_~ M10 C10 10 10
E94_040T4N_~ M10 C10 10 20
E94_060T4N_~ M20 C20 20 30
E94_090T4N_~ M25 C25 25 40

(1) The first “_” equals “P” for the Model 940 encoder based drive or “R” for the Model 941 resolver based drive.

 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver (must have E94R drive).

 The last digit “~” equals M” for MV OnBoard and no ISO 13849-1 circuit or “S” for MV OnBoard plus the ISO 13849-1 circuit.

(4) Installations with high fault current due to large supply mains may require a type D circuit breaker.

(5) UL Class CC or T fast-acting current-limiting type fuses, 200,000 AIC, preferred. Bussman KTK-R, JJN, JJS or equivalent.

(6) Thermal-magnetic type breakers preferred.

(7) DC-rated fuses, rated for the applied voltage. Examples Bussman KTM or JJN as appropriate.

2.4 Digital and Analog I/O Ratings
I/O Scan

Times
Linearity Temperature Drift Offset Current Input

Impedance
Voltage
Range

Units ms % % % mA Ohm VDC

Digital Inputs(1) 512 Depend on load 2.4 k (2) 5-24

Digital Outputs 512 100 max N/A 30 max

Analog Inputs 512 ± 0.013 0.1% per °C rise ± 0 adjustable Depend on load 47 k ± 10

Analog Outputs 512 0.1% per °C rise ± 0 adjustable 10 max N/A ± 10

(1) Inputs do not have scan time. Their values are read directly by indexer program statement.
De-bounce time is programmable and can be set as low as 0. Propagation delay is typical 20 us

(2) Input Impedance is 1.2kΩ for drive with Hardware Revision 2A.

2.5 Environment
Vibration 2 g (10 - 2000 Hz)
Ambient Operating Temperature Range 0 to 40ºC (Derate rated output current and peak output current by 2.5% for

every ºC above 40ºC up to 55ºC)
Ambient Storage Temperature Range -10 to 70ºC
Temperature Drift 0.1% per ºC rise
Humidity 5 - 90% non-condensing
Altitude 1500m/5000ft [derate by 1% per 300m (1000 ft) above 1500m (5000 ft)]

2.6 Operating Modes
Torque
Reference ± 10 VDC 12-bit; scalable
Torque Range 100:1
Current-Loop Bandwidth Up to 1.5 kHz*

S94H201E_13426446_EN L 13

Technical Data

Velocity
Reference ± 10 VDC or 0…10 VDC; 12-bit; scalable
Regulation ± 1 RPM
Velocity-Loop Bandwidth Up to 200 Hz*
Speed Range 5000:1 with 5000 ppr encoder

Position
Reference 0…2 MHz Step & Direction or 2 channels quadrature input; scalable
Minimum Pulse Width 500 nanoseconds
Loop Bandwidth Up to 150 Hz*
Accuracy ±1 encoder count for encoder feedabck
 ±1.32 arc-minutes for resolver feedback (14-bit resolution)

* = motor and application dependent

2.7 Connections and I/O
Mains Power 3-pin or 4-pin removable terminal block (P1)
Ethernet Port Standard RJ45 Connector (P2)
I/O Connector Standard 50-pin SCSI (P3)

- Buffered Encoder Output A, B, & Z channels with compliments (5V @ 20mA) (P3)
- Digital Inputs 11 programmable plus 1 dedicated (5-24V) (P3)
- Digital Outputs 4 programmable plus 1 dedicated (5-24V @ 100mA) (P3)
- Analog Input 2 differential; ±10 VDC (12-bits each) (P3)
- Analog Output 1 single ended; ±10 VDC (10-bit) (P3)
- Position Reference Input Step & Direction or Master Encoder (TTL) (P3)

Encoder Feedback (E94P drive) Feedback connector, 15-pin D-shell (P4)
Resolver Feedback (E94R drive) Feedback connector, 9-pin D-shell (P4)
24VDC Power “Keep Alive” 2-pin removable terminal block (P5)
Regen and Bus Power 5-pin removable terminal block (P6)
Motor Power 6-pin pin removable terminal block (P7)
ISO 13849-1 Safety Circuit (option) 6-pin quick connect terminal block (P8)
RS485 Option Module 3-pin terminal block (installed in Option Bay 1) (P21)
CAN Option Module 3-pin terminal block (installed in Option Bay 1) (P21)
DeviceNet Option Module 5-pin terminal block (installed in Option Bay 1) (P23)
PROFIBUS Option Module 9-pin D-shell connector (installed in Option Bay 1) (P24)
MotionView OnBoard Embedded Software (Java-based)
Maximum Servo Cable Length 20 meters (10m if EN55011 compliance required, see 3.2.1)

P2

P3

P1

P4

P5

P6

P7

EPM

WVUT2T1

94 02

8d iS

P8

Ground Lug

Ground Lug

L3

L2

L1

1
2

3
4

5
6

14 L S94H201E_13426446_EN

Technical Data

2.8 PositionServo Dimensions

C

15

12

12

A

38

D B

34 dia = 4.57

4.57

Dimensions in mm S923

Type (1) A (mm) B (mm) C (mm) D (mm) Weight (kg)

E94_020S1N_~ 68 190 190 182 1.1

E94_040S1N_~ 69 190 190 182 1.2

E94_020S2F_~ 68 190 235 182 1.3

E94_040S2F_~ 69 190 235 182 1.5

E94_080S2F_~ 87 190 235 182 1.9

E94_100S2F_~ 102 190 235 182 2.2

E94_020Y2N_~ 68 190 190 182 1.3

E94_040Y2N_~ 69 190 190 182 1.5

E94_080Y2N_~ 95 190 190 182 1.9

E94_100Y2N_~ 114 190 190 182 2.2

E94_120Y2N_~ 68 190 235 182 1.5

E94_180T2N_~ 68 242 235 233 2.0

E94_020T4N_~ 68 190 190 182 1.5

E94_040T4N_~ 95 190 190 182 1.9

E94_060T4N_~ 68 190 235 182 1.4

E94_090T4N_~ 68 242 235 233 2.0

(1) The first “_” equals “P” for the Model 940 encoder based drive or “R” for the Model 941 resolver based drive.
 The second “_” equals “E” for incremental encoder (must have E94P drive) or “R” for the standard resolver (must have E94R drive).

 The last digit “~” equals M” for MV OnBoard and no ISO 13849-1 circuit or “S” for MV OnBoard plus the ISO 13849-1 circuit.

S94H201E_13426446_EN L 15

Technical Data

2.9 Clearance for Cooling Air Circulation

>25mm
>3mm

>25mm

S924

16 L S94H201E_13426446_EN

Installation

3 Installation
Perform the minimum system connection. Refer to section 6.1 for minimum connection requirements.
Observe the rules and warnings below carefully:

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground. Avoid
direct contact with the printed circuit board or with circuit elements to prevent the risk of
serious injury or fatality. Disconnect incoming power and wait 60 seconds before servicing
drive. Capacitors retain charge after power is removed.

STOP!
•	 The PositionServo must be mounted vertically for safe operation and to ensure

enough cooling air circulation.

•	 Printed circuit board components are sensitive to electrostatic fields. Avoid contact
with the printed circuit board directly. Hold the PositionServo by its case only.

•	 Protect the drive from dirt, filings, airborne particles, moisture, and accidental
contact. Provide sufficient room for access to the terminal block.

•	 Mount the drive away from any and all heat sources. Operate within the specified
ambient operating temperature range. Additional cooling with an external fan may
be required in certain applications.

•	 Avoid excessive vibration to prevent intermittent connections

•	 DO NOT connect incoming (mains) power to the output motor terminals (U, V, W)!
Severe damage to the drive will result.

•	 Do not disconnect any of the motor leads from the PositionServo drive unless
(mains) power is removed. Opening any one motor lead may cause failure.

•	 Control Terminals provide basic isolation (insulation per EN 61800-5-1). Protection
against contact can only be ensured by additional measures, e.g., supplemental
insulation.

•	 Do not cycle mains power more than once every 2 minutes. Otherwise damage to
the drive may result.

WARNING!
For compliance with EN 61800-5-1, the following warning applies.

This product can cause a d.c. current in the protective earthing conductor. Where
a residual current-operated protective (RCD) or monitoring (RCM) device is used for
protection in case of direct or indirect contact, only an RCD or RCM of Type B is
allowed on the supply side of this product.

UL INSTALLATION INFORMATION
•	 Suitable for use on a circuit capable of delivering not more than 200,000

rms symmetrical amperes, at the maximum voltage rating marked on the
drive.

•	 Use Class 1 wiring with minimum of 75ºC copper wire only.

•	 Shall be installed in a pollution degree 2 macro-environment.

•	 The PositionServo does not provide motor over-temperature protection. The
user may connect a KTY motor thermal sensor to the drive as detailed in
section 4.1.1 and 4.5.2 if necessary to satisfy NEC requirements.

S94H201E_13426446_EN L 17

Installation

3.1 Wiring

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground. Avoid
direct contact with the printed circuit board or with circuit elements to prevent the risk of
serious injury or fatality. Disconnect incoming power and wait 60 seconds before servicing
the drive. Capacitors retain charge after power is removed.

WARNING!
Leakage current may exceed 3.5mA AC. Minimum size of the protective earth conductor
shall comply with local safety regulations for high leakage current equipment.

STOP!
Under no circumstances should power and control wiring be bundled together. Induced
voltage can cause unpredictable behavior in any electronic device, including motor controls.

WARNING!
The PositionServo drive runs on phase-to-phase voltage. For the standard drive, either a
delta or wye transformer may be used for 3-phase input. However, for reinforced insulation
of user accessible I/O circuits, each phase voltage to ground must be less than or equal to
300VAC rms. This means that the power system must use center grounded wye secondary
configuration for 400/480VAC mains.

Refer to section 4.1.1 for Power wiring specifications.

3.2 Shielding and Grounding

3.2.1 General Guidelines
Lenze recommends the use of single-point grounding (SPG) for panel-mounted controls. Serial grounding
(a “daisy chain”) is not recommended. The SPG for all enclosures must be tied to earth ground at the same
point. The system ground and equipment grounds for all panel-mounted enclosures must be individually
connected to the SPG for that panel using 14 AWG (2.5 mm2) or larger wire.

In order to minimize EMI, the chassis must be grounded to the mounting. Use 14 AWG (2.5 mm2) or larger
wire to join the enclosure to earth ground. A lock washer must be installed between the enclosure and
ground terminal. To ensure maximum contact between the terminal and enclosure, remove paint in a
minimum radius of 0.25 in (6 mm) around the screw hole of the enclosure.

Lenze recommends the use of the special PositionServo drive cables provided by Lenze. If you specify cables
other than those provided by Lenze, please make certain all cables are shielded and properly grounded.

It may be necessary to earth ground the shielded cable. Ground the shield at both the drive end and at the
motor end.

If the PositionServo drive continues to pick up noise after grounding the shield, it may be necessary to add
an AC line filtering device and/or an output filter (between the drive and servo motor).

18 L S94H201E_13426446_EN

Installation

EMC

Compliance with EN 61800-3:2004
In a domestic environment this product may cause radio interference. The user may be required to
take adequate measures

Noise emission

Drive Models ending in the suffix “2F” are in compliance
with class A limits according to EN 55011 if installed
in a control cabinet and the motor cable length does
not exceed 10m. Models ending in “N” will require an
appropriate line filter.

Installation according to EMC
Requirements

E

D

B C

A

F

S930

A Screen clamps

B Control cable

C Low-capacitance motor cable
(core/core < 75 pF/m, core/screen < 150 pF/m)

D Earth grounded conductive mounting plate

E Encoder/Resolver Feedback Cable

F Footprint or Sidemount Filter (optional)

3.2.2 EMI Protection
Electromagnetic interference (EMI) is an important concern for users of digital servo control systems. EMI
will cause control systems to behave in unexpected and sometimes dangerous ways. Therefore, reducing
EMI is of primary concern not only for servo control manufacturers such as Lenze, but the user as well.
Proper shielding, grounding and installation practices are critical to EMI reduction.

3.2.3 Enclosure
The panel in which the PositionServo is mounted must be made of metal, and must be grounded using the
SPG method outlined in section 3.2.1.

Proper wire routing inside the panel is critical; power and logic leads must be routed in different avenues
inside the panel.

You must ensure that the panel contains sufficient clearance around the drive. Refer to section 2.9
suggested cooling air clearance.

3.3 Line Filtering
In addition to EMI/RFI safeguards inherent in the PositionServo design, external filtering may be required. High
frequency energy can be coupled between the circuits via radiation or conduction. The AC power wiring is
one of the most important paths for both types of coupling mechanisms. In order to comply with IEC 61800-
3:2004, an appropriate filter must be installed within 20cm of the drive power inputs.

Line filters should be placed inside the shielded panel. Connect the filter to the incoming power lines
immediately after the safety mains and before any critical control components. Wire the AC line filter as
close as possible to the PositionServo drive.

S94H201E_13426446_EN L 19

Installation

NOTE
The ground connection from the filter must be wired to solid earth ground, not machine
ground.

If the end-user is using a CE-approved motor, the AC filter combined with the recommended motor and
encoder feedback cables (maximum cable length of 10m), is all that is necessary to meet the EMC directives
listed herein. The end user must use the compatible filter to comply with CE specifications. The OEM may
choose to provide alternative filtering that encompasses the PositionServo drive and other electronics within
the same panel. The OEM has this liberty because CE requirements are for the total system.

3.4 Heat Sinking
The PositionServo drive contains sufficient heat sinking within the specified ambient operating temperature
in its basic configuration. There is no need for additional heat sinking. However, the user must ensure that
there is sufficient clearance for proper air circulation. As a minimum, an air gap of 25 mm above and below
the drive is necessary.

3.5 Line (Mains) Fusing
External line fuses must be installed on all PositionServo drives. Connect the external line fuse in series with
the AC line voltage input. Use fast-acting fuses rated for 250 VAC or 600 VAC (depending on model), and
approximately 200% of the maximum RMS phase current. Refer to section 2.3 for fuse recommendations.

20 L S94H201E_13426446_EN

Interface

4 Interface
The standard PositionServo drive is equipped with seven connectors including: four quick-connect terminal
blocks, one SCSI connector, one subminiature type “D” connector and one ethernet RJ45 connector. These
connectors provide communications from a PLC or host controller, power to the drive, and feedback from
the motor. Prefabricated cable assemblies may be purchased from Lenze to facilitate wiring the drive, motor
and host computer. Contact your Lenze Sales Representative for assistance.

As this manual makes reference to specific pins on specific connectors, the convention PX.Y is used, where
X is the connector number and Y is the pin number.

4.1 External Connectors

4.1.1 P1 & P7 - Input Power and Output Power Connections
Located on the top of the drive, P1 is a 3 or 4-pin quick-connect terminal block used for input (mains) power.
Located on the bottom of the drive, P7 is a 6-pin quick-connect terminal block used for output power to the
motor. P7 also has a thermistor (PTC) input for motor over-temperature protection (refer to paragraph 4.5.2).
The P1 and P7 connector pin assignments are listed in the tables herein.

P1 Pin Assignments (Input Power)

Standard Models

1
2

3
4

L3

L2

L1

PE
Pin Name Function
1 PE Protective Earth (Ground)
2 L1 AC Power in
3 L2 AC Power in
4 L3 AC Power in (3~ models only)

Doubler Models

1
2

3
4

L2
/N

L1

N

PE

Pin Name Function
1 PE Protective Earth (Ground)
2 N AC Power Neutral (120V Doubler only)
3 L1 AC Power in
4 L2/N AC Power in (non-doubler operation)

P7 Pin Assignments (Output Power)

Pin Terminal Function

12
3

4
5

W

V

U

6

T2 T1

1 T1 Thermistor (PTC) Input

2 T2 Thermistor (PTC) Input

3 U Motor Power Out

4 V Motor Power Out

5 W Motor Power Out

6 PE Protective Earth (Chassis Ground)

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground. Avoid direct contact with
the printed circuit board or with circuit elements to prevent the risk of serious injury or fatality. Disconnect
incoming power and wait 60 seconds before servicing drive. Capacitors retain charge after power is removed.

STOP!
DO NOT connect incoming power to the output motor terminals (U, V, W)! Severe damage to the PositionServo
will result.
Check phase wiring (U, V, W) and thermal input (T1, T2) before powering up drive. If miswired, severe damage
to the PositionServo will result.

S94H201E_13426446_EN L 21

Interface

All conductors must be enclosed in one shield with a jacket around them. The shield on the drive end of the
motor power cable should be terminated to the conductive machine panel using screen clamps as shown in
section 3.2. The other end should be properly terminated at the motor shield. Feedback cable shields should
be terminated in a like manner. Lenze recommends Lenze cables for both the motor power and feedback.
These are available with appropriate connectors and in various lengths. Contact your Lenze representative
for assistance.

Wire Size

Current
A (rms)

Terminal
Torque (lb-in)

Wire Size

I<8 4.5 16 AWG (1.5mm2) or 14 AWG (2.5mm2)

8<I<12 4.5 14 AWG (2.5mm2) or 12 AWG (4.0mm2)

12<I<15 4.5 12 AWG (4.0mm2)

15<I<20 5.0 - 7.0 10 AWG (6.0mm2)

20<I<24 11.0 - 15.0 10 AWG (6.0mm2)

4.1.2 P2 - Ethernet Communications Port
P2 is a RJ45 Standard Ethernet connector that is used to communicate with a host computer via Ethernet
TCP/IP.

P2 Pin Assignments (Communications)

Pin Name Function

ET
H

ER
N

ET

1

8

P21 + TX Transmit Port (+) Data Terminal

2 - TX Transmit Port (-) Data Terminal

3 + RX Receive Port (+) Data Terminal

4 N.C.

5 N.C.

6 - RX Receive Port (-) Data Terminal

7 N.C.

8 N.C.

NOTE
To communicate from the PC directly to the drive a crossover cable is recommended. If
using a hub or switch, use a regular patch cable.

22 L S94H201E_13426446_EN

Interface

4.1.3 P3 - Controller I/O
P3 is a 50-pin SCSI connector to interface with the front-end of the controller. It is strongly recommended
that OEM cables be used to aid in satisfying CE requirements. Contact your Lenze representative for
assistance.

P3 Pin Assignments (Controller Interface)
Pin Name Function

C
O

N
TR

O
LL

E
R

 I/
O

1

25

P3

50

26

1 MA+ Master Encoder A+ / Step+ input (2)

2 MA- Master Encoder A- / Step- input (2)

3 MB+ Master Encoder B+ / Direction+ input (2)

4 MB- Master Encoder B- / Direction- input (2)

5 GND Drive Logic Common
6 5+ +5V output (max 100mA)
7 BA+ Buffered Encoder Output: Channel A+ (1)

8 BA- Buffered Encoder Output: Channel A- (1)

9 BB+ Buffered Encoder Output: Channel B+ (1)

10 BB- Buffered Encoder Output: Channel B- (1)
11 BZ+ Buffered Encoder Output: Channel Z+ (1)

12 BZ- Buffered Encoder Output: Channel Z- (1)

13-19 Empty
20 AIN2+ Positive (+) of Analog signal input
21 AIN2- Negative (-) of Analog signal input
22 ACOM Analog common
23 AO Analog output (max 10 mA)
24 AIN1+ Positive (+) of Analog signal input
25 AIN1 - Negative (-) of Analog signal input
26 IN_A_COM Digital input group ACOM terminal (3)

27 IN_A1 Digital input A1
28 IN_A2 Digital input A2
29 IN_A3 Digital input A3 (3)

30 IN_A4 Digital input A4
31 IN_B_COM Digital input group BCOM terminal
32 IN_B1 Digital input B1
33 IN_B2 Digital input B2
34 IN_B3 Digital input B3
35 IN_B4 Digital input B4
36 IN_C_COM Digital input group CCOM terminal
37 IN_C1 Digital input C1
38 IN_C2 Digital input C2
39 IN_C3 Digital input C3
40 IN_C4 Digital input C4
41 RDY+ Ready output Collector
42 RDY- Ready output Emitter
43 OUT1-C Programmable output #1 Collector
44 OUT1-E Programmable output #1 Emitter
45 OUT2-C Programmable output #2 Collector
46 OUT2-E Programmable output #2 Emitter
47 OUT3-C Programmable output #3 Collector
48 OUT3-E Programmable output #3 Emitter
49 OUT4-C Programmable output #4 Collector
50 OUT4-E Programmable output #4 Emitter

(1) Refer to Note 1, Section 4.1.7 - Connector and Wiring Notes

(2) Refer to Note 2, Section 4.1.7 - Connector and Wiring Notes

(3) Refer to Note 3, Section 4.1.7 - Connector and Wiring Notes

S94H201E_13426446_EN L 23

Interface

4.1.4 P4 - Motor Feedback
For encoder-based 940 drives, P4 is a 15-pin DB connector that contains connections for an incremental
encoder with Hall emulation tracks or Hall sensors. For synchronous servo motors, Hall sensors or Hall
emulation tracks are necessary for commutation. For pin assignments, refer to the Table P4A. Encoder
inputs on P4 have 26LS32 or compatible differential receivers for increased noise immunity. Inputs have all
necessary filtering and line balancing components so no external noise suppression networks are needed.

For resolver-based 941 drives, P4 is a 9-pin DB connector for connecting resolver feedback and thermal
sensor. For pin assignments, refer to the Table P4B. The resolver feedback is translated to 65,536 counts
per revolution.

All conductors must be enclosed in one shield with a jacket around them. Lenze recommends that each and
every pair (for example, EA+ and EA-) be twisted. In order to satisfy CE requirements, use of an OEM cable
is recommended. Contact your Lenze representative for assistance.

The PositionServo buffers encoder/resolver feedback from P4 to P3. For example, when encoder feedback
is used, channel A on P4, is Buffered Encoder Output channel A on P3. For more information on this refer to
section 4.2.2 “Buffered Encoder Outputs”.

STOP!
Use only +5 VDC encoders. Do not connect any other type of encoder to the PositionServo
reference voltage terminals. When using a front-end controller, it is critical that the +5 VDC
supply on the front-end controller NOT be connected to the PositionServo’s +5 VDC supply,
as this will result in damage to the PositionServo.

NOTE
•	 The PositionServo encoder inputs are designed to accept differentially driven hall signals.

Single-ended or open-collector type hall signals are also acceptable by connecting
“HA+”, “HB+”, “HC+” and leaving “HA-,HB-,HC-” inputs unconnected. The user does
not need to supply pull-up resistors for open-collector hall sensors. The necessary pull-
up circuits are already provided.

•	 Encoder connections (A, B and Z) must be full differential. The PositionServo does not
support single-ended or open-collector type outputs from the encoder.

•	 An encoder resolution of 2000 PPR (pre-quadrature) or higher is recommended.

P4A Pin Assignments (Encoder Feedback - E94P Drives)

Pin Name Function

E
N

C
O

D
E

R

1

8

P4

15

9

1 EA+ Encoder Channel A+ Input (1)

2 EA- Encoder Channel A- Input (1)

3 EB+ Encoder Channel B+ Input (1)

4 EB- Encoder Channel B- Input (1)

5 EZ+ Encoder Channel Z+ Input (1)

6 EZ- Encoder Channel Z- Input (1)

7 GND Drive Logic Common/Encoder Ground

8 SHLD Shield

9 PWR Encoder supply (+5VDC)

10 HA- Hall Sensor A- Input (2)

11 HA+ Hall Sensor A+ Input (2)

12 HB+ Hall Sensor B+ Input (2)

13 HC+ Hall Sensor C+ Input (2)

14 HB- Hall Sensor B- Input (2)

15 HC- Hall Sensor C- Input (2)

(1) Refer to Note 1, Section 4.1.7 - Connector and Wiring Notes

(2) For asynchronous servo motor, an incremental encoder without Hall effect sensors (commutation tracks) can be used.

24 L S94H201E_13426446_EN

Interface

P4B Pin Assignments (Resolver Feedback - E94R Drives)

Pin Name Function

R
E

S
O

LV
E

R 1

5

P4

9

6

1 Ref +
Resolver reference connection

2 Ref -

3 N/C No Connection

4 Cos+
Resolver Cosine connections

5 Cos-

6 Sin+
Resolver Sine connections

7 Sin-

8 PTC+
Motor PTC Temperature Sensor

9 PTC-

STOP!
Use only 10 V (peak to peak) or less resolvers. Use of higher voltage resolvers may result
in feedback failure and damage to the drive.

4.1.5 P5 - 24 VDC Back-up Power Input
P5 is a 2-pin quick-connect terminal block that can be used with an external 24 VDC (500mA) power supply
to provide “Keep Alive” capability: during a power loss, the logic and communications will remain active.
Applied voltage must be greater than 20VDC.

P5 Pin Assignments (Back-up Power)

Pin Name Function +
-

+
-

241 +24 VDC Positive 24 VDC Input

2 Return 24V power supply return

WARNING!
Hazard of unintended operation! When the enable input remains asserted, the “Keep Alive”
circuit will restart the motor upon restoration of mains power. If this action is not desired,
then remove the enable input prior to re-application of input power.

4.1.6 P6 - Braking Resistor and DC Bus
P6 is a 5-pin quick-connect terminal block that can be used with an external braking resistor (the
PositionServo has the regen circuitry built-in). The Brake Resistor connects between the Positive DC Bus
(either P6.1 or 2) and P6.3.

P6 Terminal Assignments (Brake Resistor and DC Bus)

Pin Terminal Function B+

B-

BR

B-

B+1 B+
Positive DC Bus / Brake Resistor

2 B+

3 BR Brake Resistor

4 B-
Negative DC Bus

5 B-

DANGER!
Hazard of electrical shock! Voltage up to 480 VAC above earth ground is possible. Avoid direct contact
with live terminals and circuit elements. Disconnect incoming power and wait 60 seconds before
opening or servicing the drive. Capacitors retain charge after power is removed.

S94H201E_13426446_EN L 25

Interface

4.1.7 Connector and Wiring Notes
Note 1 - Buffered Encoder Outputs
Each of the encoder output pins on P3 is a buffered pass-through of the corresponding input signal on P4,
Refer to section 4.2.2 “Buffered Encoder Outputs”. This can be either from a motor mounted encoder or
an encoder emulation of the resolver. The parameter “Resolver Tracks” configures the resolution of the
encoder emulation (refer to 5.3.17).

Note 2 - Master Encoder Inputs or Step/Direction Inputs
An external pulse train signal (“step”) supplied by an external device, such as a PLC or stepper indexer, can
control the speed and position of the servomotor. The speed of the motor is controlled by the frequency of
the “step” signal, while the number of pulses that are supplied to the PositionServo determines the position
of the servomotor. Direction input controls direction of the motion.

Note 3 - Digital Input A3
For the drive to function, an ENABLE input must be wired to the drive, and should be connected to IN_A3,
(P3.29), which is, by the default the ENABLE input on the drive. This triggering mechanism can either be
a switch or an input from an external PLC or motion controller. The input can be wired either sinking or
sourcing (section 4.2.3). The Enable circuit will accept 5-24V control voltage.

Wiring the ENABLE Switch:

Pin 6 +5V
Pin 5 GND

Pin 26 IN_A_COM

Pin 29 IN-A3

C
O

N
TR

O
LL

E
R

 I/
O

1

25

P3

50

26

Power Supply

Pin 26 IN_A_COM

Pin 29 IN-A3

- +

C
O

N
TR

O
LL

E
R

 I/
O

1

25

P3

50

26

26 L S94H201E_13426446_EN

Interface

4.1.8 P8 - ISO 13849-1 Safety Circuit (option)
If installed, the ISO 13849-1 Safety Circuit connector, P8, is located on the bottom of the PositionServo. P8,
a 6-pin quick-connect terminal block.

P8 Pin Assignments (ISO 13849-1 Safety Function)

Pin Name Function

1
43

1

5
2

2
3 4 5 6

6

1 Bypass Voltage ISO 13849-1Bypass Voltage (+24VDC)

2 Bypass COM ISO 13849-1 Bypass Common

3 Safety Status ISO 13849-1 Safety Status

4 Safety Input1 ISO 13849-1 Safety Input 1 (+24VDC to Enable)

5 Safety COM ISO 13849-1 Safety Common

6 Safety Input2 ISO 13849-1 Safety Input 2 (+24VDC to Enable)

WARNING!
The drive is supplied from the factory with the ISO 13849-1 safety circuit enabled. The drive is not operational until +24V
is present at terminals 4 and 6. For the proper safety connections, refer to the “Connection of Two Safety Circuits with
External +24V Supply” diagram. Under certain applications when safety connections are not required the drive may be
operated with the safety circuit disabled. The diagram below illustrates how to bypass the safety circuit.

Wiring Diagram to Bypass ISO 13849-1 Safety Circuit

Pin Name Function

P1

P2

P3

P4

P5

P6

1 Bypass Voltage ISO 13849-1 Bypass Voltage (+24VDC) *1

2 Bypass COM ISO 13849-1 Bypass Common *1

3 Safety Status ISO 13849-1 Safety Status

4 Safety Input1 ISO 13849-1 Safety Input 1 (+24VDC to Enable) *2, *3

5 Safety COM ISO 13849-1 Safety Common *2, *3

6 Safety Input2 ISO 13849-1 Safety Input 2 (+24VDC to Enable) *2, *3

*1 – This voltage must under no circumstances be used to supply the ISO 13849-1 Safety circuits (terminals 3 to 6). This voltage is intended only for use
in bypassing (disabling) the ISO 13849-1 circuits should they not be required.

*2 – A Separate +24VDC supply providing reinforced isolation (SELV or PELV), must be supplied to operate these inputs. This supply should not be floating
but should be referenced within 20V peak of PE at the drive.

*3 – Unsnubbed inductive loads must NOT be used on the 24VDC safety circuit wiring.

PositionServo drives with the following “S” designation in the model number have been fitted with the
optional ISO 13849-1 Safe Torque Off function.

Drive Model Number: E94 P 020 S 1 N E S
The last “S” denotes ISO 13849-1
option fitted to drive at manufacturer.

This option can only be fitted at the factory at the time of unit manufacturer.

This option provides additional methods (Inputs) to disable the drive output so that the drive cannot cause
torque to be generated in the motor. This safety function is often referred to as the “Safe Torque Off”
function and meets the requirements of the following standard: ISO 13849-1 Safety of Machinery, Safety-
related Parts of Control Systems, Category (Cat.) 3, Performance Level (PL) d and Safety Integrity Level (SIL)
2, per EN 61800-5-2 2007.

WARNING!
It is required that all information contained within this ISO 13849-1 standard be observed
when implementing any part of this safety circuit functionality with the PositionServo drive.

S94H201E_13426446_EN L 27

Interface

Operation of the ISO 13849-1 Safety Circuit

ISO 13849-1 Cat 3, PL d designates that the enable function of the drive be designed in such a way that
a single fault in any of the parts of this enable circuit cannot lead to a loss of this safety function. The ISO
13849-1 safe torque off function has been designed and certified as meeting the requirements of this
standard.

PositionServo drives equipped with the ISO 13849-1 safety circuit option can be used in application
requiring conformance to this standard, and also in safety-related applications or in other applications
where the integrity of the enable / disable function is paramount to the safety of personnel and machinery.

The ISO 13849-1 safety circuit can interrupt the power supply to the motor without the AC line input to the
drive being removed. However, for the purposes of maintenance and mechanical work on the drive system
it is recommended that the AC (work swap) Line input be removed and the drives internal bus voltages
allowed to discharge before any such work is attempted. The ISO 13849-1 category 3 standard does not
provide for electrical safety of all components within the drive system.

For normal operation (enable) of the PositionServo drive, both the Safety Input 1 and Safety Input 2 are
required to be active. These inputs act as a Inhibit function, preventing the drive from being enabled until
both are active, and causing the drive to disable once either one or both of the inputs are removed. The
activation of both inputs will not automatically cause the drive to enable but will allow enable through the
standard methods provided for enable of the drive.

If an attempt is made to enable the drive by executing the program statement “ENABLE” or from activating
the input IN_A3 with the ISO 13849-1 safety inputs not being present then the drive will generate an ISO
13849-1 Safety Fault (F_EF).

When the drive is disabled through the ISO 13849-1 safety inputs (by removing the +24VDC assertion
level to either Safety Input 1 or Safety Input 2 or both while the drive is enabled) the drive output is turned
off and further torque cannot be produced by the drive in the motor. The drive will go to the “F_EF” fault
condition to indicate disable of the drive was by means of the safety circuits. With the drive output disabled
the motor will perform an uncontrolled stop or free-wheel deceleration to stand-still (unless driven by the
load). Rotation of the motor will not stop immediately and the time to reach standstill will depend on the
inertia contained within the system.

WARNING!
Ensure motion has stopped and the machine is in a safe condition before approaching the application.

If the system is required to be brought to zero speed on loss of the safety circuit function then a motor with
a fail-safe mechanical brake should be used and the necessary mechanism implemented.

Due to ISO 13849-1 regulations, a separate +24VDC external dedicated safety power supply must be
provided to the drive Safety circuits. The bypass +24V supply is intended for bypass purposes only and
must not be used as the control voltage to these circuits.

Installation and Connection

Connection of Two Safety Circuits with External +24V Supply

Pin Name Function +

P1

P2

P3

P4

P5

P6

-

External
+24VDC

Safety Circuit
Input 1

Safety Circuit
Input 2

1 Bypass Voltage ISO 13849-1 Bypass Voltage (+24VDC)

2 Bypass COM ISO 13849-1 Bypass Common

3 Safety Status ISO 13849-1 Safety Status * 100mA max.

4 Safety Input1 ISO 13849-1 Safety Input 1 (+24VDC to Enable)

5 Safety COM ISO 13849-1 Safety Common

6 Safety Input2 ISO 13849-1 Safety Input 2 (+24VDC to Enable)

28 L S94H201E_13426446_EN

Interface

Evaluation and Testing of the ISO 13849-1 Safety Circuit

As part of the regulations for ISO 13849-1 safety circuit provision must be made for the user to periodically
test the safety circuits and that testing should be capable of identifying a single fault. The PositionServo
drive uses the safety status output (Pin 3) in conjunction with the display of the drive to allow the testing of
the safety circuits.

The safety status output becomes active to indicate partial or full enable of the safety input circuits 1 and
2. If safety input 1 or safety input 2 or both inputs are on then the safety status output will become active.
The safety status output must be connected to some visible indication for the operator to reference during
test of the circuit.

As well as being used to test the correct operation of the safety circuits the safety status output can be used
as an indicator that the drive has been placed in the fully shut down condition (all safety circuits off). For
example, if both Safety Inputs have been Deactivated, the Safety Status is also Deactivated. If one of the
Safety Inputs signals failed to call for a shutdown, or if one of the Safety Circuits failed to shut down, the
Safety Status signal remains Asserted to alert the operator to the problem.

The procedure for testing the ISO 13849-1 safety circuit and the identification of a single fault on the system
is given below. The safety status output should be connected to a visible indicator (such as a lamp or LED)
so the operator can interpret its condition.

NOTE
Customer must size load so as not to pull more than 100mA.

Safety Status Output Indication

Pin Name Function

P1

P2

P3

P4

P5

P6

Safety Output
Status Indication

+-

External
+24VDC

Safety Circuit
Input 1

Safety Circuit
Input 2

1 Bypass Voltage ISO 13849-1 Bypass Voltage (+24VDC)

2 Bypass COM ISO 13849-1 Bypass Common

3 Safety Status ISO 13849-1 Safety Status *100mA max

4 Safety Input1 ISO 13849-1 Safety Input 1 (+24VDC to Enable)

5 Safety COM ISO 13849-1 Safety Common

6 Safety Input2 ISO 13849-1 Safety Input 2 (+24VDC to Enable)

Setting up the Drive in a Maintenance Mode:

WARNING!
During test of the ISO 13849-1 circuit, as laid out in this documentation the drive will
go to run (enabled) condition and motion from the motor may be generated. It is the
responsibility of the system designer to ensure the system remains in a safe condition
during the enclosed maintenance procedure.

S94H201E_13426446_EN L 29

Interface

Guidance of setting up the drive to allow testing on the ISO 13849-1 circuit:

External Reference:

If the drive is getting its command signal from an external reference then Parameters should be set
accordingly.

From the Parameter Folder:

From the Digital IO Folder:

In this mode your external analog input will command movement. For safety purposes, measures should be
made to sure that velocity is at a minimum. From here you can proceed to the ISO 13849-1 Test Procedure.

Internal Reference:

If an Indexer program is used to operate the drive then it must contain a means of placing the drive into a
maintenance mode so that the ISO 13849-1 safety circuit can be safely tested. Responsibility lies with the
programmer on the safe implementation of a maintenance mode within the indexer program.

WARNING!
If no maintenance mode has been incorporated into the Indexer program then the Indexer
program must be erased prior to testing the ISO 13849-1 circuit. Save any code that is
required but has not previously been saved and then delete all code from the indexer
folder. Press the [Load W Source] button on the program toolbar to remove any residual
code from the drive memory.

The following truth table shows logical conditions for ISO 13849-1 circuits.

Safety Input 1 Safety Input 2 Safety Status Output Drive Display*1

1 1 1 Run

1 0 1 F_EF

0 1 1 F_EF

0 0 0 F_EF

*1 – Drive display will change to condition shown on enable of the drive (Input A3 Enable)

Place Input A3, hardware enable in the deactivated state.

Test Procedure for ISO 13849-1 Safety Circuit:

Test
Step

Action Drive Display
Indication

Safety Status Output
Indication

Failed Test
Indication

1 Activate both safety
circuit inputs 1 & 2. Set
Input A3 to Enable

‘Run’ ‘Activated’ Trip on display (F_EF) = one of the safety inputs failed to
activate.
Status Output Deactivated = Both Safety Inputs Failed to
activate

2 Set Input A3 to Disable ‘Dis’ ‘Activated’ Status Output Deactivated = Both Safety Inputs Failed to
activate

3 Deactivate Safety
Input 1. Set Input A3
to Enable

’F EF’ ‘Activated’ No Trip on display (F_EF) = Safety Input 1 failed to deactivate.
Status Output Deactivated = Safety Input 2 Failed to activate

4 Activate Safety Input 1.
Set Input A3 to disable

‘Dis’ ‘Activated’ Status Output Deactivated = Both Safety Inputs Failed to
activate

30 L S94H201E_13426446_EN

Interface

Test
Step

Action Drive Display
Indication

Safety Status Output
Indication

Failed Test
Indication

5 Deactivate Safety
Input 2. Set Input A3
to Enable

‘F EF’ ‘Activated’ No Trip on display (F_EF) = Safety Input 2 failed to deactivate.
Status Output Deactivated = Safety Input 1 Failed to activate

6 Set Input A3 to disable ‘Dis’ ‘Activated’ Status Output Deactivated = Both Safety Inputs Failed to
activate

7 Deactivate Safety
Input 1. Set Input A3
to Enable

‘F EF’ ‘Deactivated’ No Trip on display (F_EF) = Safety Inputs 1 & 2 failed to
deactivate.
Status Output Activated = Safety Input 1 or Safety Input 2
Failed to deactivate

This procedure will evaluate the following conditions:

a. All Circuits (safety inputs 1 & 2) working Correctly
b. Safety Input 1 failing to activate
c. Safety Input 1 failing to deactivate
d. Safety Input 2 failing to activate
e. Safety Input 2 failing to deactivate
f. Both Safety input 1 and 2 failing to activate
g. Both Safety input 1 and 2 failing to deactivate

Electrical Characteristics

Safety Input1, Safety Input2 and Safety Status are fully isolated from the rest of the drive circuits as shown
in the following diagram.

Safety Inputs Insulated, compatible with single-ended output (+24VDC)
 Enable voltage range: 18 to 30VDC
 Disable voltage range: 0 to 1.0 VDC
Input Impedance 6.8 kΩ

Safety Status Isolated Open Collector (Grounded Emitter)
Output Load Capability 100mA
Output Max Voltage 30VDC (Collector-Emitter)

Safety Status

Safety Input 2

Safety Input 1

Safety COM

SAFETY COM

SAFETY COM

SAFETY COM

6.8kΩ

6.8kΩ

1

1

1

2

2

2

3

3

3

4

4

4

A

A

A

C

C

C

E

E

E

K

K

K

S94H201E_13426446_EN L 31

Interface

4.2 Digital I/O Details

4.2.1 Step & Direction/Master Encoder Inputs (P3, pins 1-4)
A master encoder with quadrature outputs or a step and direction pair of signals can be connected to the
PositionServo to control position in the external positioning operating mode. These inputs are optically
isolated from the rest of the drive circuits and from each other. Both inputs can operate from any voltage
source in the range of 5 to 24 VDC and do not require additional series resistors for normal operation.

CCWCW
DIRECTION

STEP

S904Timing Diagram for Step & Direction Signals

CCWCW

A

B

S905

Timing Diagram for Master Encoder Signals

Input type/output compatibility Insulated, compatible with single-ended or differential outputs
(5-24 VDC)

Max frequency (per input) 2 MHz
Min pulse width (negative or positive) 500nS
Input impedance 700 Ω (approx)

MA+/STEP+
MB+/DIR+

MA-/STEP-
MB-/DIR-

600Ω 100Ω

5.6V

S906

Master Encoder Step & Direction Input Circuit

Differential signal inputs are preferred when using Step and Direction. Single ended inputs can be used but
are not recommended. Sinking or sourcing outputs may also be connected to these inputs. The function of
these inputs “Master Encoder” or “Step and Direction” is software selectable. Use the MotionView set up
program to choose the desirable function.

32 L S94H201E_13426446_EN

Interface

4.2.2 Buffered Encoder Output (P3, pins 7-12)
There are many applications where it is desired to close the feedback loop to an external device. This
feature is built into the PositionServo drive and is referred to as the “Buffer Encoder Output”. If a motor with
encoder feedback is being used, the A+, A-, B+, B-, Z+ and Z- signals are directly passed through the drive
through pins 7-12 with no delays, up to a speed of 2MHz. If a motor with resolver feedback is being used
a minimal encoder feedback is transmitted. The default resolution of the simulated encoder is 1024 pulses
per revolution, pre-quad. If a different resolution is desired refer to section 5.3.19 “Resolver Tracks”. There
is a small additional delay when using a resolver. With Encoder pass through the delay is approximately
100nS; with Resolver pass through, the delay is approximately 62uS. Refer to Note 1 in section 4.1.7.

4.2.3 Digital Outputs
There are a total of five digital outputs (“OUT1” - “OUT4” and “RDY”) available on the PositionServo drive.
These outputs are accessible from the P3 connector. Outputs are open collector/emitter and are fully
isolated from the rest of the drive circuits as shown in the figures below. These outputs can be used by the
drive’s internal User Program or they can be configured as Special Purpose outputs. When used as Special
Purpose, each output (OUT1-OUT4) can be assigned to one of the following functions:

•	 Not assigned

•	 Zero speed

•	 In-speed window

•	 Current limit

•	 Run-time fault

•	 Ready

•	 Brake (motor brake release)

Note that if an output is assigned as a Special Purpose Output then that output can not be utilized by the
User Program. The “RDY” Output has a fixed function, “ENABLE”, that will become active when the drive is
enabled and the output power transistors become energized.

Digital outputs electrical characteristics
Circuit type Isolated open collector/emitter
Digital outputs load capability 100mA
Digital outputs Collector-Emitter max voltage 30V

The digital outputs have a typical 1 volt leakage. Apply the appropriate relays based on the application. The
outputs on the drive can be wired as either sinking (NPN) or sourcing (PNP), as illustrated herein.

NPN Sinking

OUT 1-C

Gnd

+24V

43

44

45

46

OUT 1-E

OUT 2-C

OUT 2-E

PNP Sourcing

OUT 1-C

Gnd

+24V

43

44

45

46

OUT 1-E

OUT 2-C

OUT 2-E

mb101 mb102

S94H201E_13426446_EN L 33

Interface

4.2.4 Digital Inputs
IN_Ax, IN_Bx, IN_Cx (P3.26-30, P3.31-35, P3.36-40)

The PositionServo drive has 12 optically isolated inputs. These inputs are compatible with a 5 - 24V voltage
source. No additional series resistors are needed for circuit operation. The 12 inputs are segmented into
three groups of 4, Inputs A1 - A4, Inputs B1 - B4, and Inputs C1 - C4. Each group, (A, B and C) have their
own corresponding shared COM terminal, (ACOM, BCOM and CCOM). Each group or bank can be wired as
sinking or sourcing. Refer to the PNP Sourcing and NPN Sinking wiring examples herein. All inputs have a
separate software adjustable de-bounce time. Some of the inputs can be set up as Special Purpose Inputs.
For example, inputs A1 and A2 can be configured as hardware limit switch inputs, input A3 is always set up
as an Enable input and input C3 can be used as a registration input. Refer to the PositionServo Programming
Manual for more detail.

For the registration input (C3), the registration time is 3µs for an encoder and 7µs for a resolver.

PNP Sourcing

Digital inputs circuit.

Gnd

+24V 27

IN_A1

26

28

IN_A2

IN_A_COM

2.4 k

2.4 k

mb103

NPN Sinking

Digital inputs circuit.

Gnd

+24V

27

IN_A1

26

28

IN_A2

IN_A_COM

2.4 k

2.4 k

mb104

34 L S94H201E_13426446_EN

Interface

4.3 Analog I/O Details
4.3.1 Analog Reference Input
AIN1+, AIN1- (P3.24 and P3.25)
The analog reference input can accept up to a ±10V analog signal across AIN1+ and AIN1-. The maximum
limit with respect to analog common (ACOM) on each input is ±18VDC. The analog signal will be converted
to a digital value with 12 bit resolution (11-bit plus sign). This input is used to control speed or torque of the
motor in velocity or torque mode. The total reference voltage as seen by the drive is the voltage difference
between AIN1+ and AIN1-. If used in single-ended mode, one of the inputs must be connected to a voltage
source while the other one must be connected to Analog Common (ACOM). If used in differential mode, the
voltage source is connected across AIN1+ and AIN1- and the driving circuit common (if any) needs to be
connected to the drive Analog Common (ACOM) terminal. Refer to the External Reference and Single-Ended
Configuration wiring examples below.

Reference as seen by drive: Vref = (AIN1+) - (AIN1-) and -10V < Vref < +10V

External Reference
(Di�erential Con�guration)

ACOM

Analog Command Output

Analog Command Return

ACOM

P3.24

P3.25

P3.22

AIN-

AIN+

PostionServo
Drive

940 Servo Drive

+

-

Analog input +

Analog input -

A
na

lo
g

In
pu

t

Motion
Controller

mb105

Single-ended Configuration

ACOM

AOut P3.20

P3.21

P3.22

AIN-

AIN+

PositionServo
Drive

ACOM

As the dancer arm goes up and down
a 0 - 10 volt signal is transmitted

to the PositionServo Drive.

+

-

mb106

AIN2+, AIN2- (P3.20 and P3.21)

The analog reference input can accept up to a ±10V analog signal across AIN2+ and AIN2-. The maximum
limit with respect to analog common (ACOM) on each input is ±18VDC. The analog signal will be converted
to a digital value with 12 bit resolution (11-bit plus sign). This input is available to the User’s program. This
input does not have a predefined function.

S94H201E_13426446_EN L 35

Interface

4.3.2 Analog Output
AO (P3.23)
The analog output is a single-ended signal (with reference to Analog Common (ACOM) which can represent
the following motor data:

• Not Assigned • Phase R Current • Iq Current

• RMS Phase Current • Phase S Current • Id Current

• Peak Phase Current • Phase T Current

• Motor Velocity

Motor phase U, V and W correspond to R, S and T respectively.

MotionView Setup program can be used to select the signal source for the analog output as well as its
scaling.

If the output function is set to “Not Assigned” then the output can be controlled directly from user’s program.
Refer to the PositionServo Programming Manual for details.

STOP!
Upon application of power to the PositionServo, the Analog Output supplies -10VDC
until bootup is complete. Once bootup is complete, the Analog Output will supply the
commanded voltage.

4.4 Communication Interfaces

4.4.1 Ethernet Interface (standard)
Programming and diagnostics of the drive are performed over the standard Ethernet communication port.
The drive’s IP address is addressable from the drive’s front panel display. The interface supports both 100
BASE-TX as well as 10 BASE-T. This configuration allows the user to monitor and program multiple drives
from MotionView. Refer to section 5.4.1 for PC configuration information.

4.4.2 RS485 Interface (option)
PositionServo drives can be equipped with an RS485 communication interface option module (E94ZARS41)
that is optically isolated from the rest of the drive’s circuitry. The option module can be used for
communications to the drive as a Modbus RTU slave or over UPPP protocol. The PositionServo drive
supports 7 different baud rates from 2400 to 115200. As a Modbus RTU slave, drives are addressable at
up to 247 addresses (repeaters are required above 31 devices on the network). The factory setting for the
baud rate is 38,400 with a node address of “1”. The drive’s address and baud rate can be set from the front
panel of the drive or in MotionView.

RS485 Interface Pin Assignments

Pin Name Function

1
23

TXA
TXB

ICOM

1
2

31 ICOM Isolated Common

2 TXB Transmit B(+)

3 TXA Transmit A(-)

36 L S94H201E_13426446_EN

Interface

4.4.3 Modbus RTU Support
The RS485 interface is configured through the MotionView program. When configured for Modbus operation,
the baud rate for RS485 is set using the parameter “RS485 baud rate”. Modbus RTU requires 8 data
bits. The Modbus RTU slave interface protocol definitions can be found on the MotionView CD in “Product
Manuals”, P94MOD01.

NOTE
Only one communication option module (RS485, CANopen, DeviceNet or PROFIBUS DP)
can be installed in the Option Bay 1 at a time. The COMM modules can be exchanged out
and replaced with another of a different type. The Ethernet interface supports Modbus
TCP/IP and EtherNet/IP.

4.4.4 CANopen Interface
An optional CANopen communication module (E94ZACAN1) is available for the PositionServo drive. Installed
in Option Bay 1 as P21, the CANopen module is optically isolated from the rest of the drive’s circuitry. The
3-pin CANopen module is for HW/SW 1A10 and the 5-pin CANopen module is for HW/SW 1B10 or higher.
Refer to the PS CANopen Reference Guide (P94CAN01) for more information.

CANopen Interface Pin Assignments

Pin Name Function Pin Name Function

1 ICOM Isolated Common 1 NC No connection

2 CAN L CAN Bus Low 2 CAN L CAN Bus Low

3 CAN H CAN Bus High 3 Shield

4 CAN H CAN Bus High

5 NC No connection

1
23

CAN H
CAN L

ICOM

12
3 NC

CAN L
Shield

CAN H
NC

12
3

4
5

4.4.5 DeviceNet Interface
An optional DeviceNet communication module (E94ZADVN1) is available for the PositionServo drive. Installed
in Option Bay 1 as P23, the DeviceNet module is optically isolated from the rest of the drive’s circuitry. The
DeviceNet module is a 5-pin quick connect terminal block. Refer to the PS DeviceNet Communications
Reference Guide (P94DVN01) for detailed information.

DeviceNet Interface Pin Assignments

Pin Name Function

V-
CAN Low

Shield
CAN High

V+

12
3

4
5

1 V- 0V

2 CAN L CAN Bus Low (Negative data line)

3 Shield

4 CAN H CAN Bus High (Positive data line)

5 V+ 11-25VDC power supply

S94H201E_13426446_EN L 37

Interface

4.4.6 PROFIBUS DP Interface
An optional PROFIBUS DP communication module (E94ZAPFB1) is available for the PositionServo drive.
Installed in Option Bay 1 as P24, the PROFIBUS DP module is optically isolated from the rest of the drive’s
circuitry. The PROFIBUS module is a female DB-9 connector. Refer to the PS PROFIBUS Communications
Reference Guide (P94PFB01) for detailed information.

Pin Name Function

1

5 9

6

1 Shield Cable Shield Connection

2 N/C No Connection

3 RxD/TxD-P Data Line B (Red)

4 N/C No Connection

5 DGND Data Ground

6 +5V 5V Output Supply

7 N/C No Connection

8 RxD/TxD-N Data Line A (Green)

9 N/C No Connection

4.5 Motor Selection
The PositionServo drive is compatible with many 3-phase AC synchronous servo motors. MotionView
OnBoard is equipped with a motor database that contains hundreds of motors for use with the PositionServo
drive. If the desired motor is in the database, no data is needed to set it up. Just select the motor and click
“OK”. However, if the motor is not in the database, it can still be used, but some electrical and mechanical
data must be provided to create a custom motor profile. The auto-phasing feature of the PositionServo drive
allows the user to correctly determine the relationship between phase voltage and hall sensor signals or
resolver offset, eliminating the need to determine feedback orientation by other means.

4.5.1 Motor Connection
Motor phase U, V, W (or R, S, T) are connected to terminal P7. It is very important that motor cable shield is
connected to Earth ground terminal (PE) or the drive’s case. The motor’s encoder/resolver feedback cable
must be connected to terminal P4.

4.5.2 Motor Over-Temperature Protection

NOTE
The PositionServo does not provide motor over-temperature protection. The user may
connect a KTY motor thermal sensor to the drive as detailed in section 4.1.1 and this
paragraph, 4.5.2, if necessary to satisfy NEC requirements.

If using a motor equipped with an encoder and PTC thermal sensor, the encoder feedback cable will have
flying leads exiting the P4 connector to be wired to the P7.1 (T1) and P7.2 (T2) terminals. If using a motor
equipped with a Resolver and a PTC sensor, the thermal feedback is passed directly to the drive via the
resolver 9-pin D shell connector.

Use parameter “Motor PTC cut-off resistance” (section 5.3.10) to set the resistance that corresponds to
maximum motor allowed temperature. The parameter “Motor temperature sensor” must also be set to
ENABLE. If the motor doesn’t have a PTC sensor, set this parameter to DISABLE. This input will also work
with N.C. thermal switches which have only two states; Open or Closed. In this case “Motor PTC cut-off
resistance” parameter can be set to the default value.

38 L S94H201E_13426446_EN

Parameters

5 Parameters
The PositionServo drive has many programmable features accessible via the universal software MotionView.
This chapter covers the drive’s programmable features and parameters in the order they appear in the
Parameter Tree of MotionView. Programmable parameters are divided into folders. Each folder contains one
or more user adjustable parameters.

Parameter (Node) Tree

All drives can execute a User Program in parallel with motion. Motion can be specified by variety of sources
and in three different modes:

 Torque Velocity Position

In Torque and Velocity mode the reference can be taken from Analog Input AIN1 or from the User Program
by setting a particular variable (digital reference). In Position mode, the reference can be taken from MA/MB
master encoder/step and directions inputs (available in terminal P3) or from trajectory generator. Access to
the trajectory generator is provided through the User Program’s motion statements, MOVEx and MDV. Refer
to the PositionServo Programming Manual for details on programming. Whether the reference comes from
an external device, (AIN1 or MA/MB) or from the drives internal variables (digital reference and trajectory
generator) will depend on the parameter settings.

S94H201E_13426446_EN L 39

Parameters

5.1 Drive Identification
At the top of the Node Tree, click the Drive name [E94P 240V 04Amp ...]. The drive ID string, device
family, firmware revision, vector processor revision, hardware revision, MotionView OnBoard revision, motor
database revision, indexer compiler revision, serial number, drive name and group ID are displayed as
illustrated herein. With the exception of the Drive Name and Group ID, the drive identification parameters
are fixed and provided for information only.

The drive identifier (E94P 240V 04Amp [192.168.124.120] : STOPPED) in the node tree consists of three
segments: the drive’s name, the drive’s IP address and the status of the Indexer Program.

Drive name: E94P 240V 04Amp
Drive IP address: 192.168.124.120
Indexer program status: STOPPED (indexer program is stopped)
 RUNNING (indexer program is running)

The drive identifier also indicates the status of the drive. When the drive identifier in the node tree is
highlighted in green, the drive is enabled. When the drive identifier is gray, the drive is disabled.

5.1.1 Drive Name
To assign a name to the drive click in the box adjacent to Drive Name. A alpha-numeric name may be
entered to identify the drive.

5.1.2 Group ID
The Group ID feature allows the user to group PositionServo drives together via an Ethernet network. When
used with the SEND and SENDTO command, drives in the same group can share and update variables. Group
ID Numbers can be set between 0 and 32767. See statements SEND and SENDTO for further explanations.

40 L S94H201E_13426446_EN

Parameters

5.2 Motor
The motor folder displays the data for the currently selected motor. A motor may be selected from the
database or a custom motor may be configured.

5.2.1 Motor Setup
Select the [Motor] folder in the right-hand “Parameter View Window”. To select a new motor click the
[Change Motor] button. When [Change Motor] is selected, the Motor Database dialog box will open. Select
the Motor Type from the node tree in the left-hand window.

NOTE: The drive must be is DISABLED (display: “diS”) to setup a new motor.

To make a new motor selection:
•	 Click [Change Motor] in the Parameter View Window.

•	 Select motor Vendor and Motor Model from the pull down menus.

•	 Click [Update Drive] to complete the motor selection, dismiss the dialog box and return to MotionView
OnBoard’s main program.

•	 If using a motor not listed in the current motor database, select [Create Custom] and refer to section
5.2.2 “Using a Custom Motor”.

S94H201E_13426446_EN L 41

Parameters

NOTE
To help prevent the motor from drawing to much current and possibly overheating it is recommended that
the drive’s “Current Limit” be checked against the motors “Nominal Phase Current” and set accordingly.

5.2.2 Using a Custom Motor
Follow these instructions to load a custom motor from a file or create a new custom motor. From the
Parameter tree select the [Motor] folder. From the Parameter view window select [Change Motor].

•	 With the Motor Database dialog box open, Click [Custom Motor] under the Motor Type from the left-
hand window: Synchronous or Induction/Asynchronous.

•	 Input the Motor data manually or from a previously saved motor file. To load motor data from a file
click [Open file], select file path and click [OK] to open.

•	 To add this new custom file to your computer’s hard drive, click [Save File], select file path and click
[OK] to save.

•	 To load this file to the drive, click [Update Drive].

•	 When selecting [OK] for a custom motor, a dialog box will appear prompting for a decision to
perform/not perform “Autophasing” (refer to section 5.2.4).

5.2.3 Creating Custom Motor Parameters

STOP!
Use extreme caution when entering custom parameters! Incorrect settings may damage the drive or
motor! If unsure of the settings, refer to the materials distributed with the motor, or contact the motor
manufacturer for assistance.

1. Enter custom motor data in the Motor Parameters dialog fields. Complete all sections of dialog:
Electrical, Mechanical, Feedback and Motor Gain Scaling.

NOTE
If unsure of the motor halls order and encoder channels A and B relationship, leave “B leads A for
CW”, “Halls order” and “inverted” fields as they are. Use Autophasing (section 5.2.4) to set them
correctly.

2. Enter motor model and vendor in the top edit boxes. Motor ID cannot be entered, this is set to
0 for custom motors. Likewise, if unsure of resolver offset and direction of rotation leave at
default and correct using the Autophasing.

3. Click [Save File] button and enter filename without extension. The default extension .cmt will be
given when you click OK on file dialog box.

42 L S94H201E_13426446_EN

Parameters

NOTE
Save the file even if the autophasing feature will be used and some of the final parameters are not
known. After autophasing is completed, the corrected motor file can be updated before loading it to
memory.

4. Click [Close] to exit from the Motor Parameters dialog.

5. MotionView will prompt to autophase/not autophase the custom motor. Answer [No] to cancel
without applying the changes made in the Motor database window. Answer [Yes] and the motor
dialog will be dismissed and the drive will start the autophasing sequence. Refer to section
5.2.4, Autophasing.

6. If [Yes] is selected, the same motor selection dialog box will be displayed after autophasing is
complete. For motors with incremental encoders, the fields “B leads A for CW”, “Halls order”
and “inverted” will be assigned correct values. For motors with resolvers, the fields “Offset in
degree” and “CW for positive” will be assigned correct values.

7. Click [Save File] to save the custom motor file and then click [Update Drive] to exit the dialog
box and load the data to the drive.

5.2.4 Autophasing
The Autophasing feature determines important motor parameters when using a motor that is not in
MotionView’s database. For motors equipped with incremental encoders, Autophasing will determine the
Hall order sequence, Hall sensor polarity and encoder channel relationship (B leads A or A leads B for CW
rotation). For motors equipped with resolvers, Autophasing will determine resolver angle offset and angle
increment direction (“CW for positive”).

To perform autophasing:
1. Complete the steps in “Creating custom motor parameters”. If the motor file to be autophased

already exists, simply load it as described under “Using a custom motor”.

2. Make sure that the motor’s shaft is not connected to any mechanical load and can freely rotate.

STOP!
Autophasing will energize the motor and will rotate the shaft. Make sure that the motor’s shaft is not
connected to any mechanical load and can freely and safely rotate.

3. Make sure that the drive is not enabled.

4. For Encoder it is not necessary to edit the field “Hall order” and check boxes “inverted” and “B
leads A for CW” as these values are ignored for autophasing. For Resolver it is not necessary to set
“Offset in degree” and “CW for positive”.

5. Click [Update Drive] to dismiss motor selection dialog. MotionView responds with the question “Do
you want to perform autophasing?”

6. Click [OK]. A safety reminder dialog appears. Verify that it is safe to run the motor then click [Yes]
and wait until autophasing is completed.

NOTE
If a problem occurs with the motor, hall sensor or resolver connections, MotionView will send an error
message. The source of the error is commonly the power, shield and ground terminations or the use
of an improper cable. Correct the wiring problem(s) and repeat steps 1 - 6.
If the error message repeats, exchange motor phases U and V (R and S) and repeat. If problems
persist, contact the factory.

7. If autophasing is completed with no error then MotionView will return to the motor dialog box. For
motors with incremental encoders, the parameter field “Hall order” and the check boxes “inverted”,
“B leads A for CW” will be filled in with correct values. For resolver equipped motors, fields “Offset ”
and “CW for positive” will be correctly set.

S94H201E_13426446_EN L 43

Parameters

8. Click [Save File] to save the completed motor file (use same filename as the initial data in step 1).
Click [Update Drive] to load the motor data to the drive.

5.2.5 Custom Motor Data Entry
A Custom Motor file is created by entering motor data into the “Motor Parameters” dialog box. This box
is divided up into four sections: Electrical constants, Mechanical constants, Feedback and Gain Scaling.

Parameter Type Synchronous Motor Asynchronous (Induction) Motor

Identification Vendor, Motor Model, ID Vendor, Motor Model, ID

Electrical Kt, Ke, Lm, Rm, IRMS, Nominal VBUS,
of poles

Cos f, fBase, Lm, Rm, IRMS, Nominal VBUS,
of poles

Feedback Primary feedback, Resolver Offset Resolver FB, Encoder PPR before quad,
B leads A CW

Motor Gain Scaling Velocity P-gain, Velocity I-gain,
Gain Scaling

Velocity P-gain, Velocity I-gain,
Gain Scaling

Mechanical Jm, VelMAX Jm, VelNOMINAL, VelMAX

When creating a custom motor, input the value of all parameters listed for the specific motor type. All
entries are mandatory except motor inertia (Jm). Enter a value of 0 for the motor inertia if the actual value
is unknown.

5.2.5.1 Electrical & Mechanical Constants
Motor Torque Constant (Kt)

Enter the value and select proper units from the drop-down list.

NOTE
Round the calculated result to 3 significant places.

Motor Voltage Constant (Ke)

The program expects Ke to be entered as a phase-to-phase Peak voltage. If you have Ke as an RMS value,
multiply this value by 1.414 for the correct Ke Peak value.

Phase-to-phase winding Inductance (Lm)

This must be set in millihenries (mH). The phase-to-phase winding Inductance (L) will typically be between
0.1 and 200.0 mH.

NOTE
If the units for the phase-to-phase winding Inductance (L) are given in micro-henries
(µH), then divide by 1000 to get mH.

Phase-to-phase winding Resistance (Rm) in Ohms

This is also listed as the terminal resistance (Rt). The phase-to-phase winding Resistance (R) will typically
be between 0.05 and 200 Ohms.

Nominal phase current (RMS Amps)

Nominal continuous phase current rating (In) in Amps RMS. Do not use the peak current rating.

44 L S94H201E_13426446_EN

Parameters

NOTE
If the phase current rating is not given, use this equation to obtain the nominal continuous
phase-to-phase winding current:

In = Continuous Stall Torque / Motor Torque Constant (Kt)

The same force x distance units must be used in the numerator and denominator in the equation above. If
torque (T) is expressed in units of pound-inches (lb-in), then Kt must be expressed in pound-inches per Amp
(lb-in/A). Likewise, if T is expressed in units of Newton-meters (N-m), then units for Kt must be expressed
in Newton-meters per Amp (N-m/A).

Example:
Suppose that the nominal continuous phase to phase winding current (In) is not given. Instead, we
look up and obtain the following:
 Continuous stall torque T = 3.0 lb-in
 Motor torque constant Kt = 0.69 lb-in/A
 Dividing, we obtain:

In = 3.0 lb-in / 0.69 lb-in/A =4.35 (A)

Our entry for (In) would be 4.35.
Note that the torque (lb-in) units are cancelled in the equation above leaving just Amps (A). We would
have to use another conversion factor if the numerator and denominator had different force x distance
units.

Nominal Bus Voltage (Vbus)

The Nominal Bus Voltage can be calculated by multiplying the Nominal AC mains voltage supplied by 1.41.
When using a model with the suffix “S1N” where the mains are wired to the “Doubler” connection, the
Nominal Bus Voltage will be doubled.

Example:
If the mains voltage is 230VAC, Vbus = 230 x 1.41 = 325V

This value is the initial voltage for the drive and the correct voltage will be calculated dynamically
depending on the drive’s incoming voltage value.

Number of Poles

This is a positive integer number that represents the number of motor poles, normally 2, 4, 6 or 8.

Rotor Moment of Inertia (Jm)

From motor manufacturer or nameplate.

NOTE
Round the calculated result to 3 significant places.

5.2.5.2 For Incremental Encoder - Equipped Motors Only
Encoder Line Count

The encoders for servomotors normally have line counts of 1000, 1024, 2000, 2048, 4000, or 4096. The
Encoder Line Count is pre-quadrature and a positive integer.

Halls Order

Each hall signal is in phase with one of the three phase-phase voltages from the motor windings. Hall order
number defines which hall sensor matches which phase-phase voltage. Motor phases are usually called
R-S-T or U-V-W or A-B-C. Phase-Phase voltages are called Vrs, Vst, Vtr. Halls are usually called HALL-A,
HALL-B, HALL-C or just Halls 1, 2, 3. A motor’s phase diagram is supplied by motor vendor and usually
can be found in the motor data sheet or by making a request to the motor manufacturer. A sample phase
diagram is illustrated in Figure S912.

S94H201E_13426446_EN L 45

Parameters

S912

The Halls Order is obtained as follows:

1. Look at the “Vrs” Output Voltage and determine the Hall Voltage that is lined up with (or in phase
with) this voltage. To determine which Hall Voltage is in phase with the Vrs Output Voltage draw
vertical lines at those points where it crosses the horizontal line (zero). The dashed lines at the zero
crossings (above) indicate that Hall B output is lined up with (and in phase with) the Vrs Output
Voltage.

2. Look at the “Vst” Output Voltage. Determine which Hall Voltage is in phase with this Voltage. Per
Figure S912, the Hall C output is in phase with the Vst Output Voltage.

3. Look at the “Vtr” Output Voltage. Determine which Hall Voltage is in phase with this Voltage. Per
Figure S912, the Hall A output is in phase with the Vtr Output Voltage.

NOTE
If hall sensors are in phase with the corresponding phase voltage but are inverted 180
degrees (hall sensor waveform edge aligns with the phase-phase voltage waveform
but the positive hall sensor cycle matches the negative phase-phase waveform or visa-
versa), you must check the “Inverted” check box.

4. The phases that correspond to the Vrs, Vst and Vtr voltages are Hall B then Hall C then Hall A or
Halls number 2 then 3 then 1. Referring to the following table, we find that 2-3-1 sequence is Halls
Order number 3. We would then enter 3 for the Halls Order field in the motor dialog box.

Hall Order Numbers for Different Hall Sequences

Halls Order Hall Sequence
0 1-2-3
1 1-3-2
2 2-1-3
3 2-3-1
4 3-1-2
5 3-2-1

NOTE
Each Hall Voltage is in phase with one and only one Output Voltage.

46 L S94H201E_13426446_EN

Parameters

B leads A for CW
This is the encoder phase relationship for CW/CCW shaft rotation. When you obtain the diagram for your
motor phasing similar to shown above, it’s assumed by the software that the motor shaft rotates CW when
looking at the rear of the motor. For that rotation Encoder phase A must lead phase B. If it does, leave the
check box unchecked. Otherwise (if B leads A), check B leads A in the CW box.

NOTE
The reference for direction of rotation is from the rear of the motor.

NOTE
This parameter does not reverse the direction of motor rotation. It is used to setup the
motor commutation. See “Rotation Direction” in the Parameters menu to reverse the
direction of forward rotation.

5.2.5.3 For Resolver Equipped Motors Only
If parameter “Resolver” is checked, following parameters appear on the form:

Offset in degree (electrical)
This parameter represents offset between resolver’s “0 degree” and motor’s windings “0 degree”.

CW for positive
This parameter sets the direction for positive angle increment.

“Offset in degree” and “CW for positive” will be set during Auto-Phasing of the motor.

S94H201E_13426446_EN L 47

Parameters

5.3 Parameters

Parameters List - Top

Parameters List - Bottom

48 L S94H201E_13426446_EN

Parameters

5.3.1 Drive Mode
The PositionServo has 3 operating mode selections: Torque, Velocity and Position.

For Torque and Velocity modes the drive will accept an analog input voltage on the AIN1+ and AIN1- pins
of P3 (refer to section 4.3.1). This voltage is used to provide a torque or speed reference.

For Position mode the drive will accept step and direction logic signals or a quadrature pulse train on pins
P3.1- P3.4.

5.3.1.1 Torque Mode
In torque mode, the servo control provides a current output proportional to the analog input signal at input
AIN1, if parameter “Reference” is set to “External”. Otherwise the reference is taken from the drive’s
internal variable. (Refer to the PositionServo Programming Manual for details)

For analog reference “Set Current”, (current the drive will try to provide), is calculated using the following
formula:

Set Current(A) = Vinput(Volt) X Iscale (A/Volt)

where:
•	 Vinput is the voltage at analog input
•	 Iscale is the current scale factor (input sensitivity) set by the Analog input

(Current Scale) parameter (section 5.5.4).

5.3.1.2 Velocity Mode
In velocity mode, the servo controller regulates motor shaft speed (velocity) proportional to the analog input
voltage at input AIN1, if parameter “Reference” is set to “External”. Otherwise the reference is taken from
the drive’s internal variable. Refer to the PositionServo Programming Manual for details.

For analog reference, Target speed (set speed) is calculated using the following formula:

Set Velocity (RPM) = Vinput (Volt) x Vscale (RPM/Volt)

where:
•	 Vinput is the voltage at analog input (AIN1+ and AIN1-)
•	 Vscale is the velocity scale factor (input sensitivity) set by the Analog input

(Velocity scale) parameter (section 5.5.5).

5.3.1.3 Position Mode
In this mode the drive reference is a pulse-train applied to P3.1-4 terminals, if the parameter “Reference”
is set to “External”. Otherwise the reference is taken from the drive’s internal motion commands. (Refer to
the PositionServo Programming Manual for details).

P3.1-4 inputs can be configured for two types of signals: step and direction and Master encoder quadrature
signal. Refer to section 4.2.1 for details on these inputs connections. Refer to section 6.4 for details about
positioning and gearing.

When the Reference is set to Internal, the drives reference position, (theoretical or Target position), is
generated by trajectory generator. Access to the trajectory generator is provided by motion statements,
MOVEx and MDV, from the User Program. Refer to the PositionServo Programming Manual for details.

5.3.2 Reference
The REFERENCE setting selects the reference signal being used by the drive. This reference signal can be
either External or Internal. An External Reference can be one of three types, an Analog Input signal, a Step
and Direction Input or an Input from a external Master Encoder. The Analog Input reference is used when the
drive is either in torque or velocity mode. The Master Encoder and Step and Direction reference is used when
the drive is in position mode. An Internal Reference is used when the motion being generated is derived from
drive’s internal variable(s), i.e., User Program. Refer to the PositionServo Programming Manual.

S94H201E_13426446_EN L 49

Parameters

5.3.3 Drive PWM Frequency
This parameter sets the PWM carrier frequency. Frequency can be changed only when the drive is disabled.
Maximum overload current is 300% of the drive rated current when the carrier is set to 8kHz. It is limited
to 250% at 16kHz.

5.3.4 Current Limit
The Current Limit setting determines the nominal currents, in amps RMS per phase, that output to the motor
phases. To prevent the motor from overloading, this parameter is usually set equal to the motor nominal (or
rated) phase current. The Current Limit is set equal to the nominal motor phase current by default when a
motor model is selected.

5.3.5 To Change Current Limits
To modify/overwrite the Current Limit place a checkmark in the box. If this box is checked, the parameters
“Current limit”, “8 kHz peak current limit” and “16 kHz peak current limit” can be overwritten. To prevent
the motor from overloading, the “current Limit”, “8 kHz peak current limit” and “16 kHz peak current limit”
shall be set to values no higher than the corresponding current limits of the motor in use.

5.3.6 Peak Current Limit (8 kHz and 16 kHz)
Peak Current Limit sets the motor RMS phase current that is allowed for up to 2 seconds. After this two
second limit, the drive output current to motor will be reduced to the value set by the Current Limit parameter.
When the motor current drops below nominal current for two seconds, the drive will automatically re-enable
the peak current level. This technique allows for high peak torque on demanding fast moves and fast start/
stop operations with high regulation bandwidth. If 8 kHz is used for Drive PWM frequency, use the parameter
8 kHz Peak Current Limit, otherwise, use 16 kHz Peak Current Limit.

The Peak Current Limit is set equal to 2.5 times the nominal motor phase current by default when a motor
model is selected. The maximum of 3 times nominal motor phase current can be obtained at 8kHz. To
prevent motor from overloading, the Peak Current Limit shall be set no higher than the maximum motor
current. Otherwise, the motor may be damaged due to overheating. To modify this limit, refer to section
5.3.5.

5.3.7 Accel/Decel Limits (velocity mode only)
The Accel setting determines the time the motor takes to ramp to a higher speed. The Decel setting
determines the time the motor takes to ramp to a lower speed. If the Enable Accel/Decel Limits is set to
[Disable], the drive will automatically accelerate and decelerate at maximum acceleration limited only by the
current limit established by the Peak Current Limit and Current Limit settings. This parameter is only utilized
when the drive is set to Velocity mode (refer to 5.3.1).

5.3.8 Fault Reset
Fault Reset selects the type of action required to reset the drive after a FAULT condition has been generated
by the drive. On Disable clears the fault when the drive is disabled. This is useful if you have a single drive
and motor connected in a single drive system. The On Enable option clears the fault when the drive is
re-enabled. Choose On Enable if you have a complex servo system with multiple drives connected to an
external controller. This makes troubleshooting easier since the fault will not be reset until the drive is re-
enabled. Thus, a technician can more easily determine which component of a complex servo system has
caused the fault.

50 L S94H201E_13426446_EN

Parameters

5.3.9 Motor Temperature Sensor
This parameter enables / disables motor over-temperature detection. It must be disabled if the motor PTC
sensor is not wired to either P7.1-2 or to the resolver feedback input (P4 or P11).

5.3.10 Motor PTC Cutoff Resistance
This parameter sets the cut-off resistance of the PTC that defines when the motor reaches the maximum
allowable temperature. Refer to section 4.5.2 for details on how to connect the motor’s PTC.

5.3.11 Regen Duty Cycle
This parameter sets the maximum duty cycle for the brake (regeneration) resistor. This parameter can be
used to prevent brake resistor overload. Use the following formula to calculate the maximum value for this
parameter. If this parameter is set equal to the calculated value, the regeneration resistor is most effective
without overload. One may set this parameter with a value smaller than the calculated one if the drive will
not experience over voltage fault during regeneration.

 D = P * R / (Umax)2 * (1/Dapplication) * 100%

Where:

D (%) regeneration duty cycle

Umax (VDC) bus voltage at regeneration conditions

 Umax = 390 VDC for 120/240 VAC drives and 770 VDC for 400/480 VAC drives.

R (Ohm) regeneration resistor value

P (W) regeneration resistor rated power

Dapplication (%) application duty cycle. For the continuous regeneration applications, use Dapplication = 1. For
the intermittent regeneration applications, use Dapplication = t/T, where t is the duration when
regeneration is needed and T is the time interval between two regenerations. Both t and T must use
the same time unit, e.g., seconds

t, regeneration

T-t, regeneration
is not needed

T

If calculation of D is greater than 100% set it to 100% value. If calculation of D is less than 10% then
resistor power rating is too low. For more information refer to the PositionServo Dynamic Braking Manual
(G94BR01).

Minimum Required Dynamic Braking Resistance

Drive Model DB Minimum Resistance (Ω)
E94_180T2N~~ 15

E94_080S2F~~, E94_080Y2N~~,
E94_100S2F~~, E94_100Y2N~~

20

E94_120Y2N 30
E94_020S1N~~, E94_020S2F~~,
E94_020Y2N~~, E94_040S1N~~,
E94_040S2F~~, E94_040Y2N~~

40

E94_090T4N~~ 45
E94_040T4N~~, E94_050T4N~~, E94_060T4N~~ 75

E94_020T4N~~ 150

S94H201E_13426446_EN L 51

Parameters

5.3.12 Master Encoder Input Type (position mode only)
This parameter sets the type of input for position reference the drive expects to see. Signal type can be step
and direction [Step & Direction] type or quadrature pulse-train [Master Encoder]. Refer to section 4.2.1 for
details on these inputs.

5.3.13 Master Encoder - System to Master Ratio
This parameter is used to set the scale between the reference pulse train (when operating in position mode)
and the system feedback device. The system feedback device is the motor encoder or resolver.

5.3.14 Autoboot
When set to “Enabled” the drive will start to execute the user’s program immediately after cold boot (reset).
Otherwise the user program has to be started from MotionView or from the Host interface.

5.3.15 User Units
This parameter sets up the relationship between User Units and motor revolutions. From here you can
determine how many User Units there is in one motor revolution. This parameter allows the user to scale
motion moves to represent a desired unit of measure, (inches, meters, in/sec, meters/sec, etc).

User Units Example: A linear actuator allows a displacement of 2.5” with every revolution of the motor’s
shaft.

Units = Units / Revolutions

Units = 2.5 Inches / Revolution

Units = 2.5

5.3.16 Rotation Direction
This parameter sets up the direction of foward (positive) rotation. To reverse the direction of positive rotation
for a specific installation, change Rotation Direction from “Normal” to “Reversed”.

5.3.17 Resolver Tracks
The Resolver Tracks parameter is used in conjunction with the resolver motors and Buffered Encoder
Outputs (Section 4.2.2). If a motor with resolver feedback is being used a simulated encoder feedback is
transmitted out the Buffered Encoder Outputs, P3.7 to P3.12. The default resolution of this feedback is 1024
pulses per revolution, pre quad. If a different resolution is required then the Resolver Tracks parameter is
utilized. The number entered into this field, 0-15, correlates to a specific encoder resolution.

Resolver Tracks Configuration

Resolver
Track

Resolution
Before Quad

Resolver Track Resolution Before
Quad

0 1024 8 1000

1 256 9 1024

2 360 10 2000

3 400 11 2048

4 500 12 2500

5 512 13 2880

6 720 14 250

7 800 15 4096

52 L S94H201E_13426446_EN

Parameters

5.4 Communication
The Communication folder contains four sub-folders: Ethernet, RS-485, CAN and PROFIBUS plus sub-sub
folders to program the parameters specific to the communication type. Select the Fieldbus used from the
pull-down menu (None, CANOpen Simple 301, DeviceNet or PROFIBUS).

NOTE
Ethernet is always enabled regardless of the fieldbus selected. Gatewaying is not
supported between fieldbus and Ethernet.

5.4.1 Ethernet
Refer to section 6.2 on setting an IP address. The Ethernet folder displays the IP Address, Subnet Mask and
Default Gateway for the drive selected in the Node Tree. The TCP Reply Delay can be set in 1 millisecond
increments from 0 to 15ms. To obtain the IP address via DHCP, check the box adjacent to [Obtain IP address
using DHCP].

The Ethernet folder contains the sub-folders: Modbus TCP and EtherNet/IP. Defined by the Ethernet
hardware settings, no further settings are necessary to communicate via ModBus TCP. Also defined by the
Ethernet hardware settings, the EtherNet/IP folder contains the configuration parameters for the EtherNet/
IP (Industrial Protocol). In general, there is no need to change parameters for multicast operations. Consult
your IT administrator for these settings as their configuration is very network-specific.

5.4.2 RS-485
To configure the RS485 interface, option module E94ZARS41, set the following parameters: RS485
Configuration, RS485 Baud Rate, RS485 Parity, RS485 Stop Bits and RS485 Address. The RS485 interface
can be configured for UPPP operation or as a Modbus RTU slave.

The RS-485 folder contains one sub-folder: Modbus RTU. The Modbus RTU folder contains the Modbus
Reply Delay parameter which sets the time delay between the drive’s reply to the Modbus RTU master. This
delay is needed for some types of Modbus masters to function correctly.

5.4.3 CAN
The CAN baud rate and CAN address are set in the main CAN folder. The main CAN folder contains two sub-
folders: CANOpen and DeviceNet. In the CANOpen sub-folder, the CAN Bootup Mode, CAN Bootup Delay and
CAN Heart Beat Time parameters are set. Mapping of the CAN process data objects (PDO) is also carried out
from this folder. In the DeviceNet folder, the DeviceNet Poll I/O Scaling parameter is set.

5.4.4 PROFIBUS
These parameters are set in the PROFIBUS folder: PROFIBUS Address, Acyclic Mode, Data Exchange
Timeout plus the IN/OUT Data Size, Parameter ID Number and Mapping Type.

S94H201E_13426446_EN L 53

Parameters

5.5 Analog I/O

5.5.1 Analog Output
The PositionServo has one analog output with 10-bit resolution on P3 pin 23. The signal is scaled to ±10V.
The analog output can be assigned to the following functions:

•	 Not Assigned

•	 Phase current RMS

•	 Phase current Peak

•	 Motor Velocity

•	 Phase R current

•	 Phase S current

•	 Phase T current

•	 Iq current (Torque component)

•	 Id current (Direct component)

5.5.2 Analog Output Current Scale (Volt/Amps)
Applies scaling to all functions representing CURRENT values.

5.5.3 Analog Output Velocity Scale (mV/RPM)
Applies scaling to all functions representing VELOCITY values. (Note: that mV/RPM scaling units are
numerically equivalent to volts/kRPM)

5.5.4 Analog Input Current Scale (Amps/Volt)
This parameter sets the analog input sensitivity for current reference used when the drive operates in torque
mode. Units for this parameter are A/Volt. To calculate this value use the following formula:

 Iscale = Imax / Vin max

 Imax maximum desired output current (motor phase current RMS)

 Vin max max voltage fed to analog input at Imax

Example: Imax = 5A (phase RMS)
 Vin max = 10V
 Iscale = Imax / Vin max
 = 5A / 10V = 0.5 A / Volt (value to enter)

5.5.5 Analog Input Velocity Scale (RPM/Volt)
This parameter sets the analog input sensitivity for the velocity reference used when the drive operates
in velocity mode. Units for this parameter are RPM/Volt. To calculate this value use the following formula:

Vscale = VELOCITYmax / Vin max

 VELOCITYmax maximum desired velocity in RPM

 Vin max max voltage fed to analog input at Velocitymax

Example: VELOCITYmax = 2000 RPM
 Vin max = 10V
 Vscale = VELOCITYmax / Vin max
 = 2000 / 10V
 = 200 RPM / Volt (value to enter)

54 L S94H201E_13426446_EN

Parameters

5.5.6 Analog Input Dead Band
Allows the setting of a voltage window (in mV) at the reference input AIN1+ and AIN1- (P3 pins 24 and
25) such that any voltage within that window will be treated as zero volts. This is useful if the analog input
voltage drifts resulting in motor rotation when commanded to zero.

5.5.7 Analog Input Offset
This function allows the drive to automatically adjust the analog input voltage offset. To use it, command
the external reference source input at AIN1+ and AIN1- (P3 pins 24 and 25) to zero volts and then click the
[<<] button adjacent to the [Analog Input Offset] box. Any offset voltage at the analog input will be adjusted
out and the adjustment value will be stored in the [Analog input offset] parameter.

5.6 Digital I/O

5.6.1 Digital Output
The PositionServo has four programmable digital outputs. These outputs can be assigned to one of the
following functions, or used by the drive’s internal User Program.

Not Assigned No function assigned. Output can be used by the User program.

Zero Speed Output activated when drive is at zero speed, refer to “Velocity Limits Group” (section 5.7) for
settings.

In Speed Window Output activated when drive is in set speed window, refer to “Velocity Limits Group” (section
5.7) for settings.

Current Limit Output activated when drive detects current limit.

Run Time Fault A fault has occurred. Refer to section 7.3 for details on faults.

Ready Drive is enabled.

Brake Output is active for the time programmed by the Brake Release Delay parameter after the
drive is enabled and deactivates after the drive is disabled for control of a motor mechanical
brake.

In position Position mode only. Refer to the PS Programming Manual.

5.6.2 Digital Input De-bounce Time
Sets de-bounce time for the digital inputs to compensate for bouncing of the switch or relay contacts. This
is the time following an input transition when any further transitions will be ignored (not recognized by the
drive).

5.6.3 Hard Limit Switch Action
Digital inputs IN_A1 and IN_A2 can be used as limit switches if their function is set to “Fault” or “Stop and
Fault”. Activation of these inputs while the drive is enabled will cause the drive to Disable and go to a Fault
state. The “Stop and Fault” action is available only in Position mode when the “Reference” parameter is
set to “Internal”, i.e., when the source for the motion is the Trajectory generator. Refer to the PositionServo
Programming Manual for details on “Stop and Fault” behavior.

5.6.4 Enable Switch Function
The Enable input (IN_A3) on PositionServo can be set to function as either a ‘Run’ Input or an ‘Inhibit’ Input.
The run function allows input A3 control of switching the drive between enable and disable states (Enabling
or disabling output to the motor). The Run function is typically used in centralized systems where a PLC or
Motion Control output is required to control the enable/disable of the drive.

When input A3 becomes active the drive will go immediately to an enable state, and when it becomes
inactive the drive will go immediately to a disabled state.

S94H201E_13426446_EN L 55

Parameters

The inhibit function allows input A3 to inhibit (prevent) power being applied to the motor but does not provide
the enable or disable command for the drive. This function is typically used in a centralized system where
the drive’s internal programming determines when the drive should enable or disable (these statements are
executed within the drive programming). In the inhibit mode Input A3 acts as a hardware level inhibit, only
allowing the drive to go to an enable state (when instructed from the internal programming) providing the
input A3 is active. Attempting to enable from the internal user program while input A3 is inactive will cause
the drive to trip (Fault F_36) as will removal of input A3 while the drive is in an enabled state.

Input A3 cannot be bypassed, it must be present to obtain any power to the motor or motion.

5.6.5 Brake Release Delay
The Brake Release Delay controls the amount of time an output configured as “brake” waits after the drive
enables to activate the brake output. The range for Brake Release Delay is 0-2000 milliseconds and the
default value is 0ms.

5.7 Velocity Limits
In the Velocity Limits folder are 3 programmable parameters: Zero Speed, Speed Window and At Speed.
These parameters are active in Velocity Mode Only.

5.7.1 Zero Speed
Specifies the upper threshold for motor zero speed in RPM. When the motor shaft speed is at or below
the specified value, the zero speed condition is set to true in the internal controller logic. The zero speed
condition can also trigger a programmable digital output, if selected. The Zero Speed range is 0 to 100 RPM
and the default value is 10 RPM.

5.7.2 Speed Window
Speed Window specifies the width used with the “In speed window” output. The Speed Window range is 10
to 10,000 RPM and the default value is 100 RPM.

5.7.3 At Speed
At Speed specifies the speed window center used with the “In speed window” output. The At Speed range
is -10000 to 10000 RPM and the default value is 1000 RPM.

Speed Window and At Speed specify speed limits. If motor shaft speed is within these limits then the
condition AT SPEED is set to TRUE in the internal controller logic. The AT SPEED condition can also trigger a
programmable digital output, if selected.

For example if “AT SPEED” is set for 1000 RPM, and the “SPEED WINDOW” is set for 100, then “AT SPEED”
will be true when the motor velocity is between 950 -1050 RPM.

56 L S94H201E_13426446_EN

Parameters

5.8 Position Limits

5.8.1 Position Error
Specifies the maximum allowable position error in the primary (motor mounted) feedback device before
enabling the “Max error time” clock. When using an encoder, the position error is in post-quadrature
encoder counts. When using a resolver, position error is measured at a fixed resolution of 65,536 counts
per motor revolution.

STOP!
If Position Error is set to 0, position error checking is disabled. Carefully evaluate the
application for safety aspects before disabling position error checking.

5.8.2 Max Error Time
Specifies maximum allowable time (in mS) during which a position error can exceed the value set for the
“Position error” parameter before a Position Error Excess fault is generated. If the Position Error is set to
the max setting then the drive will trip and not use the Error time when the error exceeds the above setting.

5.8.3 Soft Limits
Enables/disables the usage of a software defined limit. Do not enable this feature until after the drive is
homed for the specific application. Like all parameters, this setting can be set/reset logically within the
Indexer program.

Positive Limit Soft limit switch location in User Units

Negative Limit Soft limit switch location in User Units

5.9 Compensation

5.9.1 Velocity P-gain (proportional)
Proportional gain adjusts the system’s overall response to a velocity error. The velocity error is the difference
between the commanded velocity of a motor shaft and the actual shaft velocity as measured by the primary
feedback device. By adjusting the proportional gain, the bandwidth of the drive is more closely matched to
the bandwidth of the control signal, ensuring more precise response of the servo loop to the input signal.

5.9.2 Velocity I-gain (integral)
The output of the velocity integral gain compensator is proportional to the accumulative error over cycle
time, with I-gain controlling how fast the error accumulates. Integral gain also increases the overall loop
gain at the lower frequencies, minimizing total error. Thus, its greatest effect is on a system running at low
speed, or in a steady state without rapid or frequent changes in velocity.

NOTE
The following 4 position gain settings are only active if the drive is operating in Position
mode. They have no effect in Velocity or Torque modes.

S94H201E_13426446_EN L 57

Parameters

5.9.3 Position P-gain (proportional)
Position P-gain adjusts the system’s overall response to position error. Position error is the difference
between the commanded position of the motor shaft and the actual shaft position. By adjusting the
proportional gain, the bandwidth of the drive is more closely matched to the bandwidth of the control signal,
ensuring more precise response of the servo loop to the input signal.

5.9.4 Position I-gain (integral)
The output of the Position I-gain compensator is proportional to accumulative error over cycle time, with
I-gain controlling how fast the error accumulates. Integral gain also increases overall loop gain at the lower
frequencies, minimizing total error. Thus, its greatest effect is on a system running at low speed, or in a
steady state without rapid or frequent changes in position.

5.9.5 Position D-gain (differential)
The output of the Position D-gain compensator is proportional to the difference between the current position
error and the position error measured in the previous servo cycle. D-gain decreases the bandwidth and
increases the overall system stability. It is responsible for removing oscillations caused by load inertia.

5.9.6 Position I-limit
The Position I-limit will clamp the Position I-gain compensator to prevent excessive torque overshooting
caused by an over accumulation of the I-gain. It is defined in terms of RPM. This is especially helpful when
position error is integrated over a long period of time.

5.9.7 Gain Scaling Window
Sets the total velocity loop gain multiplier (2n) where n is the velocity regulation window. If, during motor
tuning, the velocity gains become too small or too large, this parameter is used to adjust loop sensitivity. If
the velocity gains are too small, decrease the total loop gain value, by deceasing this parameter. If gains are
at their maximum setting and you need to increase them even more, use a larger value for this parameter.

5.9.8 Disable High Performance Mode
If the box is checked, the drive uses the gain modeling algorithm from hardware revision 1 of the PositionServo.
This setting is enabled by default to facilitate the replacement of legacy platform 940/941(hardware revision
1) installations without re-tuning. This setting should be de-selected for best results with Auto Tuning.

5.9.9 Auto Tuning
Click the [Autotuning] button to access the Auto Tuning parameter. this parameter auto tunes the
compensation gains for the motor/load applied.

NOTE
For best results, de-select [Disable High Performance Mode] prior to auto tuning.

58 L S94H201E_13426446_EN

Parameters

5.9.10 Set Default Gains
Click the [Set Default Gains] button to access the Default Gains parameter. Selecting [Set Default Gains] will
reset the gains to the default values in the motor file.

5.9.11 Feedback and Loop Filters
Hardware Version 2 provides for the use of 1 feedback filter and 2 cascaded loop filters. Loop filters are
identical in structure and operation.

The feedback filter is a low-pass first order filter used primarily to filter noise from the feedback device.
The time constant of the filter is settable and from 2mS and up. Values of 2 – 8mS are generally adequate
for most applications.

The Loop filter can be configured as a Low-Pass, Notch or Resonant type filter.

The Low pass filter is used to lower noise in the system produced by control and feedback signal disturbances
and quantization noise. The Low-pass cut off frequency is usually set at 5-10 times the desired velocity
loop bandwidth.

If enabled, the loop filter is installed between the velocity and current loop.

The Loop filter can be configured as a Notch or Resonant type filter. Both configurations implement
band-stop filtering for solving certain mechanical compliance problems. A common problem is torsional
resonance due to mechanical compliance between load inertia and motor inertia. Consider a motor coupled
with a long load shaft with an inert load at the opposite end. Such a system will have a resonant frequency of

fr = π2

1
Jp

Ks

 [Hz]

 where

 JL = load inertia [kgm^2]

 JM = motor inertia [kgm^2]

 Ks = total stiffness of coupling and shaft [Nm/rad]

 Jp = (JL * JM) / (JL + JM)

 p = 3.1416

Applying the loop filter at this frequency in the configuration “Resonant Filter” will cancel the resonant pole
effectively allowing higher overall loop gain without losing stability.

The Resonant filter setting allows the user to set the resonant frequency, the bandwidth of the filter as well
as maximum attenuation gain in dB.

The Notch filter serves a similar purpose as the resonant filter. It has programmable bandwidth and center
frequency. The Gain in the center frequency point is not programmable and depends on the bandwidth of
the filter which is programmable. The resonant filter is a second order bi-quad filter with -20dB/dec roll-off.

This resonant filter is good for applications where resonances have a wide bandwidth rather than in those
that have a big amplitude and narrow bandwith.

S94H201E_13426446_EN L 59

Parameters

5.10 Tools
The [Tools] folder contains two action buttons: Oscilloscope and Parameter I/O View. These tools allow the
user to perform real-time diagnostics.

5.10.1 Oscilloscope
The Oscilloscope tool provides a real-time display of the different electrical signals inside the PositionServo
drive. The signals in the following table can be observed on the two channels of the Oscilloscope tool. Click
on the [Oscilloscope] tool to open the Oscilloscope in a separate window.

Oscilloscope Parameters

Signal Description

Phase Current RMS Motor phase (RMS) current

Phase Current Peak Motor phase peak current

Iq Current Motor Iq (torque producing) current

Motor Velocity Actual motor speed in RPM

Command Velocity Desired motor speed in RPM (Velocity mode only)

Velocity Error Difference in RPM between actual and commanded motor speed

Position Error Difference between actual and commanded position (Step & Direction mode only)

Bus Voltage DC bus voltage

Analog Input Voltage at the drive’s analog input AIN1

Target Position Requested position

Target Position Pulses Requested position expressed in pulses of the primary feedback device

Absolute Position Absolute position (actual position)

Absolute Position Pulses Absolute position expressed in pulses of the primary feedback device

Position Increment Commanded position increment

Oscilloscope Display

60 L S94H201E_13426446_EN

Parameters

Signal Name

The user can customize the information presented on the Scope tool by choosing the drop-down box in each
channel. The set of available signals depends on the drive mode. Refer to the Oscilloscope Parameters table
for the list of the signals.

Scale

Scale sets the sensitivity of the display. Each division is considered one unit of the selected scale. A scale
of 100 RPM/div, for example, means that the signal will rise (or descend) by one vertical division for every
change of 100 RPM in the signal level. Thus, a 500-RPM signal would deflect the signal by five vertical
divisions from the central reference line.

Offset

Offset sets the vertical distance from the central base line to the signal trace. This is useful if you want to
compare two signals. For example, if you wish to compare the actual vs. commanded motor velocity, you
would enter an offset that would move the two signals to alternate sides of the central reference line.

Time Base

Time base sets the number of milliseconds displayed per horizontal division. Higher frequencies have a
shorter time base than lower frequencies. If you wanted to display one cycle of a particular signal, your time
base setting would therefore be lower for high-frequency signals than for low-frequency signals.

Trigger/Trigger Level

Trigger level specifies the signal level after which the scope starts acquiring data. You can also specify
which channel will be a source for the trigger. The oscilloscope display will continue to run while the signal
level crosses the specified level (above if the trigger is set for rising or leading edge, or below if the trigger
is set for falling or trailing edge).

Single

Also called one-shot trigger. If Single Sweep is selected, data acquisition will be stopped after the scope
buffer is filled and data displayed on the screen (frozen data). To repeat data acquisition, you will need to
click the Single button again.

Run / Stop

Select [Run] for a continuous trigger. Select [Stop] to disable the trigger.

Set on Top

Select this button to display the oscilloscope window on top of all other windows.

5.10.2 Parameter & I/O View
The [Parameter & IO View] tool permits the user to access the list of variables. Click on the [Parameter &
IO View] button to open the diagnostic tool in a separate window. Click on the box adjacent to [Set on Top]
to keep this window on top. Also known as the Debug Tool, the Parameter and I/O View permits the user to
view the values of the drive’s variables plus the I/O status.

To add a variable to the View List, click on [Add] then browse to [Variable Name] in the pop-up window,
then click on the left arrow button. To remove a variable from this View List, click on the variable name in
the View list and then click on the right arrow button. To save the variable list, click [Save]. To load the
variable list, click [Load].

S94H201E_13426446_EN L 61

Parameters

To edit a parameter’s value, double click the [Decimal] field of the parameter. When the text is double-
clicked, the background color will change. The parameter value will stop updating allowing you to change
the value. However, if the interface device or user’s program manipulates the value of the parameter, then
your change will be overwritten in a concurrent manner.

Parameter I/O View with Variables

NOTE
By clicking [#], the variables can be automatically sorted in descending or ascending order. They can
also be sorted alphabetically by clicking [Variable Name] and/or [Short Name].

NOTE
Write-only variables may not contain valid data in the “Parameter and I/O” view screen as all write-
only variables in the drive use a common display buffer.

5.11 Faults
The [Faults] folder contains three action buttons upon opening and displays the most recent fault. [Load
Faults] permits the user to load the entire stored fault history of the drive onto the computer. The sixteen
most recent faults are displayed with the newer faults replacing the older faults in a first-in, first-out
manner. In all cases, the fault on top of the list is the most recent fault. [Clear Faults] clears the fault history
of the drive from within the MotionView program. The device time of the fault is the time from last power up
(Power-up time = 00:00). Each fault has its code and explanation of the fault. Refer to section 8.4 for details
on faults. [Clear Fault/Reset] clears the active fault and resets the drive.

62 L S94H201E_13426446_EN

Parameters

NOTE
The [Clear Faults] operation will disrupt motion and the program being executed. It is recommended
not to clear faults while running an application.

5.12 Monitor
The Monitor window displays common diagnostic information for the drive’s status. Click the [Set on Top]
box to keep the Monitor displayed while manipulating other screens in MotionView.

S94H201E_13426446_EN L 63

Operation

6 Operation
This section offers guidance on configuring the PositionServo drive for operations in torque, velocity or
position modes without requiring a user program. To use advanced programming features of PositionServo
please perform all steps below and then refer to the PositionServo Programming Manual for details on how
to write motion programs.

6.1 Minimum Connections
For the most basic operation, connect the PositionServo to mains (line) power at terminal P1, the servomotor
power at P7 and the motor feedback as appropriate.

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground. Avoid direct
contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or
fatality. Disconnect incoming power and wait at least 60 seconds before servicing drive. Capacitors
retain charge after power is removed.

As a minimum these connections must be made:

•	 Connect an Ethernet crossover cable between PositionServo’s P2 and your PC’s Ethernet port. A
straight patch cable can be used if using a hub or switch.

•	 Connect mains power to terminal P1. Mains power must be as defined on the drive’s data label
(Refer to label in ‘About These Instructions’ section).

•	 When connecting to an encoder-based drive, take the encoder feedback cable and connect it to
the15 pin D-sub connector located at P4. When connecting to a resolver-based drive, take the
resolver feedback cable and connect it to the 9 pin D-sub connector located at P4.

•	 Connect motor windings U, V, W (a.k.a. R, S, T) to terminal P7 as shown in section 4.1.1. Make
sure the motor cable shield is connected as in section 3.2.

•	 Provide an Enable switch according to Section 6.6.
•	 Perform drive configuration as described in the next section.

NOTE
To run MotionView OnBoard on a Mac OS, run the PC emulation tool first.

NOTE
The recommended screen setting size for the PC is 1680 x 1050.

6.2 Ethernet Connection
Configuration, Programming and diagnostics of the PositionServo drive are typically performed over the
standard 10/100 Mbps Ethernet communication port using the ‘MotionView OnBoard’ software contained
within the drive itself.

To access the MotionView OnBoard software and configure the drive the PositionServo drive and PC must
be configured to operate on the same Ethernet network. The IP addresses of the PositionServo drive, the
PC, or both drive and PC may be required to be configured to enable Ethernet communications between
the two devices.

NOTE
Any changes made to the Ethernet communication settings on the PositionServo do not take effect
until the drive is powered off and powered on again. Until this time the drive will continue to use its
previous settings.

64 L S94H201E_13426446_EN

Operation

NOTE
For any PC that will need regular configuration to communicate with a PositionServo Drive and if the
default PC Ethernet port on your computer is already being used for another purpose (such as email,
web browsing, etc,) then it may be more convenient for the operator to add an additional Ethernet
port to the PC.
The most common and cost effective way to do this is by using a USB / Ethernet dongle or a PCMCIA
Ethernet card. The additional port can be configured for communication to the PositionServo drive
without effecting the operation of other PC functions.

6.2.1 PositionServo Ethernet Port Configuration
The IP address of the PositionServo drive is composed of four sub-octets that are separated by three dots
to conform to the Class C Subnet structure. Each sub-octet can be configured with number between 1 and
254. As shipped from the factory the default IP address of a drive is:

 192.168.124.120.

There are two methods of changing the current IP address. An address can be assigned to the drive
automatically (dynamic IP address) when the drive is connected to a DHCP (Dynamic Host Configuration
Protocol) enabled server, or the drive can have an IP address assigned to it manually be the user (static IP
address). Both methods of configuring the drive’s IP address are detailed herein.

6.2.1.1 Obtaining the PositionServo’s Current Ethernet Settings

The current Ethernet setting and IP address of the PositionServo drive can be obtained from the drive display
and keypad. Press the recessed ‘mode’ button () on the display and use the “UP” and “DOWN” buttons
(p q) to access parameters IP_1, IP_2, IP_3 and IP_4. Each of these parameters contain one sub-octet of
the full IP address, for example in the case of the drive default (factory set) address parameters:

IP_1 = 192
IP_2 = 168
IP_3 = 124
IP_4 = 120

By accessing these four parameters the full IP address on the drive can be obtained.

If parameters IP_1, IP_2, IP_3 and IP_4 all contain ‘----‘ rather than a numerical values it means that the
drive has DHCP enabled and the DHCP server is yet to assign the drive its dynamic IP address. As soon
as an IP address is assigned by the server the address assigned will be display by the drive in the above
parameters. See section on obtaining IP addresses through DHCP.

6.2.1.2 Configuring the IP Address Manually (Static Address)

When connecting directly from PositionServo drive to the PC without a server or when connecting to a
private network (where all devices have static IP addresses) the IP address of the PositionServo drive will
need to be assigned manually.

To assign the address manually, the drive must have its DHCP mode disabled. This can be done using
the drive keypad and display. Press the recessed ‘mode’ button () on the display and use the “UP” and
“DOWN” buttons (p q) to access parameter ‘DHCP’. Check this parameter is set to a value of ‘0’. If the
DHCP parameter is set to ‘1’ then use the ‘mode’ () and down (q) arrows to set to ‘0’ and then cycle
power to the drive in order for this change to take effect. When DHCP is disabled and power cycled to the
drive, it will revert back to its previous static IP address.

S94H201E_13426446_EN L 65

Operation

It is most common for the PositionServo drive IP address to be left at its default value (192.168.124.120)
and to configure the PC Ethernet port to communicate on this subnet. If more than one drive needs to be
connected to the PC at any one time then the IP_4 parameter can be accessed via the keypad and changed
to provide a unique IP address on the network for each drive. Note that IP_4 is the only octet that can be
changed (IP_1, IP2, and IP_3 are read-only) and that power must be cycled to the drive for any changes to
take effect.

If the PositionServo drive(s) needs to be configured for a specific subnet with different values to default (for
IP_1, IP_2, and IP_3, and IP_4) then this needs to be performed with the MotionView configuration tool.
First establish communications using the default drive address or with an address that was established by
changing IP_4 parameters via the drive keypad. Follow the rest of these instructions in order to establish
communications and launch MotionView using this address. Once within the MotionView software a full IP
address can be assigned.

From the Node tree within MotionView select the [Communications] folder and then the [Ethernet] sub-folder
as shown herein. The settings reflect those that will appear in the software parameter view window.

The IP address, subnet mask, and default gateway address can all be edited in this screen. If the text in any
of these boxes turns red once it has been entered then this means that the values or format used is invalid
and the values will not be applied.

To enable DHCP, click the box adjacent to [Obtain IP Address using DHCP] to place a check mark in this box
R. To disable DHCP, click the box again. Power must be cycled for any changes to [Configure IP Address] to
take effect. On changing any ethernet parameter value, the following dialog box will appear. Click [Ok] and
cycle power for changes to take effect.

66 L S94H201E_13426446_EN

Operation

6.2.1.3 Configuring the IP Address Automatically (Dynamic Address)

When connecting a PositionServo drive onto a network domain with a DHCP enabled server (where all
devices have dynamic IP addresses assigned by the server) the IP address of the PositionServo drive can
also be assigned automatically by the server.

To have the address assigned automatically the drive must have its DHCP mode enabled. This can be done
by using the drive keypad and display. Press the ‘mode’ button on the display and use the “UP” and “DOWN”
buttons to access parameter ‘DHCP’. Check this parameter is set to a value of ‘1’. If the DHCP parameter is
set to ‘0’ then use the ‘mode’ and up arrow to set to ‘1’ and then cycle power to the drive in order for this
change to take effect.

When the PositionServo drive is waiting for an IP address to be assigned to it by the server it will display
‘----‘ in each of the four octet parameters (IP_1, IP_2, IP_3, and IP_4) on its display. Once the address is
assigned by the server it will appear in these parameters. If this parameters continue to display ‘----‘ then
it is likely that a connection between the drive and server has not been established, or the server is not
DHCP enabled.

DHCP can be enabled through the MotionView software for convenience should the operator wish to
configure the drive using a manual (static) IP address and switch over to an automatic (dynamic) address
once configuration is complete. See section 6.2.1.1 for information on enabling DHCP from within the
MotionView software.

NOTE
A useful feature of the MotionView software and communications interface to the
PositionServo drive is the ability to assign the drive a name (text string). This name can
then be used to discover the drive’s IP address and is useful when the drive has its IP
address assigned automatically by the server for easy connection. Refer to section on
MotionView connection window, below.

6.2.2 Configuring the PC IP Address (Windows XP)

NOTE
This section of the manual gives some guidance on how to configure the Ethernet
communications setting on a PC to communicate with a PositionServo drive. Additional
material for other operating systems/platforms may be available from the website or
as an appendix to existing drive documentation. If the drive and PC are both assigned
automatic IP addresses from a DHCP enabled server then configuration of the PC port
should not be necessary.

The following is a step by step guide to configure the PC IP address in Windows XP using either the classic
or category viewing mode.

To access the network settings on a Windows XP based PC:

Category (Default) View: Classic View:
[Start] [Start]
[Control Panel] [Settings]
[Network & Internet Connections] [Control Panel]
[Network Connections] [Network Connections]

S94H201E_13426446_EN L 67

Operation

Start Menus - Windows XP

Category (Default) View Classic View

One of the following screens will be displayed, depending on the user’s configuration of Windows XP
software.

Control Panel Displays - Windows XP

Category (Default) View Classic View

68 L S94H201E_13426446_EN

Operation

Regardless of the Windows XP viewing mode the following [Network Connections] screen will appear.
Hereafter all configuration screens are the same regardless of selected Windows XP viewing mode.

Select the connection you wish configure. [Local Area Connection] is typically the standard or local Ethernet
port on the PC (the port supplied with the PC), with any additional hardwire ports displayed as [Local Area
Connection x] (with x being a numerical value). Double-click the icon for the port you wish to configure. The
[Local Area Connection Properties] screen will appear.

Use the vertical scroll bar on the right hand side of the screen to scroll down to the [Internet Protocol (TCP/
IP)] option in the selection window. Select this option and click the [Properties] button. The [Internet Protocol
(TCP/IP) Properties] screen will appear.

S94H201E_13426446_EN L 69

Operation

Select [Use the following IP address]. The IP address and Subnet mask text boxes can now be edited.

Enter an IP address for the PC. This IP address will need to be unique to the PC (different to any other device
on the network) but still allow communication on the same subnet that the drive is set to. To set up the PC
IP address in this way enter the first three values of the IP address box to be identical to those set in IP_1,
IP_2, and IP_3 parameters on the PositionServo drive. For the last value (IP_4) pick a unique value different
to any other device on that network.

If the drive IP address has been left at its factory (default) value then a logical IP address to assign to the
PC might be 192.168.124.1

When exiting the IP address box the value in the subnet mask text box should default to 255.255.255.0.
This value tells the PC that all other devices on the network share the same values for the first 3 Octets of
their IP addresses with the last octet beginning unique to those devices. Typically the default value can be
left unchanged unless a larger network needs to be specified.

NOTE
If the PC and drive need to obtain an IP address from a DHCP enabled server then the [Obtain an IP
address automatically] option should remain ticked and no values should be present for either the IP
address or subnet mask.

6.2.3 Initial Connection to the Drive
Before connecting to the PositionServo drive and attempting to run the MotionView software check the PC
has the following features installed:

•	 Java Run Time Environment 1.4 or higher
(download latest version at http://www.java.com)

•	 Web Browser (Internet Explorer, Mozilla Firefox, Netscape, etc)

70 L S94H201E_13426446_EN

Operation

Physically connect the Drive to the PC:

To connect directly between a PC and a PositionServo drive it is recommended that a CAT 5e crossover
cable be connected between the P2 port on the PositionServo drive and the Ethernet port on the PC.

Ethernet Port

DrivePC/Laptop

P2

P3

P4 P6

P5

CAT 5e cable

To Connect from a PC to a PositionServo drive via an Ethernet switch or hub it is recommended that a CAT
5e straight through cable be connected from both the drive and PC directly to the Hub or switch.

PC/Laptop

PositionServo Drives

Switch 1

Non crossover cable
Non crossover cable

(PC to Switch)

(Drives to Switch)

PositionServo Drives

Switch 2

Non crossover cable

(Drives to Switch)

Non crossover or crossover cable depends on switch
(Switch to Switch)

6.2.4 Launching MotionView & Communicating to the PS Drive
Open your PC’s web browser.

Enter the drive’s default IP address [192.168.124.120] in the browser’s Address window.

The authentication screen may be displayed if the PC does not have Java RTE version 1.4 or higher. To
remedy this situation, download the latest Java RTE from http://www.java.com.

Java Authentication Java Splash Screen

When MotionView has finished installing, a Java icon entitled [MotionView OnBoard] will appear on your
desktop and the MVOB splash screen is displayed. Click [Run] to enter the MotionView program.

S94H201E_13426446_EN L 71

Operation

MotionView OnBoard Splash Screen

WARNING Statement on Initial MotionView Display

Once MotionView has launched, verify motor is safe to operate, click [YES, I have] then select [Connect]
from the Main toolbar (top left).

Initial MotionView Display

72 L S94H201E_13426446_EN

Operation

The Connection dialog box will appear.

Connection Dialog Box

Select [Discover] to find the drive(s) on the network available for connection.

NOTE
[Discover] may fail to find the drive’s IP address on a computer with both a wireless network card and
a wired network card. If this happens, try one of these remedies:
•	 Disable the wireless network card and then use [Discover].
•	 Type in the drive’s IP address manually at the box [IP Address].
Then click [Connect].

Highlight the drive (or drives) to be connected and click [Connect] in the dialog box.

Connection Box with Discovered Drive

In the lower left of the MotionView display, the Message WIndow will contain the connection status message.
The message “Successfully connected to drive B04402200450_192.168.124.120” indicates that the drive
B04402200450 with IP address 192.168.124.120 is connected.

Sequentially connecting 2 Ethernet-based Drives

If when trying to sequentially commission several Ethernet-based drives with the same PC, MotionView
discovers the IP address, but then reports that the drive cannot be connected; open the Command window
on your PC and run the command “arp -d” just before connecting MotionView to another drive.

ARP is the Address Resolution Protocol. Each PositionServo drive has two addresses, one MAC address and
one IP address. ARP links these two addresses together. Each PositionServo drive has the same factory
default IP address, but a different MAC address. After connecting the first drive, the Ethernet hub will cache
its IP and MAC address for about 2 minutes. When another drive with the same IP address and different
MAC address is connected to the network, ARP will observe the mismatching between the IP address and
MAC address.

S94H201E_13426446_EN L 73

Operation

6.3 Parameter Storage and EPM Operation

6.3.1 Parameter Storage
All settable parameters are stored in the drive’s internal non-volatile memory. Parameters are saved
automatically when they are changed. In addition, parameters are copied to the EPM memory module
located on the drive’s front panel. In the unlikely event of drive failure, the EPM can be removed and inserted
into the replacement drive, thus making an exact copy of the drive being replaced. This shortens down time
by eliminating the configuration procedure. The EPM can also be used for replication of the drive’s settings.

6.3.2 EPM Operation
When the drive is powered up, a comparison is made between the drive’s internal memory and the EPM. If
a correctly formatted EPM is inserted, the EPM will over-ride the internal memory with the settings of the
new EPM. This allows the user to replace/clone existing drives. If the drive being cloned is of a lower power
rating than the original drive and the current settings exceed the max settings of the new drive, then the
current settings will default to the max settings.

STOP!
Never install or remove the EPM module while the drive is powered.

Most Lenze-AC Tech products use the EPM for memory storage on the drive. The memory size of the EPM
is denoted by its color and drive format structure. The PositionServo drive uses a white EPM module. When
the drive is powered up it checks the format style of the EPM in the EPM port. If the EPM Port is empty, or
a different color EPM is inserted, the drive will display “-EP-”” and no further operation is possible until
a white EPM is inserted. If a white EPM with an older format or a new/blank EPM is inserted, the drive will
display “FEP?” (format EPM). The drive is asking the user if he wants to reformat the EPM. To reformat the
EPM, press the recessed carriage return button [] on the front of the drive. If you do not wish to reformat,
power down the drive and remove the EPM from the drive.

STOP!
If the EPM contains any data from an existing drive, that data will be overwritten during
this procedure. During the reformatting process, some of the data from the internal
memory will be written to the EPM and some of the settings will be set to default. Check
all parameters.

6.3.3 EPM Fault

If the EPM fails during operation or the EPM is removed from the EPM Port, the drive will generate a fault
and display “-EP-””. The fault is logged to the drive’s fault history. The fault log will list fault code 38, EPM
Failure. Further operation is not possible until the EPM is replaced (inserted) and the drive’s power is cycled.

74 L S94H201E_13426446_EN

Operation

6.4 Configuration of the PositionServo
Regardless of the mode in which the user wishes to operate, he must first configure the PositionServo for
his particular motor, mode of operation, and additional features if used. Drive configuration consists of
following steps:

•	 Motor Selection
•	 Mode of operation selection
•	 Reference source selection (Very Important)
•	 Drive parameters (i.e. current limit, acceleration / deceleration) setup
•	 Operational limits (velocity or position limits) setup
•	 Input / Output (I/O) setup
•	 Velocity / position compensator (gains) setup (Auto Tuning)
•	 Optionally store drive settings in a PC file and exit the MotionView program.

To configure drive:
1. Ensure that the control is properly installed and mounted. Refer to section 3 for installation

instructions.

2. Perform wiring to the motor and external equipment suitable for desired operating mode and your
system requirements.

3. Connect the Ethernet port P2 on the drive to your PC Ethernet port. If connecting directly to the drive
from the PC, a crossover cable is required.

4. Make sure that the drive is disabled.

5. Apply power to the drive and wait until “diS” shows on the display. For anything other than this,
refer to the chart below before proceeding.

Drive Display Fault Remedy

-EP- EPM missing Insert EPM

FEP? Format EPM Reformatting EPM

- - - - No valid firmware Update firmware

6. Confirm that the PC and the drive have the correct IP setting. (Section 6.2.2)

7. Launch MotionView software on your computer.

8. From the main toolbar select [Connect].

9. In the Connect dialog box, click [Discover] to ping the network for any drives. If a drive is located the
address will appear in the dialog box. If no address appears then you can type the IP address in. The
default address for the drive is 192.168.124.120. Click [Connect] to connect to the drive.

10. Once connected, the drive name and identifier are displayed in the upper left-hand corner of the
Parameter Tree Window.

11. Select the [Motor] to be used (section 4.5).

12. Click on [Parameters] and set the following:

 [Drive Mode]: Torque, Velocity or Position (Refer to section 6.3.1)

 [Current limit]: enter current limit (in A RMS per phase) i.a.w. the motor.

 [Peak current limit]: peak current limit (in A RMS per phase i.a.w. the motor

 [Drive PWM frequency]: 8kHz or 16kHz

 Set up additional parameters suitable for the drive mode selected above.

13. After drive is configured, tune the drive if operating in “Velocity”, or “Position” mode. “Torque”
mode doesn’t require additional tuning or calibration. Refer to section 6.8 for details on tuning.

S94H201E_13426446_EN L 75

Operation

6.5 Position Mode Operation (gearing)
In position mode the drive will follow the master reference signals at the 1-4 inputs of P3. The distance the
motor shaft rotates per each master pulse is established by the ratio of the master signal pulses to motor
encoder pulses (in single loop configuration). The ratio is set by “System to Master ratio” parameter (see
section 5.3.16).

 Example 1

Problem: Setup the drive to follow a master encoder output where 1 revolution of the master
encoder results in 1 revolution of the motor

Given: Master encoder: 4000 pulses / revolution (post quadrature)
 Motor encoder: 8000 pulses / revolution (post quadrature)
Solution: Ratio of System (motor encoder) to Master Encoder is 8000/4000 = 2/1
 Set parameter “System to master ratio” to 2:1

 Example 2

Problem: Setup drive so motor can follow a master encoder wheel where 1 revolution of the
master encoder results in 3 revolutions of the motor

Given: Motor encoder: 4000 pulses / revolution (post quadrature)
 Master encoder: 1000 pulses / revolution (post quadrature).
 Desired “gear ratio” is 3:1
Solution: Ratio = (motor encoder PPR / master encoder PPR) x the “gear ratio”:
 (Motor PPR / Master PPR)*(3/1) => (4000/1000)*(3/1) => 12/1
 Set parameter “System to master ratio” to 12:1

6.6 Enabling the PositionServo
Regardless of the selected operating mode, the PositionServo must be enabled before it can operate. A
voltage in the range of 5-24 VDC connected between P3 pins 26 and 29 (input IN_A3) is used to enable
the drive (section 4.1.7, note 3). There is a difference in the behavior of input IN_A3 depending on how
the “Enable switch function” is set. TIP! If using the onboard +5VDC power supply for this purpose, wire
your switch between pins P3.6 and P3.29. Jumper P3.5 to P3.26. If doing this, all inputs in group must be
powered by P3.6.

When the “Enable switch function” is set to “RUN”:

IN_A3 acts as positive logic ENABLE or negative logic INHIBIT input depending on:

If user program is not running: Activating IN_A3 enables the drive

If user program is running: Activating IN_A3 acts as negative logic
 “Inhibit” and operates exactly as if parameter
 “Enable switch function” set to “Inhibit”

When the “Enable switch function’ set to “Inhibit”:

IN_A3 acts as negative logic INHIBIT input regardless of mode or program status.

Activating input IN_A3 doesn’t enables the drive. The drive can be enabled from the user’s program or
interface only when IN_A3 is active. Attempt to enable drive by executing the program statement “ENABLE”
or from interface will cause the drive to generate a fault, F_36. Regardless of the mode of operation, if the
input is deactivated while the drive is enabled, the drive will be disabled and will generate a fault, F_36.

WARNING!
Enabling the drive allows the motor to operate depending on the reference command.
Before enabling the drive, make sure that the motor and machine are safe to operate and
that moving elements are appropriately guarded.
Failure to comply could result in damage to equipment and/or injury to personnel!

76 L S94H201E_13426446_EN

Operation

6.7 Drive Tuning
The PositionServo Drive will likely require some tuning of its gains parameters in order to achieve best
performance in the application in which it is being applied. Only when the drive is placed in Torque Mode are
the gain values not required to be tuned. The table herein lists the gains parameters that should be adjusted
for each of the drive operating modes. These parameters are found within the ‘Compensation’ folder.

MotionView Parameter Torque Mode Velocity Mode Positioning Mode
Velocity P Gain No Yes Yes
Velocity I Gain No Yes Yes
Position P Gain No No Yes
Position I Gain No No Yes
Position D Gain No No Yes
Position I-Limit No No Yes
Gain Scaling No Yes Yes

Before using the tuning procedures detailed in the next sections, ensure that the system is in a safe condition
for tuning to be carried out. It is often beneficial to first tune the motor off-load to obtain approximate gains
setting before fine tuning in the application.

Check that the drive output to the motor is disabled (via Input A3) and that the drive is powered up. Save any
user program code previously entered into the [Indexer Program] folder in MotionView prior to tuning so it
can be recalled after tuning is complete.

WARNING!
During both the Velocity and Position tuning procedures the PositionServo drive will perform rotation
(motion) of the motor shaft in the forward and reverse directions at velocities based on the user
settings. Ensure that the motor and associated mechanics of the system are safe to operate in the
way specified during these procedures.

6.7.1 Auto Tuning the Drive
PositionServo drives with hardware revision 2 and higher feature Auto Tuning. To Auto Tune the drive,
disable the drive. Ensure that the Indexer program is not running. Select the {Compensation] folder in the
navigation tree. De-select [Disable High Performance Mode] and select [Auto Tuning]. The velocity and
position loops can be tuned either individually or together.

S94H201E_13426446_EN L 77

Operation

6.7.2 Manually Tuning the Drive in Velocity Mode
The PositionServo drive may also be tuned manually. Follow the procedure in this paragraph to tune the
drive in Velocity mode.

1) Parameter Setup

Set up the motor as per the instructions given in the relevant section of this manual. The motor must be
configured correctly prior to tuning taking place.

The parameters Drive Mode, Reference and Enable Switch Function are configured automatically by the
velocity tuning program. They are not required to be set at this stage.

2) Importing the Velocity Tuning Program

Before importing the Velocity Tuning Program, the example programs must be installed from the
Documentation CD that shipped with the drive. If this has not been done then please do so now.

To load the TuneV program file to the drive, select [Indexer Program] in the MotionView Parameter Tree.
Select [Import] on main toolbar. Navigate to [C:\Lenze-ACTech\MVOB\Programming_Examples]. If during
the installation of the Documentation CD files a different default directory was selected, then navigate to
that directory. Click on the [TuneV.txt] file and select [Open].

3) Editing the Velocity Tuning Program

The Tune Velocity Program creates a step velocity demand in the forward and reverse directions that the
drive will attempt to follow (based on its velocity gain settings). The drive will run for a set time in the
forward direction and then reverse the reference and run for the same set time in the reverse direction,
showing the acceleration, deceleration and steady state performance.

The speed and period (time for one complete cycle - forward and reverse) is set in the Indexer program with
the following statements:

; Motion Parameters

Define SpeedReference 5 ; speed reference in Rps

Define Period 500 ; time in millisec

Adjust these parameters to values suitable to the application in which the drive is used before going to the
next step.

4) Compile and Download Indexer Program to Drive

In the [Indexer program] folder in MotionView, select the [Load W Source] button on the program toolbar.
The TuneV program will be compiled and sent to the drive. Click [Run] on the program toolbar to run the
TuneV program. Do NOT enable the drive (via input A3) at this stage.

78 L S94H201E_13426446_EN

Operation

5) Oscilloscope Settings

Open the [Tools] folder in MotionView and select the [Oscilloscope] tool. Click the [Set on Top] box to place
a checkmark in it and keep the scope on top.

In the Scope Tool Window make the following settings:

Channel 1: Signal = “Commanded Velocity”

 Scale = appropriate to “SpeedReference” value set in Indexer Program

Channel 2: Signal = “Motor Velocity”

 Scale = appropriate to “SpeedReference” value set in Indexer Program

Timebase: = as appropriate to “Period” value of Indexer Program

Trigger: = Channel 1, Rising Edge

Level: = 10 RPM

For better resolution, adjust these scaling factors during the tuning procedure.

6) Compensation Folder

In MotionView, open the [Compensation] folder for the drive. Set [Gain Scaling] to a relatively low value, e.g.
-6 for Encoder motor and -8 for a Resolver Motor. Set the [Velocity P-gain] to a mid-value (16000) and set
the [Velocity I-Gain] to 0.

7) Gain Tuning

The system should now be ready to start tuning the velocity gains. Start the Oscilloscope by clicking [Run].
Apply the Enable input to Input A3 to enable the drive. At this point of the procedure it is desirable to have
little to no motion until we start to increase the gain settings. If the motor vibrates uncontrollably disable the
drive, lower the Gain Scaling parameter value and repeat the input enable.

Step 1: Setting the Gain Scaling Parameter

The gain scaling parameter is a ‘course adjustment’ of the other gain’s parameter values. Steadily increase
the value of the gain scaling parameter until a reasonable response is obtained from the motor (motor
velocity starts to resemble the commanded velocity).

Gain Scaling set too LOW
Motor Velocity significantly different than
Commanded Velocity.

S94H201E_13426446_EN L 79

Operation

Gain Scaling set OK
Motor Velocity resembles Commanded
Velocity. Motor Velocity is reasonably close
with a slight overshoot.

Gain Scaling set too HIGH
Motor Velocity shows significant overshoot
following the acceleration periods.

Gain Scaling set significantly too HIGH
Motor Velocity exhibits instability throughout
the steady state Commanded Velocity.

Depending on the system begin tuned, the motor may go from stable operation (little to no overshoot
with stable steady state velocity) to instability (continuous and pronounced oscillations during steady state
command) very quickly as gains scaling is increased. The bandwidth for allowing some overshoot with a
quick settle time may be very small and may only be achieved through adjustment of the Velocity P-Gain, as
described in Step 2. Set the gain scaling parameter to the value preceding that where significant overshoot
or continuous instability occurs. With the Gain scaling parameter set move onto tuning the velocity P and
I gains.

80 L S94H201E_13426446_EN

Operation

Step 2: Fine Tuning the Velocity P-Gain

Slowly alter the Velocity P-Gain (increase and decrease) and observe the motor velocity waveform on the
oscilloscope. As the P-Gain increases the gradient of the velocity during acceleration and deceleration will
also increase as will the final steady state velocity that is achieved. The application of too much P-Gain will
eventually result in an overshoot in the motor velocity, and further increases will result in larger overshooting
to the point that instability (continuous oscillation) occurs.

Increase the velocity P-gain until some overshoot occurs. Some overshoot is generally ok, and the objective
is typically to achieve the shortest possible settle time (steady state velocity). When the system appears
to have reached the shortest possible settle time, with acceptable overshoot, cease from increasing the
P-Gain.

Scope traces will be similar to those shown in Step 1, however the P-gain will now be given a more precise
adjustment in order to obtain the best possible tuning.

Good Fine Tuning of the P-Gain
Small overshoot with excellent settle time and
steady state velocity regulation.

Step 3: Setting the Velocity I-Gain

The purpose of the velocity I-gain is to correct any error that is present between the commanded velocity
and the steady state velocity that could not be rectified by adjustment of the velocity P-gain. Adjustment of
the velocity I-gain can also reduce the steady state ripple that may occur in the velocity waveform. Lastly,
velocity I-gain has a positive effect on the holding torque produced by the motor.

Slowly increase the “Velocity I-Gain” and check for correction of the steady state error in the velocity
waveform. Continuing to increase the velocity I-gain will eventually result in increased overshoot and
instability in the motor velocity waveform. Stop increasing the I-Gain when additional overshoot or instability
starts to occur.

I-Gain set too LOW
Error exists between Commanded steady
state velocity and Actual steady state velocity

S94H201E_13426446_EN L 81

Operation

I-Gain set OK
No error between Commanded steady state
velocity and Actual steady state velocity with
excellent stability.

I-Gain set too HIGH
Additional overshoot and oscillations are
starting to occur. Steady state velocity
regulation

Step 4: Check Motor Currents

Finally check the motor currents on the Oscilloscope. Make the following settings to the oscilloscope.

Channel 1:

Signal = “Phase Current RMS”

Scale = as appropriate to peak current limit set in drive parameters (MotionView)

Timebase: = as appropriate to “Period” value of Indexer Program

Trigger: = Channel 2, Rising Edge

Level: = 10 RPM

Observe the waveforms to insure there are no significant oscillations. Reduce the gains values if necessary.

The current waveform should be showing spikes of current during acceleration / deceleration and steady
state current during any steady state velocity. The maximum value (peak value) of the current waveform
is shown at the top of the oscilloscope screen. This maximum value can be compared to the drive nominal
current and peak current settings to check how much of the motors potential performance is being used and
if optimum performance is being achieved.

82 L S94H201E_13426446_EN

Operation

Good Current Trace
Uniform current pulses during accel/
deceleration and stable current during steady
state velocity.

Instability in Drive Output Current
(Note: Channel 2 trace has been removed for
clarity).

8) End Velocity Tuning

Remove the Enable Input from input A3 (disable the drive). In MotionView, click on the [Indexer] folder for
the drive. Click [Reset] on the program toolbar. If the drive is to be run in just velocity mode then tuning
is now complete. If the drive is to be used in Positioning mode continue with ‘Tuning the Drive in Position
Mode’, section 6.8.3.

6.7.3 Manually Tuning the Drive in Position Mode
The Position Loop can also be manually tuned. Manual Velocity Tuning should be carried out prior to the
manual tuning of the position loop. Refer to the Velocity Tuning section, 6.7.2.

1) Parameter Set up

In MotionView, open the [Limits] folder and then the [Position Limits] sub-folder. Set the [Position Error]
and [Max Error Time] parameters to their maximum values to effectively disable the position error trip while
tuning takes place. Ensure the system is safe to operate in this manner.

Position Error = 32767

Max Error Time = 8000

The Drive Mode, Reference and Enable Switch Function parameters are automatically configured by the
velocity tuning program. They do not require setting at this stage.

2) Importing the Position Tuning Program

Before importing the Position Tuning Program, the example programs must be installed from the
Documentation CD that shipped with the drive. If this has not been done then please do so now.

To load the TuneP program file to the drive, select [Indexer Program] in MotionView. Select [Import] on
main toolbar. Navigate to [C:\Lenze-ACTech\MVOB\Programming_Examples]. If during the installation of
the Documentation CD files a different default directory was selected, then navigate to that directory. Click
on the [TuneP.txt] file and select [Open].

S94H201E_13426446_EN L 83

Operation

3) Editing the Position Tuning Program

The Tune Position Program performs trapezoidal moves in the forward and reverse direction separated by
a defined pause (or time delay).

The Accel, Decel, and MaxV variables within the TuneP program define the ramps and steady state velocity
that will be used to execute the motion commands.

ACCEL = 500 ;500 rps*s Accel = Acceleration speed

DECEL = 500 ;500 rps*s Decel = Deceleration speed

MAXV = 20 ;20 Rps MaxV = Maximum

The size of each move and the pause between the moves is defined in the following lines of code. There are
two moves and pauses for the forward and reverse moves to be performed.

MOVED 0.25 ;move 1 rev MoveD = Move distance

wait time 200 ;wait time to analyze ‘standstill’ stability wait time = Delay period

MOVED -0.25 ;move opposite direction 1 rev

wait time 200 ;wait time to analyze ‘standstill’ stability

Adjust these parameters if required to best suit the application before going to the next step.

4) Compile and Download Indexer Program to Drive

In the [Indexer Program] folder in MotionView, select the [Load W Source] button at the program toolbar. The
TuneP program will be compiled and sent to the drive. Click [Run] on the program toolbar to run the TuneP
program. Do NOT enable the drive (via input A3) at this stage.

5) Oscilloscope Settings

Open the [Tools] folder]in MotionView and select the [Oscilloscope] tool. Click the [Set on Top] box to place
a checkmark in it and keep the scope on top.

In the Scope Tool Window, make the following settings:

Channel 1:

Signal = “Position Error”

Scale = as appropriate to the Error that results once the TuneP program is run.

Channel 2:

Signal = “Target Position”

Scale = as appropriate to the position move generated by the Tunep program

Timebase: = as appropriate to the “Period” of the moves being generated.

Trigger: = Channel 1, Rising Edge.

Level: = 10 Pulses

84 L S94H201E_13426446_EN

Operation

6) Compensation Folder

Open the [Compensation] folder in MotionView.

Leave the Velocity P-Gain and Velocity I Gain unchanged, as they should already have been setup during
velocity tuning. Do not adjust the Gain Scaling Parameter during this procedure.

Set the [Position P-gain] to a low value (e.g. 100) and set the [Position I-Gain] and [Position D-Gain] to 0.

7) Gain Tuning

The system should now be ready to start tuning the position loop. Start the Oscilloscope by clicking [Run].
Apply the Enable input A3 to enable the drive.

The general goal in tuning the position loop is to achieve the minimum position error while maintaining
system stability. Some experimentation with gain values will be required to achieve the best performance
for the application.

Step 1: Setting the Position P-Gain

Slowly increase the Position P-Gain while watching the position error waveform on oscilloscope Channel 1.
It is important to watch both the Max Error as well as the Average Error. While increasing Position P-gain, it
should be apparent that both the Max Error as well as the Average Error decrease.

Position P-Gain set too LOW
Large Position Error occuring and large error
in final positioning achieved

Increased Position P-Gain
Shows improvement to the maximum error
and the final positioning accuracy

At some point while increasing the P-Gain, additional oscillations (Average Error) will start to appear on the
position error waveform.

S94H201E_13426446_EN L 85

Operation

Further Increased Position P-Gain
Shows very good reduction to the maximum
error but with additional oscillations starting
to occur.

Step 2: Setting the Position D-Gain

Slowly increase the D-Gain while watching the position error waveform on oscilloscope Channel 1. As the
D-Gain is increased, the position error oscillation caused by the P-Gain, should start to decrease. Continue
to increase the D-Gain until oscillation is gone or until D-Gain is no longer having any apparent effect.

Adjustment of Position D-Gain
in conjunction with the P-Gain dampens
out additional oscillations while improving
position error.

For optimum tuning, it is sometimes required to repeat the process of increasing the P-Gain until a slight
oscillation occurs and then increase the D-Gain to suppress that oscillation. This procedure can be repeated
until the increasing of D-Gain has negligible effect on the position error waveform.

Step 3: Setting the Position I-Gain and Position I-Gain Limit

The objective here is to minimize the position error during steady state operation and improve positioning
accuracy. Start to increase the Position I-gain. Increasing the I-gain will increase the drive’s reaction
time while the I-Limit will set the maximum influence that the I-Gain can have on the Integral loop. When
adjusting the I-gain start with a very small value for the I-gain (e.g. 1) then increase the I-gain parameter
value until stand-still error is compensated and positioning accuracy is satisfactory. Remember that large
values of Position I-limit can cause a large instability in the control loop and unsettled oscillation of the
system mechanics.

Position Error trace following the tuning of
Position P-, I- and D-Gains

86 L S94H201E_13426446_EN

Operation

Step 4: Check Motor Currents

Set the oscilloscope channel 2 to ‘Phase Current RMS’

Channel 2:

Signal = “Phase Current RMS”

Scale = as appropriate to peak current limit set in drive parameters (MotionView)

Timebase: = as appropriate to the “Period” of the moves being generated

Trigger: = Ch1 Rising Edge

Level: = 10 Pulses

Observe the Current waveform to make sure that there are no significant oscillations during the steady state
sections of the position profile (times when target position is not changing). If so then decrease the gains
values until the oscillations are either removed or reduced to an acceptable level.

Minimal oscillation when motor positioned to
target position.

8) Setting the Position Error Limits

Look at the position error waveform on the oscilloscope. Note the maximum time that position errors exist
(from the time axis of the scope) and the maximum peak errors being seen (from the value at the top of
the screen). Use this values to set the position error limits to provide suitable position error protection for
the application.

Open the ‘Limits’ folder and ‘Position Limits’ sub-folder within the MotionView node tree and set suitable
values for the ‘Position Error’ and ‘Max Error Time’ parameters.

Maximum error and time period for error
existing.

S94H201E_13426446_EN L 87

Operation

In this particular example maximum error in pulses is 95.0. The time this peak error occurs can be read from
the oscilloscope at approximately ½ of a division with each division equal to 100ms, hence the error pulse
lasts approximately 50mS. Suitable settings for position error within this application might be as follows,
although looser or tighter limits could be applied depending on the requirements of the application.

Description Value

Position Error 100

Max Error Time 50

9) End Tuning

Remove the Enable Input from input A3 (disable the drive).

Click on the [Indexer Program] folder in MotionView. Click the [Reset” button at the top of the indexer
programming screen.

Tuning is now complete.

6.8 Upgrading Firmware
Starting with hardware revision 2 and higher, MotionView OnBoard (MVOB) features an [Upgrade] action
button located in the top right-hand corner. The [Upgrade] selection launches a firmware loading utility to
easily upgrade the drive’s firmware revision. Browse to the firmware “.lar” file on your local PC and follow
the prompts.

After upgrading the firmware re-download MVOB from the drive as the firmware may contain a newer
version. If the drive displays “FEP?”, the new firmware contains additional parameter data from the
previously installed firmware. Press and hold the drive’s [-->] button until the drive display reads “bUSY”.
Release the button and the drive will format the EPM to the new firmware revision.

Upgrade Pop-up Window

88 L S94H201E_13426446_EN

Quick Start Reference

7 Quick Start Reference
This section provides instructions for External Control, Minimum Connections and Parameter Settings to
quickly setup a PositionServo drive for External Torque, Velocity or Positioning Modes. The sections are NOT
a substitute for reading the entire PositionServo User Manual. Observe all safety notices in this manual.

7.1 Quick Start - External Torque Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector - Pin Input Name Description

P3-22 ACOM Analog Common Reference from Controller

P3-24 AIN1+ Analog Torque Reference from Controller – Positive

P3-25 AIN1- Analog Torque Reference from Controller – Negative

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z= Buffered Encoder Output

P3-23 AO Analog Output

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

Mandatory Parameter Settings:
These Parameters are required to be set prior to running the drive

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Torque]

Reference Set to [External]

IO / Analog IO Analog Input (Current Scale) Set to required current per 1V input from controller

Analog Input Dead band Set zero torque Dead band in mV

Analog Input Offset Set Analog Offset for Torque Reference

IO / Digital IO Enable Switch Function Set to [Run]

S94H201E_13426446_EN L 89

Quick Start Reference

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of a Zero Speed Output

At Speed Set Target Speed for activation of a At Speed Output

Speed Window Set bandwidth for activation of a At Speed Output

7.2 Quick Start - External Velocity Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector - Pin Input Name Description

P3-22 ACOM Analog Common Reference from Controller

P3-24 AIN1+ Analog Velocity Reference from Controller – Positive

P3-25 AIN1- Analog Velocity Reference from Controller – Negative

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z= Buffered Encoder Output

P3-23 AO Analog Output

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

90 L S94H201E_13426446_EN

Quick Start Reference

Mandatory Parameter Settings:
These parameters are required to be set prior to running the drive.

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Velocity]

Reference Set to [External]

Enable Velocity Accel / Decel Limits Enable Ramp rates for Velocity Mode

Velocity Accel Limit Set required Acceleration Limit for Velocity command

Velocity Decel Limit Set required Deceleration Limit for Velocity command

IO / Analog IO Analog Input (Velocity Scale) Set to required velocity per 1 volt input from controller

Analog Input Dead band Set zero velocity Dead band in mV

Analog Input Offset Set Analog Offset for velocity Reference

IO / Digital IO Enable Switch Function Set to [Run]

Compensation Velocity P-Gain Set P-Gain for Velocity loop

(see tuning section) Velocity I_Gain Set I-Gain for Velocity loop

Gain Scaling Set Gain Scaling Parameter

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of Zero Speed Output

At Speed Set Target Speed for activation of At Speed Output

Speed Window Set bandwidth for activation of At Speed Output

S94H201E_13426446_EN L 91

Quick Start Reference

7.3 Quick Start - External Positioning Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector-Pin Input Name Description

P3-1 MA+ Position Reference Input for Master Encoder / Step-Direction Input

P3-2 MA- Position Reference Input for Master Encoder / Step-Direction Input

P3-3 MB+ Position Reference Input for Master Encoder / Step-Direction Input

P3-4 MB- Position Reference Input for Master Encoder / Step-Direction Input

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z= Buffered Encoder Output

P3-22 ACOM Analog Common Reference from Controller

P3-23 AO Analog Output

P3-27 IN_A1 Positive Limit Switch: Required if Limit Switch Function is used

P3-28 IN_A2 Negative Limit Switch: Required if Limit Switch Function is used

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

92 L S94H201E_13426446_EN

Quick Start Reference

Mandatory Parameter Settings:
These parameters are required to be set prior to running the drive

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Position]

Reference Set to [External]

Step Input Type Set to [S/D] or [Master Encoder]. (S/D = Step + Direction)

System to Master Ratio
Set ‘Master’ and ‘Slave’ values to gear position input pulses

to pulse revolution of the motor shaft

IO / Digital IO Enable Switch Function Set to [Run]

Limits / Position Limits Position Error Set Position Error Limit specific to application

Max Error Time Set Position Error Time specific to application

Compensation Velocity P-Gain Set P-Gain for Velocity loop

(see tuning section) Velocity I_Gain Set I-Gain for Velocity loop

Position P-Gain Set P-Gain for Position Loop

Position I-Gain Set I-Gain for Position Loop

Position D-Gain Set D-Gain for Position Loop

Position I-Limit Set I-Limit for Position Loop

Gain Scaling Set Gain Scaling Parameter

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

Hard Limit Switch Actions Set if Hard Limit Switches used in Application

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of a Zero Speed Output

At Speed Set Target Speed for activation of a At Speed Output

Speed Window Set bandwidth for activation of a At Speed Output

S94H201E_13426446_EN L 93

Diagnostics

8 Diagnostics
8.1 Diagnostic Display
Apply power to the drive and wait until “diS” shows on the display. For anything other than “diS”, refer
to the chart below before proceeding.

Drive Display Fault Remedy

-EP- EPM missing Insert EPM

FEP? Format EPM Reformatting EPM

- - - - No valid firmware Update firmware

PositionServo drives are equipped with a diagnostic LED display and three push buttons to select displayed
information and to edit a limited set of parameter values.

Parameters can be scrolled by using the “UP” and “DOWN” () buttons. To view a value, press “Enter”(
). To return back to scroll mode press “Enter” again. After pressing the ”Enter” button on editable

parameters, the yellow LED “C” will blink indicating that parameter value can be changed. Use “UP” and
“DOWN” buttons to change the value. Press “Enter” to store new setting and return back to scroll mode.

Display Description

StAt

current drive status - to view:
run - drive running
diS - drive disabled
F_XX - drive fault. Where XX is the fault code (section 8.4.1)

Hx.xx Hardware revision (e.g. H2.00)

Fx.xx Firmware revision (e.g. F2.06)

bAUd
RS232/RS485(normal mode) baud rate - to set

 selects from 2400 to 115200 baudrates

Adr
Drive’s address - to set

 sets 0 - 31 drive’s address

FLtS
Stored fault’s history - to view

 scroll through stored faults F0XX - F7XX, “XX” is the fault code (section 8.4.1)

Ht
Heatsink temperature - to view
Shows heatsink temperature in ºC if greater than 40ºC. Otherwise shows “LO” (low).

EnC
Encoder activity - to view
Shows primary encoder counts for encoder diagnostics activity

HALL
Displays motor’s hall sensor states - to view
Shows motor hall states in form XXX , where X is 1 or 0 - sensor logic states.

boot 0 = Autoboot disabled 1 = Autoboot enabled (Feature available in FW 3.50 or higher)

buS
Displays drive DC bus voltage - to view
Shows DC bus voltage value

Curr
Displays motor’s phase current (RMS)
Shows current value if drive is enabled, otherwise shows “DiS”

CAnb CAN Baudrate

CAnA CAN Address

CAno CAN Operational Mode

CAnd CAN Delay

CAnE CAN Enable/disable

94 L S94H201E_13426446_EN

Diagnostics

Display Description

dHCP Ehternet DHCP Configuration: 0=”dHCP” is disabled; 1=”dHCP is enabled.

IP_4 IP Adress Octet 4

IP_3 IP Adress Octet 3

IP_2 IP Adress Octet 2

IP_1 IP Adress Octet 1

ptc Displays the motor ptc resistance in ohms

ain1 Displays the voltage on Drive Analog Input 1 (Ain1)

ain2 Displays the voltage on Drive Analog Input 2 (Ain2)

8.2 Diagnostic LEDs
The PositionServo has five diagnostic LEDs located around the periphery of the front panel display as shown
in the drawing below. These LEDs are designed to help monitor system status and activity as well as
troubleshoot any faults.

S913

LED Function Description

A Enable Orange LED indicates that the drive is ENABLED (running).

B Regen Yellow LED indicates the drive is in regeneration mode.

C Data Entry Yellow LED will flash when changing.

D Comm Fault Red LED illuminates upon a communication fault. (in CANbus only)

E Comm Activity Green LED flashes to indicate communication activity.

8.3 Stop/Reset
With hardware version 2 and higher, MotionView OnBoard (MVOB) features a [Stop/Reset] action dutton in
the top right-hand corner. Pressing the red [Stop/Reset] button causes all motion to stop and resets the
drive.

Stop/Reset Button

S94H201E_13426446_EN L 95

Diagnostics

8.4 Faults

8.4.1 Fault Codes
Faults in the drive are immediately shown on the drive display. The fault condition is also recorded to the
drive trip log and the DFaults register inside the drive. The various trip conditions, as they appear on the
display of the drive are listed in the table below.

Fault Codes as Displayed on the Drive

Fault Code
(Display) Fault Description

F_OU Over voltage Drive bus voltage reached the maximum level, typically due to motor regeneration

F_FB Feedback error Invalid Hall sensors code (DFAULT = 2); or Resolver signal lost (DFAULT = 11).

F_OC Over current
Drive exceeded peak current limit. Software incapable of regulating current within 15%

for more than 20mS. Usually results in wrong motor data or poor tuning.

F_Ot Over temperature
Drive heatsink temperature has reached maximum rating.

Trip Point = 100°C for all drives except 480V 6A & 9A drives
Trip Point = 108°C for 480V 6A & 9A drives

F_EF ISO13849-1 fault The drive is disabled by the ISO13849-1 Safety Function

F_OS Over speed Motor has reached velocity above its specified limit

F_PE Position Error Excess Position error has exceeded maximum value.

F_bd Bad motor data Motor profile data is invalid or no motor is selected.

F_EP EPM failure EPM failure on power up

-EP- EPM missing EPM not recognized (connected) on power up

F_09 Motor over temperature
Motor over temperature switch activated; Optional motor temperature sensor (PTC)

indicates that the motor windings have reached maximum temperature

F_10 Subprocessor failure
Error in data exchange between processors. Usually occurs when EMI level is high due to

poor shielding and grounding.

F_13 Current feedback error Current sensor offset is too big (usually noise related).

F_14 Under voltage
(Applies to drive’s with hardware version 1). Occurs when the bus voltage level drops

below 50% of nominal bus voltage while drive is operating. An attempt to enable the drive
with low bus voltage will also result in this fault.

F_15
Hardware overload

protection
Occurs when the phase current becomes higher than 400% of total drive’s current

capability for more then 5ms.

F_16 Internal Error
Associated with noise. Troubleshoot grounding. If error persists contact factory for

technical support.

F_17 Internal Error
Associated with noise. Troubleshoot grounding. If error persists contact factory for

technical support.

F_18
Arithmetic Error
Division by zero

Statement executed within the Indexer Program results in a division by 0 being
performed. Drive programming error (error in drive source code).

F_19
Arithmetic Error

Register overflow

Statement executed within the Indexer Program results in a value being generated that
is too big to be stored in the requested register. Drive programming error (error in drive

source code).

F_20
Subroutine stack

overflow
Exceeded 32 levels subroutines stack depth. Caused by executing excessive subroutine
calls without a RETURN statement. Drive programming error (error in drive source code).

F_21
Subroutine stack

underflow
Executing RETURN statement without preceding call to subroutine. Drive programming error

(error in drive source code).

F_22
Arithmetic stack

overflow
Variable evaluation stack overflow. Expression too complicated for compiler to process.

Drive programming error (error in drive source code).

F_23 Motion Queue overflow 32 levels depth exceeded. Drive programming error (in drive source code).

F_24 Motion Queue underflow
Relates to the MDV statements in the Indexer Program. Drive programming error (error in

drive source code).

F_25
Unknown
opcode

Byte code interpreter error; May occur when program is missing the closing END
statement; when subroutine has no RETURN statement; or if data in EPM is corrupted at

run-time

96 L S94H201E_13426446_EN

Diagnostics

Fault Code
(Display) Fault Description

F_26
Unknown
byte code

Byte code interpreter error; May occur when program is missing the closing END
statement; when subroutine has no RETURN statement; or if data in EPM is corrupted at

run-time

F_27 Drive disabled
Attempt to execute motion while drive is disabled. Drive programming error (error in drive

source code).

F_28 Accel too high
Motion statement parameters calculate an Accel value above the system capability. Drive

programming error (error in drive source code).

F_29 Accel too low
Motion statement parameters calculate an Accel value below the system capability. Drive

programming error (error in drive source code).

F_30 Velocity too high
Motion statement parameters calculate a velocity above the system capability. Drive

programming error (error in drive source code).

F_31 Velocity too low
Motion statement parameters calculate a velocity below the system capability. Drive

programming error (error in drive source code).

F_32 Positive Limit Switch
Positive limit switch is activated.

(Only available while drive is in position mode)

F_33 Negative Limit Switch
Negative limit switch is activated.

(Only available while drive is in position mode)

F_34
Positive motion w/ Pos

Lim Sw ON
Attempt at positive motion with engaged positive limit switch

F_35
Negative motion w/ Neg

Lim Sw ON
Attempt at negative motion with engaged negative limit switch

F_36
Drive Disabled by User

at Enable Input
The drive is disabled while operating or an attempt is made to enable the drive without

deactivating “Inhibit input”. “Inhibit” input has reverse polarity

F_37 Under voltage
(Applies to drive’s with hardware version 2 and higher). Occurs when the bus voltage
level drops below 50% of nominal bus voltage while drive is operating. An attempt to

enable the drive with low bus voltage will also result in this fault.

F_38 EPM Loss EPM Failure

F_39
Positive soft limit

reached
Programmed (Soft) absolute limits reached during motion

F_40
Negative soft limit

reached
Programmed (Soft) absolute limits reached during motion

F_41 Unknown Variable ID
Attempt to use variable with unknown ID from user program. Drive programming error

(error in drive source code).

F_42 Missing Hardware Ethernet port failure.

F_43 DeviceNet Module Error DeviceNet module configured but not detected.

F_44 Bad Memory Index Memory index out of limits when writing user variables to RAM.

F_45
2nd Encoder Position

Error
Secondary encoder position error limit has exceeded maximum value (applies to

hardware version 1)

F_46 PFB module error PROFIBUS module configured but not detected.

F_47 PFB monitor timeout PROFIBUS network monitor timeout error.

F_48 PFB exchange timeout PROFIBUS data exchange timeout error.

F_49
Illegal manipulation

of APOS
The APOS variable cannot be manipulated while a MOVE is being executed

F_51 Unspecified DSP fault General internal fault.

F_52 Drive disabled-motion Drive disabled while in motion.

S94H201E_13426446_EN L 97

Diagnostics

8.4.2 Fault Event
When the drive encounters any fault, the following events occur:

•	 Drive is disabled

•	 Internal status is set to “Fault”

•	 Fault number is logged in the drive’s internal memory for later interrogation

•	 Digital output(s), if configured for “Run Time Fault”, are asserted

•	 Digital output(s), if configured for READY, are de-asserted

•	 If the display is in the default status mode, the LEDs display F0XX where XX is current fault code.

•	 “Enable” LED turns OFF

8.4.3 Fault Reset
Fault reset is accomplished by disabling or re-enabling the drive depending on the setting of the [Fault
Reset] parameter (section 5.3.8).

If [On Disable] is selected, the fault is cleared when the drive is disabled.

If [On Enable] is selected, the fault is cleared when the drive is re-enabled.

8.4 Troubleshooting

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground.
Avoid direct contact with the printed circuit board or with circuit elements to prevent the
risk of serious injury or fatality. Disconnect incoming power and wait at least 60 seconds
before servicing drive. Capacitors retain charge after power is removed.

Before troubleshooting

Perform the following steps before starting any procedure in this section:

•	 Disconnect AC or DC voltage input from the PositionServo. Wait at least 60 seconds for the power
to discharge.

•	 Check the PositionServo closely for damaged components.

•	 Check that no foreign material has fallen or become lodged in the PositionServo.

•	 Verify that every connection is correct and in good condition.

•	 Verify that there are no short circuits or grounded connections.

•	 Check that the drive’s rated phase current and RMS voltage are consistent with the motor
ratings.

For additional assistance, contact your local PositionServo authorized distributor.

Problem External line fuse blows

Possible Cause Line fuses are the wrong size
Motor leads or incoming power leads are shorted to ground.

Nuisance tripping caused by EMI noise spikes caused by poor grounding and/or
shielding.

Suggested Solution •	 Check that line fuses are properly sized for the motor being used.
•	 Check motor cable and incoming power for shorts.
•	 Check that you follow recommendation for shielding and grounding listed in section

“shielding and grounding” early in this manual.

98 L S94H201E_13426446_EN

Diagnostics

Problem Ready LED is on but motor does not run.

Suggested Solution If in Torque or Velocity mode:
Reference voltage input signal is not applied.

Reference signal is not connected to the PositionServo input properly; connections
are open.
In MotionView program check <Parameters> <Reference> set to <External>

For Velocity mode only:
In MotionView check <Parameters> <Compensation><Velocity loop filter> P-gain
must be set to value more then 0 in order to run. Without load motor will run with
P-gain set as low as 20 but under load might not. If P-gain is set to 0 motor will not
run at all.

In Position mode with master encoder motion source (no program)
Reference voltage input signal source is not properly selected.
In MotionView program check <Parameters> <Reference> set to <External>

In Position mode using indexing program
Variables ACCEL, DECEL,MAXV, UNITS are not set or set to 0. Before attempting the
move set values of motion parameters ACCEL, DECEL,MAXV, UNITS

Problem In velocity mode, the motor runs away.

Possible Cause •	 Hall sensors or encoder mis-wired.
•	 PositionServo not programmed for motor connected.

Suggested Solution •	 Check Hall sensor and encoder connections.
•	 Check that the proper motor is selected.

Problem Cannot connect second drive when sequentially connecting 2 Ethernet-based Drives

Possible Cause If when trying to sequentially commission several Ethernet-based drives with the same
PC, MotionView discovers the IP address, but then reports that the drive cannot be
connected. Due to the fact that the PS drives are shipped with the same factory default
IP address.

Suggested Solution After the first drive is connected, open the Command window on your PC and run the
command “arp -d” just before connecting MotionView to another drive.

ARP is the Address Resolution Protocol. Each PositionServo drive has two addresses,
one MAC address and one IP address. ARP links these two addresses together. Each
PositionServo drive has the same factory default IP address, but a different MAC
address. After connecting the first drive, the Ethernet hub will cache its IP and MAC
address for about 2 minutes. When another drive with the same IP address and different
MAC address is connected to the network, ARP will observe the mismatching between
the IP address and MAC address.

Lenze	Americas	Corporation	•	Lenze	AC	Tech	Corporation
630	Douglas	Street	•	Uxbridge,	MA	01569	•	USA
Sales:	(800)	217	9100	•	Service	(508)	278	9100

www.lenze.com

S94H201E-e1

S929

PositionServo with RS-232
Users Manual

Copyright ©2005 by AC Technology Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any
form without written permission from AC Technology Corporation. The information and
technical data in this manual are subject to change without notice. AC Tech makes no
warranty of any kind with respect to this material, including, but not limited to, the implied
warranties of its merchantability and fitness for a given purpose. AC Tech assumes no
responsibility for any errors that may appear in this manual and makes no commitment
to update or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks
or trademarks of Lenze AG in the United States and other countries.

This document printed in the United States of America

S94P01B2 1

Contents
1 Introduction. 5

1.1 About These Instructions .5

1.2 Scope of Supply. .6

1.3 Legal Regulations .6

2 Technical Data . 7
2.1 Electrical Characteristics .7

2.2 Environment. .7

2.3 Operating Modes .8

2.4 Connections and I/O .8

2.5 Digital I/O Ratings .8

2.6 Power Ratings .9

2.7 Dimensions .9

2.8 Clearance for Cooling Air Circulation. .10

3 Installation . 11
3.1 Wiring. .12

3.2 Shielding and Grounding .12
3.2.1 General Guidelines .12
3.2.2 EMI Protection .13
3.2.3 Enclosure .13

3.3 Line Filtering .13

3.4 Heat Sinking. .14

3.5 Line (Mains) Fusing .14

3.6 Fuse Recommendations .14

4 Interface . 15
4.1 External Connectors .15

4.1.1 P1 & P7 - Input Power and Output Power Connections.15
4.1.2 P2 - Serial Communications Port .16
4.1.3 P3 - Controller Interface .16
4.1.4 P4 - Motor Feedback / Second Loop Encoder Input17
4.1.5 P5 - 24 VDC Back-up Power Input. .19
4.1.6 P6 - Braking Resistor and DC Bus. .19
4.1.7 Connector and Wiring Notes .19
4.1.8 P11 - Resolver Interface Module (option) .20
4.1.9 P12 - Second Encoder Interface Module (option)21

4.2 Digital I/O Details .22
4.2.1 Step & Direction / Master Encoder Inputs (P3, pins 1-4).22
4.2.2 Digital Outputs .23
4.2.3 Digital Inputs .24

4.3 Analog I/O Details .25
4.3.1 Analog Reference Input .25
4.3.2 Analog Output .25

4.4 Communication Interfaces .26
4.4.1 RS232 Interface (standard) .26
4.4.2 RS485 Interface (option) .26
4.4.3 Using RS232 and RS485 Interfaces Simultaneously26
4.4.4 MODBUS RTU Support .27

4.5 Motor Selection .27
4.5.1 Motor Connection. .27
4.5.2 Motor Over-Temperature Protection .27
4.5.3 Motor Set-up .28

4.6 Using a Custom Motor .29
4.6.1 Creating Custom Motor Parameters .29
4.6.2 Autophasing. .30
4.6.3 Custom Motor Data Entry. .30

S94P01B22

Contents
5 Parameters. 35

5.1 Parameter Storage and EPM Operation .35
5.1.1 Parameter Storage. .35
5.1.2 EPM Operation. .35
5.1.3 EPM Fault .36

5.2 Motor Group. .36

5.3 Parameters .36
5.3.1 Drive Operating Modes .36
5.3.2 Drive PWM Frequency .37
5.3.3 Current Limit. .37
5.3.4 Peak Current Limit (8kHz and 16 kHz). .37
5.3.5 Analog Input Scale (Current) .37
5.3.6 Analog Input Scale (Velocity). .37
5.3.7 ACCEL/DECEL Limits (Velocity Mode Only) .38
5.3.8 Reference. .38
5.3.9 Step Input Type (Position Mode Only) .38
5.3.10 Fault Reset Option .38
5.3.11 Motor Temperature Sensor .38
5.3.12 Motor PTC Cut-off Resistance .38
5.3.13 Second Encoder .38
5.3.14 Regen Duty Cycle .39
5.3.15 Encoder Repeat Source. .39
5.3.16 System to Master Ratio .39
5.3.17 Second to Prime Encoder Ratio. .39
5.3.18 Autoboot. .39
5.3.19 Group ID .40
5.3.20 Enable Switch Function .40
5.3.21 User Units .40

5.4 Communication .40
5.4.1 IP Setup .40
5.4.2 RS-485 Configuration. .40
5.4.3 Modbus Baud Rate .40
5.4.4 Modbus Reply Delay .40

5.5 Analog I/O .40
5.5.1 Analog Output .40
5.5.2 Analog Output Current Scale (Volt / amps) .41
5.5.3 Analog Output Velocity Scale (mV/RPM) .41
5.5.4 Analog Input Dead Band .41
5.5.5 Analog Input Offset Parameter .41
5.5.6 Adjust Analog Voltage Offset. .41

5.6 Digital I/O .41
5.6.1 Digital Input De-bounce Time .41
5.6.2 Hard Limit Switch Action .42

5.7 Velocity Limits .42
5.7.1 Zero Speed .42
5.7.2 Speed Window. .42
5.7.3 At Speed .42

5.8 Position Limits .42
5.8.1 Position Error .42
5.8.2 Max Error Time. .42
5.8.3 Second Encoder Position Error .42
5.8.4 Second Encoder Max Error Time. .42

S94P01B2 3

Contents
5.9 Compensation .43

5.9.1 Velocity P-gain (Proportional) .43
5.9.2 Velocity I-gain (Integral). .43
5.9.3 Position P-gain (Proportional) .43
5.9.4 Position I-gain (Integral). .43
5.9.5 Position D-gain (Differential) .43
5.9.6 Position I-limit .43
5.9.7 Gain Scaling Window. .44

5.10 Tools .44
5.10.1 Oscilloscope Tool .44
5.10.2 Run Panels .44

5.11 Faults Group .44

6 Operation . 45
6.1 Minimum Connections .45

6.2 Configuration of the PositionServo .45

6.3 Position Mode Operation (gearing) .47

6.4 Dual-loop Feedback. .47

6.5 Enabling the PositionServo .48

6.6 Drive Tuning. .48
6.6.1 Tuning the Drive in Velocity Mode .49
6.6.2 Tuning the Drive in Position Mode .54

7 Quick Start Reference . 60
7.1 Quick Start - External Torque Mode .60

7.2 Quick Start - External Velocity Mode .61

7.3 Quick Start - External Positioning Mode .63

8 Diagnostics. 65
8.1 Display .65

8.2 LEDs .66

8.3 Faults .66
8.3.1 Fault Codes .66
8.3.2 Fault Event .68
8.3.3 Fault Reset .68

8.4 Troubleshooting .68

S94P01B24

Safety Information
All safety information given in these Operating Instruction has a similar layout:

Signal Word! (Characteristics the severity of the danger)

Note (describes the danger and informs on how to proceed)

Pictographs used in these instructions:

Icon Signal Words

Warning of
hazardous
electrical
voltage

DANGER! Warns of impending danger.

Consequences if disregarded:
Death or severe injuries.

Warning of
a general
danger

WARNING! Warns of potential, very hazardous
situations.

Consequences if disregarded:
Death or severe injuries.

Warning of
damage to
equipment

STOP! Warns of potential damage to material
and equipment.

Consequences if disregarded:
Damage to the controller/drive or its
environment.

Information NOTE Designates a general, useful note.

If you observe it, handling the controller/
drive system is made easier.

S94P01B2 5

Introduction

1 Introduction
The PositionServo line of advanced general purpose servo drives utilizes the latest
technology in power semiconductors and packaging. The PositionServo uses Field
Oriented control to enable high quality motion.

The PositionServo Model 940 is available in four mains (input power) configurations:

1. 400/480V (nominal) three phase input. An external input mains (line) filter is
available. These drives have the suffix “T4N”. Actual voltage can range from
320 - 528 VAC.

2. 120/240V (nominal) Single Phase input with integrated input mains (line)
filter, Actual input voltage can range from 80VAC to 264VAC. The maximum
output voltage is approximately equal to the input voltage. These drives have
the suffix “S2F”.

3. 120V or 240V (nominal) Single or Three Phase input. Actual input voltage
can range from 80VAC to 264VAC. The maximum output voltage is
approximately equal to the input voltage. An external input mains (line) filter
is available. These drives have the suffix “Y2N”.

4. 120V or 240V (nominal) single phase input. When wired for Doubler mode
(L1-N), the input is for 120V nominal only and can range from 45VAC to 132
VAC and the maximum output voltage is double the input voltage. When
wired to terminals L1-L2/N, the input can range from 80 VAC to 264 VAC and
the maximum output voltage is equal to the input voltage. These drives have
the suffix “S1N”.

The PositionServo 940 will accept feedback from an incremental encoder (that includes
Hall channel information) or from a resolver. It accepts commands from a variety of
sources, including analog voltage, RS485 interface (PPP and Modbus RTU), Ethernet
interface, CANopen interface, digital pulse train, and master encoder reference. The
control will operate in current (torque), velocity, or position (step and direction / master
encoder) modes.

The 940 utilizes a software package called MotionView. MotionView provides a
window into the drive allowing the user to check and set parameter. It has a real-time
oscilloscope tool, for analyses and optimum tuning, as well as a User Program. This
User Program can be utilized to command motion and handle the drives I/O. The
MotionView programming language is designed to be very user friendly and easy to
implement.

The EPM (Electronic Programming Module) stores all drive setup and tuning information.
This module can be removed from the drive and reinstalled into another PositionServo
940, making field replacement of the PositionServo 940 extremely easy.

The PositionServo 940 controls supports Point-to-Point (PPP) and Modbus RTU over
RS485, Ethernet TCPIP and CANopen (DS301, DS402) communication protocols.

The PositionServo 940 supports incremental quadrature encoder or resolver feedback
devices. A second encoder can also be supported during position and velocity modes.

1.1 About These Instructions
•	 These Operating Instructions are provided to assist the user in connecting and

commissioning the PositionServo drive equipped with an RS232 interface in P2.
Observe all safety instructions contained in this document.

•	 All persons working on and with the controller must have the Operating Instructions
available and must observe the information and notes relevant for their work.

•	 Read these Operating Instructions in their entirety before operating the drive.

S94P01B26

Introduction

1.2 Scope of Supply

Scope of Supply Important

•		1	Model	940	Servo	type	E94P...
•		1	Users	Manual	(English)
•		1	MotionView	CD	ROM	including
 - configuration software
 - documentation (Adobe Acrobat)

After reception of the delivery, check immediately
whether the scope of supply matches the
accompanying papers. Lenze does not accept any
liability for deficiencies claimed subsequently.
Claim
•		visible	transport	damage	immediately	to	the	forwarder
•	 	 visible	deficiencies	 /	 incompleteness	 immediately	 to	

your Lenze representative.

1.3 Legal Regulations
Identification Nameplate CE Identification Manufacturer

Lenze controllers are
unambiguously designated by
the contents of the nameplate

In compliance with the EC
Low-Voltage Directive

AC Technology Corp.
member of the Lenze Group
630 Douglas Street
Uxbridge, MA 01569 USA

Application as
directed

E94P... servo controller
• must only be operated under the conditions prescribed in these Instructions.
• are components

- for closed loop control of variable speed and torque applications with PM synchronous motors
- for installation in a machine.
- for assembly with other components to form a machine.

• are electric units for the installation into control cabinets or similar enclosed operating housing.
• comply with the requirements of the Low-Voltage Directive.
• are not machines for the purpose of the Machinery Directive.
• are not to be used as domestic appliances, but only for industrial purposes.
Drive systems with E94P... servo inverters
• comply with the EMC Directive if they are installed according to the guidelines of CE-typical

drive systems.
• can be used

- for operation on public and non-public mains
- for operation in industrial premises and residential areas.

• The user is responsible for the compliance of his application with the EC directives.
Any other use shall be deemed as inappropriate!

Liability • The information, data, and notes in these instructions met the state of the art at the time of
publication. Claims on modifications referring to controllers which have already been supplied
cannot be derived from the information, illustrations, and descriptions.

• The specifications, processes and circuitry described in these instructions are for guidance only
and must be adapted to your own specific application. Lenze does not take responsibility for the
suitability of the process and circuit proposals.

• The specifications in these Instructions describe the product features without guaranteeing them.
• Lenze does not accept any liability for damage and operating interference caused by:

- Disregarding the operating instructions
- Unauthorized modifications to the controller
- Operating errors
- Improper working on and with the controller

Warranty • Warranty conditions: see Sales and Delivery Conditions of Lenze Drive Systems GmbH.
• Warranty claims must be made to Lenze immediately after detecting the deficiency or fault.
• The warranty is void in all cases where liability claims cannot be made.

Disposal Material Recycle Dispose

Metal • -

Plastic • -

Assembled PCB’s - •

S94P01B2 7

Technical Data

2 Technical Data
2.1 Electrical Characteristics
Single-Phase Models

Type Mains Voltage (1)

1~ Mains
Current

(doubler)

1~ Mains
Current
(Std.)

Rated Output
Current (4)

Peak Output
Current (5)

E94P020S1N
120V(2) or 240V(3) 9.7 5.0 2.0 6

E94P040S1N 15 8.6 4.0 12

E94P020S2F

120 / 240V(3)

(80 V -0%...264 V +0%)

-- 5.0 2.0 6

E94P040S2F -- 8.6 4.0 12

E94P080S2F -- 15.0 8.0 24

E94P100S2F -- 18.8 10.0 30

Single/Three-Phase Models

Type Mains Voltage (1)
1~ Mains
Current

3~ Mains
Current

Rated Output
Current (4)

Peak Output
Current (5)

E94P020Y2N

120 / 240V(3)

1~ or 3~
(80 V -0%...264 V +0%)

5.0 3.0 2.0 6

E94P040Y2N 8.6 5.0 4.0 12

E94P080Y2N 15.0 8.7 8.0 24

E94P100Y2N 18.8 10.9 10.0 30

E94P120Y2N 24.0 13.9 12.0 36

E94P020T4N
400 / 480V

3~
(320 V -0%...528 V +0%)

-- 2.7 2.0 6

E94P040T4N -- 5.5 4.0 12

E94P050T4N -- 6.9 5.0 15

E94P060T4N -- 7.9 6.0 18

(1) Mains voltage for operation on 50/60 Hz AC supplies (48 Hz -0% … 62Hz +0%).
(2) Connection of 120VAC (45 V … 132 V) to input power terminals L1 and N on these models doubles the voltage

on motor output terminals U-V-W for use with 230VAC motors.
(3) Connection of 240VAC or 120VAC to input power terminals L1 and L2 on these models delivers an equal voltage

as maximum to motor output terminals U-V-W allowing operation with either 120VAC or 230VAC motors.
(4) Drive rated at 8kHz Carrier Frequency. Derate Continuous current by 17% at 16kHz.
(5) Peak RMS current allowed for up to 2 seconds. Peak current rated at 8kHz. Derate by 17% at 16kHz.

Applies to all models:
Acceleration Time Range (Zero to Max Speed) 0.1 … 5x106 RPM/sec
Deceleration Time Range (Max Speed to Zero) 0.1 … 5x106 RPM/sec
Speed Regulation (typical) ± 1 RPM
Input Impedance (AIN+ to COM and AIN+ to AIN-) 47k Ω
Power Device Carrier Frequency (sinusoidal commutation) 8,16 kHz
Encoder power supply (max) +5 VDC @ 300 mA
Maximum encoder feedback frequency 2.1 MHz (per channel)

2.2 Environment
Vibration 2 g (10 - 2000 Hz)
Ambient Operating Temperature Range 0 to 40ºC
Ambient Storage Temperature Range -10 to 70ºC
Temperature Drift 0.1% per ºC rise
Humidity 5 - 90% non-condensing
Altitude 1500 m/5000 ft [derate by 1% per 300m
 (1000 ft) above 1500m (5000 ft)]

S94P01B28

Technical Data

2.3 Operating Modes
Torque Reference ± 10 VDC 16-bit; scalable
 Torque Range 100:1
 Current-Loop Bandwidth Up to 1.5 kHz*
Velocity Reference ± 10 VDC or 0…10 VDC; scalable
 Regulation ± 1 RPM
 Velocity-Loop Bandwidth Up to 200 Hz*
 Speed Range 5000:1 with 5000 ppr encoder
Position Reference 0…2 MHz Step and Direction or
 2 channels quadrature input; scalable
 Minimum Pulse Width 500 nanoseconds
 Loop Bandwidth Up to 200 Hz*
 Accuracy ±1 encoder count

* = motor and application dependent

2.4 Connections and I/O
Mains Power 4-pin removable terminal block (P1)
RS232 Port Standard 9-pin D-shell (DCE) Connector (P2)
I/O Connector Standard 50-pin SCSI. (P3)
- Buffered Encoder Output A, B & Z channels with compliments (5V @ 20mA) (P3)
- Digital Inputs 12 programmable, 1 dedicated (5-24V) (P3)
- Digital Outputs 4 programmable, 1 dedicated(5-24V @ 15mA) (P3)
- Analog Input 1 differential; ±10 VDC (16 bit) (P3)
- Analog Output 1 single ended; ±10 VDC (10-bit) (P3)
Encoder Feedback (primary) Standard 15-pin D-shell (P4)
24VDC Power “Keep Alive” 2-pin removable terminal block (P5)
Regen and Bus Power 5-pin removable terminal block (P6)
Motor Power 6-pin pin removable terminal block (P7)
Resolver feedback (option bay) Option module with standard 9-pin D-shell (P11)
Encoder Feedback (option bay) Option module with standard 9-pin D-shell (P12)
Comm Option Bay Optional Comm Modules (CAN, Ethernet, RS485) (P21)
Windows® Software: MotionView (Windows 98, NT, 2000, XP)

2.5 Digital I/O Ratings
Scan
Times Linearity Temperature Drift Offset Current Input

Impedance
Voltage
Range

Units ms % % % mA Ohm VDC
Digital Inputs(1) 512 Depend on load 2.2 k 5-24

Digital Outputs 512 15 max N/A 30 max

Analog Inputs 512 ± 0.013 0.1% per °C rise ± 0 adjustable Depend on load 47 k ± 18

Analog Outputs 512 0.1% per °C rise ± 0 adjustable 10 max N/A ± 10

(1) Inputs do not have scan time. Their values are read directly by indexer program statement.

Notes for Power Ratings Table in section 2.6:
(1) At 240 VAC line input for drives with suffixes “S1N”, “S2F”, “Y2N”. At 480 VAC line input for drives with suffixes “T4N”.

a. The output power is calculated from the formula: output kVA = [(3) x ULL x I rated] /1000
b. The actual output power (kW) depends on the motor in use due to variations in motor rated voltage, rated speed and

power factor, as well as actual max operating speed and desired overload capacity.
c. Typical max continuous power (kW) for PM servo motors runs 50-70% of the kVA ratings listed.

(2) At 16 kHz, de-rate continuous current by 17%
(3) Leakage Current is typically >3.5mA. Contact factory for applications requiring <3.5mA

S94P01B2 9

Technical Data

2.6 Power Ratings

Type(1) Output kVA at Rated
Output Current (8kHz)(1)

Leakage
Current (3)

Power Loss at Rated
Output Current (8kHz)

Power Loss at Rated
Output Current (16 kHz)(2)

Units kVA
Typical:
>3.5mA*

Watts Watts

E94P020S1N 0.8 19 21

E94P040S1N 1.7 29 30

E94P020S2F 0.8

Typical:
>3.5mA*

19 21

E94P040S2F 1.7 29 30

E94P080S2F 3.3 61 63

E94P100S2F 4.2 80 85

E94P020Y2N 0.8

Typical:
>3.5mA*

19 21

E94P040Y2N 1.7 29 30

E94P080Y2N 3.3 61 63

E94P100Y2N 4.2 80 85

E94P120Y2N 5.0 114 129

E94P020T4N 1.7

Typical:
>3.5mA*

31 41

E94P040T4N 3.3 50 73

E94P050T4N 4.2 70 90

E94P060T4N 5.0 93 122

Refer to Notes that precede this table.

2.7 Dimensions

C

15

12

12

A

38

182 B

34

S923

Type A (mm) B (mm) C (mm) Weight (kg)

E94P020S1N 68 190 190 1.1

E94P040S1N 69 190 190 1.2

E94P020S2F 68 190 235 1.3

E94P040S2F 69 190 235 1.5

E94P080S2F 87 190 235 1.9

E94P100S2F 102 190 235 2.2

E94P020Y2N 68 190 190 1.3

E94P040Y2N 69 190 190 1.5

E94P080Y2N 95 190 190 1.9

E94P100Y2N 114 190 190 2.2

E94P120Y2N 68 190 235 1.5

E94P020T4N 68 190 190 1.5

E94P040T4N 95 190 190 1.9

E94P050T4N 114 190 190 2.2

E94P060T4N 68 190 235 1.4

S94P01B210

Technical Data

2.8 Clearance for Cooling Air Circulation

>25mm
>3mm

>25mm

S94P01B2 11

Installation

3 Installation
Perform the minimum system connection. Please refer to section 6.1 for minimum
connection requirements. Observe the rules and warnings below carefully:

DANGER!

Hazard of electrical shock! Circuit potentials are up to 480 VAC
above earth ground. Avoid direct contact with the printed circuit board
or with circuit elements to prevent the risk of serious injury or fatality.
Disconnect incoming power and wait 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

STOP!

•	 The PositionServo 940 must be mounted vertically for safe
operation and enough cooling air circulation.

•	 Printed circuit board components are sensitive to electrostatic
fields. Avoid contact with the printed circuit board directly. Hold the
PositionServo 940 by it’s case only.

•	 Protect the drive from dirt, filings, airborne particles, moisture,
and accidental contact. Provide sufficient room for access to the
terminal block.

•	 Mount the drive away from any and all heat sources. Operate
within the specified ambient operating temperature range.
Additional cooling with an external fan may be recommended in
certain applications.

•	 Avoid excessive vibration to prevent intermittent connections

•	 DO NOT connect incoming (mains) power to the output motor
terminals (U, V, W)! Severe damage to the drive will result.

•	 Do not disconnect any of the motor leads from the PositionServo
940 drive unless (mains) power is removed. Opening any one
motor lead may cause failure.

•	 Control Terminals provide basic isolation (insulation per EN61800-
5-1). Protection against contact can only be ensured by additional
measures, e.g., supplemental insulation.

WARNING!

For compliance with EN61800-5-1, the following warning applies.

This product can cause a d.c. current in the protective earthing
conductor. Where a residual current-operated protective (RCD) or
monitoring (RCM) device is used for protection in case of direct or
indirect contact, only an RCD or RCM of Type B is allowed on the
supply side of this product.

S94P01B212

Installation

UL INSTALLATION INFORMATION

•	 Suitable for use on a circuit capable of delivering not more than
200,000 rms symmetrical amperes, at the maximum voltage rating
marked on the drive.

•	 Use Class 1 wiring with minimum of 75ºC copper wire only.

•	 Shall be installed in a pollution degree 2 macro-environment.

3.1 Wiring

DANGER!

Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or
with circuit elements to prevent the risk of serious injury or fatality.
Disconnect incoming power and wait 60 seconds before servicing the
drive. Capacitors retain charge after power is removed.

WARNING!

Leakage current may exceed 3.5mA AC. Minimum size of the protective
earth conductor shall comply with local safety regulations for high
leakage current equipment.

STOP!

Under no circumstances should power and control wiring be bundled
together. Induced voltage can cause unpredictable behavior in any
electronic device, including motor controls.

Refer to section 4.1.1 for power wiring specifications.

3.2 Shielding and Grounding

3.2.1 General Guidelines
Lenze recommends the use of single-point grounding (SPG) for panel-mounted controls.
Serial grounding (a “daisy chain”) is not recommended. The SPG for all enclosures
must be tied to earth ground at the same point. The system ground and equipment
grounds for all panel-mounted enclosures must be individually connected to the SPG
for that panel using 14 AWG (2.5 mm2) or larger wire.

In order to minimize EMI, the chassis must be grounded to the mounting. Use 14 AWG
(2.5 mm2) or larger wire to join the enclosure to earth ground. A lock washer must
be installed between the enclosure and ground terminal. To ensure maximum contact
between the terminal and enclosure, remove paint in a minimum radius of 0.25 in (6
mm) around the screw hole of the enclosure.

Lenze recommends the use of the special PositionServo 940 drive cables provided by
Lenze. If you specify cables other than those provided by Lenze, please make certain
all cables are shielded and properly grounded.

It may be necessary to earth ground the shielded cable. Ground the shield at both the
drive end and at the motor end.

If the PositionServo 940 drive continues to pick up noise after grounding the shield, it
may be necessary to add an AC line filtering device and/or an output filter (between
drive and servo motor).

S94P01B2 13

Installation

EMC

Compliance with EN 61800-3/A11
This is a product of the restricted sales distribution class according to IEC 61800-3.
In a domestic environment this product may cause radio interference in which the
user may be required to take adequate measures

Noise emission

Drive Models ending in the suffix “2F” are in
compliance with class A limits according to
EN 55011 if installed in a control cabinet and
the motor cable length does not exceed 10m.
Models ending in “N” will require an appropriate
line filter.

Installation according to EMC
Requirements

E

D

B C

A

F

S930

A Screen clamps

B Control cable

C Low-capacitance motor cable
(core/core < 75 pF/m, core/screen < 150 pF/m)

D Earth grounded conductive mounting plate

E Encoder Feedback Cable

F Footprint or Sidemount Filter (optional)

3.2.2 EMI Protection
Electromagnetic interference (EMI) is an important concern for users of digital
servo control systems. EMI will cause control systems to behave in unexpected and
sometimes dangerous ways. Therefore, reducing EMI is of primary concern not only
for servo control manufacturers such as Lenze, but the user as well. Proper shielding,
grounding and installation practices are critical to EMI reduction.

3.2.3 Enclosure
The panel in which the PositionServo 940 is mounted must be made of metal, and must
be grounded using the SPG method outlined in section 3.2.1.

Proper wire routing inside the panel is critical; power and logic leads must be routed in
different avenues inside the panel.

You must ensure that the panel contains sufficient clearance around the drive. Refer to
Section 2.6 suggested cooling air clearance.

3.3 Line Filtering
In addition to EMI/RFI safeguards inherent in the PositionServo 940 design, external
filtering may be required. High frequency energy can be coupled between the circuits via
radiation or conduction. The AC power wiring is one of the most important paths for both
types of coupling mechanisms. In order to comply with IEC61800-3, an appropriate filter
must be installed within 20cm of the drive power inputs.

Line filters should be placed inside the shielded panel. Connect the filter to the
incoming power lines immediately after the safety mains and before any critical control
components. Wire the AC line filter as close as possible to the PositionServo 940 drive.

S94P01B214

Installation

NOTE

The ground connection from the filter must be wired to solid earth
ground, not machine ground.

If the end-user is using a CE-approved motor, the AC filter combined with the
recommended motor and encoder cables, is all that is necessary to meet the EMC
directives listed herein. The end user must use the compatible filter to comply with CE
specifications. The OEM may choose to provide alternative filtering that encompasses
the PositionServo 940 drive and other electronics within the same panel. The OEM has
this liberty because CE requirements are for the total system.

3.4 Heat Sinking
The PositionServo 940 drive contains sufficient heat sinking within the specified ambient
operating temperature in their basic configuration. There is no need for additional heat
sinking. However, you must ensure that there is sufficient clearance for proper air
circulation. As a minimum, you must allow an air gap of 25 mm above and below the
drive.

3.5 Line (Mains) Fusing
External line fuses must be installed on all PositionServo drives. Connect the external
line fuse in series with the AC line voltage input. Use fast-acting fuses rated for 250
VAC or 600 VAC (depending on model), and approximately 200% of the maximum
RMS phase current.

3.6 Fuse Recommendations

Type(1)

AC Line
Input Fuse

(1ø/3ø)

Miniature
Circuit Breaker (1)

(1ø/3ø)

AC Line
Input Fuse or
Breaker (2) (3)
(N. America)

DC Bus Input
Fuse(4)

Amp Ratings

E94P020S1N M20/M10 C20/C10 20/10 10

E94P040S1N M32/M20 C32/C20 30/20 20

E94P020S2F M20 C20 20 15

E94P040S2F M20 C20 20 20

E94P080S2F M32 C32 32 40

E94P100S2F M40 C40 40 45

E94P020Y2N M20/M16 C20/C16 20/15 15

E94P040Y2N M20/M16 C20/C16 20/15 20

E94P080Y2N M32/M20 C32/C20 30/20 40

E94P100Y2N M40/M25 C40/C25 40/25 45

E94P120Y2N M50/M32 C50/C32 50/30 55

E94P020T4N M10 C10 10 10

E94P040T4N M10 C10 10 20

E94P050T4N M16 C16 15 25

E94P060T4N M20 C20 20 30

(1) Installations with high fault current due to large supply mains may require a type D circuit breaker.

(2) UL Class CC or T fast-acting current-limiting type fuses, 200,000 AIC, preferred. Bussman KTK-R, JJN, JJS or equivalent.

(3) Thermal-magnetic type breakers preferred.

(4) DC-rated fuses, rated for the applied voltage. Examples Bussman KTM or JJN as appropriate.

S94P01B2 15

Interface

4 Interface
The standard PositionServo 940 drive contains seven connectors: four quick-connect
terminal blocks, one SCSI connector and two subminiature type “D” connectors. These
connectors provide communications from a PLC or host controller, power to the drive,
and feedback from the motor. Prefabricated cable assemblies may be purchased from
Lenze to facilitate wiring the drive, motor and host computer. Contact your Lenze Sales
Representative for assistance.

As this manual makes reference to specific pins on specific connectors, we will use the
convention PX.Y where X is the connector number and Y is the pin number.

4.1 External Connectors

4.1.1 P1 & P7 - Input Power and Output Power Connections
P1 is a 3 or 4-pin quick-connect terminal block used for input (mains) power. P7 is a
6-pin quick-connect terminal block used for output power to the motor. P7 also has a
thermistor (PTC) input for motor over-temperature protection. The tables below identify
connector pin assignments.

DANGER!
Hazard of electrical shock! Circuit potentials are up to 480 VAC
above earth ground. Avoid direct contact with the printed circuit board
or with circuit elements to prevent the risk of serious injury or fatality.
Disconnect incoming power and wait 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

STOP!
DO NOT connect incoming power to the output motor terminals
(U, V, W)! Severe damage to the PositionServo will result.

All conductors must be enclosed in one shield and jacket around them. The shield on
the drive end of the motor power cable should be terminated to the conductive machine
panel using screen clamps as shown in section 3.2. The other end should be properly
terminated at the motor shield. Feedback cable shields should be terminated in a like
manner. Lenze recommends Lenze cables for both the motor power and feedback.
These are available with appropriate connectors and in various lengths. Contact your
Lenze representative for assistance.

Wire Size
Current (Arms) Terminal Torque (lb-in) Wire Size

I<8 4.5 16 AWG (1.5mm2) or 14 AWG (2.5mm2)

8<I<12 4.5 14 AWG (2.5mm2) or 12 AWG (4.0mm2)

12<I<15 4.5 12 AWG (4.0mm2)

15<I<20 5.0 - 7.0 10 AWG (6.0mm2)

20<I<24 11.0 - 15.0 10 AWG (6.0mm2)

P1 PIN ASSIGNMENTS (INPUT POWER)
Standard Models Doubler Models

Pin Name Function Name Function

1 PE Protective Earth (Ground) PE Protective Earth (Ground)

2 L1 AC Power in N AC Power Neutral (120V Doubler only)

3 L2 AC Power in L1 AC Power in

4 L3 AC Power in (3~ models only) L2/N AC Power in (non-doubler operation)

S94P01B216

Interface
P7 PIN ASSIGNMENTS (OUTPUT POWER)

Pin Terminal Function

1 T1 Thermistor (PTC) Input

2 T2 Thermistor (PTC) Input

3 U Motor Power Out

4 V Motor Power Out

5 W Motor Power Out

6 PE Protective Earth (Chassis Ground)

4.1.2 P2 - Serial Communications Port
P2 is a 9-pin D-sub connector that is used to communicate with a host computer via
standard RS-232 interface using a proprietary Point-to-Point Protocol (PPP). This port
is present on all Model 94 and 940 RS-232-based drives. All levels must be RS-232C
compliant.

P2 PIN ASSIGNMENTS (COMMUNICATIONS)

Pin Name Function RS-232 Connector

1 Reserved P2
RS

-2
32

1

5 9

6

2 TX RS-232 (transmit)

3 RX RS-232 (receive)

4 Reserved

5 GND Common

6 Reserved

7 Reserved

8 Reserved

9 Reserved

STOP!
Do not make any connection to Reserved pins!

NOTE
If you purchase serial cables from a third party, you must use a pass-
through cable, not Null-Modem (not crossover)

4.1.3 P3 - Controller Interface
P3 is a 50-pin SCSI connector for interfacing to the front-end of the controllers. It is
strongly recommended that you use OEM cables to aid in satisfying CE requirements.
Contact your Lenze representative for assistance.

P3 PIN ASSIGNMENTS (CONTROLLER INTERFACE)

Pin Name Function

1 MA+ Master Encoder A+ / Step+ input (2)

2 MA- Master Encoder A- / Step- input (2)

3 MB+ Master Encoder B+ / Direction+ input (2)

4 MB- Master Encoder B- / Direction- input (2)

5 GND Drive Logic Common

6 5+ +5V output (max 100mA)

7 BA+ Buffered Encoder Output: Channel A+ (1)

8 BA- Buffered Encoder Output: Channel A- (1)

9 BB+ Buffered Encoder Output: Channel B+ (1)

S94P01B2 17

Interface

Pin Name Function

10 BB- Buffered Encoder Output: Channel B- (1)

11 BZ+ Buffered Encoder Output: Channel Z+ (1)

12 BZ- Buffered Encoder Output: Channel Z- (1)

13-19 Empty

20 AIN2+ Positive (+) of Analog signal input

21 AIN2- Negative (-) of Analog signal input

22 ACOM Analog common

23 AO Analog output

24 AIN1+ Positive (+) of Analog signal input

25 AIN1 - Negative (-) of Analog signal input

26 IN_A_COM Digital input group ACOM terminal (3)

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3 (3)

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group BCOM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group CCOM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter
(1) See Note 1, Section 4.1.7 - Connector and Wiring Notes
(2) See Note 2, Section 4.1.7 - Connector and Wiring Notes
3) See Note 3, Section 4.1.7 - Connector and Wiring Notes

4.1.4 P4 - Motor Feedback / Second Loop Encoder Input
P4 is a 15-pin DB connector that contains connections for Hall Effect sensors and
incremental encoder feedback. Refer to the P4 pin assignments table for the connector
pin assignments. Encoder inputs on P4 have 26LS32 or compatible differential receivers
for increased noise immunity. Inputs have all necessary filtering and line balancing
components so no external noise suppression networks are needed.

All conductors must be enclosed in one shield and jacket around them. Lenze
recommends that each and every pair (for example, EA+ and EA-) be twisted. In order
to satisfy CE requirements, use of an OEM cable is recommended. Contact your Lenze
representative for assistance.

S94P01B218

Interface
The PositionServo 940 buffers encoder feedback from P4 to P3. Encoder Feedback
channel A on P4, for example, is Buffered Encoder Output channel A on P3. The Hall
sensors from the motor must be wired to the 15-pin connector (P4).

STOP!

Use only +5 VDC encoders. Do not connect any other type of encoder
to the PositionServo 940 reference voltage terminals. When using a
front-end controller, it is critical that the +5 VDC supply on the front-
end controller NOT be connected to the PositionServo 940’s +5 VDC
supply, as this will result in damage to the PositionServo 940.

NOTE

•	 The PositionServo 940 encoder inputs are designed to accept
differentially driven hall signals. Single-ended or open-collector
type hall signals are also acceptable by connecting “HA+”, “HB+”,
“HC+” and leaving “HA-,HB-,HC-” inputs unconnected. You do not
need to supply pull-up resistors for open-collector hall sensors.
The necessary pull-up circuits are already provided.

•	 Encoder connections (A, B, and Z) must be full differential.
PositionServo doesn’t support single-ended or open-collector type
outputs from the encoder.

•	 An encoder resolution of 2000 PPR (pre-quadrature) or higher is
recommended.

Using P4 as second encoder input for dual-loop operation.

P4 can be used as a second loop encoder input in situations where the motor is
equipped with a resolver as the primary feedback. If such a motor is used, the drive
must have a resolver feedback option module installed. A second encoder can then be
connected to the A and B lines of the P4 connector for dual loop operation. Refer to
“Dual-loop Feedback Operation” for details (Section 6.4).

P4 PIN ASSIGNMENTS (ENCODER)

Pin Name Function

1 EA+ Encoder Channel A+ Input (1)

2 EA- Encoder Channel A- Input (1)

3 EB+ Encoder Channel B+ Input (1)

4 EB- Encoder Channel B- Input (1)

5 EZ+ Encoder Channel Z+ Input (1)

6 EZ- Encoder Channel Z- Input (1)

7 GND Drive Logic Common/Encoder Ground

8 SHLD Shield

9 PWR Encoder supply (+5VDC)

10 HA- Hall Sensor A- Input

11 HA+ Hall Sensor A+ Input

12 HB+ Hall Sensor B+ Input

13 HC+ Hall Sensor C+ Input

14 HB- Hall Sensor B- Input

15 HC- Hall Sensor C- Input
(1) See Note 1, Section 4.1.7 - Connector and Wiring Notes

S94P01B2 19

Interface

4.1.5 P5 - 24 VDC Back-up Power Input
P5 is a 2-pin quick-connect terminal block that can be used with an external 24 VDC
(500mA) power supply to provide “Keep Alive” capability: during a power loss, the logic
and communications will remain active. Applied voltage must be greater than 20VDC.

P5 PIN ASSIGNMENTS (BACK-UP POWER)

Pin Name Function

1 +24 VDC Positive 24 VDC Input

2 Return 24V power supply return

WARNING!

Hazard of unintended operation! The “Keep Alive” circuit will restart the
motor upon restoration of mains power when the enable input remains
asserted. If this action is not desired, then the enable input must be
removed prior to re-application of input power.

4.1.6 P6 - Braking Resistor and DC Bus
P6 is a 5-pin quick-connect terminal block that can be used with an external braking
resistor (the PositionServo 940 has the regen circuitry built-in). The Brake Resistor
connects between the Positive DC Bus (either P6.1 or 2) and P6.3.

P6 TERMINAL ASSIGNMENTS (BRAKE RESISTOR AND DC BUS)

Pin Terminal Function

1 B+ Positive DC Bus / Brake Resistor

2 B+

3 BR Brake Resistor

4 B-
Negative DC Bus

5 B-

4.1.7 Connector and Wiring Notes
Note 1 - Encoder Inputs
Each of the encoder output pins on P3 is a buffered pass-through of the corresponding
input signal on P4. This can be either from a motor mounted (primary feedback)
encoder or from an auxiliary encoder when a resolver is the primary feedback device
on the motor.

Via software, these pins can be re-programmed to be a buffered pass through of the
signals from a feedback option card. This can be either the second encoder option
module (E94ZAENC1) or an encoder emulation of the resolver connected to the
resolver option module (E94ZARSV1, E94ZARSV2 or E94ZARSV3).

Note 2 - Encoder Outputs
An external pulse train signal (“step”) supplied by an external device, such as a PLC or
stepper indexer, can control the speed and position. of the servomotor. The speed of
the motor is controlled by the frequency of the “step” signal, while the number of pulses
that are supplied to the PositionServo 940 determines the position of the servomotor.
“DIR” input controls direction of the motion.

S94P01B220

Interface
Note 3 - Digital Input A3
The ENABLE pin (IN_A3, P3.29) must be wired through a switch or an output on a
front-end controller to digital input common (IN_ACOM, P3.26). If a controller is present,
it should supervise the PositionServo 940’s enable function. The ENABLE circuit will
accept 5-24V control voltage.

Wiring the ENABLE Switch:

Pin 6 +5V
P n 5 GND

P n 26 N A COM

Pin 29 IN A3

C
O

N
TR

O
LL

E
R

 /
O

1

25

P3

50

26

Power Supply

Pin 26 IN A COM

Pin 29 IN A3

+

C
O

N
TR

O
LL

E
R

 /
O

1

25

P3

50

26

4.1.8 P11 - Resolver Interface Module (option)
PositionServo drives can operate motors equipped with resolvers. Resolver connections
are made to a 9 pin D-shell female connector (P11) on the resolver option module
E94ZARSV2 (scalable) or E94ZARSV3 (standard). When the motor profile is loaded
from the motor database or from a custom motor file, the drive will select the primary
feedback source based on the motor data entry.

When using a Lenze motor with resolver feedback and a Lenze resolver cable, the
pins are already configured for operation. If a non-Lenze motor is used, the resolver
connections are made as follows:

S94P01B2 21

Interface
P11 PIN ASSIGNMENTS (Resolver Feedback)

Pin Name Function

1 Ref +
Resolver reference connection

2 Ref -

3 N/C No Connection

4 Cos+
Resolver Cosine connections

5 Cos-

6 Sin+
Resolver Sine connections

7 Sin-

8 PTC+
Thermal sensor

9 PTC-

STOP!
Use only 10 V (peak to peak) or less resolvers. Use of higher voltage
resolvers may result in feedback failure and damage to the resolver
option module.

4.1.9 P12 - Second Encoder Interface Module (option)
PositionServo drives can support a second incremental encoder interface for dual-loop
systems. Depending on the motor’s primary feedback type (encoder or resolver) a
second encoder can be connected as follows:

•	 If	 the	 primary	 motor	 feedback	 is	 an	 encoder	 (connected	 to	 P4),	 the	 second	
encoder interfaces through the encoder option module (E94ZAENC1) at P12 on
Option Bay 2.

•	 If	 the	 motor	 primary	 feedback	 is	 a	 resolver	 connected	 to	 the	 resolver	 option	
module (E94ZARSV1) at P11 on Option Bay 2, the second encoder connects to
the P4 connector on the drive. In this case, the hall inputs on P4 are not used.

The 2nd Encoder Option Module includes a 9 pin D-shell male connector. When using
a Lenze motor with encoder feedback and a Lenze encoder cable, the pins are already
configured for operation. If a non-Lenze motor is used, the encoder connections are
made as follows:

P12 PIN ASSIGNMENTS (Second Encoder Feedback)

Pin Name Function

1 E2B+ Second Encoder Channel B+ Input

2 E2A- Second Encoder Channel A- Input

3 E2A+ Second Encoder Channel A+ Input

4 +5v Supply voltage for Second Encoder

5 COM Supply common

6 E2Z- Second Encoder Channel Z- Input

7 E2Z+ Second Encoder Channel Z+ Input

8 N/C No Connection

9 E2B- Second Encoder Channel B- Input

The second encoder needs to be enabled using MotionView software. Refer to “Dual-
loop Feedback” (Section 6.4) for details.

STOP!
Use only +5 VDC encoders. Do not connect any other type of encoder
to the option module otherwise damage to drive’s circuitry may result.

S94P01B222

Interface

4.2 Digital I/O Details
4.2.1 Step & Direction / Master Encoder Inputs (P3, pins 1-4)
You can connect a master encoder with quadrature outputs or a step and direction pair
of signals to control position in step / direction operating mode (stepper motor emulation).
These inputs are optically isolated from the rest of the drive circuits and from each other.
Both inputs can operate from any voltage source in the range of 5 to 24 VDC and do not
require additional series resistors for normal operation.

CCWCW
DIRECTION

STEP

S904Timing characteristics for Step And Direction signals

CCWCW

A

B

S905Timing characteristics for Master Encoder signals

Input type/ output compatibility Insulated, compatible with Single-ended or
 differential outputs (5-24 VDC)
Max frequency (per input) 2 MHz
Min pulse width (negative or positive) 500nS
Input impedance 700 Ω (approx)

MA+/STEP+
MB+/DIR+

MA-/STEP-
MB-/DIR-

600Ω 100Ω

5.6V

S906

Master encoder/step and direction input circuit

Differential signal inputs are preferred when using Step and Direction. Single ended
inputs can be used but are not recommended. Sinking or sourcing outputs may also be
connected to these inputs. The function of these inputs “Master Encoder” or “Step and
Direction” is software selectable. Use MotionView setup program to choose desirable
function.

S94P01B2 23

Interface

4.2.2 Digital Outputs
There are a total of five digital outputs (“OUT1” - “OUT4” and “RDY”) available on the
PositionServo 940 drive. These outputs are accessible from the P3 connector. Outputs
are open collector type that are fully isolated from the rest of the drive circuits. See the
following figure for the electrical diagram. These outputs can be either used via the
drives internal User Program or they can be configured as Special Purpose outputs.
When used as Special Purpose, each output (OUT1-OUT4) can be assigned to one of
the following functions:

•	 Not assigned
•	 Zero speed
•	 In-speed window
•	 Current limit
•	 Run-time fault
•	 Ready
•	 Brake (motor brake release)

Please note that if you assign an output as a Special Purpose Output then that output
can not be utilized by the User Program. The “RDY” Output has a fixed function,
“ENABLE”, which will become active when the drive is enabled and the output power
transistors becomes energized.

Digital outputs electrical characteristics
Circuit type Isolated Open Collector
Digital outputs load capability 15mA
Digital outputs Collector-Emitter max voltage 30V

OUT1-C

OUT1-E

OUT2-C

OUT2-E

43

44

45

46

S907

Digital outputs circuit

The outputs on the drive can be wired as either sinking (NPN) or sourcing (PNP) as
illustrated in wiring examples mb101 and mb102.

NPN Sinking

OUT 1-C

Gnd

+24V

49

44

45

46

OUT 1-E

OUT 2-C

OUT 2-E

PNP Sourcing

OUT 1-C

Gnd

+24V

49

44

45

46

OUT 1-E

OUT 2-C

OUT 2-E

mb101 mb102

S94P01B224

Interface

4.2.3 Digital Inputs
IN_Ax, IN_Bx, IN_Cx (P3.26-30, P3.31-35, P3.36-40)

The PositionServo 940 Drive has 12 optically isolated inputs. These inputs are
compatible with a 5 -24V voltage source. No additional series resistors are needed
for circuit operation. The 12 inputs are segmented into three groups of 4, Inputs A1
- A4, Inputs B1 - B4, and Inputs C1 - C4. Each group, (A, B and C) have their own
corresponding shared COM terminal, (ACOM, BCOM and CCOM). All inputs have
separate software adjustable de-bounce time. Some of the inputs can be set up as
Special Purpose Inputs. For example inputs A1 and A2 can be configured as limit inputs,
input A3 can be set up as an Enable input and input C3 can be used as a registration
input. Reference the 940 Programming Manual for more detail.

For the registration input (C3), the registration time is 3µs for an encoder and 7µs for
a resolver.

PNP Sourcing

Digital inputs circuit.

Gnd

+24V 27

IN_A1

26

28

IN_A2

IN_A_COM

2.2 k

2.2 k

mb103

NPN Sinking

Digital inputs circuit.

Gnd

+24V

27

IN_A1

26

28

IN_A2

IN_A_COM

2.2 k

2.2 k

mb104

Digital inputs circuit

S94P01B2 25

Interface

4.3 Analog I/O Details

4.3.1 Analog Reference Input
AIN+, AIN1- (P3.24 and P3.25)
The analog reference input can accept up to a ±10V analog signal across AIN1+ and
AIN2-. The maximum limit with respect to analog common (ACOM) on each input is
±18VDC. The analog signal will be converted to a digital value with 16 bit resolution (15
bit plus sign). This input is used to control speed or torque of the motor in velocity or
torque mode. The total reference voltage as seen by the drive is the voltage difference
between AIN1+ and AIN1-. If used in single-ended mode, one of the inputs must
be connected to a voltage source while the other one must be connected to Analog
Common (ACOM). If used in differential mode, the voltage source is connected across
AIN+ and AIN- and the driving circuit common (if any) needs to be connected to the
drive Analog Common (ACOM) terminal.

Reference as seen by drive: Vref = (AIN1+) - (AIN1-) and -10V < Vref < +10V

External Reference
(Di�erential Con�guration)

ACOM

Analog Command Output

Analog Command Return

ACOM

P3 24

P3 25

P3 22

AIN

AIN+

PostionServo
Drive

940 Servo Drive

+

Analog input +

Analog input

A
na

lo
g

In
pu

t

Motion
Controller

Single-ended Configuration

ACOM

AOut P3 20

P3 21

P3 22

AIN

A N+

PositionServo
Drive

ACOM

As the dancer arm goes up and down
a 0 10 vo t s gnal is transmitted

to the PositionServo Drive

+

Differential mb105 Single-Ended mb106

AIN2+, AIN2- (P3.20 and P3.21)

The analog reference input can accept up to a ±10V analog signal across AIN2+ and
AIN2-. The maximum limit with respect to analog common (ACOM) on each input is
±18VDC. The analog signal will be converted to a digital value with 10 bit resolution
(9 bit plus sign). This input is available to the User’s program. This input does not have
a predefined function. Scaling of this input is identical to AIN1.

4.3.2 Analog Output
AO (P3.23)
The analog output is a single-ended signal (with reference to Analog Common (ACOM)
which can represent the following Motor data:

•		Not	Assigned •		Phase	R	Current •		Iq	current
•		RMS	Phase	Current •		Phase	S	Current •		Id	current
•		Peak	Phase	Current •		Phase	T	Current •		Motor	Velocity

Motor phase U, V and W correspond to R, S and T respectively.

MotionView Setup program can be used to select the signal source for the analog
output as well as its scaling.

If the output function is set to “Not Assigned” then the output can be controlled directly
from user’s program. Refer to the 940 Programming Manual.

STOP!
Upon application of power to the PositionServo, the Analog Output supplies
-10VDC until bootup is complete. Once bootup is complete, the Analog Output will
supply the commanded voltage.

S94P01B226

Interface

4.4 Communication Interfaces

4.4.1 RS232 Interface (standard)
Programming and diagnostics of the 940 drive is done over the standard RS232
communication port. The baud rate for this port can be configured to one of 7 different
settings, ranging from 2400 to 115200. Drives are addressable with up to 32 addresses
from 0-31. Communication speed and address are set from the drive’s front panel
display.

4.4.2 RS485 Interface (option)
PositionServo 940 drives can be equipped with an RS485 communication interface
option module (E94ZARS41) which is optically isolated from the rest of the drive’s
circuitry. This option module can be used for two functions: drive programming and
diagnostics using MotionView from a PC (with RS485 port) or as a Modbus RTU slave.
The 940 family of drives support 7 different baud rates, ranging from 2400 to 115200.
Drives are addressable with up to 32 addresses from 0-31. The factory setting for
the baud rate is 38,400 with a node address of “1”. The drives address must be set
from the front panel display of the drive. When used with MotionView software, the
communication speed is also set from the front panel display. Please note that baud
rate and address are applied to both RS232 and RS485 interfaces in this case. If used
for Modbus RTU communications, the Modbus baud rate is set as a parameter within
MotionView.

PIN ASSIGNMENTS (RS485 interface)

Pin Name Function

1 ICOM Isolated Common

2 TXB Transmit B

3 TXA Transmit A

4.4.3 Using RS232 and RS485 Interfaces Simultaneously
When establishing communication between MotionView and a 940 drive, a
communication method must be selected. The connection choice can be either “UPP
over RS485/RS232” or “Ethernet”. The “UPP over RS485/RS232” selection establishes
a RS232 connection between MotionView and the first drive on the network. Multiple
drives can then be added to the network via RS485. Each drive on the network must
have a different Node Address. When setting up communications the node address of
the target drive must be set. MotionView will then send out a communications packet to
the first drive on the network, via the RS232 connection. If the node address set in this
packet doesn’t match the node address of the drive, the drive will resend the packet, via
RS485, to the next drive on the network. This process will continue until the target drive
is reached. The following message, “Device with address # not present in the network”
will appear If the target node could not be found.

S94P01B2 27

Interface

4.4.4 MODBUS RTU Support
As a default, the RS232 and RS485 interfaces are configured to support MotionView
program operations. In addition, the RS485 interface can be configured to support the
MODBUS RTU slave protocol. The interface can be configured through the MotionView
program. When configured for MODBUS operation, the baud rate for RS485 is set by the
parameter “Modbus baud rate” in MotionView, while the RS232 baud rate is set on the
drive’s front panel. Thus RS485 and RS232 can have different speeds at the same time
if RS485 is configured for MODBUS operation. Please note that if RS485 is configured
for MODBUS operation, the command repeat function (see 4.4.3) is unavailable even if
baud rates are set the same for both interfaces.

The Modbus RTU slave interface protocol definitions can be found in the MotionView
help menu under “Product Manuals”.

4.5 Motor Selection
The PostionServo 940 drive is compatible with many 3-phase AC synchronous servo
motors. MotionView is equipped with a motor database which contains over 600 motors
for use with the 940 drive. If the desired motor is in the database, no data to set it up
is needed. Just select the motor and click “OK”. However, if your motor is not in the
database, it can still be used, but some electrical and mechanical data will need to be
provided to create a custom motor profile. The auto-phasing feature of the 940 allows
the user to correctly determine the relationship between phase voltage and hall sensor
signals, eliminating the need to use a multi-channel oscilloscope.

4.5.1 Motor Connection
Motor phase U, V, W (or R, S, T) are connected to terminal P7. It is very important that
motor cable shield is connected to Earth ground terminal (PE) or the drive’s case.

The motor feedback cable must be connected to encoder terminal P4 if the motor is
equipped with an incremental encoder. If the motor is equipped with a resolver it needs
to be connected to terminal P11 on the resolver option module.

4.5.2 Motor Over-Temperature Protection
If using a motor equipped with an encoder and PTC thermal sensor, the encoder
feedback cable will have flying leads exiting the P4 connector to be wired to the P7.1
(T1) and P7.2 (T2) terminals. If using a motor equipped with a Resolver and a PTC
sensor, the connector on the Resolver Option Module (P11) provides this connection.

Use parameter “Motor PTC Cut-off Resistance” (section 5.3.12) to set the resistance
which corresponds to maximum motor allowed temperature. The parameter “Motor
temperature sensor” must also be set to ENABLE. If the motor doesn’t have a PTC
sensor, set this parameter to DISABLE. This input will also work with N.C. thermal
switches which have only two states; Open or Closed. In this case “Motor PTC Cut-off
Resistance” parameter can be set to the default value.

S94P01B228

Interface

4.5.3 Motor Set-up
Once you are connected to the PostionServo 940 via MotionView a “Parameter Tree”
will appear in the “Parameter Tree Window”. The various parameters of the drive are
shown here as folders and files. If the “Motor” folder is selected, all motor parameters
can be viewed in the “Parameter View Window”. To view selected motor parameters or
to select a new motor click the section marked “CLICK HERE TO CHANGE”.

 S911MotionView’s “Motor Group” folder and its contents

NOTE

If the drive is ENABLED, a new motor cannot be set. You can only set a
new motor when the drive is DISABLED.

To View selected motor parameters or to make a new motor selection:
•		Click	“Click	here	to	change	the	motor”	from	the	Parameter	View	Window	(see	figure	

above). If you are just viewing motor parameters click Cancel on Motor Parameters
dialog when done to dismiss the dialog box.

•		Select	motor	Vendor	from	the	right	list	box	and	desired	motor	from	the	left	list	box.

•		If	you	will	be	using	a	“custom”	motor	(not	listed	in	our	motor	database)	go	to	”Using	a	
custom motor” topic in the next section.

•		Finally,	click	the	OK	button	to	dismiss	the	dialog	and	return	to	MotionView’s	main	program.

S94P01B2 29

Interface

4.6 Using a Custom Motor
You can load a custom motor from a file or you can create a new custom motor.

•		To	create	a	custom	motor	click	“CREATE	CUSTOM”	and	follow	the	instructions	in	the	
next section “Creating custom motor parameters”.

•	 	To	 load	a	 custom	motor	 click	 “OPEN	CUSTOM”	button	 then	select	 the	motor	 file	
and click the “OPEN“ button to select or click the “CANCEL“ button to return to the
previous dialog box.

•		Click	OK	to	load	the	motor	data	and	return	to	the	main	MotionView	menu	or	Cancel	
to abandon changes. When clicking OK for a custom motor, a dialog box will appear
asking if you want to execute “Autophasing” (section 4.6.2).

4.6.1 Creating Custom Motor Parameters

STOP!

Use extreme caution when entering custom parameters! Incorrect
settings may cause damage to the drive or motor! If you are unsure of
the settings, refer to the materials that were distributed with your motor,
or contact the motor manufacturer for assistance.

1. Enter custom motor data in the Motor Parameters dialog fields. Complete all
sections of dialog: Electrical, Mechanical, Feedback. Refer to Section 4.6.3
for explanation of motor parameters and how to enter them.

NOTE

If unsure of the motor halls order and encoder channels A and B
relationship, leave “B leads A for CW”, “Halls order” and “inverted” fields
as they are. You can execute autophasing (section 4.6.2) to set them
correctly.

2. Enter motor model and vendor in the top edit boxes. Motor ID cannot be
entered, this is set to 0 for custom motors.

3. Click “Save File” button and enter filename without extension. Default
extension .cmt will be given when you click OK on file dialog box.

NOTE

Saving the file is necessary even if the autophasing feature will be used
and some of the final parameters are not known. After autophasing is
completed the corrected motor file can be updated before loading it to
memory.

4. Click OK to exit from the Motor Parameters dialog.
5. MotionView will ask if you want to autophase your custom motor. If you

answer “No”, the motor data will be loaded immediately to the drive’s
memory. If you answer “Yes”, the motor dialog will be dismissed and
the drive will start the autophasing sequence. Refer to section 4.6.2 for
autophasing information.

6. If you answered “Yes” for autophasing, you will be returned to the same
motor selection dialog box after autophasing is complete. For motors with
incremental encoders, the fields “B leads A for CW”, “Halls order” and
“inverted” will be assigned correct values. For motors with resolvers, the
fields “Offset in degree” and “CW for positive” will be assigned correct values.

7. Click “Save File” to save the custom motor file and then click “OK” to exit the
dialog box and load the data to the drive.

S94P01B230

Interface

4.6.2 Autophasing
The Autophasing feature determines important motor parameters when using a motor
that is not in MotionView’s database. For motors equipped with incremental encoders,
Autophasing will determine the Hall order sequence, Hall sensor polarity and encoder
channel relationship (B leads A or A leads B for CW rotation). For motors equipped
with resolvers, Autophasing will determine resolver angle offset and angle increment
direction (“CW for positive”).

To perform autophasing:
1. Complete the steps in the previous section “Setting custom motor

parameters”. If the motor file you are trying to autophase already exists,
simply load it as described under “Using a custom motor” at the beginning of
this section.

2. Make sure that the motor’s shaft is not connected to any mechanical load
and can freely rotate.

STOP!
Autophasing will energize the motor and will rotate the shaft.
Make sure that the motor’s shaft is not connected to any mechanical
load and can freely and safely rotate.

3. Make sure that the drive is not enabled.
4. It is not necessary to edit the field “Hall order” and check boxes “inverted”

and “B leads A for CW” as these values are ignored for autophasing.
5. Click OK to dismiss motor selection dialog. MotionView responds with the

question “Do you want to perform autophasing?”
6. Click OK. A safety reminder dialog appears. Verify that it is safe to run the

motor then click “Proceed” and wait until autophasing is completed.

NOTE
If there was a problem with the motor connection, hall sensor connection
or resolver connection, MotionView will respond with an error message.
Common problems include power, shield and ground terminations or
use of an improper cable. Correct the wiring problem(s) and repeat
steps 1 - 6.

If the error message repeats, exchange motor phases U and V (R and
S) and repeat. If problems persist, contact the factory.

7. If autophasing is completed with no error then MotionView will return to the
motor dialog box. For motors with incremental encoders, the parameter field
“Hall order” and the check boxes “inverted”, “B leads A for CW” will be filled
in with correct values. For resolver equipped motors, fields “Offset ” and “CW
for positive” will be correctly set.

8. Click “Save File” to save the completed motor file (you can use the same
filename as you use to save initial data in step 1) and click OK to load the
motor data to the drive.

4.6.3 Custom Motor Data Entry
A Custom Motor file is created by entering motor data into the “Motor Parameters”
dialog box. This box is divided up into the following three sections, or frames:
 Electrical constants
 Mechanical constants
 Feedback

When creating a custom motor you must supply all parameters listed in these sections.
All entries are mandatory except the motor inertia (Jm) parameter. A value of 0 may be
entered for the motor inertia if the actual value is unknown.

S94P01B2 31

Interface

4.6.3.1 Electrical Constants
Motor Torque Constant (Kt)

Enter the value and select proper units from the drop-down list.

NOTE

Round the calculated result to 3 significant places.

Motor Voltage Constant (Ke)

The program expects Ke to be entered as a phase-to-phase Peak voltage. If you have
Ke as an RMS value, multiply this value by 1.414 for the correct Ke Peak value.

Phase-to-phase winding Resistance (R) in Ohms (Ω)

This is also listed as the terminal resistance (Rt). The phase-to-phase winding
Resistance (R) will typically be between 0.05 and 200 Ohms.

Phase-to-phase winding Inductance (L)

This must be set in millihenries (mH). The phase-to-phase winding Inductance (L) will
typically be between 0.1 and 200.0 mH.

NOTE

If the units for the phase-to-phase winding Inductance (L) are given in
micro-henries (µH), then divide by 1000 to get mH.

Nominal phase current (RMS Amps)

Nominal continuous phase current rating (In) in Amps RMS. Do not use the peak current
rating.

NOTE

Sometimes the phase current rating will not be given. The equation
below may be used to obtain the nominal continuous phase-to-phase
winding current from other variables.

In= Continuous Stall Torque / Motor Torque Constant (Kt)

The same force x distance units must be used in the numerator and denominator in the
equation above. If torque (T) is expressed in units of pound-inches (lb-in) then, Kt must
be expressed in pound-inches per Amp (lb-in/A). Likewise, if T is expressed in units of
Newton-meters (N-m), then units for Kt must be expressed in Newton-meters per Amp
(N-m/A).

Example:
Suppose that the nominal continuous phase to phase winding current (In) is not given.
Instead, we look up and obtain the following:
 Continuous stall torque T = 3.0 lb-in
 Motor torque constant Kt = 0.69 lb-in/A
 Dividing, we obtain:

In = 3.0 lb-in / 0.69 lb-in/A =4.35 (A)

Our entry for (In) would be 4.35.

Note that the torque (lb-in) units cancelled in the equation above leaving only Amps (A).
We would have to use another conversion factor if the numerator and denominator had
different force x distance units.

S94P01B232

Interface
Nominal Bus Voltage (Vbus)

The Nominal Bus Voltage can be calculated by multiplying the Nominal AC mains
voltage supplied by 1.41. When using a model with the suffix “S1N” where the mains
are wired to the “Doubler” connection, the Nominal Bus Voltage will be doubled.

Example:
If the mains voltage is 230VAC, Vbus = 230 x 1.41 = 325V

This value is the initial voltage for the drive and the correct voltage will be calculated
dynamically depending on the drive’s incoming voltage value.

Rotor Moment of Inertia (Jm)

From motor manufacturer or nameplate.

NOTE

Round the calculated result to 3 significant places.

Maximum Motor Speed in RPM

This is also listed as “Speed @ Vt” (motor speed at the terminal voltage rating). The
maximum motor speed will typically be a round even value between 1000 and 6000
RPM.

Number of Poles

This is a positive integer number that represents the number of motor poles, normally
2, 4, 6 or 8.

4.6.3.2 For Motors Equipped with Incremental Encoders Only
Encoder Line Count

The Encoders for servomotors normally have Line Counts of 1000, 1024, 2000, 2048,
4000, or 4096. The Encoder Line Count must be a positive integer and must be pre-
quadrature.

Index pulse offset. Enter 0 (zero)

Index marker pulse position. This field is reserved for backward compatibility. All
PositionServo drives determine actual marker pulse position automatically.

S94P01B2 33

Interface
Halls Order

Each hall signal is in phase with one of the three phase-phase voltages from the motor
windings. Hall order number defines which hall sensor matches which phase-phase
voltage. Motor phases are usually called R-S-T or U-V-W or A-B-C. Phase-Phase
voltages are called Vrs, Vst, Vtr. Halls are usually called HALL-A, HALL-B, HALL-C or
just Halls 1, 2, 3. A motor’s phase diagram is supplied by motor vendor and usually can
be found in the motor data sheet or by making a request to the motor manufacturer. A
sample phase diagram is shown below.

S912

The Halls Order is obtained as follows:

1. By looking at the “Vrs” Output Voltage, determine which Hall Voltage is lined
up with (or in phase with) this voltage. We can determine which Hall Voltage
is in phase with the Vrs Output Voltage by drawing vertical lines at those
points where it crosses the horizontal line (zero). The dashed lines at the
zero crossings (above) indicate that Hall B output is lined up with (and in
phase with) the Vrs Output Voltage.

2. Look at the “Vst” Output Voltage. Determine which Hall Voltage is in phase
with this Voltage. As can be seen, Hall C output is in phase with the Vst
Output Voltage.

3. Look at the “Vtr” Output Voltage. Determine which Hall Voltage is in phase
with this Voltage. As can be seen, Hall A output is in phase with the Vtr
Output Voltage.

NOTE

If hall sensors are in phase with the corresponding phase voltage
but are inverted 180 degrees (hall sensor waveform edge aligns with
the phase-phase voltage waveform but the positive hall sensor cycle
matches the negative phase-phase waveform or visa-versa), you must
check the “Inverted” check box.

S94P01B234

Interface
4. The phases that correspond to the Vrs Vst Vtr voltages are Hall B then Hall C

then Hall A or Halls number 2 then 3 then 1. Referring to the following table,
we find that 2-3-1 sequence is Halls Order number 3. We would enter 3 for
the Halls Order field in motor dialog.

HALL ORDER NUMBERS FOR DIFFERENT HALL SEQUENCES

Halls Order Hall Sequence

0 1-2-3

1 1-3-2

2 2-1-3

3 2-3-1

4 3-1-2

5 3-2-1

NOTE

Each Hall Voltage will be in phase with one and only one Output Voltage.

B leads A for CW
This is the encoder phase relationship for CW/CCW shaft rotation. When you obtain the
diagram for your motor phasing similar to shown above, it’s assumed by the software
that the motor shaft rotates CW when looking at the mounting face of the motor. For
that rotation Encoder phase A must lead phase B. If it does leave check box unchecked.
Otherwise (if B leads A) check B leads A for CW box.

NOTE

Lenze convention references the shaft direction of rotation from the
front (shaft end) of the motor. Some manufacturers’ timing diagrams
are CW when viewed from the “rear” of the motor.

4.6.3.3 For Resolver Equipped Motors Only
If parameter “Resolver” is checked, following parameters appear on the form:

Offset in degree (electrical)
This parameter represents offset between resolver’s “0 degree” and motor’s windings
“0 degree”.

CW for positive
This parameter sets the direction for positive angle increment.

“Offset in degree” and “CW for positive” will be set during Auto-Phasing of the motor.

S94P01B2 35

Parameters

5 Parameters
PositionServo 940 series drives are configured through one of the interfaces: RS232,
RS485 or Ethernet. The drives have many programmable and configurable features
and parameters. These features and parameters are accessible via a universal software
called MotionView. Please refer to the MotionView Manual for details on how to make a
connection to the drive and change parameter values.

This chapter covers programmable features and parameters specific to the
PositionServo Model 940 drive in the order they appear in the Parameter Tree of
MotionView. Programmable parameters are divided into groups. Each group holds one
or more user’s adjustable parameters.

All 940 series drives can execute a User Program in parallel with motion. Motion can be
specified by variety of sources and in three different modes:

Torque Velocity Position

In Torque and Velocity mode Reference can be taken from Analog Input AIN1 or from
the User Program by setting a particular variable (digital reference). See Programmer’s
Manual for details on programming. In Position mode, the reference could be taken
from MA/MB master encoder/step and directions inputs (available in terminal P3) or
from trajectory generator. Access to the trajectory generator is provided through the
User Program’s motion statements, MOVEx and MDV. Refer to the PositionServo
Programmer’s Manual for details on programming.

Whether the reference comes from an external device, (AIN1 or MA/MB) or from the
drives internal variables (digital reference and trajectory generator) will depend on the
parameter settings. Refer to “Parameters” group in MotionView.

5.1 Parameter Storage and EPM Operation
5.1.1 Parameter Storage
All settable parameters are stored in the drive’s internal non-volatile memory. Parameters
are saved automatically when they are changed and are copied to the EPM memory
module located on the drive’s front panel. In the unlikely event of drive failure, the EPM
can be removed and inserted into the replacement drive, thus making an exact copy
of the drive being replaced. This shortens down time by eliminating the configuration
procedure. The EPM can also be used for replication of the drive’s settings.

5.1.2 EPM Operation
When the drive is powered up it first checks for a white EPM in the EPM Port. If the EPM
Port is empty, no further operation is possible until a white EPM is installed into the EPM
Port. The drive will display “EP-” until an EPM is inserted. Do not insert or remove the
EPM module while the drive is powered.

If a different color EPM is inserted the drive may appear to function however, some
operations will not be correct and the drive may hang. The white EPM is the only
acceptable EPM for the PositionServo 940 drive. If a white EPM is detected, the drive
compares data in the EPM to that in its internal memory. In order for the drive to operate,
the contents of the drive’s memory and EPM must be the same. Press the enter button
to load the EPM, this will take a moment. The drive will display ‘BUSY” during this time
and will return to normal display when update is complete.

STOP!
If the EPM contains any data from an inverter drive, that data will be overwritten
during this procedure.

S94P01B236

Parameters

5.1.3 EPM Fault
If the EPM fails during operation or the EPM is removed from the EPM Port the drive
will generate a fault and will be disabled (if enabled). The fault is logged to the drives
memory. Further operation is not possible until the EPM is replaced (inserted) and the
drive’s power is cycled. The fault log on the display shows “F_EP” fault.

5.2 Motor Group
The motor group shows the data for the currently selected motor. Refer to Section 4.5
for details on how to select another motor from the motor database or to configure a
custom motor.

5.3 Parameters
5.3.1 Drive Operating Modes
The PositionServo has 3 operating mode selections: Torque, Velocity and Position.

For Torque and Velocity modes the drive will accept an analog input voltage on the
AIN+ and AIN- pins of P3 (refer to section 4.3.1). This voltage is used to provide a
torque or speed reference.

For Position mode the drive will accept step and direction logic signals or a quadrature
pulse train on pins P3.11-14.

5.3.1.1 Velocity Mode
In velocity mode, the servo controller regulates motor shaft speed (velocity) proportional
to the analog input voltage at input AIN1, if parameter “Reference” is set to “External”.
Otherwise the reference is taken from the drive’s internal variable, IREF. (Refer to
Programmer’s manual for details).

For analog reference, Target speed (set speed) is calculated using the following formula:

Set Velocity (RPM) = Vinput (Volt) x Vscale (RPM/Volt)

where:
•		Vinput	is	the	voltage	at	analog	input	(AIN+	and	AIN-)
•		Vscale	is	the	velocity	scale	factor	(input	sensitivity)	set	by	the	Analog	input
 (Velocity scale) parameter (section 5.3.6).

Set Velocity (RPM) = Vinput (Volt) x Vscale (RPM/Volt)

5.3.1.2 Torque Mode
In torque mode, the servo control provides a current output proportional to the analog
input signal at input AIN1, if parameter “Reference” is set to “External”. Otherwise the
reference is taken from the drive’s internal variable, IREF. (Refer to Programmer’s
manual).

For analog reference “Set Current”, (current the drive will try to provide), is calculated
using the following formula:

Set Current(A) = Vinput(Volt) X Iscale (A/Volt)

where:
•	Vinput	is	the	voltage	at	analog	input
•	Vscale	is	the	current	scale	factor	(input	sensitivity)	set	by	the	Analog	input	
 (Current Scale) parameter (section 5.5.2).

S94P01B2 37

Parameters

5.3.1.3 Position Mode
In this mode the drive reference is a pulse-train applied to P3.1-4 terminals, if the
parameter “Reference” is set to “External”. Otherwise the reference is taken from the
drive’s internal variables. (Refer to Programmer’s manual for details).

P3.1-4 inputs can be configured for two types of signals: step and direction and Master
encoder quadrature signal. Refer to section 4.2.1 for details on these inputs connections.
Refer to section 8.3 for details about positioning and gearing.

When the Reference is set to Internal, the drives reference position, (theoretical or
Target position), is generated by trajectory generator. Access to the trajectory generator
is provided by motion statements, MOVEx and MDV, in the User Program.

5.3.2 Drive PWM Frequency
This parameter sets the PWM carrier frequency. Frequency can be changed only when
the drive is disabled. Maximum overload current is 300% of the drive rated current when
the carrier is set to 8kHz, it is limited to 250% at 16kHz.

5.3.3 Current Limit
The CURRENT LIMIT setting determines the nominal current, in amps RMS per phase.

5.3.4 Peak Current Limit (8kHz and 16 kHz)
Peak current sets the motor RMS phase current that is allowed for up to 2 seconds.
After this two second limit, the current limit will be reduced to the value set in the Current
Limit parameter. When the motor current drops below nominal current for two seconds,
the drive will automatically re-enable the peak current level. This technique allows for
high peak torque on demanding fast moves and fast start/stop operations with high
regulation bandwidth. The control will use only the Peak current limit parameter for the
carrier frequency selected.

5.3.5 Analog Input Scale (Current)
This parameter sets the analog input sensitivity for current reference used when the
drive operates in Torque mode. Units for this parameter are A/Volt. To calculate this
value use the following formula:

Iscale = Imax / Vin max
 Imax maximum desired output current (motor phase current RMS)
 Vin max max voltage fed to analog input at Imax

Example: Imax = 5A (phase RMS)
 Vin max = 10V
 Iscale = Imax / Vin max = 5A / 10V = 0.5 A / Volt (value to enter)

5.3.6 Analog Input Scale (Velocity)
This parameter sets the analog input sensitivity for the velocity reference used when the
drive operates in Velocity mode. Units for this parameter are RPM/Volt. To calculate this
value use the following formula:

Vscale = VELOCITYmax / Vin max
 VELOCITYmax maximum desired velocity in RPM
 Vin max max voltage fed to analog input at Velocitymax
Example: VELOCITYmax = 2000 RPM
 Vin max = 10V
 Vscale = VELOCITYmax / Vin max
 = 2000 / 10V
 = 200 RPM / Volt (value to enter)

S94P01B238

Parameters

5.3.7 ACCEL/DECEL Limits (Velocity Mode Only)
The ACCEL setting determines the time the motor takes to ramp to a higher speed.
The DECEL setting determines the time the motor takes to ramp to a lower speed. If
the ENABLE ACCEL\DECEL LIMITS is set to DISABLE, the drive will automatically
accelerate and decelerate at maximum acceleration limited only by the current limit
established by the PEAK CURRENT LIMIT and CURRENT LIMIT settings.

5.3.8 Reference
The REFERENCE setting selects the reference signal being used by the drive. This
reference signal can be either External or Internal. An External Reference can be one
of three types, a Analog Input signal, a Step and Direction Input or a Input from a
external Master Encoder. The Analog Input reference is used when the drive is either
in Torque or Velocity mode. The Master Encoder and Step and Direction reference
is used when the drive is in Position Mode. An Internal Reference is used when the
motion being generated is derived from drive’s internal variable(s), or User Program,
(See programmer’s manual).

5.3.9 Step Input Type (Position Mode Only)
This parameter sets the type of input for position reference the drive expects to see.
Signal type can be step and direction (S/D) type or quadrature pulse-train (Master
Encoder / Electronic Gearing). Refer to section 4.2.1 for details on these inputs.

5.3.10 Fault Reset Option
The FAULT RESET OPTION selects the type of action required to reset the drive after
a FAULT signal has been generated by the drive. ON DISABLE clears the fault when
the drive is disabled. This is useful if you have a single drive and motor connected
in a single drive system. The ON ENABLE option clears the fault when the drive is
re-enabled. Choose ON ENABLE if you have a complex servo system with multiple
drives connected to an external controller. This makes troubleshooting easier since the
fault will not be reset until the drive is re-enabled. Thus, a technician can more easily
determine which component of a complex servo system has caused the fault.

5.3.11 Motor Temperature Sensor
This parameter enables / disables motor over-temperature detection. It must be
disabled if the motor PTC sensor is not wired to either P7.1-2 or to the resolver option
module (P11).

5.3.12 Motor PTC Cut-off Resistance
This parameter sets the cut-off resistance of the PTC which defines when the motor
reaches the maximum allowable temperature. Refer to section 4.5.2 for details how to
connect motor’s PTC.

5.3.13 Second Encoder
Disables or enables second encoder. Effectively selects single-loop or double-loop
configuration in position mode. The second encoder connects to the Encoder Option
Module (E94ZAENC1) connector P12, Refer to section 6.4 for details on dual loop
operation.

S94P01B2 39

Parameters

5.3.14 Regen Duty Cycle
This parameter sets the maximum duty cycle for the brake (regen) resistor. This
parameter can be used to prevent brake resistor overload. Use the following formula to
set the correct value for this parameter.

 D = P * R / (Umax)2 * 100%
where:
D (%) regen duty cycle
Umax (V) bus voltage at regen conditions.
 Umax=390V for 230VAC drives and 770V for 400/480VAC drives
R (ohm) regen resistor value
P (W) regen resistor rated power

If calculation of D is greater than 100% set it to 100% value. If calculation of D is
less than 10% then resistor power rating is too low. For more information refer to the
PositionServo Dynamic Braking Manual (G94BR01).

Minimum Required Dynamic Braking Resistance

Drive Model DB Resistor
Minimum Resistance (Ω)

E94_080S2F, E94_080Y2N,
E94_100S2F, E94_100Y2N

20

E94_120Y2N 30

E94_020S1N, E94_020S2F, E94_020Y2N,
E94_040S1N, E94_040S2F

40

E94_040T4N, E94_050T4N, E94_060T4N 75

E94_020T4N 150

5.3.15 Encoder Repeat Source
This parameter sets the feedback source signal for the buffered encoder repeat outputs
(P3.1-6). The source can be the drive’s encoder input (P4) or an optional feedback
module (resolver, second encoder etc.)

5.3.16 System to Master Ratio
This parameter is used to set the scale between the reference pulse train (when operating
in position mode) and the system feedback device. In a single loop configuration, the
system feedback device is the motor encoder or resolver. In a dual-loop system the
system encoder is the second encoder. Refer to sections 6.3 and 6.4 for details.

5.3.17 Second to Prime Encoder Ratio
This parameter sets the ratio between the secondary encoder and the primary feedback
device when the drive is configured to operate in dual-loop mode. When the primary
feedback device is a resolver, the pulse count is fixed at 65,536. The resolutions of
encoders are “post quadrature” (PPR x 4). Refer to section 6.4.

NOTE
Post quadrature pulse count is 4X the pulses-per-revolution (PPR) of the encoder.

5.3.18 Autoboot
When set to “Enabled” the drive will start to execute the user’s program immediately
after cold boot (reset). Otherwise the user program has to be started from MotionView
or from the Host interface.

S94P01B240

Parameters

5.3.19 Group ID
Refer to the Programmer’s manual for details. This parameter is only needed for
operations over an Ethernet network.

5.3.20 Enable Switch Function
If set to “Run”, input IN_A3 (P3.29) acts as an “Enable” input when the user program
is not executing. If the user program is executing, the function will always be “Inhibit”
regardless of the setting. This parameter is needed so the drive can be Enabled/
Disabled without running a user’s program.

5.3.21 User Units
This parameter sets up the relationship between User Units and motor revolutions.
From here you can determine how many User Units there is in one motor revolution.
This parameter allows the user to scale motion moves to represent a desired unit of
measure, (inches, meters, in/sec, meters/sec, etc).

For example:
A linear actuator allows a displacement of 2.5” with every revolution of the motor’s shaft.

Units = Units / Revolutions
Units = 2.5 Inches / Revolution
Units = 2.5

5.4 Communication
5.4.1 IP Setup
This action button opens dialog for TCP/IP related parameters setup.

5.4.2 RS-485 Configuration
This parameter sets how the optional RS485 interface will function. The RS485
interface can be configured for normal operation (programming and diagnostics using
MotionView software) or as a Modbus RTU slave. See section 4.4 for comm interfaces.

5.4.3 Modbus Baud Rate
This parameter sets the baud rate for RS485 interface in Modbus RTU mode. When
the drive is operating in normal mode the baud rate is set to the same setting as the
RS232 interface.

5.4.4 Modbus Reply Delay
This parameter sets the time delay between the drives reply to the Modbus RTU master.
This delay is needed for some types of Modbus masters to function correctly.

5.5 Analog I/O
5.5.1 Analog Output
The PositionServo 940 has one analog output with 10-bit resolution on P3.23. The
signal is scaled to ± 10V. The analog output can be assigned to following functions:

•	 Not Assigned •	 Phase R current •	 Iq current (Torque component)

•	 Phase current RMS •	 Phase S current •	 Id current (Direct component)

•	 Phase current Peak •	 Phase T current

•	 Motor Velocity

S94P01B2 41

Parameters

5.5.2 Analog Output Current Scale (Volt / amps)
Applies scaling to all functions representing CURRENT values.

5.5.3 Analog Output Velocity Scale (mV/RPM)
Applies scaling to all functions representing VELOCITY values. (Note: that mV/RPM
scaling units are numerically equivalent to volts/kRPM).

5.5.4 Analog Input Dead Band
Allows the setting of a voltage window (in mV) at the reference input AIN1+ and
AIN1- (P3.24 and 25) such that any voltage within that window will be treated as zero
volts. This is useful if the analog input voltage drifts resulting in motor rotation when
commanded to zero.

5.5.5 Analog Input Offset Parameter
Allows you to adjust the offset voltage at AIN1+ and AIN1- (P3.24 and P3.25). This
function is equivalent to the balance trim potentiometer found in analog drives. Lenze
recommends that this adjustment be made automatically using the “Adjust analog
voltage offset” button while the external analog reference signal commands zero speed.

5.5.6 Adjust Analog Voltage Offset
This control button is useful to allow the drive to automatically adjust the analog input
voltage offset. To use it, command the external reference source input at AIN1+ and
AIN1- (P3.24 and 25) to zero volts and then click this button. Any offset voltage at the
analog input will be adjusted out and the adjustment value will be stored in the “Analog
input offset” parameter.

5.6 Digital I/O
The 940 has four digital outputs. These outputs can be either assigned to one of the
following functions, or be used by the drives internal User Program

•	 Not Assigned No special function assigned. Output can be used by the
User Program.

•	 Zero Speed Output activated when drive is at zero speed, refer to
“Velocity Limits Group” (Section 5.7) for settings.

•	 In Speed Window Output activated when drive is in set speed window, refer to
“Velocity Limits Group” (Section 5.7) for settings.

•	 Current Limit Output activated when drive detects current limit.
•	 Run Time Fault A fault has occurred. Refer to Section 8.3 for fault details.
•	 Ready Drive is enabled.
•	 Brake Command for the holding brake option (E94ZAHBK2) for

control of a motor mounted brake. This output is active 10ms
after the drive is enabled and deactivates 10ms before the
drive is disabled.

•	 In position Position mode only. Refer to Programming Manual for details

5.6.1 Digital Input De-bounce Time
Sets de-bounce time for the digital inputs to compensate for bouncing of the switch or
relay contacts. This is the time during an input transition that the signal must be stable
before it is recognized by the drive.

S94P01B242

Parameters

5.6.2 Hard Limit Switch Action
Digital inputs IN_A1-IN_A2 can be used as limit switches if their function is set to “Fault”
or “Stop and Fault”. Activation of this input while the drive is enabled will cause the
drive to Disable and go to a Fault state. The “Stop and Fault” action is available only in
Position mode when the “Reference” parameter is set to “Internal” i.e. when the source
for the motion is the Trajectory generator. IN_A1 is used as the negative limit switch.
IN_A2 is used as the positive limit switch. Both are treated as normally open.

5.7 Velocity Limits
These parameters are active in Velocity Mode Only.

5.7.1 Zero Speed
Specifies the upper threshold for motor zero speed in RPM. When the motor shaft
speed is at or below the specified value the zero speed condition is set to true in the
internal controller logic. The zero speed condition can also trigger a programmable
digital output, if selected.

5.7.2 Speed Window
Specifies the speed window width used with the “In speed window” output.

5.7.3 At Speed
Specifies the speed window center used with the “In speed window” output.

These last two parameters specify speed limits. If motor shaft speed is within these
limits then the condition AT SPEED is set to TRUE in the internal controller logic. The
AT SPEED condition can also trigger a programmable digital output, if selected. For
example if “AT SPEED” is set for 1000 RPM, and the “SPEED WINDOW” is set for 100,
then “AT SPEED” will be true when the motor velocity is between 950 -1050 RPM.

5.8 Position Limits

5.8.1 Position Error
Specifies the maximum allowable position error in the primary (motor mounted)
feedback device before enabling the “Max error time” clock (described next). When
using an encoder, the position error is in post-quadrature encoder counts. When using
a resolver, position error is measured at a fixed resolution of 65,536 counts per motor
revolution.

5.8.2 Max Error Time
Specifies maximum allowable time (in mS) during which a position error can exceed
the value set for the “Position error” parameter before a Position Error Excess fault is
generated.

5.8.3 Second Encoder Position Error
Specifies the maximum allowable error of the second encoder in post quadrature
encoder counts before enabling the “Second encoder max error time” clock.

5.8.4 Second Encoder Max Error Time
Specifies maximum allowable time (in mS) during which the second encoder’s position
error can exceed the value set for the “Second encoder position error” parameter before
a Position Error Excess fault is generated.

S94P01B2 43

Parameters

5.9 Compensation

5.9.1 Velocity P-gain (Proportional)
Proportional gain adjusts the system’s overall response to a velocity error. The velocity
error is the difference between the commanded velocity of a motor shaft and the actual
shaft velocity as measured by the primary feedback device. By adjusting the proportional
gain, the bandwidth of the drive is more closely matched to the bandwidth of the control
signal, ensuring more precise response of the servo loop to the input signal.

5.9.2 Velocity I-gain (Integral)
The output of the velocity integral gain compensator is proportional to the accumulative
error over cycle time, with I-gain controlling how fast the error accumulates. Integral
gain also increases the overall loop gain at the lower frequencies, minimizing total error.
Thus, its greatest effect is on a system running at low speed, or in a steady state without
rapid or frequent changes in velocity.

NOTE

The following four position gain settings are only active if the drive is
operating in Position mode. They have no effect in Velocity or Torque
modes.

5.9.3 Position P-gain (Proportional)
Position P-gain adjusts the system’s overall response to position error. Position error is
the difference between the commanded position of the motor shaft and the actual shaft
position. By adjusting the proportional gain, the bandwidth of the drive is more closely
matched to the bandwidth of the control signal, ensuring more precise response of the
servo loop to the input signal.

5.9.4 Position I-gain (Integral)
The output of the Position I-gain compensator is proportional to accumulative error over
cycle time, with I-gain controlling how fast the error accumulates. Integral gain also
increases overall loop gain at the lower frequencies, minimizing total error. Thus, its
greatest effect is on a system running at low speed, or in a steady state without rapid or
frequent changes in position.

5.9.5 Position D-gain (Differential)
The output of the Position D-gain compensator is proportional to the difference between
the current position error and the position error measured in the previous servo cycle.
D-gain decreases the bandwidth and increases the overall system stability. It is
responsible for removing oscillations caused by load inertia and acts similar to a shock-
absorber in a car.

5.9.6 Position I-limit
The Position I-limit will clamp the Position I-gain compensator to prevent excessive
torque overshooting caused by an over accumulation of the I-gain. It is defined in terms
of percent of maximum drive velocity. This is especially helpful when position error is
integrated over a long period of time.

S94P01B244

Parameters

5.9.7 Gain Scaling Window
Sets the total velocity loop gain multiplier (2n) where n is the velocity regulation window.
If, during motor tuning, the velocity gains become too small or too large, this parameter
is used to adjust loop sensitivity. If the velocity gains are too small, decrease the total
loop gain value, by deceasing this parameter. If gains are at their maximum setting and
you need to increase them even more, use a larger value for this parameter.

5.10 Tools

5.10.1 Oscilloscope Tool
The oscilloscope tool gives real time representation of different signals inside the
PositionServo 940 drive and is helpful when debugging and tuning drives. Operation
of the oscilloscope tool is described in more detail in the MotionView Software User’s
Manual. The following are the signals that can be observed with the oscilloscope tool:

Phase Current (RMS): Motor phase current

Phase Current (Peak): Motor peak current

Iq Current: Measures the motor Iq (torque producing) current

Motor Velocity: Actual motor speed in RPM

Commanded Velocity: Desired motor speed in RPM (velocity mode only)

Velocity Error: Difference in RPM between actual and commanded motor speed

Position Error: Difference between actual and commanded position (Step & Direction mode only)

Bus Voltage: DC bus voltage

Analog Input: Voltage at drive’s analog input

Absolute Position: Absolute (actual) position

Absolute Position Pulses: Absolute position expressed in pulses of the primary feedback device

Secondary Abs Position: Absolute (actual) position of secondary feedback device

Secondary Position Error: Difference between actual and commanded position of secondary feedback device

Target Position: Requested position

Target Position Pulses: Requested position expressed in pulses of the primary feedback device

Position Increment: Commanded position increment

5.10.2 Run Panels

Check Phasing
This button activates the Autophasing feature as described in section 4.6.2. However, in
this panel only the motor phasing is checked, the motor data is not modified.

5.11 Faults Group
Faults Group loads the fault history from the drive. The 8 most recent faults are displayed
with the newer faults replacing the older faults in a first-in, first-out manner. In all cases
fault # 0 is the most recent fault. To clear the faults history from the drive’s memory click
on the “Reset Fault history” button. Each fault has its code and explanation of the fault.
Refer to section 8.3 for details on faults.

S94P01B2 45

Operation

6 Operation
This section offers guidance on configuring the PositionServo drive for operations in
torque, velocity or position modes without requiring a user program. To use advanced
programming features of PositionServo please perform all steps below and then refer to
the Programmer’s Manual for details on how to write motion programs.

6.1 Minimum Connections
For the most basic operation, connect the PositionServo to mains (line) power at
terminal P1, the servomotor power at P7 and the motor feedback as appropriate.

DANGER!

Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or with
circuit elements to prevent the risk of serious injury or fatality. Disconnect
incoming power and wait at least 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

Below is a list of the minimum necessary connections:

•	 Connect a serial cable between PositionServo’s P2 and your PC serial port
using a straight-through 9 pin RS232 cable (available as EWLC003BA1NA).

•	 Connect mains power to terminal P1. Mains power must be as defined on the
drive’s data label (section 2.1).

•	 If the motor is equipped with an encoder, connect the encoder cable to the
PositionServo feedback connector P4.
If the motor is equipped with a resolver, install the “Resolver option module”
(E94ZARSV1) in the lower option bay and connect the resolver cable to P11.

•	 Connect motor windings U, V, W (sometimes called R, S, T) to terminal P7
according to Section 4.1.1. Make sure that motor cable shield is connected as
described in section 3.2.

•	 Provide an Enable switch (IN_A3) according to Section 6.5.
•	 Perform drive configuration as described in the next section.

NOTE

You must configure the drive before it can be operated.
Proceed to Section 6.2.

6.2 Configuration of the PositionServo
Regardless of the mode in which you wish to operate, you must first configure the
PositionServo 940 for your particular motor, mode of operation, and additional features
if used.

Drive configuration consists of following steps:

•	 Motor Selection
•	 Mode of operation selection
•	 Reference source selection (Very Important)
•	 Drive parameters (i.e. current limit, acceleration / deceleration) setup
•	 Operational limits (velocity or position limits) setup
•	 Input / Output (I/O) setup
•	 Velocity / position compensator (gains) setup
•	 Optionally store drive settings in a PC file and exit the MotionView program.

S94P01B246

Operation
To configure drive:

1. Ensure that the control is properly installed and mounted. Refer to Section 3
for installation instructions.

2. Perform wiring to the motor and external equipment suitable for desired
operating mode and your system requirements.

3. Connect the serial port P2 on the drive to your PC serial port.
4. Make sure that the drive is disabled.
5. Apply power to the drive and wait until “diS” shows on the display. For

anything other than this, refer to the chart below before proceeding.

Drive display: Meaning

EP EPM missing; Refer to 6.1.2

EP? EPM data; Refer to 6.1.2

- - - - No valid firmware
- - - - Monitor mode

6. Using the drive’s keypad and display, check that the baud rate is set to 38.4
(kbps).

7. Using the drive’s keypad and display, check that the address is set to 1.
Set if necessary.

8. Launch MotionView software on your computer.
9. From the MotionView menu, select <Project> <Connection setup>.
10. Select “UPPP over RS-485/RS-232”, then select <Properties> and select the

computer’s serial port that the drive is connected to.
		•	Select	the	Comm	port	that	matches	the	serial	port	of	the	computer	
 used for this connection
		•	Set	baud	rate	at	38400	and	rest	of	the	parameters	at	default.

11. Click <OK> twice to dismiss both dialog boxes.
12. From <Node> menu choose <Connect Drive>.
13. Click “Connect one” button, type “1” in the address box and press “OK” to

dismiss dialog.
14. Drive connects and its icon appears in the left node tree of the MotionView’s

screen.

NOTE

MotionView’s “Connection setup” properties need only be configured
the first time MotionView is operated or if the port connection is
changed. Refer to MotionView User’s Manual for details on how to
make a connection to the drive.

15. Double-click on the drive’s icon to expand parameter group’s folders.
16. Select the motor to be used according to the Section 4.5.
17. Expand the folder “Parameters” and choose the operating mode for the drive.

Refer to Section 5.3.1 for details on operating modes.
18. Click on the “Current limit” parameter (5.3.3) and enter current limit (in Amp

RMS per phase) appropriate for the motor.
19. Click on the appropriate “Peak current limit” parameter (5.3.4) based on the

“Drive PWM frequency” parameter (5.3.2) used and enter the peak current
limit (in Amp RMS per phase) appropriate for your motor.

20. Set up additional parameters suitable for the operating mode selected in step 17.
21. After you configure the drive, proceed to the tuning procedure if operating

in “Velocity”, or “Position” mode. “Torque” mode doesn’t require additional
tuning or calibration.
Refer to Section 6.6 for details on tuning.

S94P01B2 47

Operation

6.3 Position Mode Operation (gearing)
In position mode the drive will follow the master reference signals at the P3. 1-4 inputs.
The distance the motor shaft rotates per each master pulse is established by the ratio
of the master signal pulses to motor encoder pulses (in single loop configuration). The
ratio is set by “System to Master ratio” parameter (section 5.3.16).

Example 1

Problem: Setup the drive to follow a master encoder output where 1 revolution of
the master encoder results in 1 revolution of the motor

Given: Master encoder: 4000 pulses / revolution (post quadrature)
 Motor encoder: 8000 pulses / revolution (post quadrature)

Solution: Ratio of System (motor encoder) to Master Encoder is 8000/4000 = 2/1
 Set parameter “System to master ratio” to 2:1

Example 2

Problem: Setup drive so motor can follow a master encoder wheel where 1
revolution of the master encoder results in 3 revolutions of the motor

Given: Motor encoder: 4000 pulses / revolution (post quadrature)
 Master encoder: 1000 pulses / revolution (post quadrature).
 Desired “gear ratio” is 3:1
Solution: Ratio is motor encoder PPR divided by master encoder PPR times the

“gear ratio”:
 (Motor PPR / Master PPR)*(3/1) => (4000/1000)*(3/1) => 12/1
 Set parameter “System to master ratio” to 12:1

6.4 Dual-loop Feedback
In dual-loop operation (position mode only) the relationship between the Master input
and mechanical system movement requires that two parameters be set:

(1) “System to master ratio” sets the ratio between the second encoder pulses (system
encoder) and the master input pulses.

(2) “Prime to second encoder ratio” sets the ratio between the second and primary
(motor) encoder. If the motor is equipped with a resolver connected to the resolver
option module, the primary encoder resolution of 65536 (post quadrature) must be used.

When operating in this mode the second encoder input is applied to integral portion of
the position compensator. Therefore it is important that the Position I-gain and Position
I-limit parameters are set to non 0 values. Always start from very small values of
Position I-limit values.

NOTE

When operating with a resolver as the primary feedback, a second
encoder can be connected to P4.

S94P01B248

Operation

6.5 Enabling the PositionServo
Regardless of the selected operating mode, the PositionServo must be enabled before
it can operate. A voltage in the range of 5-24 VDC connected between P3.26 and 3.29
(input IN_A3) is used to enable the drive. There is a difference in the behavior of input
IN_A3 depending on how the “Enable switch function” is set.

TIP!
If using the onboard +5VDC power supply for this purpose, wire your switch
between pins P3.6 and P3.29. Jumper P3.5 to P3.26. If doing this, all inputs in
group A must be powered by P3.6.

When the “Enable switch function” is set to “RUN”:

IN_A3 acts as positive logic ENABLE or negative logic INHIBIT input depending on:

If user program is not running: Activating IN_A3 enables the drive

User program running: Activating IN_A3 acts as negative logic
 “Inhibit” and operates exactly as if parameter
 “Enable switch function” set to “Inhibit”

When the “Enable switch function’ set to “Inhibit”:

IN_A3 acts as negative logic INHIBIT input regardless of mode or program status.

Activating input IN_A3 doesn’t enables the drive. The drive can be enabled from the
user’s program or interface only when IN_A3 is active. Attempt to enable drive by
executing the program statement “ENABLE” or from interface will cause the drive to
generate a fault #36. Regardless of the mode of operation, if the input is deactivated
while the drive is enabled, the drive will be disabled and will generate a fault #36.

WARNING!
Enabling the servo drive allows the motor to operate depending on the reference
command. The operator must ensure that the motor and machine are safe to operate
prior to enabling the drive and that moving elements are appropriately guarded.
Failure to comply could result in damage to equipment and/or injury to personnel!

6.6 Drive Tuning
The PositionServo Drive will likely require some tuning of its gains parameters in order
to achieve best performance in the application in which it is being applied. Only when
the drive is placed in Torque Mode are the gain values not required to be tuned. The
table herein lists the gains parameters that should be adjusted for each of the drive
operating modes. These parameters are found within the ‘Compensation’ folder.

MotionView Parameter Torque Mode Velocity Mode Positioning Mode

Velocity P Gain No Yes Yes

Velocity I Gain No Yes Yes

Position P Gain No No Yes

Position I Gain No No Yes

Position D Gain No No Yes

Position I-Limit No No Yes

Gain Scaling No Yes Yes

Before using the tuning procedures detailed in the next sections, ensure that the system
is in a safe condition for tuning to be carried out. It is often beneficial to first tune the
motor off-load to obtain approximate gains setting before fine tuning in the application.
Check that the drive output to the motor is disabled (via Input A3) and that the drive
is powered up. Make sure any user program code previously entered into the [Indexer
Program] folder in MotionView has been saved prior to tuning so it can be easily recalled
after tuning is complete.

S94P01B2 49

Operation

WARNING!
During both the Velocity and Position tuning procedures the PositionServo
drive will perform rotation (motion) of the motor shaft in the forward and
reverse directions at velocities based on the settings made by the user.
Ensure that the motor and associated mechanics of the system are safe to
operate in the way specified during these procedures.

6.6.1 Tuning the Drive in Velocity Mode
1) Parameter Setup

Set up the motor as per the instructions given in the relevant section of this manual. The
motor must be configured correctly prior to tuning taking place.

The parameters Drive Mode, Reference and Enable Switch Function are configured
automatically by the velocity tuning program. They are not required to be set at this
stage.

2) Importing the Velocity Tuning Program

Before importing the Velocity Tuning Program, the example programs must be installed
from the Documentation CD that shipped with the drive. If this has not been done then
please do so now.

To load the TuneV program file to the drive, select [Indexer Program] in the MotionView
Parameter Tree. Select [Import program from file] on the main toolbar. Navigate to
[C:\Program Files\AC Technology\MotionView6.xx\Help\940Examples]. If during the
installation of the Documentation CD files a different default directory was selected,
then navigate to that directory. Click on the [TuneV.txt] file and select [Open].

3) Editing the Velocity Tuning Program

The Tune Velocity Program creates a step velocity demand in the forward and reverse
directions that the drive will attempt to follow (based on its velocity gain settings). The
drive will run for a set time in the forward direction and then reverse the reference and
run for the same set time in the reverse direction, showing the acceleration, deceleration
and steady state performance.

The speed and period (time for one complete cycle - forward and reverse) is set in the
Indexer program with the following statements:

; Motion Parameters
Define SpeedReference 5 ; speed reference in Rps
Define Period 500 ; time in millisec

Adjust these parameters to values suitable to the application in which the drive is used
before going to the next step.

S94P01B250

Operation
4) Compile and Download Indexer Program to Drive

In the [Indexer program] folder in MotionView, select [Compile and Load with Source]
from the pull down menu. The TuneV program will be compiled and sent to the drive.
Select [Run] from the pull down menu to run the TuneV program. Do NOT enable the
drive (via input A3) at this stage.

5) Oscilloscope Settings

Open the [Tools] folder in MotionView and select the [Oscilloscope] tool. Click the [Set
on Top] box to place a checkmark in it and keep the scope on top.

In the Scope Tool Window make the following settings:

Channel 1: Signal = “Commanded Velocity”

 Scale = appropriate to “SpeedReference” value set in Indexer Program

Channel 2: Signal = “Motor Velocity”

 Scale = appropriate to “SpeedReference” value set in Indexer Program

Timebase: = as appropriate to “Period” value of Indexer Program

Trigger: = Channel 1, Rising Edge

Level: = 10 RPM

For better resolution, adjust these scaling factors during the tuning procedure.

6) Compensation Folder

In MotionView, open the [Compensation] folder for the drive. Set [Gain Scaling] to a
relatively low value, e.g. -6 for Encoder motor and -8 for a Resolver Motor. Set the
[Velocity P-gain] to a mid-value (16000) and set the [Velocity I-Gain] to 0.

7) Gain Tuning

The system should now be ready to start tuning the velocity gains. Start the Oscilloscope
by clicking [Run]. Apply the Enable input to Input A3 to enable the drive. At this point of
the procedure it is desirable to have little to no motion until we start to increase the gain
settings. If the motor vibrates uncontrollably disable the drive, lower the Gain Scaling
parameter value and repeat the input enable.

Step 1: Setting the Gain Scaling Parameter

The gain scaling parameter is a ‘course adjustment’ of the other gain’s parameter
values. Steadily increase the value of the gain scaling parameter until a reasonable
response is obtained from the motor (motor velocity starts to resemble the commanded
velocity).

Gain Scaling set too LOW
Motor Velocity significantly different than

Commanded Velocity.

S94P01B2 51

Operation

Gain Scaling set OK
Motor Velocity resembles Commanded

Velocity. Motor Velocity is reasonably close
with a slight overshoot.

Gain Scaling set too HIGH
Motor Velocity shows significant overshoot

following the acceleration periods.

Gain Scaling set significantly too HIGH
Motor Velocity exhibits instability throughout

the steady state Commanded Velocity.

Depending on the system begin tuned, the motor may go from stable operation (little to
no overshoot with stable steady state velocity) to instability (continuous and pronounced
oscillations during steady state command) very quickly as gains scaling is increased.
The bandwidth for allowing some overshoot with a quick settle time may be very small
and may only be achieved through adjustment of the Velocity P-Gain, as described in
Step 2. Set the gain scaling parameter to the value preceding that where significant
overshoot or continuous instability occurs. With the Gain scaling parameter set move
onto tuning the velocity P and I gains.

S94P01B252

Operation
Step 2: Fine Tuning the Velocity P-Gain

Slowly alter the Velocity P-Gain (increase and decrease) and observe the motor velocity
waveform on the oscilloscope. As the P-Gain increases the gradient of the velocity
during acceleration and deceleration will also increase as will the final steady state
velocity that is achieved. The application of too much P-Gain will eventually result in an
overshoot in the motor velocity, and further increases will result in larger overshooting
to the point that instability (continuous oscillation) occurs.

Increase the velocity P-gain until some overshoot occurs. Some overshoot is generally
ok, and the objective is typically to achieve the shortest possible settle time (steady
state velocity). When the system appears to have reached the shortest possible settle
time, with acceptable overshoot, cease from increasing the P-Gain.

Scope traces will be similar to those shown in Step 1, however the P-gain will now be
given a more precise adjustment in order to obtain the best possible tuning.

Good Fine Tuning of the P-Gain
Small overshoot with excellent settle time and

steady state velocity regulation.

Step 3: Setting the Velocity I-Gain

The purpose of the velocity I-gain is to correct any error that is present between
the commanded velocity and the steady state velocity that could not be rectified by
adjustment of the velocity P-gain. Adjustment of the velocity I-gain can also reduce the
steady state ripple that may occur in the velocity waveform. Lastly, velocity I-gain has a
positive effect on the holding torque produced by the motor.

Slowly increase the “Velocity I-Gain” and check for correction of the steady state error
in the velocity waveform. Continuing to increase the velocity I-gain will eventually result
in increased overshoot and instability in the motor velocity waveform. Stop increasing
the I-Gain when additional overshoot or instability starts to occur.

I-Gain set too LOW
Error exists between Commanded steady

state velocity and Actual steady state velocity

S94P01B2 53

Operation

I-Gain set OK
No error between Commanded steady state
velocity and Actual steady state velocity with

excellent stability.

I-Gain set too HIGH
Additional overshoot and oscillations are
starting to occur. Steady state velocity

regulation

Step 4: Check Motor Currents

Finally check the motor currents on the Oscilloscope. Make the following settings to the
oscilloscope.

Channel 1:

Signal = “Phase Current RMS”

Scale = as appropriate to peak current limit set in drive parameters (MotionView)

Timebase: = as appropriate to “Period” value of Indexer Program

Trigger: = Channel 2, Rising Edge

Level: = 10 RPM

Observe the waveforms to insure there are no significant oscillations. Reduce the gains
values if necessary.

The current waveform should be showing spikes of current during acceleration /
deceleration and steady state current during any steady state velocity. The maximum
value (peak value) of the current waveform is shown at the top of the oscilloscope
screen. This maximum value can be compared to the drive nominal current and peak
current settings to check how much of the motors potential performance is being used
and if optimum performance is being achieved.

S94P01B254

Operation

Good Current Trace
Uniform current pulses during accel/

deceleration and stable current during steady
state velocity.

Instability in Drive Output Current
(Note: Channel 2 trace has been removed for

clarity).

8) End Velocity Tuning

Remove the Enable Input from input A3 (disable the drive). In MotionView, click on
the [Indexer] folder for the drive. Click [Reset] on the program toolbar. If the drive is to
be run in just velocity mode then tuning is now complete. If the drive is to be used in
Positioning mode continue with ‘Tuning the Drive in Position Mode’, section 6.6.2.

6.6.2 Tuning the Drive in Position Mode
Velocity Tuning should be carried out prior to the tuning of the position loop. Refer to the
Velocity Tuning section, 6.6.1.

1) Parameter Set up

In MotionView, open the [Limits] folder and then the [Position Limits] sub-folder. Set the
[Position Error] and [Max Error Time] parameters to their maximum values to effectively
disable the position error trip while tuning takes place. Ensure the system is safe to
operate in this manner.

Position Error = 32767

Max Error Time = 8000

The Drive Mode, Reference and Enable Switch Function parameters are automatically
configured by the velocity tuning program. They do not require setting at this stage.

S94P01B2 55

Operation
2) Importing the Position Tuning Program

Before importing the Position Tuning Program, the example programs must be installed
from the Documentation CD that shipped with the drive. If this has not been done then
please do so now.

To load the TuneP program file to the drive, select [Indexer Program] in MotionView.
Select [Import program from file] on the main toolbar. Navigate to [C:\Program Files\
AC Technology\MotionView6.xx\Help\940Examples]. If during the installation of the
Documentation CD files a different default directory was selected, then navigate to that
directory. Click on the [TuneP.txt] file and select [Open].

3) Editing the Position Tuning Program

The Tune Position Program performs trapezoidal moves in the forward and reverse
direction separated by a defined pause (or time delay).

The Accel, Decel, and MaxV variables within the TuneP program define the ramps and
steady state velocity that will be used to execute the motion commands.

ACCEL = 500 ;500 rps*s Accel = Acceleration speed

DECEL = 500 ;500 rps*s Decel = Deceleration speed

MAXV = 20 ;20 Rps MaxV = Maximum

The size of each move and the pause between the moves is defined in the following
lines of code. There are two moves and pauses for the forward and reverse moves to
be performed.

MOVED 0.25 ;move 1 rev MoveD = Move distance

wait time 200 ;wait time to analyze ‘standstill’ stability wait time = Delay period

MOVED -0.25 ;move opposite direction 1 rev

wait time 200 ;wait time to analyze ‘standstill’ stability

Adjust these parameters if required to best suit the application before going to the next
step.

4) Compile and Download Indexer Program to Drive

In the [Indexer Program] folder in MotionView, select [Compile and Load with Source]
from the pull down menu. The TuneP program will be compiled and sent to the drive.
Select [Run] from the pull down menu to run the TuneP program. Do NOT enable the
drive (via input A3) at this stage.

S94P01B256

Operation
5) Oscilloscope Settings

Open the [Tools] folder]in MotionView and select the [Oscilloscope] tool. Click the [Set
on Top] box to place a checkmark in it and keep the scope on top.

In the Scope Tool Window, make the following settings:

Channel 1:

Signal = “Position Error”

Scale = as appropriate to the Error that results once the TuneP program is run.

Channel 2:

Signal = “Target Position”

Scale = as appropriate to the position move generated by the TuneP program

Timebase: = as appropriate to the “Period” of the moves being generated.

Trigger: = Channel 1, Rising Edge.

Level: = 10 Pulses

6) Compensation Folder

Open the [Compensation] folder in MotionView.

Leave the Velocity P-Gain and Velocity I Gain unchanged, as they should already have
been setup during velocity tuning. Do not adjust the Gain Scaling Parameter during this
procedure.

Set the [Position P-gain] to a low value (e.g. 100) and set the [Position I-Gain] and
[Position D-Gain] to 0.

7) Gain Tuning

The system should now be ready to start tuning the position loop. Start the Oscilloscope
by clicking [Run]. Apply the Enable input A3 to enable the drive.

The general goal in tuning the position loop is to achieve the minimum position error
while maintaining system stability. Some experimentation with gain values will be
required to achieve the best performance for the application.

Step 1: Setting the Position P-Gain

Slowly increase the Position P-Gain while watching the position error waveform on
oscilloscope Channel 1. It is important to watch both the Max Error as well as the
Average Error. While increasing Position P-gain, it should be apparent that both the
Max Error as well as the Average Error decrease.

Position P-Gain set too LOW
Large Position Error occuring and large error

in final positioning achieved

S94P01B2 57

Operation

Increased Position P-Gain
Shows improvement to the maximum error

and the final positioning accuracy

At some point while increasing the P-Gain, additional oscillations (Average Error) will
start to appear on the position error waveform.

Further Increased Position P-Gain
Shows very good reduction to the maximum
error but with additional oscillations starting

to occur.

Step 2: Setting the Position D-Gain

Slowly increase the D-Gain while watching the position error waveform on oscilloscope
Channel 1. As the D-Gain is increased, the position error oscillation caused by the
P-Gain, should start to decrease. Continue to increase the D-Gain until oscillation is
gone or until D-Gain is no longer having any apparent effect.

Adjustment of Position D-Gain
in conjunction with the P-Gain dampens

out additional oscillations while improving
position error.

For optimum tuning, it is sometimes required to repeat the process of increasing the
P-Gain until a slight oscillation occurs and then increase the D-Gain to suppress that
oscillation. This procedure can be repeated until the increasing of D-Gain has negligible
effect on the position error waveform.

S94P01B258

Operation
Step 3: Setting the Position I-Gain and Position I-Gain Limit

The objective here is to minimize the position error during steady state operation and
improve positioning accuracy. Start to increase the Position I-gain. Increasing the I-gain
will increase the drive’s reaction time while the I-Limit will set the maximum influence
that the I-Gain can have on the Integral loop. When adjusting the I-gain start with a very
small value for the I-gain (e.g. 1) then increase the I-gain parameter value until stand-
still error is compensated and positioning accuracy is satisfactory. Remember that large
values of Position I-limit can cause a large instability in the control loop and unsettled
oscillation of the system mechanics.

Position Error trace following the tuning of
Position P-, I- and D-Gains

Step 4: Check Motor Currents

Set the oscilloscope channel 2 to ‘Phase Current RMS’

Channel 2:

Signal = “Phase Current RMS”

Scale = as appropriate to peak current limit set in drive parameters (MotionView)

Timebase: = as appropriate to the “Period” of the moves being generated

Trigger: = Ch1 Rising Edge

Level: = 10 Pulses

Observe the Current waveform to make sure that there are no significant oscillations
during the steady state sections of the position profile (times when target position is not
changing). If so then decrease the gains values until the oscillations are either removed
or reduced to an acceptable level.

Minimal oscillation when motor positioned to
target position.

S94P01B2 59

Operation
8) Setting the Position Error Limits

Look at the position error waveform on the oscilloscope. Note the maximum time that
position errors exist (from the time axis of the scope) and the maximum peak errors
being seen (from the value at the top of the screen). Use this values to set the position
error limits to provide suitable position error protection for the application.

Open the ‘Limits’ folder and ‘Position Limits’ sub-folder within the MotionView node tree
and set suitable values for the ‘Position Error’ and ‘Max Error Time’ parameters.

Maximum error and time period for error
existing.

In this particular example maximum error in pulses is 95.0. The time this peak error
occurs can be read from the oscilloscope at approximately ½ of a division with each
division equal to 100ms, hence the error pulse lasts approximately 50mS. Suitable
settings for position error within this application might be as follows, although looser or
tighter limits could be applied depending on the requirements of the application.

Description Value

Position Error 100

Max Error Time 50

9) End Tuning

Remove the Enable Input from input A3 (disable the drive).

Click on the [Indexer Program] folder in MotionView. Click the [Reset] button at the top
of the indexer programming screen.

Tuning is now complete.

S94P01B260

Reference

7 Quick Start Reference
This section provides instructions for External Control, Minimum Connections and
Parameter Settings to quickly setup a PositionServo drive for External Torque,
Velocity or Positioning Modes. The sections are NOT a substitute for reading the entire
PositionServo User Manual. Observe all safety notices in this manual.

7.1 Quick Start - External Torque Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector - Pin Input Name Description

P3-22 ACOM Analog Common Reference from Controller

P3-24 AIN1+ Analog Torque Reference from Controller – Positive

P3-25 AIN1- Analog Torque Reference from Controller – Negative

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z- Buffered Encoder Output

P3-23 AO Analog Output

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

Mandatory Parameter Settings:
These Parameters are required to be set prior to running the drive

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Torque]

Reference Set to [External]

IO / Analog IO Analog Input (Current Scale) Set to required current per 1V input from controller

Analog Input Dead band Set zero torque Dead band in mV

Analog Input Offset Set Analog Offset for Torque Reference

IO / Digital IO Enable Switch Function Set to [Run]

S94P01B2 61

Reference
Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of a Zero Speed Output

At Speed Set Target Speed for activation of a At Speed Output

Speed Window Set bandwidth for activation of a At Speed Output

7.2 Quick Start - External Velocity Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector - Pin Input Name Description

P3-22 ACOM Analog Common Reference from Controller

P3-24 AIN1+ Analog Velocity Reference from Controller – Positive

P3-25 AIN1- Analog Velocity Reference from Controller – Negative

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z- Buffered Encoder Output

P3-23 AO Analog Output

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

S94P01B262

Reference
Mandatory Parameter Settings:
These parameters are required to be set prior to running the drive.

Folder/Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Velocity]

Reference Set to [External]

Enable Velocity Accel / Decel Limits Enable Ramp rates for Velocity Mode

Velocity Accel Limit Set required Acceleration Limit for Velocity command

Velocity Decel Limit Set required Deceleration Limit for Velocity command

IO / Analog IO Analog Input (Velocity Scale) Set to required velocity per 1 volt input from controller

Analog Input Dead band Set zero velocity Dead band in mV

Analog Input Offset Set Analog Offset for velocity Reference

IO / Digital IO Enable Switch Function Set to [Run]

Compensation Velocity P-Gain Set P-Gain for Velocity loop

(see tuning section) Velocity I_Gain Set I-Gain for Velocity loop

Gain Scaling Set Gain Scaling Parameter

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of Zero Speed Output

At Speed Set Target Speed for activation of At Speed Output

Speed Window Set bandwidth for activation of At Speed Output

S94P01B2 63

Reference

7.3 Quick Start - External Positioning Mode
Mandatory Signals:
These signals are required in order to achieve motion from the motor.

Connector-Pin Input Name Description

P3-1 MA+ Position Reference Input for Master Encoder / Step-Direction Input

P3-2 MA- Position Reference Input for Master Encoder / Step-Direction Input

P3-3 MB+ Position Reference Input for Master Encoder / Step-Direction Input

P3-4 MB- Position Reference Input for Master Encoder / Step-Direction Input

P3-26 IN_A_COM Common Input for Enable Input

P3-29 IN_A3 Enable Input to Controller or switch

Optional Signals:
These signals may be required dependant on the control system being implemented.

Connector - Pin Input Name Description

P3-6 +5V +5V Output for Enable Input (If required)

P3-7 A+ Buffered Encoder Output

P3-8 A- Buffered Encoder Output

P3-9 B+ Buffered Encoder Output

P3-10 B- Buffered Encoder Output

P3-11 Z+ Buffered Encoder Output

P3-12 Z- Buffered Encoder Output

P3-22 ACOM Analog Common Reference from Controller

P3-23 AO Analog Output

P3-27 IN_A1 Positive Limit Switch: Required if Limit Switch Function is used

P3-28 IN_A2 Negative Limit Switch: Required if Limit Switch Function is used

P3-41 RDY+ Ready output Collector

P3-42 RDY- Ready output Emitter

P3-43 OUT1-C Programmable output #1 Collector

P3-44 OUT1-E Programmable output #1 Emitter

P3-45 OUT2-C Programmable output #2 Collector

P3-46 OUT2-E Programmable output #1 Emitter

P3-47 OUT3-C Programmable output #3 Collector

P3-48 OUT3-E Programmable output #1 Emitter

P3-49 OUT4-C Programmable output #4 Collector

P3-50 OUT4-E Programmable output #1 Emitter

S94P01B264

Reference
Mandatory Parameter Settings:
These parameters are required to be set prior to running the drive.

Folder / Sub-Folder Parameter Name Description

Parameters Drive Mode Set to [Position]

Reference Set to [External]

Step Input Type Set to [S/D] or [Master Encoder]. (S/D = Step + Direction)

System to Master Ratio
Set ‘Master’ and ‘Slave’ values to gear position input

pulses to pulse revolution of the motor shaft

IO / Digital IO Enable Switch Function Set to [Run]

Limits / Position Limits Position Error Set Position Error Limit specific to application

Max Error Time Set Position Error Time specific to application

Compensation Velocity P-Gain Set P-Gain for Velocity loop

(see tuning section) Velocity I_Gain Set I-Gain for Velocity loop

Position P-Gain Set P-Gain for Position Loop

Position I-Gain Set I-Gain for Position Loop

Position D-Gain Set D-Gain for Position Loop

Position I-Limit Set I-Limit for Position Loop

Gain Scaling Set Gain Scaling Parameter

Optional Parameter Settings:
These parameters may require setting depending on the control system implemented.

Folder / Sub-Folder Parameter Name Description

Parameters Resolver Track PPR for simulated encoder on 941 Resolver drive

IO / Digital IO Output 1 Function Set to any pre-defined function required

Output 2 Function Set to any pre-defined function required

Output 3 Function Set to any pre-defined function required

Output 4 Function Set to any pre-defined function required

Hard Limit Switch Actions Set if Hard Limit Switches used in Application

IO / Analog IO Adjust Analog Input Tool that can be used to learn analog input level

Analog Output Set to any pre-defined function required

Analog Output Current Scale Set to scale analog output if current value is selected

Analog Output Velocity Scale Set to scale analog output if velocity value is selected

Limits / Velocity Limits Zero Speed Set bandwidth for activation of a Zero Speed Output

At Speed Set Target Speed for activation of a At Speed Output

Speed Window Set bandwidth for activation of a At Speed Output

S94P01B2 65

Diagnostics

8 Diagnostics

8.1 Display
The PositionServo 940 drives are equipped with a diagnostic LED display and 3 push
buttons to select displayed information and to edit a limited set of parameter values.

Parameters can be scrolled by using the “UP” and “DOWN” () buttons. To view a
value, press “Enter”(). To return back to scroll mode press “Enter” again.

After pressing the ”Enter” button on editable parameters, the yellow LED “C” (see figure
in the next section) will blink indicating that parameter value can be changed. Use “UP”
and “DOWN” buttons to change the value. Press “Enter” to store new setting and return
back to scroll mode.

Display Description

StAt current drive status - to view:
run - drive running
diS - drive disabled
F_XX - drive fault. Where XX is the fault code (section 8.3.1)

Hx.xx Hardware revision (e.g. H2.00)

Fx.xx Firmware revision (e.g. F2.06)

bAUd RS232/RS485(normal mode) baud rate - to set
 selects from 2400 to 115200 baudrates

Adr Drive’s address - to set
 sets 0 - 31 drive’s address

FLtS Stored fault’s history - to view
 scroll through stored faults F0XX to F7XX, where XX is the fault

code (section 7.3.1)

Ht Heatsink temperature - to view
Shows heatsink temperature in ºC if greater than 40ºC. Otherwise
shows “LO” (low).

EnC Encoder activity - to view
Shows primary encoder counts for encoder diagnostics activity

HALL Displays motor’s hall sensor states - to view
Shows motor hall states in form XXX , where X is 1 or 0 - sensor logic
states.

buS Displays drive DC bus voltage - to view
Shows DC bus voltage value

Curr Displays motor’s phase current (RMS)
Shows current value if drive is enabled, otherwise shows “DiS”

S94P01B266

Diagnostics

8.2 LEDs
The PositionServo has five diagnostic LEDs mounted on the periphery of the front
panel display as shown in the drawing below. These LEDs are designed to help monitor
system status and activity as well as troubleshoot any faults.

S913

LED Function Description

A Enable Orange LED indicates that the drive is ENABLED (running).

B Regen Yellow LED indicates the drive is in regeneration mode.

C Data Entry Yellow LED will flash when changing.

D Comm Fault
Red LED illuminates upon a communication fault.
(available in CANbus only)

E Comm Activity Green LED flashes to indicate communication activity.

8.3 Faults

8.3.1 Fault Codes
Listed herein are fault codes caused mostly by hardware operations. Additional fault
codes are listed in the PositionServo Programmer’s manual.

Fault Code
(Display)

Fault Description

F_OU Over voltage
Drive bus voltage reached the maximum level, typically due to motor
regeneration

F_FB Feedback error
Invalid Hall sensors code; Resolver signal lost or at least one motor hall
sensor is inoperable or not connected.

F_OC Over current
Drive exceeded peak current limit. Software incapable of regulating
current within 15% for more than 20mS. Usually results in wrong motor
data or poor tuning.

F_Ot Over temperature
Drive heatsink temperature has reached maximum rating.
Trip Point = 100°C for all drives except 480V 6A & 9A drives
Trip Point = 108°C for 480V 6A & 9A drives

F_OS Over speed Motor has reached velocity above its specified limit

F_PE Position Error Excess Position error has exceeded maximum value.

F_bd Bad motor data Motor profile data is invalid or no motor is selected.

F_EP EPM failure EPM failure on power up

-EP- EPM missing EPM not recognized (connected) on power up

F_09
Motor over

temperature

Motor over temperature switch activated; Optional motor temperature
sensor (PTC) indicates that the motor windings have reached maximum
temperature

F_10 Subprocessor failure
Error in data exchange between processors. Usually occurs when EMI
level is high due to poor shielding and grounding.

F_14 Under voltage
Occurs when the bus voltage level drops below 50% of nominal bus
voltage while drive is operating. An attempt to enable the drive with low
bus voltage will also result in this fault

F_15
Hardware overload

protection
Occurs when the phase current becomes higher than 400% of total drive’s
current capability for more then 5ms.

F_18
Arithmetic Error
Division by zero

Statement executed within the Indexer Program results in a division by 0
being performed. Drive programming error (error in drive source code).

S94P01B2 67

Diagnostics

Fault Code
(Display)

Fault Description

F_19
Arithmetic Error

Register overflow

Statement executed within the Indexer Program results in a value being
generated that is too big to be stored in the requested register. Drive
programming error (error in drive source code).

F_20
Subroutine stack

overflow

Exceeded 32 levels subroutines stack depth. Caused by executing
excessive subroutine calls without a RETURN statement. Drive
programming error (error in drive source code).

F_21
Subroutine stack

underflow
Executing RETURN statement without preceding call to subroutine. Drive
programming error (error in drive source code).

F_22
Arithmetic stack

overflow
Variable evaluation stack overflow. Expression too complicated for
compiler to process. Drive programming error (error in drive source code).

F_23
Motion Queue

overflow
32 levels depth exceeded. Drive programming error (error in drive source
code).

F_24
Motion Queue

underflow
Relates to the MDV statements in the Indexer Program. Drive
programming error (error in drive source code).

F_25
Unknown
opcode

Byte code interpreter error; May occur when program is missing the
closing END statement; when subroutine has no RETURN statement; or if
data in EPM is corrupted at run-time

F_26
Unknown
byte code

Byte code interpreter error; May occur when program is missing the
closing END statement; when subroutine has no RETURN statement; or if
data in EPM is corrupted at run-time

F_27 Drive disabled
Attempt to execute motion while drive is disabled. Drive programming
error (error in drive source code).

F_28 Accel too high
Motion statement parameters calculate an Accel value above the system
capability. Drive programming error (error in drive source code).

F_29 Accel too low
Motion statement parameters calculate an Accel value below the system
capability. Drive programming error (error in drive source code).

F_30 Velocity too high
Motion statement parameters calculate a velocity above the system
capability. Drive programming error (error in drive source code).

F_31 Velocity too low
Motion statement parameters calculate a velocity below the system
capability. Drive programming error (error in drive source code).

F_32 Positive Limit Switch Positive limit switch is activated.

F_33 Negative Limit Switch Negative limit switch is activated.

F_34
Positive motion w/
Pos Lim Sw ON

Attempt at positive motion with engaged positive limit switch
(Only available while drive is in position mode)

F_35
Negative motion w/

Neg Lim Sw ON
Attempt at negative motion with engaged negative limit switch
(Only available while drive is in position mode)

F_36
Drive Disabled by

User at Enable Input
The drive is disabled while operating or an attempt is made to enable the
drive without deactivating “Inhibit input”. “Inhibit” input has reverse polarity

F_39
Positive soft limit

reached
Programmed (Soft) absolute limits reached during motion

F_40
Negative soft limit

reached
Programmed (Soft) absolute limits reached during motion

F_41 Unknown Variable ID
Attempt to use variable with unknown ID from user program. Drive
programming error (error in drive source code).

F_45
2nd Encoder Position

Error
Second encoder position error has exceeded maximum value

S94P01B268

Diagnostics

8.3.2 Fault Event
When drive encounters any fault, the following events occur:

•	 Drive is disabled

•	 Internal status is set to “Fault”

•	 Fault number is logged in the drive’s internal memory for later interrogation

•	 Digital output(s), if configured for “Run Time Fault”, are asserted

•	 Digital output(s), if configured for READY, are de asserted

•	 If the display is in the default status mode, the LEDs display F_XX where XX is
current fault code.

•	 “Enable” LED turns OFF

8.3.3 Fault Reset
Fault reset is accomplished by disabling or re-enabling the drive depending on the
setting of the “Reset option” parameter (section 5.3.10).

8.4 Troubleshooting

DANGER!

Hazard of electrical shock! Circuit potentials are up to 480 VAC above
earth ground. Avoid direct contact with the printed circuit board or with
circuit elements to prevent the risk of serious injury or fatality. Disconnect
incoming power and wait at least 60 seconds before servicing drive.
Capacitors retain charge after power is removed.

Before troubleshooting

Perform the following steps before starting any procedure in this section:

•	 Disconnect AC or DC voltage input from the PositionServo. Wait at least 60
seconds for the power to discharge.

•	 Check the PositionServo closely for damaged components.

•	 Check that no foreign material has become lodged on, or fallen into, the PositionServo.

•	 Verify that every connection is correct and in good condition.

•	 Verify that there are no short circuits or grounded connections.

•	 Check that the drive’s rated phase current and RMS voltage are consistent with
the motor ratings.

For additional assistance, contact your local PositionServo® authorized distributor.

Problem External line fuse blows

Possible Cause Line fuses are the wrong size
Motor leads or incoming power leads are shorted to ground.

Nuisance tripping caused by EMI noise spikes caused by poor grounding
and/or shielding.

Suggested Solution •	 Check that line fuses are properly sized for the motor being used.
•	 Check motor cable and incoming power for shorts.
•	 Check that you follow recommendation for shielding and grounding listed in

section 3.2 in this manual.

S94P01B2 69

Diagnostics

Problem Ready LED is on but motor does not run

Suggested Solution If in Torque or Velocity mode:
Reference voltage input signal is not applied.
Reference signal is not connected to the PositionServo input properly;
connections are open.
In MotionView program check <Parameters> <Reference> set to <External>

For Velocity mode only:
In MotionView check <Parameters> <Compensation><Velocity loop filter>
P-gain must be set to value more then 0 in order to run. Without load motor
will run with P-gain set as low as 20 but under load might not. If P-gain is set
to 0 motor will not run at all.

In Position mode with master encoder motion source (no program)
Reference voltage input signal source is not properly selected.
In MotionView program check <Parameters> <Reference> set to <External>

In Position mode using indexing program
Variables ACCEL, DECEL,MAXV, UNITS are not set or set to 0.
Before attempting the move set values of motion parameters ACCEL,
DECEL,MAXV, UNITS

Problem In velocity mode, the motor runs away

Possible Cause •	 Hall sensors or encoder mis-wired.
•	 PositionServo not programmed for motor connected.

Suggested Solution •	 Check Hall sensor and encoder connections.
•	 Check that the proper motor is selected..

S94P01B270

Notes

S94P01B2 71

Notes

S94P01B272

Notes

Lenze AC Tech Corporation
630	Douglas	Street	•	Uxbridge,	MA	01569	•	USA
Sales:	(800)	217-9100	•	Service:	(508)	278-9100

www.lenze-actech.com

S94P01B2-e2(S94P01B2)

IM94MV01C

MotionView
Configuration and Programming

Software
USER’S MANUAL

	 IM94MV01C 1

Table of Contents

1 MoTionView SofTware oVerView . 3

1.1	 Installation	and	Package	Revision . 3

1.2	 Main	Screen . 4

1.2.1	 Node	Tree	...4
1.2.2	 List	View	...4
1.2.3	 Message	Window	...4
1.2.4	 How	to	Change	Parameters	...5
1.2.5	 Main	Menu	and	Toolbar	..6

1.3	 Managing	Projects . 7

1.4	 Connecting	to	the	Drive	. 7

1.4.1	 Connection	using	PPP	over	RS-232/RS485...8
1.4.2	 Connection	using	10/100	Ethernet	...8
1.4.3	 Disconnect	or	Remove	a	Drive	...11

1.5	 Build	RS-485	Connection	List	 . 12

1.6	 Build	Ethernet	Connection	List . 12

1.7	 File		Operations	. 13

1.7.1	 Opening	and	Closing	Parameter	Files.	...13
1.7.2	 Load	Parameters	from	File	to	Drive.	...13

2 node Tree folderS . 13

2.1	 Drive. 13

2.2	 Motor	 . 14

2.3	 Parameters. 14

2.4	 Communication	 . 15

2.4.1	 Ethernet	..15
2.4.2	 RS485	and	Modbus	..16
2.4.3	 CAN	..16

2.5	 I/O	 . 16

2.5.1	 Digital	I/O	..16
2.5.2	 Analog	I/O	...17

2.6	 Limits	 . 17

2.6.1	 Velocity	Limits	...17
2.6.2	 Position	Limits...17

2.7	 Compensation	 . 17

2.8	 Indexer	Program	 . 18

2.9	 Tools	 . 18

2.9.1	 Oscilloscope	...18
2.9.2	 Run	Panels	...20
2.9.3	 Diagnostic	...20

2.10	 Faults . 20

2.11	 Documents . 20

� IM94MV01C

Safety Warnings

	

WARNING!

• Hazard of unexpected motor starting! When using MotionView software, or otherwise operating the
PositionServo drive over RS-�3�/485, CANopen or Ethernet, the motor may start unexpectedly, which may
result in damage to equipment and/or injury to personnel. Make sure the equipment is free to operate in this
manner, and that all guards and covers are in place to protect personnel.
DANGER!

• Hazard of electrical shock! Circuit potentials are at 115 VAC, �30 VAC or 480 VAC above earth ground.
Avoid direct contact with the printed circuit board or with circuit elements to prevent the risk of serious
injury or fatality. Disconnect incoming power and wait 60 seconds before servicing drive. Capacitors retain
charge after power is removed.
NOTE

• The symbol shown at left indicates additional information, shortcuts, or tips that do not affect the safe
operation of the drive.

	 IM94MV01C 3

1 MotionView Software overview

MotionView is the setup and management tool for SimpleServo and PositionServo Drives. The user interface is intuitive in the
way information is arranged and is logically divided into groups for viewing and editing. This manual covers the concept and
basic operations of the MotionView program, please refer to the corresponding product’s User and Programmer Manuals for
further details on MotionView features and capabilities.

1.1	 Installation	and	Package	Revision
MotionView software can be installed on Windows, Windows XP system. To locate the package revision check the MotionView
CD label or open the [Help] folder then the [About MotionView] folder. Each time a file is revised on the MotionView CD, the pack-
age revision is increased even though the MotionView revision is not changed. As illustrated in Figure 1, MotionView revision
(6.04), motor database revision (3.01) and package revision (MV94CD14) can be found by clicking [About MotionView].

Figure 1: About MotionView

To obtain the latest revision of the MotionView software, visit the Technical Library at http://www.actech.com.

4 IM94MV01C

1.2	 Main	Screen
The user interface or Motion View main screen consists of 3 main panels: the Node Tree, the List View, and the Message Window
as illustrated in Figure �.

Figure	2:	MotionView	Screen

1.2.1	 Node	Tree
Drives and Parameter files appear in the Node Tree on the left hand side of the screen. The Drive and Parameter files contain sub
folders (denoted by a + symbol) with parameter groups and different tools needed to work with the selected Drive (Parameter
file). Drive and Parameter Files appear almost identical in the Node Tree and both operate in the same way. The main difference
is that Drive files can have a connection and parameter files cannot. To expand a folder to view it’s subfolders double-click on
the [+] symbol next to it. To collapse a folder double-click on the [-] symbol next to it.

1.2.2	 List	View
The right panel of the MotionView main screen is called the List View. When you click on a Node Tree file or sub-folder, the
parameters belonging to this group are displayed in the List View. Every parameter can be viewed in detail; its current value,
units and min and max values. When one navigates through the node tree, information in the list view changes automatically
in sync with the node tree selection.

1.2.3	 Message	Window
The bottom or footer section of the MotionView main screen is called the Message Window. The Message Window gives informa-
tion about communication status and supplies various information to make troubleshooting easier. To clear the message in the
Message Window, double-click the message and then right click to reveal the [Clear] button. Click [Clear].

Node
Tree

Message
Window

List
View

	 IM94MV01C 5

1.2.4	 How	to	Change	Parameters
To change any parameter, click on the parameter of interest on the list view. The dialog box opens and the user can then change
the value. There are several different types of dialog boxes depending on the parameter being changed:
• A Numeric value parameter with an Entry Dialog Box.
• A Numeric value parameter with an Entry Dialog Box containing a Slider.
• A Selection type parameter with a Predefined Value(s) Dialog Box.

The Entry Dialog Box requires the user to input (type) the value of the parameter. The Entry Dialog Box with Slider permits the
user to increase/decrease the value of the parameter by clicking on the slider. A Predefined Value Dialog Box contains a pull-
down menu from which the user can select the appropriate value for his parameter setup.
All dialog boxes contain a set of [Apply] [OK] and [Cancel] buttons. Use the [Apply] button to accept the value changes but leave
the dialog box open. Use the [OK] button to accept the changes and dismiss the dialog box. Use the [Cancel] button to dismiss
the dialog box and make no changes to the parameter setup.

Figure 3: Numeric value parameter with an Entry Dialog Box

Figure 4: Numeric Entry Dialog Box with Pull-Down Predefined Values

Figure 5: Numeric Entry Dialog Box containing a Slider

6 IM94MV01C

Some groups from the Node Tree have Action buttons in the List View. They will perform the action listed against the buttons in
the list view. (Refer to Figure 6). Example: clicking “Load fault history” loads the fault history from the PositionServo drive.

Figure 6: Action Buttons embedded in List View

1.2.5	 Main	Menu	and	Toolbar
The functions of MotionView are accessible in two ways: via the Main Menu or the Toolbar as illustrated in Figure 7. If a func-
tion in a pull-down menu or an icon is greyed out that denotes the function is unavailable. A function may be unavailable
because a drive is not physically connected to the network or the drive is not configured the same as the communication link
in MotionView.

Figure 7: Main Menu and Toolbar

Table 1: Contents of Main Menu Pull-Down Folders

Main	Menu

Node Project Tools View Help

New configuration file New project Browse motor database Toolbar MotionView help

Open configuration file Open project Clear output window Status Bar Product manuals

Save configuration file Close project About MotionView

Load configuration file Save project Time stamp

Set all parameters to default Save all configuration files

Connect drive Options

Disconnect all coneected drives Connection setup

Remove node from project Recent file

Table �: Toolbar Icons

Toolbar	Icons

Connect Connected Disconnected Add File Open File Save Save As Remove Node Print Help

	 IM94MV01C 7

1.3	 Managing	Projects
Multiple parameter files and drives can be opened at the same time. Information about which files and drives are open and the
current window layout is defined as a Project. A Project can be saved as a file to the PC’s hard drive. Future sessions will allow
opening a project to automatically load the desired files and drives into the node tree and restore the windows layout. Note that
MotionView will try to connect all drives listed in the project.

To save a project to a file, click [Project] on the main menu then [Save project] from the pull-down menu.

To start a new project and close all opened files and drives, click [Project] fon the main menu then [New project] from the pull-
down menu. When you click [New project] all drive connections and file will be closed. The Node Tree will be emptied.

To create a new project using an existing project as a template, click [Project] on the main menu then [Save project As] from
the pull-down menu.

Note:
A Project file does not save parameter files or drive data. It saves the list of opened devices and window posi-
tions on the screen. Use [Project] [Save All configuration files] to save changes in all opened files and drives. Use
[Node] [Save] to save each individual file or drive.

1.4	 Connecting	to	the	Drive
To be able to view or change a drive’s parameters a connection must be made between the drive and the computer. When you
make a connection you establish a communication link between the physical drive and the MotionView program. MotionView
software supports RS-�3�, PPP over RS-485/RS-�3� and UDP 10/100 Ethernet.

Note:
If the connection is successful, the drive will appear on the node tree.
If the connection is unsuccessful then the drive will not appear on the node tree. The Message Window will then
explain why the connection failed.

Figure 8: RS-�3� Setup

8 IM94MV01C

1.4.1	 Connection	using	PPP	over	RS-232/RS485

1. The first time in a session, click [Project] then [Connection Setup] or click the [] icon and select the proper inter-
face from the list.

�. Optionally click on the [Properties] button to change “COM Port” number and/or baud rate if necessary. Note that baud
rate assigned in MotionView must be the same as the baud rate set on the drive.

3. Select [Node] then [Connect drive] or click the [] icon. The Connection dialog box opens as shown in Figure 8.

4. Specify the address(es) of the drive(s) you want to connect. Refer to paragraph 1.5 “Build RS-485 Connection List” for
details.

5. Click the [Connect] button.

6. Drive(s) with specified address(es) will be connected and appear on the left in the Node Tree.

Figure 9: RS-485 Build List

1.4.2	 Connection	using	10/100	Ethernet
1. Configure IP Address of the PC

Click [Start] (In the bottom left-hand corner of your desktop).

Figure 10a: Start

	 IM94MV01C 9

Select [Control Panel] from the Start menu.

Figure 10b: Network Connections

Select [Network Connections] in the Control Panel menu.

Select the [Local Area Connection] with the number next to it.

Figure 10c: Local Area Connection

10 IM94MV01C

Under the General tab, select [Internet Protocol (TCP/IP)].

Figure 10d: Internet Protocol TCP/IP
Click [Properties].
Select [Use the following IP Address]
Type “19�.168.1�4.1” in the IP address window.

Figure 10e: Use the following IP address

The Subnet Mask window will automatically populate with �55.�55.�55.0. Click [OK].
The IP address of the PC has been configured.

	 IM94MV01C 11

�. Configure IP Address of Drive:

3. The first time in a session, click [Project] then [Connection Setup] or click the [] icon and select the proper inter-
face from the list.

4. Select [Node] then [Connect drive] or click the [] icon. The connection dialog opens as illustrated in Figure 10.

5. Specify the IP address(es) of the drive(s) to connect to. Refer to paragraph 1.6 “Build Ethernet Connection List” for
details.

6. Click the [Connect] button.

7. The Drive(s) with the specified address(es) will be connected and shown in the Node Tree.

Figure 10e: Composite Screenshot - Connection using 10/100 Ethernet

1.4.3	 Disconnect	or	Remove	a	Drive
To disconnect a drive: Select the drive by clicking on its icon on the left tree. Click [Node] on the main menu then [Disconnect]

from the pull-down menu or click the [] icon. MotionView will prompt to [save the current settings to file] before it discon-
nects the drive. The user can reconnect the drive later by selecting [Node] on the main menu then [Connect drive] from the
pull-down menu.

To remove a drive or file from the Node Tree: Select the drive or file by clicking on its icon on the left tree. Select [Node] from
the main menu then [Remove node from project] from the pull-down menu.

Note:
A connection does not need to be setup every time the user connects. A connection needs to be setup only once
per session or any time the communication settings are changed.

If the work is saved to a project file then the connection does not need to be setup unless different communica-
tion settings are used. Re-save the project file if changes are made to it.

1� IM94MV01C

1.5	 Build	RS-485	Connection	List

Figure 11: Build RS 485 Connection List

Now This window shows a list of drives currently connected.

To be This window shows a list of available drives that could be connected

Cancel Dismiss dialog box without any action.

Help Access contents of MotionView Help folder

Scan Find and connect all drives on the network. A search is performed for all drives in address range 0-31.

Add Add address to the connection list.

Remove Removes highlighted address from the connection list.

Connect One Specifies one drive’s address to be connected

Connect Puts the drive selected in the “To be” window into the “Now” window.

1.6	 Build	Ethernet	Connection	List

Figure 1�: Build Ethernet Connection List

IP address Specify a single device address in this field and then click [Connect] to this drive with this IP address.

Connected Shows drives currently connected

To be connected Shows drives MotionView found on the network and available for connection

- -> X Removes highlighted addresses from the “To Be Connected” list

Discover Locates every physically connected drive on the network

Connect Connects every drive with an IP listed in the “To Be Connected” list box.

Cancel Dismisses dialog box without any action.

	 IM94MV01C 13

1.7	 File		Operations

1.7.1	 Opening	and	Closing	Parameter	Files.

To open an existing configuration file, click [Node] on the main menu then [Open configuration file] from the pull-down menu.
Select the configuration file with extension “.dcf” in the open window. The File will appear in the Node Tree on the left.

To save the file, click [Node] on the main menu then [Save configuration file] from the pull-down menu.

To remove a file from the Node Tree, click [Node] on the main menu then [Remove node from project] from the pull-down
menu.

1.7.2	 Load	Parameters	from	File	to	Drive.

To load data from a file to a drive, click [Node] on the main menu then [Load configuration file to drive] from the pull-down menu.
The Drive data will be updated with the file data.

Note:

For this operation the drive must be connected and DISABLED.

Parameters will not be loaded when the drive is enabled.

2 node Tree folders

Note:
Refer to the PositionServo User’s Manual (S94P01) and Programming Manual (PM94P01) for complete de-
scriptions of motor features and instructions for programming each parameter. To access the PositionServo
Programming Manual, click [Help] then click [Product manuals]. The information contained herein is a brief
description of the folders in the Node Tree that populate once a drive file is opened.

2.1	 Drive
Click the Drive name in the Node Tree. The drive ID string, device family, firmware revision, vector processor revision, hardware
revision and serial number are displayed as illustrated in Figure 13. The drive indentification parameters are fixed and are
provided for information only.

Figure 13: Drive ID String

14 IM94MV01C

2.2	 Motor
After configuring the interface of the PositionServo drive, the motor needs to be setup if one is attached. To select a motor, click
on the [Motor] folder. Click on the action button [Click here to change the motor] to bring up the motor parameters screen. Set
the motor vendor and motor model number. If the motor is not in the list, click [Create File] to define a new motor setup.

Figure 14: Motor Parameters

2.3	 Parameters
To setup the drive’s parameters click on the [Parameters] folder. To set any one of the parameters in the List View on the right,
double-click the parameter name. A dialog box will open for changes to that specific parameter. The parameters that populate
the List View are applicable to the Drive file at the top of the Node Tree. Table 1 lists the parameter name, value, units and
min/max values for the selected E94P090T4N Drive which is a 3-phase, 480V/9A, non-filtered PositionServo 940 encoder-based
drive.

Figure 15: Parameters (Drive)

	 IM94MV01C 15

Table 3: E94P09T4N Drive Parameters

Parameter	Name Value Units Min Max

Drive name

Drive mode Torque

Drive PWM frequency 16kHz

Current limit �.8 A 0.0000 9.0000

8kHz peak current limit 7.�000 A 0.0000 �7.0000

16kHz peak current limit 7.�000 A 0.0000 ��.500

Analog input (current scale) 0.9000 A/volt -1.8000 1.8000

Analog input (velocity scale) 100.0000 RPM/volt -�000.0000 �000.0000

Enable Accel/Decel limits Disable

Accel limit 1000.0000 RPM/sec 0.1000 5000000.0000

Decel limit 1000.0000 RPM/sec 0.1000 5000000.0000

Reference External

Step input type Master encoder

Fault reset on disable

Motor temperature sensor Disable

Motor ptc cut-off resistance �500 Ohm �000 3000

Second encoder Disable

Regen duty cycle 10 % 1 100

Encoder repeat source Drive feedback input

System to master ratio 1:1 -3�767:1 3�767:3�767

Second to prime encoder ratio 1:1 -3�767:1 3�767:3�767

Autoboot Enabled

Group ID 0 0 3�767

Enable switch function Run

User units 1.0000 Revolutions/unit 0.0000 1000000.0000

Resolver track 0 0 15

Current Limit Max Overwrite Disable

The “Resolver track” parameter is only applicable to the PositionServo 941 Resolver-based drive. The Resolver track func-
tion sets the pulse per revolution (PPR) resolution of the buffered encoder outputs when a resolver motor is used. Refer to the
PositionServo User’s Manual for more details. The Resolver track and Current Limit Max Overwrite functions are available with
PositionServo drive firmware revision 3.06 or higher.

2.4	 Communication
There are 3 sub-folders under the [Communications] folder in the MotionView Node Tree. The Ethernet folder contains an action
button [IP setup] that permits the user to configure the Ethernet interface. The [RS485 and Modbus] folder contains the configu-
ration data of the Modbus interface. The [CAN] folder contains the configuration data for the CAN interface.

2.4.1	 Ethernet
The Ethernet folder contains an action button [IP setup] that permits the user to configure the Ethernet interface. Click on the
[IP setup] button to view/change the Ethernet interface setup (The Ethernet interface may have been previously configured with
[Project] [Configuration setup], paragraph 1.3.�). In [IP setup], the user can specify the IP address.

16 IM94MV01C

2.4.2	 RS485	and	Modbus
The [RS485 and Modbus] folder contains the configuration parameters of the Modbus interface. Click on any Modbus parameter
to change it. Table 4 lists the range and default value of each RS485 Modbus parameter.

Table 4: RS 485 Modbus Parameters

Parameter Range Default	Value

RS 485 Configuration Normal, Modbus slave Normal

Modbus baud rate �400, 4800, 9600, 19�00, 38400, 57600, 115�00 19�00

Modbus reply delay 0 - 1000ms 0

Modbus parity No Parity, Odd, Even No Parity

Modbus stop bits 1.0, 1.5, �.0 1.0

2.4.3	 CAN
The [CAN] folder contains the configuration parameters for the CAN interface. Click on Parameter name to change the setting
of that parameter. Table 5 lists the range and default value for each CAN parameter.

Table 5: CAN Parameters

Parameter Range Default	Value

CAN Control Disabled, CANOpen Simple, CANOpen 40� Disabled

CAN baud rate 10k, �5k, 50k, 1�5k, �50k, 500k, 800k, 1000k 500k

CAN Address 1 - 1�7 1

CAN Bootup Mode Pre-operational, Operational, Pseudo master mode Pre-operational

CAN Bootup Delay 0-5 sec 5 sec

2.5	 I/O
There are � sub-folders under the [I/O] folder in the MotionView Node Tree. The [Digital I/O] folder contains the values of the 4
outputs and debounce times for the 1� inputs. The [Analog I/O] folder contains the values of the one output and one input plus
an action button [Adjust analog input zero offset] that permits the user to change the analog zero offset.

2.5.1	 Digital	I/O
The [Digital I/O] folder contains the values of the 4 outputs and debounce times for the 1� inputs (A1-A4, B1-B4, C1-C4).

Table 6: Digital Input/Output Parameters

Parameter Range Default	Value

Output 1 function Not assigned, Zero Speed, In speed window, Current
limit, Run time fault, Ready, Brake, In position

Not assigned

Output � function Not assigned, Zero Speed, In speed window, Current
limit, Run time fault, Ready, Brake, In position

Not assigned

Output 3 function Not assigned, Zero Speed, In speed window, Current
limit, Run time fault, Ready, Brake, In position

Not assigned

Output 4 function Not assigned, Zero Speed, In speed window, Current
limit, Run time fault, Ready, Brake, In position

Not assigned

Input A1 debounce time 0-1000 ms 0

Input A� debounce time 0-1000 ms 0

Input A3 debounce time 0-1000 ms 0

Input A4 debounce time 0-1000 ms 0

Input B1 debounce time 0-1000 ms 0

Input B� debounce time 0-1000 ms 0

Input B3 debounce time 0-1000 ms 0

Input B4 debounce time 0-1000 ms 0

Input C1 debounce time 0-1000 ms 0

Input C� debounce time 0-1000 ms 0

Input C3 debounce time 0-1000 ms 0

Input C4 debounce time 0-1000 ms 0

Hard limit switches action Not assigned, Fault, Stop and fault Not assigned

	 IM94MV01C 17

2.5.2	 Analog	I/O
The [Analog I/O] folder contains the parameters of one output and one input plus an action button [Adjust analog input zero
offset] that permits the user to change the analog zero offset.

Table 7: Analog Input/Output Parameters

Parameter Range Default	Value

Analog output Not assigned, Phase current RMS, Phase current Peak,
Motor velocity, Phase R current, Phase S current, Phase
T current, Iq current, Id current

Not assigned

Analog output current scale 0.1000 - 10.000 Volt/Amp 1.0000

Analog output velocity scale 0.1000 - 5.0000 mV/RPM 1.0000

Analog input dead band 0 - 50 mV 10

Analog input offset -1000 - 1000 mV 0

Note: Phases R, S and T are equivalent to phases U, V and W respectively.

2.6	 Limits
There are � sub-folders under the [Limits] folder in the MotionView Node Tree for setting the velocity and position limits.

2.6.1	 Velocity	Limits
To set the velocity limits of the PositionServo drive in MotionView, double click on the [Limits] folder to expand it then click on the
[Velocity limits] folder to open this function. Table 8 lists the range and default value of each of the Velocity limits parameters.

Table 8 Velocity Limits Parameters

Parameter Range Default	Value

Zero speed 0 - 100 RPM 10

Speed window 10 - 10000 RPM 100

At speed -10000 - 10000 RPM 10000

2.6.2	 Position	Limits
To set the position limits of the PositionServo drive in MotionView, double click on the [Limits] folder to expand it then click on the
[Position limits] folder to open this function. Table 9 lists the range and default value of each of the Position limits parameters.

Table 9: Position Limits Parameters

Parameter Range Default	Value

Position error 1 - 3�767 counts 500

Max Error Time 0.�500 - 8000.0000 ms 500.0000

Second encoder Position error 1 - 3�767 counts 500

Second encoder Max Error Time 0.�500 - 8000.0000 ms 500.0000

2.7	 Compensation
To set the Compensation parameters, click the [Compensation] folder to open its contents in the List View window. To change
a compensation parameter, click the Parameter name. Table 10 lists the range and default value of each compensation pa-
rameter.

Table 10: Compensation Parameters

Parameter Range Default	Value

Velocity P-gain 0.0000 - 3�767.0000 600.0000

Velocity I-gain 0.0000 - 16383.0000 0.0000

Position P-gain 0.0000 - 3�767.0000 600.0000

Position I-gain 0.0000 - 16383.0000 0.0000

Position D-gain 0.0000 - 3�767.0000 0.0000

Position I-limit 0.0000 - �0000.0000 RPM �00.0000

Gain scaling -16 - 4 -4

18 IM94MV01C

2.8	 Indexer	Program
Click on the [Indexer program] folder to open the MotionView Studio (the List View window is gray when MotionView Studio is
selected). The user can type program code in the MotionView Studio or import it from a file, compile the program, step in/over
it, run it , then compile with the option of sending the compiled program directly to the drive.

The PositionServo Programming Manual contains full details on the MotionView Studio and the Indexer Program. To access the
PositionServo Programming Manual, click [Help] then click [Product manuals].

2.9	 Tools
There are 3 sub-folders under the [Tools] folder in the MotionView Node Tree. The Oscilliscope tool provides a real-time display
of the PositonServo drive’s behavior. The [Run panels] folder contains an action button [Check phasing] that permits the user
to check the phase of the motor. The [Diagnostic] folder contains an action button [Show variables] that permits the user to
access the list of variables.

2.9.1	 Oscilloscope
The Oscilloscope tool provides a real-time display of the different electrical signals inside the PositionServo drive. Like a “real”
oscilloscope, the Scope tool displays two channels simultaneously. The signals in Table 11 can be observed using the Oscil-
loscope tool. Click on the [Oscilloscope] folder to open the Oscilloscope in a separate window. Click on the [RUN]/[STOP] button
to start or stop the scope display. Click on the [Close] button to close the Oscilloscope display.

Table 11: Oscilloscope Parameters

Parameter Description

Phase Current (RMS) Motor phase (RMS) current

Phase Current (Peak) Motor phase peak current

Iq Current Motor Iq (torque producing) current

Motor Velocity Actual motor speed in RPM

Commanded Velocity Desired motor speed in RPM (velocity mode only)

Velocity Error Difference in RPM between actual and commanded motor speed

Position Error Difference between actual and commanded position (Step and Direction mode only)

Bus voltage DC bus voltage

Analog input Voltage at the drive’s analog input

Target position Requested position

Absolute position Absolute position (actual position)

Target position pulses

Absolute position pulses

Secondary absolute position

Position increment

Secondary position error

	 IM94MV01C 19

Figure 16: Oscilloscope Display

Signal Name

You can customize the information presented by the Scope tool by choosing the drop-down box in each channel. The set of
available signal depends on the drive model. Refer to the User’s Manual appropriate for your drive model to see the list of the
signals.

Scale

Scale sets the sensitivity of the display. Each division is considered one unit of the selected scale. A scale of 100 RPM/div, for
example, means that the signal will rise (or descend) by one division for every change of 100 RPM in the signal level. Thus, a
500-RPM signal would deflect the signal by five divisions from the central reference line.

Offset

Offset sets the vertical distance from the central base line to the signal trace. This is useful if you want to compare two signals.
For example, if you wish to compare the actual vs. commanded motor velocity, you would enter an offset that would move the
two signals to the same side of the central reference line.

Time Base

Time base sets the number of cycles displayed per division. Higher frequencies have a shorter time base than lower frequen-
cies. If you wanted to display one cycle of a particular signal, your time base setting would therefore be lower for high-frequency
signals than for low-frequency signals.

Trigger/Trigger Level

Trigger level specifies the signal level after which the scope starts acquiring data. You can also specify which channel will be a
source for the trigger. The oscilloscope display will continue to run while the signal level crosses the specified level (above if the
trigger is set for rising or leading edge, or below if the trigger is set for trailing or falling edge).

Single

Also called one-shot trigger. If Single Sweep is selected, data acquisition will be stopped after the scope buffer is filled and data
displayed on the screen (frozen data). To repeat data acquisition, you will need to click the Single again.

�0 IM94MV01C

Always on top

Select this button to display the oscilloscope window on top all other windows.

Options

Select this button to change the channel mode, display mode and channel width settings. The default settings are: channel
mode: normal, display mode: connected lines and channel width: average maximum.

2.9.2	 Run	Panels
The [Run panels] folder permits the user to check the phasing of the motor. Click on the [Run panels] folder then click the action
button [Check phasing] to check the phasing of the motor. The motor data is not modified when checking the phase.

2.9.3	 Diagnostic
The [Diagnostic] folder permits the user to check the drive’s variables. Click on the [Diagnostic] folder then click the action but-
ton [Show variables] to open the list of the drive’s variables.

2.10	 Faults
The [Faults] folder contains two action buttons. The [Load fault history] permits the user to load the fault history of the drive onto
the computer. The sixteen most recent faults are displayed with the newer faults replacing the older faults in a first-in first-out
manner. In all cases, fault #0 is the most recent fault. The [Reset fault history] permits the user to clear the fault history of the
drive from within the MotionView program.

2.11	 Documents
The [Documents] folder contains the Release notes for the installed version of MotionView software. Click on the document title
to open a hypertext link to the AC Technology’s Technical Library.

Note:
Refer to the PositionServo User’s Manual (S94P01) and Programming Manual (PM94P01) for complete de-
scriptions of motor features and instructions for programming each parameter. To access the PositionServo
Programming Manual, click [Help] then click [Product manuals]. The information contained herein is a brief
description of the folders in the Node Tree that populate once a drive file is opened.

	 IM94MV01C �1

AC Technology Corporation • 630 Douglas Street • Uxbridge, MA 01569 • USA
 +1 (508) 278-9100

***************************** HEADER ***************************************
;Title: Pick and Place example program
;Author: Lenze - AC Technology
;Description: This is a sample program showing a simple sequence that
; picks up a part, moves to a set position and drops the part

;**************************** I/O List ************************************
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enable Input
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

;********************** Initialize and Set Variabl
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
;V1 =
;V2 =

;********************** Events *******************
;Set Events handling here

;********************** Main Program ************

RESET_DRIVE: ;Place holder fo
WAIT UNTIL IN_A3: ;Make sure tha
continuing
ENABLE
PROGRAM_START:
MOVEP 0 ;Move to Pick po
OUT1 = 1 ;Turn on output
WAIT TIME 1000 ;Delay 1 sec to
OUT2 = 1 ;Turn on output
WAIT TIME 1000 ;Delay 1 sec to
OUT1 = 0 ;Turn off output
MOVED -10 ;Move 10 REVs to
OUT1 = 1 ;Turn on output
WAIT TIME 1000 ;Delay 1 sec to
OUT2 = 0 ;Turn off output
WAIT TIME 1000 ;Delay 1 sec to
OUT1 = 0 ;Retract Pick ar
GOTO PROGRAM_START
END

;********************** Sub-Routines ***************

Enter Sub-Routine code here

;********************** Fault Handler Routine ***************

; Enter Fault Handler code here
ON FAULT
ENDFAULT

Programming Manual for PC-based MotionView
PositionServo

Copyright ©2005 by AC Technology Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written permission from
AC Technology Corporation. The information and technical data in this manual are subject to change without notice.
AC Technology makes no warranty of any kind with respect to this material, including, but not limited to, the implied
warranties of its merchantability and fitness for a given purpose. AC Technology assumes no responsibility for any
errors that may appear in this manual and makes no commitment to update or to keep current the information in this
manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks or trademarks of Lenze AG in the
United States and other countries.

PM94P01C 1

Contents

1. Introduction ... 4
1.1 Definitions ..4
1.2 Programming Flowchart ...5
1.3 MotionView / MotionView Studio ...6

1.3.1 Main Toolbar ..6
1.3.2 Program Toolbar ..8
1.3.3 MotionView Studio - Indexer Program ...9

1.4 Programming Basics ..10
1.5 Using Advanced Debugging Features ...17
1.6 Inputs and Outputs ..17
1.7 Events ..22
1.8 Variables and Define Statement ..23
1.9 IF/ELSE Statements ..24
1.10 Motion ..25

1.10.1 Drive Operating Modes ..26
1.10.2 Point To Point Moves ...26
1.10.3 Segment Moves ...27
1.10.4 Registration ..28
1.10.5 S-Curve Acceleration ...29
1.10.6 Motion Queue ..29

1.11 Subroutines and Loops ..30
1.11.1 Subroutines ..30
1.11.2 Loops ...31

2. Programming .. 32
2.1 Program Structure ...32
2.2 Variables ..34
2.3 Arithmetic Expressions ..36
2.4 Logical Expressions and Operators ...36

2.4.1 Bitwise Operators ..36
2.4.2 Boolean Operators ...37

2.5 Comparison Operators ..37
2.6 System Variables and Flags ..38
2.7 System Variables Storage Organization ..38

2.7.1 RAM File for User’s Data Storage ...38
2.7.2 Memory Access Through Special System Variables ...39
2.7.3 Memory Access Through MEMSET, MEMGET Statements ...40

2.8 System Variables and Flags Summary ..41
2.8.1 System Variables ...41
2.8.2 System Flags ...42

2.9 Control Structures ..43
2.9.1 DO/UNTIL Structure ..43
2.9.2 WHILE Structure ..43
2.9.3 Subroutines ..44
2.9.4 IF Structure ..45
2.9.5 IF/ELSE Structure ..45
2.9.6 WAIT Statement ..46
2.9.7 GOTO Statement & Labels ..46

2.10 Scanned Event Statements ...46

PM94P01C2

Contents

2.11 Motion ..48
2.11.1 How Moves Work ...48
2.11.2 Incremental (MOVED) and Absolute (MOVEP) Motion ...48
2.11.3 Incremental (MOVED) Motion ..49
2.11.4 Absolute (MOVEP) Move ...49
2.11.5 Registration (MOVEDR MOVEPR) Moves ..50
2.11.6 Segment Moves ...50
2.11.7 MDV Segments ..50
2.11.8 S-curve Acceleration ..52
2.11.9 Motion SUSPEND/RESUME ...52
2.11.10 Conditional Moves (MOVE WHILE/UNTIL) ...52
2.11.11 Motion Queue and Statement Execution while in Motion ..53

2.12 System Status Register (DSTATUS register) ..55
2.13 Fault Codes (DFAULTS register) ...56
2.14 Limitations and Restrictions ...57
2.15 Homing ..58

2.15.1 What is Homing? ...58
2.15.2 The Homing Function ..58
2.15.3 Home Offset ...59
2.15.4 Homing Velocity ...59
2.15.5 Homing Acceleration ..59
2.15.6 Homing Switch ...59
2.15.7 Homing Start ..59
2.15.8 Homing Method ...60
2.15.9 Homing Methods ..61
2.15.9.1 Homing Method 1: Homing on the Negative Limit Switch ..62
2.15.9.2 Homing Method 2: Homing on the Positive Limit Switch ...62
2.15.9.3 Homing Method 3: Homing on the Positive Home Switch & Index Pulse63
2.15.9.4 Homing Method 4: Homing on the Positive Home Switch & Index Pulse63
2.15.9.5 Homing Method 5: Homing on the Negative Home Switch & Index Pulse64
2.15.9.6 Homing Method 6: Homing on the Negative Home Switch & Index Pulse64
2.15.9.7 Homing Method 7: Homing on the Home Switch & Index Pulse ..65
2.15.9.8 Homing Method 8: Homing on the Home Switch & Index Pulse ..66
2.15.9.9 Homing Method 9: Homing on the Home Switch & Index Pulse ..67
2.15.9.10 Homing Method 10: Homing on the Home Switch & Index Pulse ..68
2.15.9.11 Homing Method 11: Homing on the Home Switch & Index Pulse ..69
2.15.9.12 Homing Method 12: Homing on the Home Switch & Index Pulse ..70
2.15.9.13 Homing Method 13: Homing on the Home Switch & Index Pulse ..71
2.15.9.14 Homing Method 14: Homing on the Home Switch & Index Pulse ..72
2.15.9.15 Homing Method 17: Homing without an Index Pulse ...73
2.15.9.16 Homing Method 18: Homing without an Index Pulse ...74
2.15.9.17 Homing Method 19: Homing without an Index Pulse ...75
2.15.9.18 Homing Method 21: Homing without an Index Pulse ...76
2.15.9.19 Homing Method 23: Homing without an Index Pulse ...77
2.15.9.20 Homing Method 25: Homing without an Index Pulse ...78
2.15.9.21 Homing Method 27: Homing without an Index Pulse ...79
2.15.9.22 Homing Method 29: Homing without an Index Pulse ...80
2.15.9.23 Homing Method 33: Homing to an Index Pulse ...81
2.15.9.24 Homing Method 34: Homing to an Index Pulse ...81
2.15.9.25 Homing Method 35: Using Current Position as Home ...81
2.15.10 Homing Mode Operation example ...82

3. Reference ... 83
3.1 Program Statement Glossary ..83
3.2 Variable List ...103
3.3 Quick Start Examples ..117

3.3.1 Quick Start - External Torque/Velocity ...117
3.3.2 Quick Start - External Positioning ..119
3.3.3 Quick Start - Internal Torque/Velocity ..121
3.3.4 Quick Start - Internal Positioning ...123

3.4 PositionServo Reference Diagrams ...124

PM94P01C 3

About These Instructions

This documentation applies to the programming of the PositionServo drive with model numbers ending in “EX”
and “RX”. This documentation should be used in conjunction with the PositionServo User Manual (Document
S94P01) that shipped with the drive. These documents should be read in their entirety as they contain important
technical data and describe the installation and operation of the drive.

Safety Warnings

Take note of these safety warnings and those in the PositionServo User Manual and related documentation.

WARNING! Hazard of unexpected motor starting!

When using MotionView, or otherwise remotely operating the PositionServo drive, the motor may
start unexpectedly, which may result in damage to equipment and/or injury to personnel. Make sure
the equipment is free to operate and that all guards and covers are in place to protect personnel.

All safety information contained in these Programming Instructions is formatted with this layout including an icon,
signal word and description:

Signal Word! (Characterizes the severity of the danger)

Safety Information (describes the danger and informs on how to proceed)

Table 1: Pictographs used in these Instructions

Icon Signal Words

Warning of hazardous
electrical voltage

DANGER! Warns of impending danger.

Consequences if disregarded: Death or severe injuries.

Warning of a general
danger

WARNING! Warns of potential, very hazardous situations.

Consequences if disregarded: Death or severe injuries.

Warning of damage to
equipment

STOP! Warns of potential damage to material and equipment.

Consequences if disregarded: Damage to the controller/
drive or its environment.

Information NOTE Designates a general, useful note.

If the note is observed then handling the controller/drive
system is made easier.

Related Documents

The documentation listed herein contains information relevant to the operation and programming of the Position
Servo drive with model numbers ending in “EX” and “RX”. To obtain the latest documentation, visit the Technical
Library at http://www.lenze-actech.com.

Table 2: Reference Documentation

Document # Description

S94P01 PositionServo User Manual

PM94P01 PositionServo Programming Manual

P94MOD01 Position Servo ModBus RTU over RS485, ModBus TCP/IP

P94CAN01 PositionServo CANopen Communications Reference Guide

PM94P01C4

Introduction

1. Introduction

1.1 Definitions
Included herein are definitions of several terms used throughout this programming manual and the PositionServo user
manual.

PositionServo: The PositionServo is a programmable digital drive/motion controller, that can be configured as a
stand alone programmable motion controller, or as a high performance torque and velocity drive for centralized control
systems. The PositionServo family of drives includes the 940 Encoder-based drive and the 941 Resolver-based drive.

MotionView: MotionView is a universal communication and configuration software that is utilized by the PositionServo
drive family. MotionView has an automatic self-configuration mechanism that recognizes what drive it is connected
to and configures the tool set accordingly. The MotionView platform is divided up into three sections or windows, the
“Parameter Tree Window”, the “Parameter View Window” and the “Message Window”. Refer to Section 1.3 for more
detail.

SimpleMotion Language (SML): SML is the programming language utilized by MotionView. The SML software provides
a very flexible development environment for creating solutions to motion applications. The software allows you to create
complex and intelligent motion moves, process I/O, perform complex logic decision making, do program branching,
utilize timed event processes, as well as a number of other functions found in PLC’s and high end motion controllers.

User Program (or Indexer Program): This is the SML program, developed by the user to describe the programmatic
behavior of the PositionServo drive. The User Program can be stored in a text file on your PC or in the PositionServo’s
EPM memory. The User Program needs to be compiled (translated) into binary form with the aid of the MotionView
Studio tools before the PositionServo can execute it.

MotionView Studio: MotionView Studio is the front end interface of the MotionView platform. It is a tool suite containing
all the software tools needed to program and debug a PositionServo. These tools include a full-screen text editor, a
program compiler, status and monitor utilities, an online oscilloscope and a debugger function that allows the user to
step through the program during program development.

WARNING!

•	 Hazard of unexpected motor starting! When using the MotionView software, or otherwise
remotely operating the PositionServo drive, the motor may start unexpectedly, which may result
in damage to equipment and/or injury to personnel. Make sure the equipment is free to operate
in this manner, and that all guards and covers are in place to protect personnel.

•	 Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground. Avoid direct
contact with the printed circuit board or with circuit elements to prevent the risk of serious injury or
fatality. Disconnect incoming power and wait 60 seconds before servicing drive. Capacitors retain
charge after power is removed.

PM94P01C 5

Introduction

1.2 Programming Flowchart
MotionView utilizes a BASIC-like programming structure referred to as SimpleMotion Programming Language (SML).
SML is a quick and easy way to create powerful motion applications.

With SML the programmer describes his system’s logistics, motion, I/O processing and user interaction using the SML
structured code. The program structure includes a full set of arithmetic and logical operator programming statements,
that allow the user to command motion, process I/O and control program flow.

Before the PositionServo drive can execute the user’s program, the program must first be compiled (translated) into
binary machine code, and downloaded to the drive. Compiling the program is done by selecting the [Compile] button
from the toolbar. The user can also compile and download the program at the same time by selecting the [Compile
and Load] button from the toolbar. Once downloaded, the compiled program is stored in both the PositionServo’s EPM
memory and the internal flash memory. Figure 1 illustrates the flow of the program preparation process.

Start Execution in
debugger environment

or at next power up

Load compiled program
to PositionServo drive

NO

Any Error?

COMPILER

YES

Prepare User Program

Fix program errors

Figure 1: Program Preparation

PM94P01C6

Introduction

1.3 MotionView / MotionView Studio
There are two versions of MotionView Software: one which resides inside the drive’s memory, referred to as “MotionView
on Board” (MVOB); and one supplied as a PC-installed software package, referred to simply as MotionView. This
manual describes the PC-installed MotionView software for PositionServo drives with P/N ending in EX or RX. The
MotionView display is illustrated in Figure 2.

NOTE

For MotionView OnBoard (MVOB), refer to “PositionServo with MVOB Programming Manual”
document number PM94M01

Figure 2: MotionView Parameters Display

MotionView is the universal programming software used to communicate with and configure the PositionServo drive. The
MotionView platform is segmented into three windows. The first window is the “Parameter Tree Window”. This window
is used much like Windows Explorer. The various parameter groups for the drive are represented here as folders or files.
Once the desired parameter group file is selected, all of the corresponding parameters within that parameter group will
appear in the second window, the “Parameter View Window”. The user can then enable, disable or edit drive features
or parameters in the Parameter View window. The third window is the “Message Window”. This window is located at the
bottom of the screen and will display communication status and errors.

1.3.1 Main Toolbar
The functions of MotionView are accessible via the Main Toolbar as illustrated in Figure 3. If a function in a pull-down
menu or an icon is greyed out that denotes the function is unavailable. A function may be unavailable because a drive
is not physically connected to the network or the present set-up and operation of the drive prohibits access to that
function.

Figure 3: Main Menu and Toolbar

Parameter Tree
Window

Message
Window

Parameter View
Window

PM94P01C 7

Introduction

Table 3a: Main Menu Text Pull-Down Folders

Main Menu

Node Project Tools View Help

New configuration file New project Browse motor database Toolbar MotionView help

Open configuration file Open project Clear output window Status Bar Product manuals

Save configuration file Close project About MotionView

Load configuration file Save project Time stamp

Set all parameters to default Save all configuration files

Connect drive Options

Disconnect all coneected drives Connection setup

Remove node from project Recent file

Table 3b: Main Menu Icon Functions

Icon Function Description

Connect Build a connection list of the drive(s) to communicate with on the network. Build the
connection list by using any one of these three methods:

Discover [Discover] button discovers all drives on the network that are available for connectivity. Once
drives have been discovered they are listed in the ‘Connect to drive’ list box. To connect one
or a number of drives highlight their IP address in this window and press the [Connect] button.
The ‘Ctrl’ key on your keyboard can be used to select multiple drives for connection.

Connect If the IP address on the drive is known, enter it in the IP address dialog box and then select
[Connect] to access the drive.

Find by name If a drive has been assigned a specified “Drive Name”, enter this name in the Name dialog box
and then select [Find by name]. The IP address should then appear in the “Connect To Drive”
list. The drive can now be connected by highlighting and pressing the [Connect] button.

Connected Drive is connected as a node on the network.

Disconnect Terminate connection to the drive selected (backlit) in the Node Tree.

Add File Import a configuration file to the drive

Open File Recall & open any previously saved configuration files and connection parameters.

Save Save the configuration file and the connection parameters of the drive selected in Node Tree.

Save As Save the configuration file and the connection parameters of the drive selected in Node Tree.

Remove Node Remove a node from the network

Print Print a report for the currently selected drive, containing all parameter set-up and
programming information.

Help Open MotionView Help folder (from original installation CD)

PM94P01C8

Introduction

1.3.2 Program Toolbar
To view the Program Toolbar, click on the [Indexer Program] folder in the Node Tree. Click anywhere inside the gray
Indexer program in the right-hand parameter window to bring up the program toolbar. This paragraph contains a brief
description of the programming tools: Compile, Load with Source, Run, Reset, Stop, Step Over, Step Into, Set Breakpoint
and Remove Breakpoint. For detailed descriptions of the program toolbar functions refer to paragraphs 1.3.3 and 1.4.

Figure 4: Program Toolbar

Icon Function Description

Compile Check compilation of the indexer program currently in the List View window.

Compile & Load w/ Source Load program including source code to the PositionServo drive listed in Node Tree.

Run Start / Continue program execution.

Reset
Reset Drive. Disable drive, stop program execution, and return program processing to the beginning. Program will not
restart program execution automatically.

Stop
Stop program execution on completion of the current statement being executed. WARNING: Stop button does not
place the drive in a disable state or prevent execution of motion commands waiting on the motion stack.

Step Over Execute each line of code in the program sequentially on each press on the [Step Over] button excluding subroutines.

Step Into Execute each line of code in the program sequentially on each press on the [Step Into] button, including subroutines.

Set Breakpoint Set breakpoint at current location of cursor in Indexer program.

Remove Breakpoint Remove breakpoint from current location of cursor in Indexer program.

Watch Window Display Parameter I/O window

Figure 5: MotionView - Indexer Program Display

User
Program

Area

Program
Toolbar

Main
Toolbar

PM94P01C 9

Introduction

1.3.3 MotionView Studio - Indexer Program
The MotionView Studio provides a tool suite used by MotionView to enter, compile, load and debug the user program.
To view and develop the user program, select the [Indexer Program] folder in the Parameter (Node) Tree window. Once
selected the program toolbar is displayed. The program displayed in the View window is uploaded from the drive when
the connection is made between MotionView and the drive. This upload is always performed regardless of program
running state. Click anywhere in the Parameter View Window to edit the Indexer program.

Common Programming Actions

Load User program from the PC to MotionView

- Select [Indexer Program] in the Node Tree.
- Select [Import] on the program toolbar.

Select the program to import from the PC folder where it is located. This procedure loads the program from the
file to the editor window. It doesn’t load the program to the drive’s memory.

Compile program and Load to the drive

- Select [Indexer Program] in the Node Tree.
- Select [Compile & Load W Source] on the program toolbar to to compile the program and load the source

code and the compiled binary file to the PositionServo drive. The original source code contained in the drive can
be viewed whenever the drive is accessed through MotionView and the Indexer Program folder is opened.

- Select [Compile] to check syntax errors without loading the program to drive. If the compiler finds any syntax
error, compilation stops. Errors are reported in bottom portion of the screen in Message window.

Save User program from MotionView to PC.

- Select [Indexer Program] in the Node Tree.
- Select [Export]] on the program toolbar.

The program will be saved to the Windows “My Documents” folder by default.

Run User program in drive.

- Select [Indexer Program] in the Node Tree.
- Select [Run] on the program toolbar.

If the program is already running, then first select [Reset] or [Stop] to stop the program.

Step Through the User program.

- Select [Indexer Program] in the Node Tree.
- Select [Step] or [Step over] on the program toolbar.

If [Step] is selected, the drive will execute the program one step at a time including subroutines. If [Step Over] is
selected, the drive will execute the program one step at a time excluding subroutines. The program statement
under execution will be highlighted. If the program is running, it will have to be either stopped or reset.

Set Breakpoint(s) in the program

- Select [Indexer Program] in the Node Tree.
- Place the cursor at the point in the program where the program will stop.
- Select [Set Breakpoint] or [Remove Breakpoint] on the program toolbar.

A convenient way to debug a user program is to insert breakpoints at critical junctions throughout the program.
These breakpoints stop the drive from executing the program, but do not disable the drive and the position
variables. Once the program has stopped, the user can continue to run the program, step through the program
or reset the program.

PM94P01C10

Introduction

Stop program execution

- Select [Indexer Program] in the Node Tree.
- Select [Stop] on the program toolbar.

The program will stop after completing the current statement. Select [Run] to resume the program from the
same point.

IMPORTANT!
The [Stop] button only stops the execution of the program code.
It does not stop motion or disable the drive.

Restart Program execution

- Select [Indexer Program] in the Node Tree.
- Select [Reset] on the program toolbar.

The program will be reset and the drive will be disabled. Variables within the drive are not cleared (reset) when
program execution is reset. It is important that any variables used by the programmer are set to safe values at
the start of the user program.

1.4 Programming Basics
The user program consists of statements which when executed will not only initiate motion moves but also process
the drives I/O and make decisions based on drive parameters. Before motion can be initiated, certain drive and I/O
parameters must be configured. To configure these parameters perform the following procedure.

Parameter setup

Select [Parameter] folder in the Node Tree window and set the following parameters.

Set the “Drive” to “Position”:

- Select [Drive mode] from the Parameter View Window.
- Select [Position], [Velocity], or [Torque] from the drop down menu depending on the mode the drive is to be

operated in. In order to execute the examples contained in this section of the manual the drive will need to be
in [Position] mode.

Set the [Reference] to [Internal]:

- Select [Reference] from the Parameter View Window.
- Select [Internal] from the pull down menu to select the user program as the source of the Torque, Velocity, or

Position Reference.

Set the [Enable switch function] to [Inhibit]:

- Select [Enable switch function] from the Parameter View Window.
- Select [Inhibit] from the menu to allow the user program control of the enable / disable status of the drive.

Input A3 will now act as a hardware inhibit.

I/O Configuration

Input A3 is the Inhibit/Enable special purpose input. Refer to the PS User Manual (S94P01) for more information. Before
executing any motion related statements, the drive must be enabled by executing “ENABLE” statement. “ENABLE”
statement can only be accepted if input A3 is made. If at any time while drive is enabled A3 deactivates then the fault
“F36” (“Drive Disabled”) will result. This is a hardware safety feature.

PM94P01C 11

Introduction

Basic Motion Program

Select [Indexer program] from the Node Tree. The Parameter View window will display the current User Program stored in the
drive. Note that if there is no valid program in the drive’s memory the program area will be empty.

WARNING!
This program will cause motion. The motor should be disconnected from the application (free to rotate)
or if a motor is connected, the shaft must be free to spin 10 revs forward and reverse from the location of
the shaft at power up. Also, the machine must be capable of 10 RPS and an accel / decel of 5 RPSS.

In the program area, clear any existing program and replace it with the following program:

UNITS=1
ACCEL = 5
DECEL = 5
MAXV = 10
ENABLE
MOVED 10
MOVEDISTANCE -10
END

After the text has been entered into the program
area, select the [Compile] icon from the toolbar. After
compilation is done, a “Compilation Error” message
should appear:

Click [OK] to dismiss the “Compliation error” dialog box. The cause of the compilation error will be displayed in the
Message window, located at the bottom of the MotionView OnBoard window. MotionView will also highlight the program
line where the error occurred.

UNITS=1
ACCEL = 5
DECEL = 5
MAXV = 10 ;
ENABLE
MOVED 10 ;
MOVEDISTANCE -10
END

The problem in this example is that “MOVEDISTANCE” is not a valid command. Change the text “MOVEDISTANCE”
to “MOVED”.

UNITS=1
ACCEL = 5
DECEL = 5
ENABLE
MOVED 10
MOVED -10
END

After editing the program, select the [Compile]
icon from the program toolbar. After compilation
is done, the “Compilation Complete” message box
should appear.

PM94P01C12

Introduction

The program has now been compiled without errors. Select [Compile & Load W Source] to load the program to the
drive’s memory. Click [OK] to dismiss the dialog box.

To Run the program, input A3 must be active to remove the hardware inhibit. Select the [Run] icon
on the program toolbar. The drive will start to execute the User Program. The motor will spin 10
revolutions in the CCW direction and then 10 revolutions in the CW direction. After all the code has
been executed, the program will stop and the drive will stay enabled.

To Restart the program, select the [Reset] icon on the program toolbar. This will disable the drive
and reset the program to execute from the start. The program does not run itself automatically. To
run the program again, select the [Run] icon on the toolbar.

Program Layout

When developing a program, structure is very important. It is recommended that the program be divided up into the
following 7 segments:

Header: The header defines the title of the program, who wrote the program and description of what
the program does. It may also include a date and revision number.

I/O List: The I/O list describes what the inputs and outputs of the drive are used for. For example input A1
might be used as a Start Switch.

Init & Set Var: Initialize and Set Variables defines the drives settings and system variables. For example
here is where acceleration, deceleration and max speed might be set.

Events: An Event is a small program that runs independently of the main program. This section is
used to define the Events.

Main Program: The Main Program is the area where the process of the drive is defined.
Sub-Routines: This is the area where any and all sub-routines should reside. These routines will be called

out from the Main Program with a GOSUB command.
Fault Handler: This is the area where the Fault Handler code resides. If the Fault handler is utilized this code

will be executed when the drive generates a fault.

The following is an example of a Pick and Place program divided up into the above segments.

***************************** HEADER **************************************
;Title: Pick and Place example program
;Author: Lenze - AC Technology
;Description: This is a sample program showing a simple sequence that
; picks up a part, moves to a set position and places the part

;**************************** I/O List ************************************
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enable Input
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

PM94P01C 13

Introduction

;********************** Initialize and Set Variables ***********************
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
;V1 =
;V2 =

;********************** Events ***
;Set Events handling here
;No events are currently defined in this program

;********************** Main Program **************************************

RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3: ;Make sure that the Enable input is made before continuing
ENABLE ;Enable output from drive to motor
PROGRAM_START: ;Place holder for main program loop
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
MOVED -10 ;Move 10 REVs to Place position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
GOTO PROGRAM_START ;Loop back and continuous execute main program loop
END

;********************** Sub-Routines ***************************************

;Enter Sub-Routine code here

;********************** Fault Handler Routine ********************

;Enter Fault Handler code here
ON FAULT
;No Fault Handler is currently defined in this program
ENDFAULT

Saving Configuration File to PC

The “Configuration File” consists of all the parameter settings for the drive, as well as the User Program. Once you are
done setting up the drive’s parameters and have written your User Program, you can save these setting to your computer.
To save the settings, select [Save All] from the Main toolbar. Then simply assign your program a name, (e.g. Basic
Motion), and click [Save] in the dialog box. The configuration file has a “.dcf” extension and by default will be saved to the
“My Documents” folder.

Loading Configuration File to the Drive

There are times when it is desired to import (or export) the program to another drive. Other times the program was
prepared off-line. In both scenarios, the program or configuration file needs to be loaded from the PC to the drive. To
load the configuration file to the drive, select [Load Configuration] from the Main toolbar. Then simply select the
program you want to load and click [Open] in the dialog box. MotionView will first compile the selected program. Once
compiled, the [Compilation Complete] dialog box should appear. Click [OK] to dismiss this dialog box. MotionView will
then load the selected file to the drive. When done, a “Parameters Successfully Loaded” or similar message will be
displayed in the Message Window.

PM94P01C14

Introduction

Motion source (Reference)

The PositionServo can be set up to operate in one of three modes: Torque, Velocity, or Position. The drive must
be given a command before it can initiate any motion. The source for commanding this motion is referred to as the
“Reference”. With the PositionServo you have two ways of commanding motion, or two types of References. When
the drive’s command signal is from an external source, for example a PLC or Motion Controller, it is referred to as an
External Reference. When the drive is being given its command from the User program or through one of the system
variables it is referred to as an Internal Reference.

Table 4: Setting the Reference

“Reference” Parameter Setting

Mode External Internal

Torque Analog input AIN1 System variable “IREF”

Velocity Analog input AIN1 System variable “IREF”

Position
Step/Direction Inputs

Master Encoder Pulse Train Inputs
User Program (Trajectory generator output)

User Program/Interface
(Trajectory generator)

Units

All motion statements in the drive work with User units. The statement on the first line of the test program, UNITS=1,
sets the relationship between User units and motor revolutions. For example, if UNITS=0.5 the motor will turn 1/2 of
a revolution when commanded to move 1 Unit. When the UNITS variable is set to zero, the motor will operate with
encoder counts as User units.

Time base

Time base is always in seconds i.e. all time-related values are set in USER UNITS/SEC.

Enable/Disable/Inhibit drive

Set “Enable switch function” to “Run”.

When the “Enable switch function” parameter is set to Run, and the Input A3 is made, the drive will be enabled. Likewise,
toggling input A3 to the off state will disable the drive.

- Select “Parameter” from the Parameter Tree Window.
- Select “Enable switch function” from the Parameter View Window.
- Select “Run” from the popup menu. This setting is primarily used when operating without any user’s program

in torque or velocity mode or as position follower with Step&Direction/Master Encoder reference.

Set “Enable switch function” to “Inhibit”.

In the example of the Enable switch function being set to Run the decision on when to enable and disable the drive is
determined by an external device, PLC or motion controller. The PositionServo’s User Program allows the programmer
to take that decision and incorporate it into the drive’s program. The drive will execute the User Program whether the
drive is enabled or disabled, however if a motion statement is executed while the drive is disabled, the F36 fault will
occur. When the “Enable switch function” parameter is set to Inhibit, and Input A3 is on, the drive will be disabled and
remain disabled until the ENABLE statement is executed by the User Program.

- Select “Parameter” from the Parameter Tree Window.
- Select “Enable switch function” from the Parameter View Window.
- Select “Inhibit” from the popup menu.

PM94P01C 15

Introduction

Faults

When a fault condition has been detected by the drive, the following actions will occur:

- Drive will Immediately be placed in a Disabled Condition.
- Motion Stack will be flushed of any Motion Commands
- Execution of the user program will be terminated and program control will be handed over to the Fault Handler

section. If no Fault handler is described then program execution will terminate. See fault handler section.
- A fault code defining the nature of the drive trip will be written to the DFAULTS system variable and can be

accessed by the fault handler. Refer to section 2.13 for a list of fault codes.
- The fault code will will be displayed on the drive display.
- Dedicated “Ready” output will turn off.
- Any Output with assigned special function “Fault” will turn on.
- Any Output with assigned special function “ready/enabled” will turn off.
- The “enable” status indicator on the drive display will turn off indicating drive in disabled state.

Clearing a fault condition can be done in one of the following ways:

- Select the [Reset] button from the toolbar.
- Execute the RESUME statement at the end of the Fault Handler routine (see Fault Handler

example).
- Send “Reset” command over the Host Interface.
- Cycle power (hard reset).

Fault Handler

The Fault Handler is a code segment that will be executed when the drive is experiencing a fault. The fault handler allows
the programmer to analyze the type of fault and define a recovery process for the drive and permits the continuation of
program execution. While the drive is executing the Fault Handler Routine the drive is disabled and therefore will not
be able to detect any additional faults that might occur. Fault handler code should be treated as the drive’s first reaction
on fault. While it executes, the drive will not respond to any I/O, interface commands etc. Therefore the user should
use the fault handler to manipulate time critical and safety related I/O and variables and then exit the Fault Handler
Routine by executing a “RESUME” statement for a full stop after statement. The Resume statement permits program
execution to leave the fault handler and resume back in the main program section of the user code. Use the Resume
statement to jump back to a section of the main program that designates the recovery process for the fault. Waiting
in Fault handler for I/O state change or for interface command is not allowed. Do that in the code where you point the
“RESUME” statement.

Without Fault Handler

To simulate a fault, restart the Pick and Place example program. While the program is running, switch the ENABLE
input IN_A3 to the off state. This will cause the drive to generate an F_36 fault (Drive Disabled) and put the drive
into Fault Mode. While the drive is in Fault Mode, any digital output currently active will remain active and any output
deactivated will remain deactivated, excluding the dedicated ready output and any output that has been assigned
special functionality. The program execution will stop and any motion moves will be terminated. In this example the Pick
and Place arm may not be in a desired location when the program goes into the fault mode.

PM94P01C16

Introduction

With Fault Handler

Add the following code to the end of your sample program. While the program is running, switch the ENABLE input
IN_A3, to the off state. This will cause the drive to generate an F_36 fault (Drive Disabled) and put the drive into a Fault
Mode. From this point the Fault Handler Routine will take over.

F_PROCESS:
WAIT UNTIL IN_A4==1 ;Wait until reset switch is made
WAIT UNTIL IN_A4==0 ;and then released before
GOTO RESET_DRIVE ;returning to the beginning of the program
END
;*********************** Sub-Routines **************************************
Enter Sub-Routines here;
;*********************** Fault Handler Routine *****************************
ON FAULT ;Statement starts fault handler routine
 ;Motion stopped, drive disabled, and events no longer
 ;scanned while executing the fault handler routine.
OUT2 = 0 ;Output 1 off to Disengage gripper.
 ;This will drop the part in the gripper
OUT1 = 0 ;Retract Pick arm to make sure it is up and out of the way
RESUME F_PROCESS ;program restarts from label F_PROCESS
ENDFAULT ;fault handler MUST end with this statement

NOTE

The following statements can not be used inside the Fault Handler Routine:

 - ENABLE
 - WAIT
 - MOVE
 - MOVED
 - MOVEP
 - MOVEDR
 - MOVEPR
 - MDV
 - MOTION SUSPEND
 - MOTION RESUME
 - GOTO, GOSUB
 - JUMP
 - ENABLE
 - VELOCITY ON/OFF

Refer to section 2.1 for additional details and the Language Reference section for the statement
“ON FAULT/ENDFAULT”.

PM94P01C 17

Introduction

1.5 Using Advanced Debugging Features
To debug a program or view the I/O, open the Diagnostic window by clicking on the [Tools] in the Parmeter (Node)
Tree list then click on the [Parameter & I/O View] button. The Diagnostic window will open. This window allows the
programmer to monitor and set variables, and to view status of drive digital inputs and outputs.

Click on a variable in the variable list on the right-hand side to select that parameter

< - Use the left arrow button to add variables after selecting a variable.

- > Use the right arrow button to remove variables after selecting a variable.

= > Use the double right arrow button to remove all variables in left-hand Diagnostic window.

R Use the [R] (Refresh) button to refresh variable values.

Figure 6: Variable Diagnostic Display

NOTE
Write-only variables cannot be read. Attempts to either display a write-only variable in the diagnostic
window or to read a write-only variable via network communications can show erroneous data.

1.6 Inputs and Outputs
Analog Input and Output
- The PositionServo has two analog inputs. These analog inputs are utilized by the drive as System Variables and

are labeled “AIN1” and “AIN2”. Their values can be directly read by the User Program or via a Host Interface.
Their value can range from -10 to +10 and correlates to ±10 volts analog input.

- The PositionServo has one analog output. This analog output is utilized by the drive as a System Variable and
is labeled “AOUT”. It can be directly written by the User Program or via a Host Interface. Its value can range
from -10 to +10 which correlates to ± 10 volts analog input.

NOTE
If an analog output is assigned to any special function from MotionView, writing to AOUT from the
User Program will not change its value. If an analog output is set to “Not assigned” then it can be
controlled by writing to the AOUT variable.

PM94P01C18

Introduction

Digital Inputs
- The PositionServo has twelve digital inputs that are utilized by the drive for decision making in the User Program.

Example uses: travel limit switches, proximity sensors, push buttons and hand shaking with other devices.
- Each input can be assigned an individual debounce time via MotionView. From the Parameter Tree, select [IO].

Then select the [Digital Input] folder. The debounce times will be displayed in the Parameter View Window.
Debounce times can be set between 0 and 1000 ms (1ms = 0.001 sec). Debounce times can also be set via
variables in the user program.

- The twelve inputs are separated into three groups: A, B and C. Each group has four inputs and share one
common: Acom, Bcom and Ccom respectfully. The inputs are labeled individually as IN_A1 - IN_A4, IN_B1
- IN_B4 and IN_C1 - IN_C4.

- In addition to monitoring each input individually, the status of all twelve inputs can be represented as one binary
number. Each input corresponds to 1 bit in the INPUTS system variable. Use the following format:

System
Variable
INPUTS

Bit # 11 10 9 8 7 6 5 4 3 2 1 0

Input
Name

C4 C3 C2 C1 B4 B3 B2 B1 A4 A3 A2 A1

- Some inputs can have additional special functionality such as Travel Limit switch, Enable input, and Registration
input. Configuration of these inputs is done from MotionView or through variables in the user program. Input
special functionality is summarized in the table below and in the following sections. The current status of the
drive’s inputs is available to the programmer through dedicated System Flags or as bits of the System Variable
INPUTS. Table 5 summarizes the special functions for the inputs.

Table 5: Input Functions

Input Special Function

Input A1 negative limit switch

Input A2 positive limit switch

Input A3 Inhibit/Enable input

Input A4 N/A

Input B1 N/A

Input B2 N/A

Input B3 N/A

Input B4 N/A

Input C1 N/A

Input C2 N/A

Input C3 Registration sensor input

Input C4 N/A

PM94P01C 19

Introduction

Read Digital Inputs

The Pick and Place example program has been modified below to utilize the “WAIT UNTIL” inputs statements in place
of the “WAIT TIME” statements. IN_A1 and IN_A4 will be used as proximity sensors to detect when the pick and place
arm is extended and when it is retracted. When the arm is extended, IN_A1 will be in an ON state and will equal “1”.
When the arm is retracted, IN_A4 will be in an ON state and will equal “1”.

;********************* Main Program **
RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3 ;Make sure that the Enable input is made before continuing
ENABLE
PROGRAM_START:
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ; Arm extend
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVED -10 ;Move 10 REVs to Place position
OUT1 = 1 ;Turn on output 1 on to extend Pick arm
WAIT UNTIL IN_A1==1 ; Arm is extended
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Arm is retracted
GOTO PROGRAM_START
END

Once the above modifications have been made, export the program to file and save it as “Pick and Place with I/O”, then
compile, download and test the program.

ASSIGN & INDEX - Using inputs to generate predefined indexes

“INDEX” is a variable on the drive that can be configured to represent a certain group of inputs as a binary number.
“ASSIGN” is the command that designates which inputs are utilized and how they are configured.

Below the Pick and Place program has been modified to utilize this “INDEX” function. The previous example program
simply picked up a part and moved it to a place location. For demonstration purposes we will add seven different place
locations. These locations will be referred to as Bins. What Bin the part is placed in will be determined by the state of
three inputs, B1, B2 and B3.

 Bin 1 - Input B1 is made
 Bin 2 - Input B2 is made
 Bin 3 - Inputs B1 and B2 are made
 Bin 4 - Input B3 is made
 Bin 5 - Inputs B1 and B3 are made
 Bin 6 - Inputs B2 and B3 are made
 Bin 7 - Inputs B1, B2 and B3 are made

The “ASSIGN” command is used to assign the individual input to a bit in the “INDEX” variable. ASSIGN INPUT <input
name> AS BIT <bit #>

;*********************** Initialize and Set Variables *******************
ASSIGN INPUT IN_B1 AS BIT 0 ;Assign the Variable INDEX to equal 1 when IN_B1 is made
ASSIGN INPUT IN_B2 AS BIT 1 ;Assign the Variable INDEX to equal 2 when IN_B2 is made
ASSIGN INPUT IN_B3 AS BIT 2 ;Assign the Variable INDEX to equal 4 when IN_B4 is made

PM94P01C20

Introduction

Table 6: Bin Location, Inputs & Index Values

Bin Location Input State INDEX Value

Bin 1 Input B1 is made 1

Bin 2 Input B2 is made 2

Bin 3 Inputs B1 and B2 are made 3

Bin 4 Input B3 is made 4

Bin 5 Inputs B1 and B3 are made 5

Bin 6 Inputs B2 and B3 are made 6

Bin 7 Inputs B1, B2 and B3 are made 7

The Main program has been modified to change the end place position based on the value of the “INDEX” variable.

;************************** Main Program **********************************
ENABLE
PROGRAM_START:
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVEP 0 ;Move to (ABS) to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==0 ;Make sure Arm is retracted

IF INDEX==1 ;In this area we use the If statement to
GOTO BIN_1 ;check and see what state inputs B1, B2 & B3
ENDIF ;are in.
IF INDEX==2 ; INDEX = 1 when input B1 is made
GOTO BIN_2 ; INDEX = 2 when input B2 is made
ENDIF ; INDEX = 3 when input B1 & B2 are made.
. ; INDEX = 4 when input B3 is made
. ; INDEX = 5 when input B1 & B3 are made.
. ; INDEX = 6 when input B2 & B3 are made.
IF INDEX==7 ; INDEX = 7 when input B1, B2 & B3 are made
GOTO BIN_7 ;We can now direct the program to one of seven
ENDIF ;locations based on three inputs.

BIN_1: ;Set up for Bin 1
MOVEP 10 ;Move to Bin 1 location
GOTO PLACE_PART ;Jump to place part routine
BIN_2: ;Set up for Bin 2
MOVEP 20 ;Move to Bin 2 location
GOTO PLACE_PART ;Jump to place part routine
BIN_7: ;Set up for Bin 7
MOVEP 70 ;Move to Bin 7 location
GOTO PLACE_PART ;Jump to place part routine
PLACE_PART:
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A4 == 1 ;Arm extends
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4 == 0 ;Arm is retracted
GOTO PROGRAM_START
END

PM94P01C 21

Introduction

NOTE
Any one of the 12 inputs can be assigned as a bit position within the INDEX variable. Only bits 0
through 7 can be used with the INDEX variable. Bits 8-31 are not used and are always set to 0.
Unassigned bits in the INDEX variable are set to 0.

BITS 8-31 (not used) A1 0 A2 A4 0 0 0 0

Limit Switch Input Functions

Inputs A1 and A2 can be configured as special purpose inputs from the [Digital IO] folder in MotionView. They can be set to
one of three settings:

- The “Not assigned” setting designates the inputs as general purpose inputs which can be utilized by the User
Program.

- The “Fault” setting will configure A1 and A2 as Hard Limit Switches. When either input is made the drive will
be disabled, the motor will come to an uncontrolled stop, and the drive will generate a fault. If the negative limit
switch is activated, the drive will display an F-33 fault. If the positive limit switch is activated the drive will display
an F32 fault.

- The “Stop and fault” setting will configure A1 and A2 as End of Travel limit switches. When either input is
made the drive will initiate a rapid stop before disabling the drive and generating an F34 or F35 fault (refer to
section 2.15 for details). The speed of the deceleration will be set by the value stored in the “QDECEL” System
Variable.

NOTE
The “Stop and Fault” function is available in position mode only, (“Drive mode” is set to “Position”).
In all other cases, the Stop and Fault function will act the same as the Fault function.

To set this parameter, select the [IO] folder from the Parameter Tree. Then select the [Digital IO] folder. From the
Parameter View Window, use the pull-down menu next to [Hard Limit Switches Action] to select the status: Not
Assigned, Fault or Stop and Fault.

Digital Outputs Control

- The PositionServo has 5 digital outputs. The “RDY” or READY output is dedicated and will only come on when
the drive is enabled, i.e. in RUN mode. The other outputs are labeled OUT1 - OUT4.

- Outputs can be configured as Special Purpose Outputs. If an output is configured as a Special Purpose Output
it will activate when the state assigned to it becomes true. For example, if an output is assigned the function
“Zero speed”, the assigned output will come on when the motor is not in motion. To configure an output as a
Special Purpose Output, select the [IO] folder from the Parameter Tree. Then select the [Digital IO] folder. From
the Parameter View Window, select the “Output function” parameter you wish to set (1, 2, 3 or 4).

- Outputs that are configured as “Not assigned” can be activated either via the User Program or from a host
interface. If an output is assigned as a Special Purpose Output, neither the user program nor the host interface
can overwrite its status.

- The Systems Variable “OUTPUTS” is a read/write variable that allows the User Program, or host interface,
to monitor and set the status of all four outputs. Each output allocates 1 bit in the OUTPUTS variable. For
example, if you set this variable equal to 15 in the User Program,i.e. 1111 in binary format, then all 4 outputs
will be turned on.

- The example below summarizes the output functions and corresponding System Flags. To set the output, write
any non-0 value (TRUE) to its flag. To clear the output, write a 0 value (FALSE) to its flag. You can also use
flags in an expression. If an expression is evaluated as TRUE then the output will be turned ON. Otherwise, it
will be turned OFF.

OUT1 = 1 ;turn OUT1 ON
OUT2 = 10 ;any value but 0 turns output ON
OUT3 = 0 ;turn OUT3 OFF
OUT2 = APOS>3 && APOS<10 ;ON when position within window, otherwise OFF

PM94P01C22

Introduction

Figure 7: Digital IO Folder

1.7 Events
A Scanned Event is a small program that runs independently of the main program. An event statement establishes a
condition that is scanned on a regular basis. Once established, the scanned event can be enabled and disabled in the
main program. If condition becomes true and EVENT is enabled, the code placed between EVENT and ENDEVENT
executes. Scanned events are used to trigger the actions independently of the main program.

In the following example the Event “SPRAY_GUNS_ON” will be setup to turn Output 3 on when the drive’s position
becomes greater than 25. Note: the event will be triggered only at the instant when the drive position becomes greater
than 25. It will not continue to execute while the position is greater than 25. (i.e. the event is triggered by the transition
in logic from false to true). Note also that main program doesn’t need to be interrupted to perform this action.

;*********************** EVENT SETUP ***************************************
EVENT SPRAY_GUNS_ON APOS>25 ;Event will trigger as position passes 25 in pos dir.
OUT3=1 ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event
;***
Enter the Event code in the EVENT SETUP section of the program. To Setup an Event, the “EVENT” command must
be entered. This is followed by the Event Name “SPRAY_GUNS_ON” and the triggering mechanism, “APOS>25”.
After that a sequence of programming statements can be entered once the event is triggered. In our case, we will turn
on output 3. To end the Event, the “ENDEVENT” command must be used. Events can be activated (turned on) and
deactivated (turned off) throughout the program. To turn on an Event, the “EVENT” command is entered, followed by the
Event Name “SPRAY_GUNS_ON”. This is completed by the desired state of the Event, “ON” or “OFF”. Refer to Section
2.10 for more on Scanned Events.

;***
EVENT SPRAY_GUNS_ON ON ;Enable ‘spray guns on’ event
;***

Two Scanned Events have been added to the Pick and Place program below to trigger a spray gun on and off. The
Event will be triggered after the part has been picked up and is passing in front of the spray guns (position greater than
25). Once the part is in position, output 3 is turned on to activate the spray guns. When the part has passed by the spray
guns, (position greater than 75), output 3 is turned off, deactivating the spray guns.

PM94P01C 23

Introduction

;*********************** Events **
EVENT SPRAY_GUNS_ON APOS>25 ;Event will trigger as position passes 25 in pos dir.
OUT3=1 ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event
EVENT SPRAY_GUNS_OFF APOS>75 ;Event will trigger as position passes 75 in pos dir.
OUT3=0 ;Turn off the spray guns (out 3 off)
ENDEVENT ;End event
;*********************** Main Program **************************************
PROGRAM_START: ;Place holder for main program loop
ENABLE ;Enable output from drive to motor
EVENT SPRAY_GUNS_ON ON ;Enable ‘spray guns on’ event
EVENT SPRAY_GUNS_OFF ON ;Enable ‘spray guns off’ event
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVEP 100 ;Move to Place position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Arm is retracted
GOTO PROGRAM_START ;Loop back and continuously execute main program loop
END

1.8 Variables and Define Statement
In the previous program for the pick and place machine constants were used for position limits to trigger the event and
turn the spray gun ON and OFF. If limits must be calculated based on some parameters unknown before the program
runs (like home origin, material width, etc.), then use the User Variables. The PositionServo provides 32 User Variables
V0-V31 and 32 User Network Variables NV0-NV31. In the program below, the limit APOS (actual position) is compared
to V1 for an ON event and V2 for an OFF event. The necessary limit values could be calculated earlier in the program
or supplied by an HMI or host PC.

The DEFINE statement can be used to assign a name to a constant, variable or drive Input/Output. In the program below,
constants 1 and 0 are defined as Output_On and Output_Off. DEFINE is a pseudo statement, i.e it is not executed by
the program interpreter, but rather substitutes expressions in the subsequent program at the time of compilation.

DEFINE Value2 2

DEFINE Value10 10

V1 = Value2+Value10 ; result is 12

V1 = 2+10 ; does exactly same as above, the result is 12

PM94P01C24

Introduction

;*********************** Initialize and Set Variables **********************
UNITS = 1 ;Define units for program, 1=revolution of motor shaft
ACCEL = 5 ;Set acceleration rate for motion command
DECEL = 5 ;Set deceleration rate for motion command
MAXV = 10 ;Maximum velocity for motion commands
V1 = 25 ;Set Variable V1 equal to 25
V2 = 75 ;Set Variable V2 equal to 75
DEFINE Output_On 1 ;Define Name for output On
DEFINE Output_Off 0 ;Define Name for output Off
;*********************** EVENTS ***
EVENT SPRAY_GUNS_ON APOS > V1 ;Event will trigger as position passes 25 in pos dir.
OUT3= Output_On ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event

EVENT SPRAY_GUNS_OFF APOS > V2 ;Event will trigger as position passes 75 in pos dir.
OUT3= Output_Off ;Turn off the spray guns (out 3 off)
ENDEVENT ;End even
;*********************** Main Program *************************************
PROGRAM_START: ;Place holder for main program loop
ENABLE ;Enable output from drive to motor
EVENT SPRAY_GUNS_ON ON ;Enable the ‘spray guns on’ event
EVENT SPRAY_GUNS_OFF ON ;Enable the ‘spray guns off’ event
WAIT UNTIL IN_A4==1 ;Ensure Arm is retracted before running the program
MOVEP 0 ;Move to position 0 to pick part
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_On ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = Output_Off ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
MOVED 100 ;Move to Place position
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_Off ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = Output_Off ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
GOTO PROGRAM_START ;Loop back and continuously execute main program loop
END

1.9 IF/ELSE Statements
An IF/ELSE statement allows the user to execute one or more statements conditionally. The programmer can use an
IF or IF/ELSE construct:

Single IF example:

This example increments a counter, Variable “V1”, until the Variable, “V1”, is greater than 10.

Again:
 V1=V1+1
 IF V1>10
 V1=0
 ENDIF
 GOTO Again
END

PM94P01C 25

Introduction

IF/ELSE example:

This example checks the value of Variable V1. If V1 is greater than 3, then V2 is set to 1. If V1 is not greater than 3,
then V2 is set to 0.

 IF V1>3
 V2=1
 ELSE
 V2=0
 ENDIF

Whether you are using an IF or IF/ELSE statement the construct must end with ENDIF keyword.

1.10 Motion
Figure 8 illustrates the Position and Velocity regulator of the PositionServo drive.

Position
Command

Kff term

Biquad
Convergence
Filter

Biquad
Convergence
Filter

Velocity
Estimator

Secondary
Encoder

Primary
Encoder

Current
Limiter

I term Limit and
unti wind-up

I term Limit and
unti wind-up

P term

D term

I term

=0

=1

+

-

+

+
+

+

+

+

-

P term

D term

Velocity
Window

#41 Second Encoder

Position Feedback

Mechanical Velocity Feedback

Velocity Command

To Torque Amplifier
Current Command

Kff is automatically calculated

+

+

+

-

Figure 8: PositionServo Position and Velocity Regulator’s Diagram

The “Position Command”, as shown in the regulator’s diagram (Figure 9), is produced by a Trajectory Generator.
The Trajectory Generator processes the motion commands produced by the User’s program to calculate the position
increment or decrement, also referred to as the “index” value, for every servo loop. This calculated target (or theoretical)
position is then supplied to the Regulator input.

The main purpose of the Regulator is to set the motors position to match the target position created by the Trajectory
Generator. This is done by comparing the input from the Trajectory Generator with the position feedback from the
encoder or resolver, to control the torque and velocity of the motor. Of course there will always be some error in the
position following. Such error is referred to as “Position Error” and is expressed as follows:

Position Error = Target Position - Actual Position

When the actual Position Error exceeds a certain threshold value a “Position Error limit”, fault (F_PE) will be generated.
The Position Error limit and Position Error time can be set under the Node Tree “Limits”/ “Position Limits” in MotionView.
The Position Error time specifies how long the actual position error can exceed the Position Error limit before the fault
is generated.

PM94P01C26

Introduction

1.10.1 Drive Operating Modes
There are three modes of operation for the PositionServo: Torque, Velocity and Position. Torque and Velocity modes
are generally used when the command reference is from an external device, (Ain). Position mode is used when the
command comes from the drives User Program, or from an external device, encoder or a step and direction pulse.
Setting the drive’s mode is done from the [Parameter] folder in MotionView. To command motion from the user program
the drive must be configured to internal reference mode. When the drive is in position mode, it can be placed into a
velocity mode without the need to change operating mode to ‘Velocity’. Velocity profiling from Positioning mode can
be turned on and off from the User Program. Executing the VELOCITY ON statement is used to activate this mode
while VELOCITY OFF will deactivate this mode. This mode is used for special case indexing moves. Velocity mode is
the mode when the target position is constantly advanced with a rate set in the VEL system variable. The Reference
arrangements for the different modes of operation are illustrated in Figure 9.

MA/MB inputs

#37, Reference

"INTERNAL"
#214,#189 TPOSGearing

#79,#80
Master to System

ratio

User's program
Trajectory
Generator

Phase Correction

POSITION
REGULATOR

0 Torque
1 Velocity
2 Position

#35,VELOCITY SCALE

#89
Dead Band

Analog input #1

#90, Offset

#34, DRIVEMODE

VELOCITY
REGULATOR

CURRENT
REGULATOR

1

2

3
TO MODULAT

1

2

3

#36,CURRENT SCALE

IREF

"INTERNAL"

"INTERNAL"

+
+

+

Figure 9: Reference Arrangement Diagram

1.10.2 Point To Point Moves
The PositionServo supports two types of moves: absolute and incremental. The statement MOVEP (Move to Position)
is used to make an absolute move. When executing an absolute move, the motor is instructed to move to a known
position. The move to this known position is always referenced from the motor’s “home” or “zero” location. For example,
the statement (MOVEP 0) will cause the motor to move to its zero or home position, regardless of where the motor is
located at the beginning of the move. The statement MOVED (Move Distance) makes incremental, (or relative), moves
from its current position. For example, MOVED 10, will cause the motor to move forward 10 user units from it current
location.

MOVEP and MOVED statements generate what is called a trapezoidal point to point motion profile. A trapezoidal
move is when the motor accelerates, using the current acceleration setting, (ACCEL), to a default top speed, (MAXV),
it then maintains that speed for a period of time before decelerating to the end position using the deceleration setting,
(DECEL). If the distance to be moved is fairly small, a triangular move profile will be used. A triangular move is a move
that starts to accelerate toward the Max Velocity setting but has to decelerate before ever achieving the max velocity in
order to reach the desired end point.

PM94P01C 27

Introduction

Velocity

Time

Triangular Move Profile

Top VelocityCurrent accel value

Trapezoidal Move Profile

Figure 10: Trapezoidal Move

1.10.3 Segment Moves
MOVED and MOVEP commands facilitate simple motion to be commanded, but if the required move profile is more
complex than a simple trapezoidal move, then the segment move MDV can be used.

The profile shown in Figure 11 is divided into 8 segments or 8 MDV moves. An MDV move (Move Distance Velocity) has
two arguments. The first argument is the distance moved in that segment. This distance is referenced from the motor’s
current position in User Units. The second argument is the desired target velocity for the end of the segment move. That
is the velocity at which the motor will run at the moment when the specified distance in this segment is completed.

70

60

50

40

30

20

10

5 10 15 20 25 30

Segment
1

Segment
2 Segment

4

Segment
3 Segment

8
Segment

6

Segment
5

Segment
7

Distance (User Units)

V
el

o
ci

ty
 (

R
P

S
)

Figure 11: Segment Move

Table 7: Segment Move

Segment Number
Distance moved
during segment

Velocity at the end of
segment

1 3 56

2 3 12

3 4 16

4 2 57

5 2.5 57

6 3 11

7 5 20

8 5 0

- - -

PM94P01C28

Introduction

Here is the user program for the segment move example. The last segment move must have a “0” for the end velocity,
(MDV 5 , 0). Otherwise, fault F_24 (Motion Queue Underflow), will occur.

;Segment moves
LOOP:
WAIT UNTIL IN_A4==0 ;Wait until input A4 is off before starting the move
MDV 3 , 56 ;Move 3 units accelerating to 56 User Units per sec
MDV 3 , 12 ;Move 3 units decelerating to 12 User Units per sec
MDV 4 , 16 ;Move 4 units accelerating to 16 User Units per sec
MDV 2 , 57 ;Move 2 units accelerating to 57 User Units per sec
MDV 2.5 , 57 ;Move 2.5 units maintaining 57 User Units per sec
MDV 3 , 11 ;Move 3 units decelerating to 11 User Units per sec
MDV 5 , 20 ;Move 5 units accelerating to 20 User Units per sec
MDV 5 , 0 ;Move 5 units decelerating to 0 User Units per sec
WAIT UNTIL IN_A4==1 ;Wait until input A4 is on before looping
GOTO LOOP
END

NOTE

When an MDV move is executed, the segment moves are stored to a Motion Queue. If the program
loops on itself, then the queue will become full and an F_23 Fault Motion Queue Overflow will
occur.

Since the MDV moves utilize a Motion Queue, the [Step] or [Step Over] debugging features can
not be used.

1.10.4 Registration
Both absolute and incremental moves can be used for registration moves. The statements associated with these moves
are MOVEPR and MOVEDR. These statements have two arguments. The first argument specifies the commanded
move distance or position. The second argument specifies the move made after the registration input is seen. If the
registration move is an absolute move, for MovePR, the first argument is absolute (referenced to the 0 position), the
second argument is relative to the registration position. For MoveDR, both arguments are relative. The first is relative to
the shaft position when motion is started and the second is relative to the registration position.

Position Registration
Input is made

Commanded
Move

Registration
Move

Registration Move

Figure 12: Registration Move

PM94P01C 29

Introduction

1.10.5 S-Curve Acceleration
Very often it is important for acceleration and deceleration of the motor to be as smooth as possible. For example,
using a smooth acceleration/deceleration profile could minimize the wear and tear on a machine tool, smoothing the
transition from accel/decel to steady state velocity. To perform smooth motion profiles, the PositionServo supports S-
curve acceleration.

With normal straight line acceleration, the axis is accelerated to the target velocity in a linear fashion. With S-curve
acceleration, the motor accelerates slowly at the first, then twice as fast as the middle straight line area, and then slowly
stops accelerating as it reaches the target velocity. With straight line acceleration, the acceleration changes are abrupt
at the beginning of the acceleration and again once the motor reaches the target velocity. With S-curve acceleration,
the acceleration gradually builds to the peak value then gradually decreases to no acceleration. The disadvantage
with S-curve acceleration is that for the same acceleration distance the peak acceleration is twice that of straight line
acceleration, which often requires twice the peak torque. Note that the axis will arrive at the target position at the same
time regardless of which acceleration method is used.

Distance (Units)

Ve
lo

ci
ty

 (R
M

S)

T2T1 T2T1

Figure 13: Sequential Move

To use S-curve acceleration in a MOVED, MOVEP or MDV statement requires only the additional “,S” at the end of the
statement.

Examples:

 MOVED 10 , S
 MOVEP 10 , S
 MDV 10,20,S
 MDV 10,0,S

1.10.6 Motion Queue
The PositionServo drive executes the User Program one statement at a time. When a move statement (MOVED or
MOVEP) is executed, the move profile is stored to the Motion Queue. The program will, by default, wait on that statement
until the Motion Queue has executed the move. Once the move is completed, the next statement in the program will be
executed. By default motion commands (other than MDV statements) effectively suspend the program until the motion
is complete.

A standard move (MOVED or MOVEP) is only followed by one argument. This argument references the distance or
position to move the motor to. By adding the second argument “C”, (MOVEP 0,C) or (MOVED 100,C), the drive is
allowed to continue executing the user program during the move. At this point, multiple move profiles can be stored to
the queue. The Motion Queue can hold up to 32 profiles. The Continue “C” argument is very useful when it is necessary
to trigger an action, e.g. handle I/O, while the motor is in motion. Below the Pick and Place Example Program has been
modified to utilize the Continue, “C”, argument.

PM94P01C30

Introduction

;**************************** Main Program ********************************
PROGRAM_START: ;Place holder for main program loop
ENABLE ;Enable output from drive to motor
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted before starting the program
MOVEP 0 ;Move to position 0 to pick part
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
MOVED 100,C ;Move to Place position and continue code execution
WAIT UNTIL APOS >25 ;Wait until pos is greater than 25
OUT3 = 1 ;Turn on output 3 to spray part
WAIT UNTIL APOS >=75 ;Wait until pos is greater than or equal to 75
OUT3 = 0 ;Turn off output 3 to shut off spray guns
WAIT UNTIL APOS >=95 ;Wait until move is almost done before extending arm
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 =0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
GOTO PROGRAM_START ;Loop back and continuously execute main program loop
END

When the “C” argument is added to the standard MOVED and MOVEP statements, program execution is not interrupted by
the execution of the motion command. NOTE: With an MDV move the execution of the program is never suspended.

The generated motion profiles are stored directly to the Motion Queue and are then executed in sequence. If the
MOVED and MOVEP statements don’t have the “C” modifier, then the motion profiles generated by these statements
go to the motion stack and the program is suspended until each profile has been executed.

1.11 Subroutines and Loops

1.11.1 Subroutines
Often it is necessary to repeat a series of program statements in several places in a program. Subroutines can be useful
in such situations. The syntax of a subroutine is simple. Subroutines must be placed after the main program, i.e. after
the END statement, and must start with the subname: label (where subname is the name of subroutine), and must end
with a statement RETURN.

Note that there can be more than one RETURN statement in a subroutine. Subroutines are called using the GOSUB
statement.

PM94P01C 31

Introduction

1.11.2 Loops
SML language supports WHILE/ENDWHILE block statement which can be used to create conditional loops. Note that
IF-GOTO statements can also be used to create loops.

The following example illustrates calling subroutines as well as how to implement looping by utilizing WHILE / ENDWHILE
statements.

;*************************** Initialize and Set Variables ******************
UNITS = 1 ;Units in Revolutions (R)
ACCEL = 15 ;15 Rev per second per second (RPSS)
DECEL = 15 ;15 Rev per second per second (RPSS)
MAXV = 100 ;100 Rev per second (RPS)/6000RPM
APOS = 0 ;Set current position to 0 (absolute zero position)
DEFINE LOOPCOUNT V1
DEFINE LOOPS 10
DEFINE DIST V2
DEFINE REPETITIONS V3
REPETITIONS = 0

;******************************* Main Program ********************************
PROGRAM_START: ;Place holder for main program loop
ENABLE ;Enable output from drive to motor
MAINLOOP:
 LOOPCOUNT=LOOPS ;Set up the loopcount to loop 10 times
 DIST=10 ;Set distance to 10
 WHILE LOOPCOUNT ;Loop while loopcount is greater than zero
 DIST=DIST/2 ;decrease dist by 1/2
 GOSUB MDS ;Call to subroutine
 WAIT TIME 100 ;Delay executes after returned from the subroutine
 LOOPCOUNT=LOOPCOUNT-1 ;decrement loop counter
 ENDWHILE
 REPETITIONS=REPETITIONS+1 ;outer loop
 IF REPETITIONS < 5
GOTO MAINLOOP
Wait Motioncomplete ;Wait for MDV segments to be completed
 ENDIF
END

;****************************** Sub-Routines ******************************
MDS:
 V4=dist/3
 MDV V4,10
 MDV V4,10
 MDV V4,0
RETURN

NOTE

Running this code as is will most likely result in F_23. There are 3 MDV statements that are
executed 10 times = 30 moves. Then the condition set on the repetitions variable makes the
program execute the above another 4 times. 4 x 30 = 120. The 120 moves, with no waits anywhere
in the program will most likely produce an F_23 fault (Motion Queue overflow).

PM94P01C32

Introduction

2. Programming

2.1 Program Structure
One of the most important aspects of programming is developing the program’s structure. Before writing a program, first
develop a plan for that program. What tasks must be performed? And in what order? What things can be done to make
the program easy to understand and allow it to be maintained by others? Are there any repetitive procedures?

Most programs are not a simple linear list of instructions where every instruction is executed in exactly the same order
each time the program runs. Programs need to do different things in response to external events and operator input.
SML contains program control structure instructions and scanned event functions that may be used to control the flow
of execution in an application program. Control structure instructions are the instructions that cause the program to
change the path of execution. Scanned events are instructions that execute at the same time as the main body of the
application program.

Header - Enter in program description and title information

;********************************* HEADER *********************************
;Title: Pick and Place example program
;Author: Lenze - AC Technology
;Description: This is a sample program showing a simple sequence that
; picks up a part, moves to a set position and places the part

I/O List - Define what I/O will be used

;********************************* I/O List ******************************
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enable Input
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
;
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

Initialize and Set Variables - Define and assign variable values

;**************************** Initialize and Set Variables *****************
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
;V1 =
;V2 =
DEFINE Output_on 1
DEFINE Output_off 0

PM94P01C 33

Introduction

Events - Define Event name, Trigger and Program Statements

;***************************** Events **************************************
EVENT SPRAY_GUNS_ON APOS > V1 ;Event will trigger as position passes 25 in pos dir.
OUT3= Output_On ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event
EVENT SPRAY_GUNS_OFF APOS > V2 ;Event will trigger as position passes 75 in pos dir.
OUT3= Output_Off ;Turn off the spray guns (out 3 off)
ENDEVENT ;End even

Main Program - Define the motion and I/O handling of the machine

;***************************** Main Program ********************************
RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3 ;Make sure that the ENABLE input is made before continuing
ENABLE ;Enable output from drive to motor
PROGRAM_START: ;Place holder for main program loop
EVENT SPRAY_GUNS_ON ON ;Enable the ‘spray guns on’ event
EVENT SPRAY_GUNS_OFF ON ;Enable the ‘spray guns off’ event
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted before starting the program
MOVEP 0 ;Move to position 0 to pick part
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_On ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = Output_Off ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
MOVED 100 ;Move to Place position
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_Off ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = Output_Off ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
GOTO PROGRAM_START ;Loop back and continuously execute main program loop
END

Sub-Routine - Any and all Sub-Routine code should reside here

;************************* Sub-Routines ***********************************
; Enter Sub-Routine code here

Fault Handler - Define what the program should do when a fault is detected

;************************* Fault Handler Routine **************************
; Enter Fault Handler code here
ON FAULT
ENDFAULT

The header section of the program contains description information, program name, version number, description of
process and programmers name. The I/O List section of the program contains a listing of all the I/O used within the
application. The Initialize and Set Variables section of the program defines the names for the user variables and
constants used in the program and provides initial setting of these and other variables.

PM94P01C34

Programming

The Events section contains all scanned events. Remember to execute the EVENT <eventname> ON statement in
the main program to enable the events. Please note that not all of the SML statements are executable from within the
EVENT body. For more detail, reference “EVENT” and “ENDEVENT” in Section 3 of the manual. The GOTO statement
can not be executed from within the Event body. However, the JUMP statement can be used to jump to code in the main
program body. This technique allows the program flow to change based on the execution of an event. For more detail,
reference “JUMP”, in Section 3.1 (Program Statement Glossary) of this manual.

The main program body of the program contains the main part of the program, which can include all motion and math
statements, labels, I/O commands and subroutine calls. The main body should be finished with an END statement,
however if the program loops indefinitely then the END statement can be omitted.

Subroutines are routines that are called from the main body of the program. When a subroutine is called, (GOSUB), the
program’s execution is transferred from the main program to the called subroutine. It will then process the subroutine
until a RETURN statement occurs. Once a RETURN statement is executed, the program’s execution will return back to
the main program to the line of code immediately following the GOSUB statement.

Fault handler is a section of code that is executed when the drive detects a fault. This section of code begins with the
“ON FAULT” statement and ends with an “ENDFAULT” statement. When a fault occurs, the normal program flow is
interrupted, motion is stopped, the drive is disabled, Event scanning is stopped and the statements in the Fault Handler
are executed, until the program exits the fault handler. The Fault handler can be exited in two ways:

- The “RESUME” statement will cause the program to end the Fault Handler routine and resume the execu-
tion of the main program. The location (label) called out in the “RESUME” command will determine where the
program will commence.

- The “ENDFAULT” statement will cause the user program to be terminated.

While the Fault Handler is being executed, Events are not being processed and detection of
additional faults is not possible. Because of this, the Fault Handler code should be kept as
short as possible.

If extensive code must be written to process the fault, then this code should be placed in the
main program and the “RESUME” statement should be utilized. Not all of SML statements
can be utilized by the Fault Handler. For more details reference “ON FAULT/ENDFAULT”,
in Section 3.1 (Program Statement Glossary) of this manual.

Comments are allowed in any section of the program and are preceded by a semicolon. They may occur on the
same line as an instruction or on a line by themselves. Any text following a semicolon in a line will be ignored by the
compiler.

2.2 Variables
Variables can be System or User. User variables do not have a predefined meaning and are available to the user
to store any valid numeric value. System variables have a predefined meaning and are used to configure, control or
monitor the operations of the PositionServo. (Refer to paragraph 2.6 for more information on System Variables).

All variables can be used in valid arithmetic expressions. All variables have their own corresponding index or identification
number. Any variable can be accessed by their identification number from the User’s program or from a Host Interface.
In addition to numbers some of the variables have predefined names and can be accessed by that name from the User’s
program.

The following syntax is used when accessing variables by their identification number:

 @102 = 20 ; set variable #102 to 20
 @88=@100 ; copy value of variable #100 to variable #88

Variable @102 has the variable name ‘V2”; variable @88 has the variable name ‘VAR_AOUT’ and variable @100 has
the variable name ‘V0’. Hence the program statements above could be written as:

 V2 = 20
 VAR_AOUT = V0

PM94P01C 35

Programming

There are two types of variables in the PositionServo drive - User Variables and System Variables.

User Variables are a fixed set of variables that the programmer can use to store data and perform arithmetic
manipulations. All variables are of a single type. Single type variables, i.e. typeless variables, relieve the programmer of
the task of remembering to apply conversion rules between types, thus greatly simplifying programming.

User Variables
V0-V31 User defined variables. Variables can hold any numeric value including logic (Boolean 0 - FALSE and

non 0 - TRUE) values. They can be used in any valid arithmetic or logical expressions.
NV0-NV31 User defined network variables. Variables can hold any numeric value including logic (Boolean 0

- FALSE and non 0 - TRUE) values. They can be used in any valid arithmetic or logical expressions.
Variables can be shared across Ethernet network with use of statements SEND and SENDTO.

Since SML is a typeless language, there is no special type for Boolean type variables (variables that can be only 0 or
1). Regular variables are used to facilitate Boolean variables. Assigning a variable a “FALSE” state is done by setting it
equal to “0”. Assigning a variable a “TRUE” state is done by assigning it any value other than “0”.

Scope

SML variables are accessible from several sources. Each of the variables can be read and set from any user program
or Host communications interface at any time. There is no provision to protect a variable from change. This is referred
to as global scope.

Volatility

User variables are volatile i.e. they don’t maintain their values after the drive is powered down. After power up the values
of the user variables are set to 0. Loading or resetting the program doesn’t change variables values.

In addition to the user variables, system variables are also provided. System variables are dedicated variables that
contain specific information relative to the setup and operation of the drive. For example, APOS variable holds actual
position of the motor shaft. For more details refer to Section 2.9.

Flags, Resolution and Accuracy

Any variable can be used as a flag in a logical expression and as a condition in a conditional expression. Flags are often
used to indicate that some event has occurred, logic state of an input has changed or that the program has executed to
a particular point. Variables with non ‘0’ values are evaluated as “TRUE” and variables with a “0” values are evaluated
as “FALSE”.

Variables are stored internally as 4 bytes (double word) for integer portion and 4 bytes (double word) for fractional
portion. Every variable in the system is stored as 64 bit in 32.32 fixed point format. Maximum number can be represented
by this format is +/- 2,147,483,648. Variable resolution in this format is 2.3E-10.

PM94P01C36

Programming

2.3 Arithmetic Expressions
Table 8 lists the four arithmetic functions supported by the Indexer program. Constants as well as User and System
variables can be part of the arithmetic expressions.

Examples.

V1 = V1+V2 ;Add two user variables
V1 = V1-1 ;Subtract constant from variable
V2 = V1+APOS ;Add User and System (actual position) variables
APOS = 20 ;Set System variable
V5 = V1*(V2+V3*5/2+1) ;Complicated expression

Table 8: Supported Arithmetic Expressions

Operator Symbol

Addition +

Subtraction -

Multiplication *

Division /

Result overflow for “*” and “/” operations will cause arithmetic overflow fault F_19. Result overflow/underflow for “+” and
“-” operations does not cause an arithmetic fault.

2.4 Logical Expressions and Operators
Bitwise, Boolean, and comparison operators are considered as Logical Operators. They operate on logical values of the
operands. There are two possible values for logical operand: TRUE and FALSE. Any value contained in a User variable,
System variable or flag is treated as TRUE or FALSE with these types of the operators. If a variable value equals “0”, it
is considered FALSE. All other values (non-0) including negative numbers are considered TRUE.

2.4.1 Bitwise Operators
Table 9 lists the bitwise operators supported by the Indexer program.

Table 9: Supported Bitwise Operators

Operator Symbol

AND &

OR |

XOR ^

NOT !

Both User or System variables can be used with these operators. In order to perform a bitwise (Boolean) operation, the
value must be referenced in hexadecimal format. Example: bit 22 alone would be referenced as 0x400000.

Examples:

V1 = V2 & 0xF ;clear all bits but lowest 4
IF (INPUTS & 0x3) ;check inputs 0 and 1
V1 = V1 | 0xff ;set lowest 8 bits
V1 = INPUTS ^ 0xF ;invert inputs 0-3
V1 = !IN_A1 ;invert input A1

PM94P01C 37

Programming

2.4.2 Boolean Operators
Table 10 lists the boolean operators supported by the Indexer program. Boolean operators are used in logical
expressions.

Table 10: Supported Boolean Operators

Operator Symbol

AND &&

OR ||

NOT !

Examples:

IF APOS >2 && APOS <6 || APOS >10 && APOS <20
 {statements if true}
 ENDIF
The above example checks if APOS (actual position) is within one of two windows; 2 to 6 units or 10 to 20 units.
In other words:

If (APOS is more than 2 AND less than 6)

OR

If (APOS is more than 10 AND less then 20)

THEN the logical expression is evaluated to TRUE. Otherwise it is FALSE

2.5 Comparison Operators
Table 11 lists the comparison operators supported by the Indexer program.

Table 11: Supported Comparison Operators

Operator Symbol

More >

Less <

Equal or more >=

Equal or less =<

Not Equal <>

Equal ==

Examples:

 IF APOS <=10 ; If Actual Position equal or less than 10
 IF APOS > 20 ; If Actual Position greater than 20
 IF V0 ==5 ; If V0 equal to 5
 IF V1<2 && V2 <>4 ; If V1 less than 2 and V2 doesn’t equal 4

PM94P01C38

Programming

2.6 System Variables and Flags
System variables are variables that have a predefined meaning. They give the programmer/user access to drive
parameters and functions. Some of these variables can also be set via the parameters in MotionView. In most cases
the value of these variables can be read and set in your program or via a Host Interface. Variables are either read only,
write only or read and write. Read only variables can only be read and can’t be set. For example, INPUTS = 5, is an
illegal action because you can not set an input. Conversely, write-only variables cannot be read. Reading a write-only
variable by either the variable watch window or network communications can result in erroneous data.

System Flags are System Variables that can only have values of 0 or 1. For example, IN_A1 is the system flag that
reflects the state of digital input A1. Since inputs can only be ON or OFF, then the value of IN_A1 can only be 0 or 1.

2.7 System Variables Storage Organization
All system variables are located in drive’s RAM memory and therefore are volatile. However, values for some of these
system variables are also stored in EPM. When a system variable is changed in MotionView, its value changes in both
RAM and EPM. When a system variable is changed from the user’s program, its value is changed in RAM only and will
be lost on power down.

Host interfaces have the capability to change the variable value in both the EPM and RAM. The user has a choice in
memory to change a variable in RAM and EPM or in RAM only.

2.7.1 RAM File for User’s Data Storage
In addition to the standard user variables (V0-V31 & NV0-NV31) PositionServo drives have a section of RAM memory
(256k) allocated as data storage space and available to the programmer for storage of program data.

The RAM file data storage is often required in systems where it is desirable to store large amounts of data prepared by
a host controller (PLC, HMI, PC, etc). This data might represent more complex Pick and Place coordinates, complicated
trajectory coordinates, or sets of gains/limits specific for given motion segments.

RAM memory is also utilized in applications that require data collection during system operation. At the end of a period
of time the collected data can be acquired by the host controller for analysis. For example, position errors and phase
currents collected during the move are then analyzed by the host PLC/PC to qualify system tolerance to error free
operation.

Implementation

There are 256K (262,144) bytes provided as RAM file for data storage. Since the basic data type in the drive is 64 bit
(8 bytes) 32,768 data elements can be stored in the RAM file. The file is accessible from within the User’s program
or through any external communications interface (Ethernet, ModBUs, CAN etc.). Two statements and three system
variables are provided for accessing the RAM file memory. The RAM file is volatile storage and is intended for “per
session” usage. The data saved in the RAM file will be lost when the drive is powered off.

The three system variables provided to support file access are:

VAR_MEM_VALUE (PID = 4)
VAR_MEM_INDEX (PID = 5)
VAR_MEM_INDEX_INCREMENT (PID = 6)

In addition, two statements are provided to to allow access and storage to the RAM file direct from convenient statements
within the user program. The statements MEMSET, MEMGET are described in paragraph 2.7.3 and Tables 44 & 45.

PM94P01C 39

Programming

2.7.2 Memory Access Through Special System Variables
MEM_INDEX holds the value that will be read or written to the RAM file. MEM_INDEX points to the position in the RAM
file (0 to 32767) and MEM_INDEX_INCREMENT holds the value that MEM_INDEX is going to modify after the read or
write operation is completed.
The RAM memory access is illustrated with the example program herein.

;---
;User’s program to read/write to RAM file.
;Advance index after writing/reading by 1
;Record position error to RAM file every 100 ms for 10 seconds. 10/0.1 = 100
;locations are needed
;---

#DEFINE IndexStart 0
#DEFINE MemIncrement 1
#DEFINE RecordLength 100
#DEFINE PElimit 0.1 ;0.1 user unit

VAR_MEM_INDEX = IndexStart ;set start position
VAR_MEM_INDEX_INCREMENT=MemIncrement ;set increment

;---
EVENT StorePE TIME 100

 VAR_MEM_VALUE = VAR_POSERROR ;store in RAM file.

ENDEVENT

PROGRAMSTART:

 EVENT StorePE ON

 {
 Start some motion activity….

 }
;wait for data collection is over

WHILE VAR_MEM_INDEX < (IndexStart+RecordLength)
ENDWHILE
EVENT StorePE Off ;turn off storage

;Analyze data collected. If PE > PElimit then signal system has low performance…
VAR_MEM_INDEX= IndexStart
WHILE VAR_MEM_INDEX < (IndexStart+RecordLength)
 IF (VAR_MEM_VALUE > PElimit)
 GOTO Label_SignalBad
 ENDIF
ENDWHILE

LabelSignalBad:

 {
 Signal that PE out of limits
 …
 }

END

PM94P01C40

Programming

In the RAM memory access program example, the values of PE (position error) are stored sequentially in the RAM
file every 100ms for 10 seconds. (100 samples). After collection is done the data is read from the file one by one and
compared with limit.

Variable VAR_MEM_INDEX is incremented every read or write by the value stored in VAR_MEM_INDEX_INCREMENT.
That value could be any value from -32767 to 32767. This way backwards reading is also possible. If the value is 0
(zero) no increment/decrement is produced. VAR_MEM_INDEX wraps around its min/max values. I.e. if the next read
or write will result in a value more (less) than 32767 (-32767), the index will be adjusted by modulo 32767. This allows
for the creation of circular arrays. This feature can be used for diagnostics when certain parameter(s) are stored in the
memory continuously and then if the system fails the data array can be examined to simplify diagnostics.

2.7.3 Memory Access Through MEMSET, MEMGET Statements
The memory access statements MEMSET and MEMGET are provided for simplified storage of data in the RAM memory
to/from the user variables V0-V31. Using these statements any combinations of variables V0-V31 can be stored/retrieved
with a single statement. This allows for efficient access to the RAM memory area. For example, in reading 10 variables
of the user’s program. Indeed for reading 10 variables V0-V10 it would normally require 10 read statements (Vx=VAR_
MEM_VALUE). With the MEMGET statement all V0-V10 can be read in one step. The format of MEMSET/MEMGET is
as follows:

MEMSET <offset> [<varlist>]
MEMGET <offset> [<varlist>]
<offset> any valid expression that evaluates to a number between -32767 to 32767
 It specifies the offset in the RAM file where data will be stored or retrieved.
<varlist> any combinations of variables V0-V31

Examples for <offset> expression

5 constant
10+23+1 constant expression
V0 variable Must hold values in -32767 to 32767 range
V0+V1+3 expression Must evaluate to -32767 to 32767 range
Example: <offset> =5

RAM file memory

0 1 2 3 4 5 6 ... address increase

data data data data data data data

Examples for <varlist> instruction
[V0] single variable will be stored/retreived
[V0,V3,V2] variables V0,V3,V2 will be stored/retrieved
[V3-V7] variables V3 to V7 inclusively will be stored
[V0,V2,V4-V8] variables V0,V2, V4 through V8 will be stored

Storage/Retrieval order with MEMSET/MEMGET
Variables in the list are always stored in order: the variable with smallest index first and the variables with highest index
last regardless of the order they appear in the <varlist> instruction.
Example: [V0,V3, V5-V7] will be stored in memory in the order of increasing memory index as follows:

RAM file memory

V0 V3 V5 V6 V7 index increase

For comparison: [V5-V7, V0, V3] will have the same storage order as the above list regardless of the order in which the
variables are listed.

PM94P01C 41

Programming

When retrieving data with MEMGET statements memory locations will be sequentially copied to variables starting from
the one with smallest index in the list to the last with biggest index. Consider the list for the MEMGET statement:
[V2,V3,V5-V7]

RAM file memory

Data1 Data2 Data3 Data4 Data5 Data6 index increase

Here is how the data will be assigned to variables:
V2 <- Data1
V3 <- Data2
V5 <- Data3
V6 <- Data4
V7 <- Data5

2.8 System Variables and Flags Summary

2.8.1 System Variables
Section 3.2 provides a complete list of the system variables. Every aspect of the PositionServo can be controlled by
the manipulation of the values stored in the System Variables. All System Variables start with a “VAR_” followed by the
variable name. Alternatively, System Variables can be addressed as an @NUMBER where the number is the variable
Index. The most frequently used variables also have alternate names listed in Table 12.

Table 12: System Variables

Index Variable Access Variable Description Units

181 ACCEL R/W Acceleration for motion commands User Units/Sec2

71 AIN1 R Analog input. Scaled in volts. Range from -10 to +10 volts V(olt)

72 AIN2 R Analog input 2. Scaled in Volts. Range from -10 to +10 volts V(olt)

88 AOUT R/W Analog output. Value in Volts. Valid range from -10 to +10 (V)(2) V(olt)

215 APOS R/W Actual motor position User Units

190 APOS_PLS R/W Actual Motor Position Encoder Counts

182 DECEL R/W Deceleration for motion commands User Units/Sec2

83 DEXSTATUS R Drive Extended Status Word -

54 DSTATUS R Status flags register -

DFAULTS R Fault code register -

245 HOME W Start Homing (pre-defined homing) -

INDEX R Lower 8 bits are used. See ASSIGN statement for details. -

184 INPOSLIM R/W Maximum deviation of position for INPOSITION Flag to remain set User Units

65 INPUTS R Digital Inputs states. The first 12 bits correspond to the 12 drive inputs -

139 IREF W Internal Reference: Velocity / Torque RPS/A

187 MECOUNTER R Master Encoder Counts (Master Encoder Input) Encoder Counts

180 MAXV R/W Maximum velocity for motion commands User Units/Sec

140-
171

NV0 - NV31 R/W User Network Variables -

66 OUTPUTS R/W Digital outputs. Bits #0 to #4 represent outputs 1 through 5 -

216 PERROR R Position Error Feedback Pls

191 PERROR_PLS R Position Error User Units

48 PGAIN_D R/W Position loop D-gain -

47 PGAIN_I R/W Position loop I-gain -

49 PGAIN_ILIM R/W Position loop I gain limit -

46 PGAIN_P R/W Position loop P-gain -

PM94P01C42

Programming

Index Variable Access Variable Description Units

188 PHCUR R Motor phase current A(mpere)

183 QDECEL R/W Quick Deceleration for STOP MOTION QUICK statement User Units/Sec2

213 RPOS R Registration position. Valid when system flag F_REGISTRATION set User Units

212 RPOS_PLS R Registration position Feedback Pls

218 TA R Commanded acceleration User units/Sec2

214 TPOS R/W Theoretical/commanded position User Units

219 TPOS_ADV W Theoretical/commanded position advance Feedback Pls

189 TPOS_PLS R/W Theoretical/commanded position Feedback Pls

217 TV R Commanded velocity in User Units/Sec

186 UNITS R/W User Units scale.(1) UserUnits/Rev

185 VEL R/W Set Velocity when in velocity mode User Units/Sec

44 VGAIN_P R/W Velocity loop P-gain -

45 VGAIN_I R/W Velocity loop I-gain -

100-
131

V0 - V31 R/W User Variables

(1) When a “0”, (Zero), value is assigned to the variable “UNITS”, then “USER UNITS” is set to QUAD ENCODER COUNTS. This is the default setting
at the start of the program before UNITS=<value> is executed.

(2) Any value outside +/- 10 range assigned to AOUT will be automatically trimmed to that range

Example:
AOUT=100 , AOUT will be assigned value of 10.
V0=236
VOUT=V0, VOUT will be assigned 10 and V0 will be unchanged.

2.8.2 System Flags
Flags don’t have an Index number assigned to them. They are the product of a BIT mask applied to a particular system
variable by the drive and are available to the user only from the User’s program. Table 13 lists the System Flags with
access rights and description.

Table 13: System Flags

Name Access Description

IN_A1-4, IN_B1-4, IN_C1-4 R Digital inputs . TRUE if input active, FALSE otherwise

OUT1, OUT2, OUT3, OUT4, OUT5 W Digital outputs OUTPUT1- OUTPUT5

F_ICONTROL OFF R Interface Control Status (ON/OFF) #27 in DSTATUS register

F_IN_POSITION R
TRUE when Actual Position (APOS) is within limits set by
INPOSLIM variable and motion completed

F_ENABLED R Set when drive is enabled

F_EVENTS OFF R Events Disabled Status (ON/OFF) #30 in DSTATUS register

F_MCOMPLETE R
Set when motion is completed and there is no motion commands
waiting in the Motion Queue

F_MQUEUE_FULL R Motion Queue full

F_MQUEUE_EMPTY R Motion Queue empty

F_FAULT R Set if any fault detected

F_ARITHMETIC_FLT R Arithmetic fault

F_REGISTRATION R
Set when registration mark was detected. Content RPOS variable is
valid when this flag is active. Flag resets by any registration moves
MOVEPR,MOVEDR or by command REGISTRATION ON

F_MSUSPENDED R Set if motion suspended by statement MOTION SUSPEND

PM94P01C 43

Programming

Flag logic is shown herein.
IF
 TPOS-INPOSLIM < APOS < TPOS+INPOSLIM && F_MCOMPLETE && F_MQUEUE_EMPTY
 F_IN_POSITION = TRUE
ELSE
 F_IN_POSITION = FALSE
ENDIF

For VELOCITY mode F_MCOMPLETE and F_MQUEUE_EMPTY flags are ignored and assumed TRUE.

2.9 Control Structures
Control structures allow the user to control the flow of the program’s execution. Most of the power and utility of any
programming language comes from its ability to change statement order with structure and loops.

2.9.1 DO/UNTIL Structure
This statement is used to execute a block of code one time and then continue executing that block until a condition
becomes true (satisfied). The difference between DO/UNTIL and WHILE statements is that the DO/UNTIL instruction
tests the condition after the block is executed so the conditional statements are always executed at least one time. The
syntax for DO/UNTIL statement is:

 DO
 …statements
 UNTIL <condition>
The flowchart and code segment in Figure 14 illustrate the use of the DO/UNTIL statement.

… statements

DO
 MOVED 3
 WAIT TIME 2000
UNTIL IN_A3
…statements

Start

Move DIstance 3
units. Delay 2

seconds

Is input A3 ON?

End

YES

NO

Figure 14: DO/UNTIL Code and Flowchart

2.9.2 WHILE Structure
This statement is used if you want a block of code to execute while a condition is true.

WHILE <condition>

 …statements

ENDWHILE

PM94P01C44

Programming

The flowchart and code segment in Figure 15 illustrate the syntax for the WHILE instruction.

WHILE <condition>

 …statements

ENDWHILE

…statements

WHILE IN_A3
 MOVED 3
 WAIT TIME 2000
ENDWHILE

…statements

Start

Is input A3 ON?

End

YES

NO

Move DIstance 3
units. Delay 2

seconds

Figure 15: WHILE Code and Flowchart

2.9.3 Subroutines
A subroutine is a group of SML statements that is located at the end of the main body of the program. It starts with a
label which is used by the GOSUB statement to call the subroutine and ends with a RETURN statement. The subroutine
is executed by using the GOSUB statement in the main body of the program. Subroutines can not be called from an
EVENT or from the FAULT handlers.

When a GOSUB statement is executed, execution is transferred to the first line of the subroutine. The subroutine is
then executed until a RETURN statement is met. When the RETURN statement is executed, the program’s execution
returns to the program line, in the main program, following the GOSUB statement. Subroutines may have more than
one RETURN statement in its body.

Subroutines may be nested up to 32 times. Only the main body of the program and subroutines may contain a GOSUB
statement. Refer to Section 3.1 for more detailed information on the GOSUB and RETURN statements. The flowchart
and code segment in Figure 16 illustrate the use of subroutines.

…statements
GOSUB CalcMotionParam
MOVED V1
OUT2=1
…statements
END
;Subs usually located after END
;statement of main program
;
CalcMotionParam:
V1 = (V3*2)/V4
RETURN

Start

End

Label

GOSUB

RETURN

Main Program

Figure 16: GOSUB Code and Flowchart

PM94P01C 45

Programming

2.9.4 IF Structure
The “IF” statement is used to execute an instruction or block of instructions one time if a condition is true. The simplified
syntax for the IF statement is:

 IF condition
 …statement(s)
 ENDIF

The flowchart and code segment in Figure 17 illustrate the use of the IF statement.

…statements

IF IN_A2
 OUT2 = 1
 MOVED 3
ENDIF

..statements

Start

Set Output 2 ON
Move Distance 3

units

End

Yes

NO

Input A2 ON?

Figure 17: IF Code and Flowchart

2.9.5 IF/ELSE Structure
The IF/ELSE statement is used to execute a statement or a block of statements one time if a condition is true and a
different statement or block of statements if condition is false.

The simplified syntax for the IF/ELSE statement is:

IF <condition>
 …statement(s)
ELSE
 …statement(s)
ENDIF

The flowchart and code segment in Figure 18 illustrate the use of the IF/ELSE instruction.

…statements

IF IN_A2
 OUT2=1
 MOVED 3
ELSE
 OUT2=0
 MOVED 5
ENDIF

..statements

Start

Input A2 ON?

Set Output 2 ON
Move Distance 3

units

End

Yes

Set Output 2 OFF
Move Distance 5

units

No

Figure 18: IF/ELSE Code and Flowchart

PM94P01C46

Programming

2.9.6 WAIT Statement
The WAIT statement is used to suspend program execution until or while a condition is true, for a specified time period
(delay) or until motion has been completed. The simplified syntax for the WAIT statement is:

WAIT UNTIL <condition>
WAIT WHILE <condition>
WAIT TIME <time>
WAIT MOTION COMPLETE

2.9.7 GOTO Statement & Labels
The GOTO statement can be used to transfer program execution to a new point marked by a label. This statement is
often used as the action of an IF statement. The destination label may be above or below the GOTO statement in the
application program.

Labels may be any alphanumeric string 64 characters in length beginning with a letter and ending with a colon “:”.

GOTO TestInputs
 …statements
TestInputs:
 …statements
IF (IN_A1) GOTO TestInputs

Table 14 provides a short description of the instructions used for program branching.

Table 14: Program Branching Instructions

Name Description

GOTO Transfer code execution to a new line marked by a label

DO/UNTIL Do once and keep doing until conditions becomes true

IF and IF/ELSE Execute if condition is true

RETURN Return from subroutine

WAIT Wait fixed time or until condition is true

WHILE Execute while a condition is true

GOSUB Go to subroutine

2.10 Scanned Event Statements
A Scanned Event is a small program that runs independently of the main program. SCANNED EVENTS are very useful
when it is necessary to trigger an action , i.e. handle I/O, while the motor is in motion. When setting up Events, the first
step is to define both the action that will trigger the event as well as the sequence of statements to be executed once the
event has been triggered. Events are scanned every 512µs. Before an Event can be scanned however it must first be
enabled. Events can be enabled or disabled from the user program, from another event or from itself (see explanations
below). Once the Event is defined and enabled, the Event will be constantly scanned until the trigger condition is met,
this scan rate is independent of the main program’s timing. Once the trigger condition is met, the Event statements will
be executed independently of the user program.

Scanned events are used to record events and perform actions independent of the main body of the program. For
example, if you want output 3 to come ON when the position is greater than 4 units, or if you need to turn output 4 ON
whenever input 2 and 3 are ON, you may use the following scanned event statements.

 EVENT PositionIndicator APOS > 4
 OUT3=1
 ENDEVENT

 EVENT Inputs3and4 IN_A4 & IN_B1
 OUT4=1
 ENDEVENT

PM94P01C 47

Programming

Scanned events may also be used with a timer to perform an action on the periodic time basis.

The program statements contained in the action portion of the scanned event can be any legal program statement except
the following statements: Subroutine calls (GOSUB), DO/WHILE, WHILE, WAIT, GOTO and also motion commands:
MOVED,MOVEP, MDV, STOP, MOTION SUSPEND/RESUME.

EVENT <name> INPUT <inputname> RISE

This scanned event statement is used to execute a block of code each time a specified input <inputname> changes its
state from low to high.

EVENT <name> INPUT <inputname> FALL

This scanned event statement is used to execute a block of code each time a specified input <inputname> changes its
state from high to low.

EVENT <name> TIME <timeout>

This scanned event statement is used to execute a block of code with a repetition rate specified by the <timeout>
argument. The range for “timeout” is 0 - 50,000ms (milliseconds). Specifying a timeout period of 0 ms will result in the
event running every event cycle (256ms).

EVENT <name> expression

This scanned event statement is used to execute a block of code when the expression evaluates as true.

EVENT <name> ON/OFF

This statement is used to enable/disable a scanned event. Statement can be used within event’s block of code.

Scanned Event Statements Summary

Table 15 contains a summary of instructions that relate to scanned events. Refer to Section 3 “Language Reference”
for more detailed information.

Table 15: Scanned Events Instructions

Name Description

EVENT <name> ON/OFF enable / disable event

EVENT <name> INPUT <inputname> RISE Scanned event when <input name> goes low to high

EVENT <name> INPUT <inputname> FALL Scanned event when <input name> goes high to low

EVENT <name> TIME <value> Periodic event with <input name> repetition rate.

EVENT <name> expression Scanned event on expression = true

PM94P01C48

Programming

2.11 Motion

2.11.1 How Moves Work
The position command that causes motion to be generated comes from the profile generator or profiler for short.
The profile generator is used by the MOVE, MOVED, MOVEP, MOVEPR, MOVEDR and MDV statements. MOVE
commands generate motion in a positive or negative direction, while or until certain conditions are met. For example
you can specify a motion while a specific input remains ON (or OFF). MOVEP generates a move to specific absolute
position. MOVED generates incremental distance moves, i.e. move some distance from its current position. MOVEPR
and MOVEDR are registration moves. MDV commands are used to generate complicated profiles. Profiles generated
by these commands are put into the motion stack which is 32 levels deep. By default when one of these statements
(except for MDV) is executed, the execution of the main User Program is suspended until the generated motion is
completed. Motion requests generated by an MDV statement or MOVE statement with the “C” modifier do not suspend
the program. All motion statements are put into the motion stack and executed by the profiler in the order in which they
where loaded. The Motion Stack can hold up to 32 moves. The SML language allows the programmer to load moves
into the stack and continue on with the program. It is the responsibility of the programmer to check the motion stack
to make sure there is room available before loading new moves. This is done by checking the appropriate bits in the
System status register or the appropriate system flag.

2.11.2 Incremental (MOVED) and Absolute (MOVEP) Motion
MOVED and MOVEP statements are used to create incremental and absolute moves respectively. The motion that
results from these commands is by default a trapezoidal velocity move or an S-curved velocity move if the “,S” modifier
is used with the statement,

For example:

 MOVEP 10 ;will result in a trapezoidal move

But

 MOVEP 10,S ;will result in an S-curved move

In the above example, (MOVEP 10), the length of the move is determined by the argument following the MOVEP
command, (10). This argument can be a number, a variable or any valid arithmetic expression. The maximum velocity
of the move is determined by setting the system variable MAXV. The acceleration and deceleration are determined by
setting the system variables ACCEL and DECEL respectively.

If values for velocity, acceleration and deceleration, for a specified distance, are such that there is not enough time to
accelerate to the specified velocity, the motion profile will result in triangular or double S profile as illustrated in Figure
19.

PM94P01C 49

Programming

Velocity

Trapezoidal moves

Velocity

Velocity

Velocity

Velocity = 20

Velocity = 20

max velocity < 20

max velocity < 20

Time

Time

Time

Time

Move2 - 1.5 unitsMove1- 4 units

Move4 - 1.5 unitsMove3- 4 units

MOVE 1 MOVE 2

MOVE 3 MOVE 4

S-curve moves

Figure 19: Move Illustration

ACCEL = 200
DECEL = 200
MAXV = 20
MOVED 4 ;Move 1
MOVED 1.5 ;Move 2
MOVED 4 , S ;Move 3
MOVED 1.5 , S ;Move 4

All four of the moves shown in Figure 19 have the same Acceleration, Deceleration and Max Velocity values. Moves 1
and 3 have a larger value for the move distance than Moves 2 and 4. In Moves 1 and 3 the distance is long enough to
allow the motor to accelerate to the profiled max velocity and maintain that velocity before decelerating down to a stop.
In Moves 2 and 4 the distance is so small that while the motor is accelerating towards the profiled Max Velocity it has to
decelerate to a stop before it can ever obtain the profiled Max Velocity.

2.11.3 Incremental (MOVED) Motion
Incremental motion is defined as a move of some distance from the current position. ‘Move four revolutions from the
current position’ is an example of an incremental move.

MOVED is the statement used to create incremental moves. The simplified syntax is:

MOVED <+/-distance>

+/- sign will tell the motor shaft what direction to move.

2.11.4 Absolute (MOVEP) Move
Absolute motion is defined as a motion to some fixed position from the current position. The fixed position is defined
as a position relative to a fixed zero point. The zero point for a system is normally established during the homing cycle,
typically performed immediately after power-up.

During a homing cycle, the motor will make incremental moves while checking for a physical input, index mark, or
both.

PM94P01C50

Programming

2.11.5 Registration (MOVEDR MOVEPR) Moves
MOVEPR and MOVEDR are used to move to position or distance respectively just like MOVEP and MOVED. The
difference is that while the statements are being executed they are looking for a registration signal or registration input
(C3). If during the motion a registration signal is detected, then a new end position is generated. With both the MoveDR
and MovePR statements the drive will increment the distance called out in the registration argument. This increment will
be referenced from the position where the registration input has seen.

Example:

MOVEDR 5, 1 ;Statement move a distance of 5 user units or registration position +
 ;1 user units if registration input is activated during motion.

There are two exceptions to this behavior:

Exception one:
The move will not be modified to “Registration position +displacement” if the registration was detected while sys-
tem was decelerating to complete the motion.

Exception two:
Once the registration input is seen, there must be enough room for the motor to decelerate to a stop using the
profiled Decel Value. If the new registration move is smaller than the distance necessary to come to a stop, then
the motor will overshoot the new registration position.

2.11.6 Segment Moves
In addition to the simple moves that can be generated by MOVED and MOVEP statements, complex profiles can be
generated using segment moves. A segment move represents one portion of a complete move. A complete move is
constructed out of two or more segments, starting and ending at zero velocity.

2.11.7 MDV Segments
Segments are created using a sequence of MDV statements. The simplified syntax for the MDV (Move Distance with
Velocity) statement is:

 MDV <distance>,<velocity>

The <distance> is the length of the segment move. The <velocity> is the final velocity for the segment move. The
starting velocity is either zero or the final velocity of the previous segment. The final segment in a complete move must
have a velocity of zero. If the final segment has a final velocity other than zero, a motion stack underflow fault will occur
(F_24).

The profile shown in Figure 20 can be broken up into 8 MDV moves. The first segment defines the distance between
point 1 and point 2 and the velocity at point 2. So, if the distance between point 1 and 2 was 3 units and the velocity at
point 2 was 56 Units/S, the command would be: MDV 3 , 56. The second segment gives the distance between point 2
and 3 and the velocity at point 3, and so on.

PM94P01C 51

Programming

65

55

45

35

25

15

5

5 10 15 20 25 30

Point
1

Point
2

Point
4Point

3

Point
8

Point
9

Point
6

Po nt
5

Point
7

Distance (units)
S824

Figure 20: MDV Segment Example

Table 16 lists the supporting data for the graph in Figure 20.

Table 16: MDV Segment Example

Segment Number Distance moved during segment Velocity at the end of segment

1 3 56

2 3 12

3 4 16

4 2 57

5 2.5 57

6 3 11

7 5 20

8 5 0

- - -

;Segment moves
MDV 3 , 56
MDV 3 , 12
MDV 4 , 16
MDV 2 , 57
MDV 2.5 , 57
MDV 3 , 11
MDV 5 , 20
MDV 5 , 0
END

The following equation can be used to calculate the acceleration/deceleration that results from a segment move.

Accel = (Vf
2 - V0

2) / [2*D]
Vf = Final velocity
V0 = Starting velocity
D = Distance

PM94P01C52

Programming

2.11.8 S-curve Acceleration
Instead of using a linear acceleration, the motion created using segment moves (MDV statements) can use S-curve
acceleration. The syntax for MDV move with S-curve acceleration is:

 MDV <distance>,<velocity>,S

Segment moves using S-curve acceleration will take the same amount of time as linear acceleration segment moves.
S-curve acceleration is useful because it is much smoother at the beginning and end of the segment, however, the peak
acceleration of the segment will be twice as high as the acceleration used in the linear acceleration segment.

2.11.9 Motion SUSPEND/RESUME
At times it is necessary to control the motion by preloading the motion stack with motion profiles. Then, based on the
User Program, execute those motion profiles at some predetermined instance. The statement “MOTION SUSPEND”
will suspend motion until the statement “MOTION RESUME” is executed. While motion is suspended, any motion
statement executed by the User Program will be loaded into the motion stack. When the “MOTION RESUME” statement
is executed, the preloaded motion profiles will be executed in the order that they were loaded.

Example:

MOTION SUSPEND
MDV 10,2 ;placed in stack
MDV 20,2 ;placed in stack
MDV 2,0 ;placed in stack
MOVED 3,C ;must use “,C “modifier. Otherwise program will hang.
MOTION RESUME

Caution should be taken when using MOVED,MOVEP and MOVE statements. If any of the MOVE instructions are
written without the “C” modifier, the program will hang or lock up. The “MOTION SUSPEND” command effectively halts
all execution of motion. In the example, as the program executes the “MDV” and “MOVED” statements, those move
profiles are loaded into the motion stack. If the final “MOVED” is missing the “C” modifier then the User Program will wait
until that move profile is complete before continuing on. Because motion has been suspended, the move will never be
complete and the program will hang on this instruction.

2.11.10 Conditional Moves (MOVE WHILE/UNTIL)
The statements “MOVE UNTIL <expression>” and “MOVE WHILE <expression>” will both start their motion profiles
based on their acceleration and max velocity profile settings. The “MOVE UNTIL <expression> statement will continue
the move until the <expression> becomes true. The “MOVE WHILE <expression>” will also continue its move while it’s
<expression> is true. Expression can be any valid arithmetic or logical expressions or their combination.

Examples:

MOVE WHILE APOS<20 ;Move while the position is less then 20, then
 ;stop with current deceleration rate.
MOVE UNTIL APOS>V1 ;Move positive until the position is greater than
 ;the value in variable V1
MOVE BACK UNTIL APOS<V1 ;Move negative until the position is less than the
 ;value in variable V1
MOVE WHILE IN_A1 ;Move positive while input A1 is activated.
MOVE WHILE !IN_A1 ;Move positive while input A1 is not activated.
 ;The exclamation mark (!) in front of IN_A1 inverts
 ;(or negates) the value of IN_A1.

This last example is a convenient way to find a sensor or switch.

PM94P01C 53

Programming

2.11.11 Motion Queue and Statement Execution while in Motion
By default when the program executes a MOVE, MOVED or MOVEP statement, it waits until the motion is complete
before going on to the next statement. This effectively will suspend the program until the requested motion is done. Note
that “EVENTS” are not suspended however and continue executing in parallel with the User Program. The Continue “C”
argument is very useful when it is necessary to trigger an action (handle I/O) while the motor is in motion. Below is an
example of the Continue “C” argument.

;This program monitors I/O in parallel with motion:
START:
 MOVED 100,C ;start moving max 100 revs
WHILE F_MCOMPLETE=0 ;while moving
 IF IN_A2 == 1 ;if sensor detected
 OUT1=1 ;turn ON output
 WAIT TIME 500 ;500 mS
 OUT1=0 ;turn output OFF
 WAIT TIME 500 ;wait 500 ms
 ENDIF
ENDWHILE
MOVED -100 ;Return back
WAIT TIME 1000 ;wait time
GOTO START ;and start all over
END

This program starts a motion of 100 revolutions. While the motor is in motion, input A2 is monitored. If Input A2 is
made during the move, then output 1 is turned on for 500ms and then turned off. The program will continue to loop in
the WHILE statement, monitoring input A2, until the move is completed. If input 2 remains ON, or made, during the
move, then Output 1 will continue to toggle On and Off every 500ms until the move is complete. If input A2 is only
made while the motion passes by a sensor wired to the input, then output 1 will stay on for 500ms only. By adding the
“Continue” argument “C” to the MOVE statement, the program is able to monitor the input while executing the motion
profile. Without this modifier the program would be suspended until all motion is done making it impossible to look for
the input during the move. After the motor has traveled the full distance it then returns back to its initial position and the
process repeats. This program could be used for a simple paint mechanism which turns ON a paint spray gun as soon
as the part’s edge (or part guide) crosses the sensor(s) because delays, such as the one created by the ‘Wait Time 500’
statement are not allowed in an events task, this processor needs to be executed from the main program with the ‘,C’
modifier on the move statement as shown.

Figure 21 illustrates the structure and operation of the Motion Queue. All moves are loaded into the Motion Queue
before they are executed. If the move is a standard move, “MOVEP 10” or “MOVED 10”, then the move will be loaded
into the queue and the execution of the User Program will be suspended until the move is completed. If the move has
the continue argument, e.g. “MOVEP 10,C” or “MOVED 10,C”, or if it is an “MDV” move, then the moves will be loaded
into Motion Queue and executed simultaneously with the User Program.

PM94P01C54

Programming

{...Statements}
......
MOVED 20,C
MDV 10,5
MDV 20,5
MDV 10,0
MOVEP 0,C
.......
{statements}

To Motion Profiler

User Program

EMPTY

EMPTY

MOVED 20

MDV 10,5

MDV 20,5

1

2

3

31

32

MDV 10,0 4

MOVEP 0 5

EMPTY 6

Queue locations

Queue INPUT pointer

Pointer alwayes positions to next
avalable location

Queue Full
flag

Queue
Empty flag

Figure 21: Motion Queue

The Motion Queue can hold a maximum of 32 motion profiles. The System Status Register contains bit values that
indicate the state of the Motion Queue. Additionally, system flags (representing individual bits of the status register)
are available for ease of programming. If the possibility of overflow exists, the programmer should check the Motion
Queue full flag before executing any MOVE statements, especially in programs where MOVE statements are executed
in a looped fashion. Attempts to execute a motion statement while the Motion Queue is full will result in fault #23. MDV
statements don’t have the “C” option and therefore the program is never suspended by these statements. If last MDV
statement in the Queue doesn’t specify a 0 velocity Motion, a Stack Underflow fault #24 will occur.

The “MOTION SUSPEND” and “MOTION RESUME” statements can be utilized to help manage the User Program
and the Motion Queue. If the motion profiles loaded into the queue are not managed correctly, the Motion Queue can
become overloaded which will cause the drive to fault.

PM94P01C 55

Programming

2.12 System Status Register (DSTATUS register)
System Status Register, (DSTATUS), is a Read Only register. Its bits indicate the various states of the PositionServo’s
subsystems as listed in Table 17. Some of the flags are available as System Flag Variables and summarized in
Table13.

Table 17: DSTATUS Register

Bit in register Description

0 Set when drive enabled

1 Set if DSP subsystem at any fault

2 Set if drive has a valid program

3 Set if byte-code or system or DSP at any fault

4 Set if drive has a valid source code

5 Set if motion completed and target position is within specified limits

6 Set when scope is triggered and data collected

7 Set if motion stack is full

8 Set if motion stack is empty

9 Set if byte-code halted

10 Set if byte-code is running

11 Set if byte-code is set to run in step mode

12 Set if byte-code is reached the end of program

13 Set if current limit is reached

14 Set if byte-code at fault

15 Set if no valid motor selected

16 Set if byte-code at arithmetic fault

17 Set if byte-code at user fault

18 Set if DSP initialization completed

19 Set if registration has been triggered

20 Set if registration variable was updated from DSP after last trigger

21 Set if motion module at fault

22 Set if motion suspended

23 Set if program requested to suspend motion

24 Set if system waits completion of motion

25 Set if motion command completed and motion Queue is empty

26 Set if byte-code task requested reset

27 If set interface control is disabled. This flag is set/clear by ICONTROL ON/OFF statement.

28 Set if positive limit switch reached

29 Set if negative limit switch reached

30
Events disabled. All events disabled when this flag is set. After executing EVENTS ON all events
previously enabled by EVENT EventName ON statements become enabled again

PositionServo variable #83 provides Extended Status Bits, the encoding of which is listed in Table 18.

PM94P01C56

Programming

Table 18: Encoding for Extended Status Bits (Variable #83 EXSTATUS):

Bit # Function Comment
0 Reserved
1 Velocity in specified window Velocity in limits as per parameter #59: VAR_VLIMIT_SPEEDWND

2-4 Reserved
5 Velocity at 0 (zero) Velocity 0: Zero defined by parameter #58: VAR_VLIMIT_ZEROSPEED

6,7 Reserved
8 Bus voltage below under-voltage limit Utilized to indicate drive is operating from +24V keep alive and a valid DC

bus voltage level is not present.
9,10 Reserved
11 Regen circuit is on Drive regeneration circuit is active. Drive will be dissipating power through

the braking resistor (if fitted).
12-20 Reserved

21 Set if homing operation in progress Drive executing Pre-defined homing function (see section 2.15).
22 Set if system homed Drive completed Pre-defined homing function (see section 2.15).
23 If set then last fault will remain on the

display until re-enabled.
User can set this bit to retain fault code on the display until re-enabled. It is
useful if there is a fault handler routine. When the fault handler is exited, the
fault number on the display will be replaced by current status (usually DiS if
bit #24 is not set). Setting bit #24 retains diagnostics on the display.

24 Set if EIP IO exclusive owner
connection is established. Cleared if
closed.

Checks if drive is controlled by EthernetIP master. Use bit #24 and bit #25 to
process “lost of connection” condition (if needed) in the user’s program

25 Set if EIP IO exclusive owner
connection times out. Cleared if exc.
owner conn exsists.

Checks if connection with Ethernet/IP master is lost. Use bit #24 and bit #25
to process “lost of connection” condition (if needed) in the user’s program

26-31 Reserved

2.13 Fault Codes (DFAULTS register)
Whenever a fault occurs in the drive, a record of that fault is recorded in the Fault Register (DFAULTS). In addition,
specific flags in the System Status Register will be set helping to indicate what class of fault the current fault belongs to.
Table 19 summarizes the possible fault codes. Codes from 1 to 16 are used for DSP subsystem errors. Codes above
that range are generated by various subsystems of the PositionServo.

Table 19: DFAULTS Register

Fault
ID

Associated flags
in status register

Description

1 1, 3 Over voltage
2 1, 3 Invalid Hall sensors code
3 1, 3 Over current
4 1, 3 Over temperature
5 1, 3 The drive is disabled by the EN954-1 Safety Function
6 1, 3 Over speed. (Over speed limit set by motor capability in motor file)
7 1, 3 Position error excess.
8 1, 3 Attempt to enable while motor data array invalid or motor was not selected.
9 1,3 Motor over temperature switch activated
10 1,3 Sub processor error

11-13 - Reserved
14 1,3 Under voltage
15 1,3 Hardware current trip protection
16 - Reserved
17 3 Unrecoverable error.
18 16 Division by zero
19 16 Arithmetic overflow

PM94P01C 57

Programming

Fault
ID

Associated flags
in status register

Description

20 3 Subroutine stack overflow. Exceeded 16 levels subroutines stack depth.
21 3 Subroutine stack underflow. Executing RETURN statement without preceding call to subroutine.
22 3 Variable evaluation stack overflow. Expression too complicated for compiler to process.
23 21 Motion Queue overflow. 32 levels depth exceeded
24 21 Motion Queue underflow. Last queued MDV statement has non 0 target velocity
25 3 Unknown opcode. Byte code interpreter error
26 3 Unknown byte code. Byte code interpreter error
27 21 Drive disabled. Attempt to execute motion while drive is disabled.
28 16, 21 Accel too high. Motion statement parameters calculate an Accel value above the system capability.
29 16, 21 Accel too low. Motion statement parameters calculate an Accel value below the system capability.
30 16, 21 Velocity too high. Motion statement parameters calculate a velocity above the system capability.
31 16, 21 Velocity too low. Motion statement parameters calculate a velocity below the system capability.
32 3,21 Positive limit switch engaged
33 3,21 Negative limit switch engaged
34 3,21 Attempt at positive motion with engaged positive limit switch
35 3,21 Attempt at negative motion with engaged negative limit switch
36 3 Hardware disable (enable input not active when attempting to enable drive from program or interface)
37 3 Undervoltage
38 3 EPM loss
39 3,21 Positive soft limit reached
40 3,21 Negative soft limit reached
41 3 Attempt to use variable with unknown ID from user program
45 1,3 Secondary encoder position error excess

2.14 Limitations and Restrictions
Communication Interfaces Usage Restrictions

Simultaneous connection to the RS485 port is allowed for retransmitting (conversion) between interfaces.

WARNING!
Usage of the RS485 simultaneously with Ethernet may lead to unpredictable behavior since the drive
will attempt to perform commands from both interfaces concurrently.

Motion Parameters Limitation

Due to a finite precision in the calculations there are some restrictions for acceleration/deceleration and max velocity
for a move. If you receive arithmetic faults during your programs execution, it is likely due to these limitations. Min/Max
values are expressed in counts or counts/sample, where the sample is a position loop sample interval (512msec).

Table 20: Motion Parameter Limits

Parameter MIN MAX Units

Accel / Decel 65/(2^32) 512 counts/sample^2

MaxV (maximum velocity) 0 2048 counts/sample

Max move distance 0 +/- 2^31 counts

Stacks and Queues Depth Limitations

Table 21: Stack Depth Limit

Stack/Queue Motion Queue Subroutines Stack Number of Events

Depth 32 32 32

PM94P01C58

Programming

2.15 Homing

2.15.1 What is Homing?
Predefined (firmware based) homing functionality is available on PositionServo drives with firmware 3.03 or later.
In addition custom homing functionality can be created by the programmer within the user program by utilizing the
programming command set available.

Examples of custom homing routine creation as well as user program code to replicate each of the predefined homing
routines is available from technical support.

Homing is the method by which a drive seeks the home position (also called the datum, reference point, or zero point).
There are various methods of achieving this using:

•	 limit switches at the ends of travel, or

•	 a dedicated home switch, or

•	 an Index Pulse or zero reference from the motor feedback device, or

•	 a combination of the above.

In order to use home methods involving Motor Index Pulse (zero pulse), the index pulse of the motor MUST be connected
to the drive registration input (C3). For encoder motors this connection can be made directly. Connect the 0V ref for the
encoder to P3-36 (IN_C_COM) and the Z+ line from the encoder to P3-39 (IN_C3).

For convenience of wiring and for Resolver motors the Z pulse output from the simulated encoder can be looped back
into the C3 registration input. Connect P3-36 (IN_C_COM) to the digital ground terminal P3-5 and P3-39 (IN_C3) to P3-
11 (BZ+). For Resolver motors the Z Pulse is created by the simulated encoder at 0 degrees of the motor shaft.

Establish the time period that the Z pulse must be present on the input in order for it to be reliably detected (back thru
C3), by calculating the maximum homing speed for the specific application. A 1kW pull-up resistor is available for those
with issues picking up the index pulse.

2.15.2 The Homing Function
The homing function provides a set of trajectory parameters to the position loop, as shown in Figure 22. They are
calculated based on user supplied variable values such as:

VAR_HOME_OFFSET
VAR_HOME_METHOD
VAR_HOME_SWITCH_INPUT
VAR_HOME_FAST_VEL
VAR_HOME_SLOW_VEL
VAR_HOME_ACCEL
VAR_START_HOMING

Trajectory
Parameter

Position
DemandHoming

Function
Trajectory
Generator

Position
Loop

Home Offset
Homing Method
Homing Speeds
Home Velocity Fast/Slow
Homing Acceleration

Figure: 22: Homing Function

Homing Function Monitoring:

The extended drive status variable (#83 EXSTATUS variable) contains bit values for monitoring the homing function
over the communications interface.

Bit 21 of #83 indicates homing procedure in progress and is set to logic 1 while homing is being executed.
Bit 22 of #83 indicates homing complete. It is set to 1 upon the successful completion of the homing routine.

PM94P01C 59

Programming

2.15.3 Home Offset
The home offset is the difference between the zero position for the application and the machine home position (found
during homing). During homing the home position is found and once the homing is completed the zero position is offset
from the home position by adding the home offset to the home position. All subsequent absolute moves shall be taken
relative to this new zero position. This is illustrated in Figure 23. Offset can either be set in User Units (UU) by writing
to variable #240, or in encoder counts by writing to variable #241. Setting a value for either variable #240 or #241 will
result in the value being automatically calculated for the respective variable.

VAR_HOME_OFFSET (#240)
VAR_HOME_OFFSET_PULSES (#241)

Home
Position

Zero
Position

home_offset

Figure 23: Home Offset

2.15.4 Homing Velocity
There are two homing velocities: fast and slow. These velocity variables are used to find the home switch and to find the
index pulse. Which velocity (fast or slow) is used to locate the home switch and the index pulse depends on the homing
routine selected.

VAR_HOME_FAST_VEL (#242)
VAR_HOME_SLOW_VEL (#243)

2.15.5 Homing Acceleration
Homing acceleration establishes the velocity ramp rate to be used for all accelerations and decelerations within the
standard homing modes. Note that in homing, it is not possible to program a separate deceleration rate.

VAR_HOME_ACCEL (#239)

2.15.6 Homing Switch
The homing switch variable enables the user to select the PositionServo input used for the Home Switch connection.
The Homing Switch Input Assignment range is 0 - 11. Inputs A1-A4 are assigned 0 to 3, respectively; inputs B1-B4 are
assigned 4 to 7, respectively; and inputs C1-C4 are assigned 8 to 11, respectively.

VAR_HOME_SWITCH_INPUT (#246)

WARNING!
•	 Setting inputs A1 and A2 as the home switch in methods that do NOT use limit switches can cause the drive to behave in an unexpected manner.
•	 Input A3 is a dedicated hardware enable input and should never be assigned as the homing switch input.
•	 Input C3 can be used as the homing switch input only in methods that do not home to an index pulse from an encoder. Methods that use an index

pulse automatically use Input C3 for capture of the index pulse, as described previously.

2.15.7 Homing Start
The homing operation is initiated using the home start variable. Start Homing range is: 0 or 1. When set to 0, no action
occurs. When set to 1, the homing operation is started. it is recommended to directly write to VAR_START_HOMING
solely via network communications.

VAR_START_HOMING (#245)

‘HOME’ is the logical command to set VAR_START_HOMING. Writing the word ‘HOME’ within the user program will
result in the homing operation commencing. After initiating the HOME command with firmware 3.60 (and later) the user
program will not execute subsequent lines of code until after homing is completed (similar to MOVE P). If either using
firmware prior to 3.60 or if user initiates homing in the indexer program via the statement VAR_START_HOMING=1,
then it is recommended to immediately follow that statement with the following code:

WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000.

Doing this ensures no further lines of code will be executed until homing is complete.

PM94P01C60

Programming

2.15.8 Homing Method

VAR_HOME_METHOD (#244)

The Home Method establishes the method that will be used for homing. All supported methods are summarized in
Table 22 and described in sections 2.15.9.1 through 2.15.9.25. These homing methods define the location of the home
position. The zero position is always the home position adjusted by the homing offset.

Table 22: Homing Methods

Method Home Position

0 No operation/reserved. An attempt to execute 0 will result in execution of method 1.

1 Location of first encoder index pulse is on the positive side of the negative limit switch.

2 Location of first encoder index pulse is on the negative side of the positive limit switch.
3 Location of first index pulse is on the negative side of a positive home switch.1

4 Location of first index pulse is on the positive side of a positive home switch.1

5 Location of first index pulse is on the positive side of a negative home switch.2
6 Location of first index pulse is on the negative side of a negative home switch.2

7 Location of first index pulse is on the negative side of the negative edge of an intermittent home switch.3

8 Location of first index pulse is on the positive side of the negative edge of an intermittent home switch.3

9 Location of first index pulse is on the negative side of the positive edge of an intermittent home switch.3

10 Location of first index pulse is on the positive side of the positive edge of an intermittent home switch.3
11 Location of first index pulse is on the positive side of the positive edge of an intermittent home switch.3
12 Location of first index pulse is on the negative side of the positive edge of an intermittent home switch.3

13 Location of first index pulse is on the positive side of the negative edge of an intermittent home switch.3

14 Location of first index pulse is on the negative side of the negative edge of an intermittent home switch.3

15 Reserved for future use.
16 Reserved for future use
17 The edge of a negative limit switch.
18 The edge of a positive limit switch.
19 The edge of a positive home switch.
20 Reserved for future use.
21 The edge of a negative home switch.
22 Reserved for future use.
23 Positive edge of an intermittent home switch.
24 Reserved for future use.
25 The negative edge of an intermittent home switch.
26 Reserved for future use.
27 Negative edge of an intermittent home switch.
28 Reserved for future use.
29 The positive edge of an intermittent home switch.

30 Reserved for future use.

31 Reserved for future use.
32 Reserved for future use.
33 The first index pulse on the negative side of the current position.
34 The first index pulse on the positive side of the current position.

35
Current position becomes home position. Home offset is also active and will be added to current position to
form the final value.

1 - A positive home switch is one that goes active at some position, and remains active for all positions greater than that one.
2 - A negative home switch is one that goes active at some position, and remains active for all positions less than that one.
3 - An intermittent home switch is one that is only active for a limited range of travel.

PM94P01C 61

Programming

2.15.9 Homing Methods
There are several types of homing methods but each method establishes the:

•	 Homing signal (positive limit switch, negative limit switch, home switch ,or index pulse)
•	 Direction of actuation and, where appropriate, the direction of the index pulse.

The homing method descriptions and diagrams in this manual are based on those in the CANopen Profile for Drives
and Motion Control (DSP 402). As illustrated in Figure 24, each homing method diagram shows the motor in the starting
position on a mechanical stage. The arrow line indicates direction of motion and the circled number indicates the homing
method (the mode selected by the Homing Method variable).

The location of the circled method number indicates the home position reached with that method. The text designators
(A, B) indicate the logical transition required for the homing function to complete it’s current phase of motion. Dashed
lines overlay these transitions and reference them to the relevant transitions of limit switches, homing sensors, or index
pulses.

Definitions

Positive home switch: goes active at some position, and remains active for all positions greater than that one.

Negative home switch: goes active at some position, and remains active for all positions less than that one.

Intermittent home switch: is one that is only active for a limited range of travel.

Negative Limit Switch

Index Pulse Positions

Switch active (high) Switch inactive (low)

Starting Position

Direction of Motion

Mechanical Stage Limits

Switch transition

1 Number = Homing Method Number.
Refers to Homing Method Object 0x6098
Position of the number indicates the home position

A

B 1

Figure 24: Homing Terms

NOTE
In the homing method descriptions, negative motion is leftward and positive motion is rightward

BLUE lines indicate fast velocity moves

GREEN lines indicate slow velocity moves

RED lines indicate slow velocity/100 moves

PM94P01C62

Programming

2.15.9.1 Homing Method 1: Homing on the Negative Limit Switch
Using this method, the initial direction of movement is negative if the negative limit switch is inactive (here shown as
low). The home position is at the first index pulse to the positive of the position where the negative limit switch becomes
active.

Axis will accelerate to fast homing velocity in the negative direction and continue until Negative Limit Switch (A1) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity. If the negative limit switch is already
active when the homing routine commences then this initial move is not executed. Axis will then accelerate to slow
homing velocity in the positive direction. Motion will continue until first the falling edge of the negative limit switch is
detected (position B) and then the rising edge of the first index pulse (position 1) is detected.

A

B
1

Index Pulse
(via Input C3)

Negative Limit Switch
(Input A1)

Figure 25: Homing Method 1

2.15.9.2 Homing Method 2: Homing on the Positive Limit Switch
Using this method the initial direction of movement is positive if the positive limit switch is inactive (here shown as low).
The position of home is at the first index pulse to the negative of the position where the positive limit switch becomes
active.

Axis will accelerate to fast homing velocity in the positive direction and continue until Positive Limit Switch (A2) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity. If the positive limit switch is already
active when the homing routine commences then this initial move is not executed. Axis will then accelerate to slow
homing velocity in the negative direction. Motion will continue until first the falling edge of the positive limit switch is
detected (position B) and then the rising edge of the first index pulse (position 2) is detected.

A

B
2

Index Pulse
(via Input C3)

Positive Limit Switch
(Input A2)

Figure 26: Homing Method 2

PM94P01C 63

Programming

2.15.9.3 Homing Method 3: Homing on the Positive Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
first index pulse to the negative of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.
If the homing switch is already active when the homing routine commences then this initial move is not executed. Axis
will then accelerate to fast homing velocity in negative direction. Motion will continue until first the falling edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 3) is detected.

A

B

3

3

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 27: Homing Method 3

2.15.9.4 Homing Method 4: Homing on the Positive Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is active). The home position is the
first index pulse to the positive of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity. If the homing switch is already inactive when the homing routine commences then this initial move is not
executed. Axis will then accelerate to fast homing velocity in positive direction. Motion will continue until first the rising
edge of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 4) is
detected.

A

B

4

4

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 28: Homing Method 4

PM94P01C64

Programming

2.15.9.5 Homing Method 5: Homing on the Negative Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the first index pulse to the positive of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.
If the homing switch is already active when the homing routine commences then this initial move is not executed. Axis
will then accelerate to fast homing velocity in positive direction. Motion will continue until first the falling edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 5) is detected.

A

B

5

5

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 29: Homing Method 5

2.15.9.6 Homing Method 6: Homing on the Negative Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is active). The home position is the
first index pulse to the negative of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via Var_
Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero velocity.
If the homing switch is already inactive when the homing routine commences then this initial move is not executed. Axis
will then accelerate to fast homing velocity in negative direction. Motion will continue until first the rising edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 6) is detected.

A

B

6

6

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 30: Homing Method 6

PM94P01C 65

Programming

2.15.9.7 Homing Method 7: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
first index pulse to the negative of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in negative direction. Motion will continue until first the falling edge of
the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 7) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above, but moving negative instead of positive and without stopping on detection
of the homing switch rising edge.

A

B
7

7 B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 31: Homing Method 7

PM94P01C66

Programming

2.15.9.8 Homing Method 8: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is active). The home position is the
first index pulse to the positive of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already inactive when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in positive direction. Motion will continue until first the rising edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 8) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above.

A

B
8

8B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 32: Homing Method 8

PM94P01C 67

Programming

2.15.9.9 Homing Method 9: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive. The home position is the first index pulse to the negative
of the position where the homing switch becomes inactive on its negative edge.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to fast homing velocity in negative direction. Motion will continue until first the rising edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 9) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above but ignoring the initial move in the positive direction.

A

B
9

A

B
9

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 33: Homing Method 9

PM94P01C68

Programming

2.15.9.10 Homing Method 10: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive. The home position is the first index pulse to the positive
of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will continue running at fast homing velocity in positive direction until the rising edge of the first index pulse
(position 10) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A
10

A
10

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 34: Homing Method 10

PM94P01C 69

Programming

2.15.9.11 Homing Method 11: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the first index pulse to the positive of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in positive direction. Motion will continue until first the falling edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 11) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
following the procedure as detailed above, but moving positive instead of negative and without stopping on detection
of the homing switch rising edge.

A

B

B

11

11

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 35: Homing Method 11

PM94P01C70

Programming

2.15.9.12 Homing Method 12: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is active). The home position is the
first index pulse to the negative of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already inactive when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in negative direction. Motion will continue until first the rising edge of
the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 12) is detected.

NOTE: if it the axis is on the wrong side of the homing switch when homing is started then the axis will move negative
until it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction
(positive) following the procedure as detailed above.

A

B

B

12

12

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 36: Homing Method 12

PM94P01C 71

Programming

2.15.9.13 Homing Method 13: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative. The home position is the first index pulse to the positive
of the position where the homing switch becomes inactive on its positive edge.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to fast homing velocity in positive direction. Motion will continue until first the rising edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 13) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
following the procedure as detailed above but ignoring the initial move in the negative direction.

A

B

A

B

13

13

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 37: Homing Method 13

PM94P01C72

Programming

2.15.9.14 Homing Method 14: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative. The home position is the first index pulse to the negative
of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will continue running at fast homing velocity in negative direction until the rising edge of the first index pulse
(position 14) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A
14

A
14

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 38: Homing Method 14

PM94P01C 73

Programming

2.15.9.15 Homing Method 17: Homing without an Index Pulse
Method 17 is similar to method 1, except that the home position is not dependent on the index pulse but only on the
negative limit switch translation.

Using this method the initial direction of movement is negative. The home position is the leading edge of the Negative
limit switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until Negative Limit Switch (A1) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the negative limit switch is already active when the homing routine commences then this initial move is not
executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until the falling edge of the
negative limit switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the negative limit switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity divided by 100 in the positive direction. Motion will continue until the
falling edge of the negative limit switch is detected (position 17). This is the home position (excluding offset).

A

B

17

C

Negative Limit Switch
(Input A1)

Figure 39: Homing Method 17

PM94P01C74

Programming

2.15.9.16 Homing Method 18: Homing without an Index Pulse
Method 18 is similar to method 2, except that the home position is not dependent on the index pulse but only on the
Positive limit switch translation.

Using this method the initial direction of movement is positive. The home position is the leading edge of the Positive
limit switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until Positive Limit Switch (A2) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the positive limit switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until the falling edge of
the positive limit switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
positive limit switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity divided by 100 in the negative direction. Motion will continue until the
falling edge of the positive limit switch is detected (position 18). This is the home position (excluding offset).

A

B

18

C

Positive Limit Switch
(Input A2)

Figure 40: Homing Method 18

PM94P01C 75

Programming

2.15.9.17 Homing Method 19: Homing without an Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until the homing switch is activated
(rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position 19). This is the home position (excluding offset).

A

B

19

C

Homing Switch
(Var_Home_Switch_Input)

Figure 41: Homing Method 19

PM94P01C76

Programming

2.15.9.18 Homing Method 21: Homing without an Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until the homing switch is activated
(rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until the falling edge of the
homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the falling edge of
the homing switch is detected (position 21). This is the home position (excluding offset).

A

B

21

C

Homing Switch
(Var_Home_Switch_Input)

Figure 42: Homing Method 21

PM94P01C 77

Programming

2.15.9.19 Homing Method 23: Homing without an Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until the homing switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position 23). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above but ignoring the initial move in the positive direction.

A

B

23

C

23

B

C

Homing Switch
(Var_Home_Switch_Input)

Figure 43: Homing Method 23

PM94P01C78

Programming

2.15.9.20 Homing Method 25: Homing without an Index Pulse
Using this method the initial direction of movement is positive. The home position is the negative edge of the homing
switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the falling edge of
the homing switch is detected (position 25). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A

B

25

25

A

B

Homing Switch
(Var_Home_Switch_Input)

Figure 44: Homing Method 25

PM94P01C 79

Programming

2.15.9.21 Homing Method 27: Homing without an Index Pulse
Using this method the initial direction of movement is negative. The home position is the negative edge of the homing
switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position 27). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A

B

27

27

A

B

Homing Switch
(Var_Home_Switch_Input)

Figure 45: Homing Method 27

PM94P01C80

Programming

2.15.9.22 Homing Method 29: Homing without an Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until the homing switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until the falling edge of the
homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the falling edge of
the homing switch is detected (position 29). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
following the procedure as detailed above but ignoring the initial move in the negative direction.

A

B

29

C

29

B

C

Homing Switch
(Var_Home_Switch_Input)

Figure 46: Homing Method 29

PM94P01C 81

Programming

2.15.9.23 Homing Method 33: Homing to an Index Pulse
Using this method the initial direction of movement is negative. The home position is the first index pulse to the negative
of the shaft starting Position. Axis will accelerate to fast homing velocity in the negative direction and continue until the
rising edge of the first index pulse (position 33) is detected.

33

Index Pulse
(via Input C3)

Figure 47: Homing Method 33

2.15.9.24 Homing Method 34: Homing to an Index Pulse
Using this method the initial direction of movement is positive. The home position is the first index pulse to the positive
of the shaft starting Position. Axis will accelerate to fast homing velocity in the positive direction and continue until the
rising edge of the first index pulse (position 34) is detected.

34

Index Pulse
(via Input C3)

Figure 48: Homing Method 34

2.15.9.25 Homing Method 35: Using Current Position as Home
Using this method the current position of the axis is taken as the home position. There is no motion of the motor
shaft during this procedure. Any offset specified (via the Var_Home_Offset Variable) will be added to the stored home
position.

35

Figure 49: Homing Method 35

PM94P01C82

Programming

2.15.10 Homing Mode Operation example
The following steps are needed to execute the homing operation from the user program or under interface control.

1. Set Fast homing speed: Variable #242

2. Set Slow homing speed: Variable #243

3. Set Homing accel/decel: Variable #239

4. Set home offset:

a. In User Units Variable #240

b. In encoder pulses Variable #241

5. Set Home Switch Input Variable #246

6. Select Home Method Variable #244

‘HOME’ is the logical command to set VAR_START_HOMING. Writing the word ‘HOME’ within the user program will
result in the homing operation commencing. After initiating the HOME command with firmware 3.60 (and later) the user
program will not execute subsequent lines of code until after homing is completed (similar to MOVE P). If either using
firmware prior to 3.60 or if user initiates homing in the indexer program via the statement VAR_START_HOMING=1,
then it is recommended to immediately follow that statement with the following code:

WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000.

Doing this ensures no further lines of code will be executed until homing is complete.

;Program start---
;
;
 UNITS=1 ;rps

 Accel=1000
 Decel=1000
 MaxV =20

;some program statements…
;
;
;Homing specific set up..
 VAR_HOME_FAST_VEL= 10 ;rps
 VAR_HOME_SLOW_VEL= 1 ;rps
 VAR_HOME_ACCEL= 100 ;rps/sec^2
 VAR_HOME_OFFSET= 0 ;no offset from sensor
 VAR_HOME_SWITCH_INPUT= 4 ;input B1 (0-A1, 1-A2…3-A4,4-B1,…11-C4)
 VAR_HOME_METHOD= 4 ;see table 22
 ENABLE
 HOME ;starts homing sequence
 WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000 ;wait for homing complete
;Drive homed

;Program statements…
END

PM94P01C 83

Reference

3. Reference

3.1 Program Statement Glossary
Each statement, system variable or operand is documented using the tabular format shown in Tables 23 and 24. The
field label is still shown even if there is no information for a particular field. The individual program statements are listed
in this section in alphabetical order with detailed descriptions in Tables 25 through 60.

Table 23: Language Format

KEYWORD Long Name Type

Purpose

Syntax KEYWORD <ARGUMEMTS> ,[MODIFIERS]

Remarks

See Also

Example

Table 24: Field Descriptions

Field Descriptions

KEYWORD: The KEYWORD is the name of the programming statement as it would appear in a program.

Description: The description is an interpretation of the keyword. For example: MOVEP is the keyword and Move
to Position would be a description. The description is provided only as an aid to the reader and may
not be used in a program.

Type: The type field will identify the Keyword as either a Statement or a Pseudo statement.
Statements are actual instructions converted to machine code by the compiler and form executable
commands within the drive programming.
Pseudo statements add convenience to the programmer but do not form instructions in their own
right. They are therefore not executable code and are effectively removed when the program is
compiled to it’s native state by the compiler.

Purpose: Purpose or Function of the Keyword (Programming Statement).

Syntax: This field shows proper usage of the keyword. Arguments will be written in < > brackets. Optional
arguments will be contained within [] brackets.

Arguments: The data that is supplied with a statement that modifies the behavior of the statement. For example,
MOVED=100. MOVED is the statement and 100 is the argument.

Remarks: The remark field contains additional information about the use of the statement.

See Also: This field contains a list of statements that are related to the purpose of the keyword.

Example: The example field contains a code segment that illustrates the usage of the keyword

Reference

PM94P01C84

Reference

Table 25: ASSIGN

ASSIGN Assign Input As Index Bit Statement

Purpose Assign keyword causes a specified input to be assigned to a particular bit of system variable INDEX.
Up to 8 digital inputs can be assigned to the first eight bits (bits 0 - 7) of the INDEX system variable in
any order or combination. The purpose of the Assign Keyword and INDEX system Variable is to allow
the creation of a custom input word for inclusion in the user program. Good examples of it’s use are
for implementing easy selection of preset torque, velocity or position values within the user program.

Syntax ASSIGN INPUT <input name> AS BIT <bit #>

Input name (IN_A1..IN_A2 etc.)
Bit# INDEX variable bit number from 0 to 7

Remarks Assign statements typically appear at the start of the program (Initialize and set Variables section) but
can be included in other code sections with the exception of Events and the Fault Handler.

See Also VAR_IOINDEX Variable (#220)

Example:
ASSIGN INPUT IN_B1 AS BIT 0 ;index bit 0 state matches state of input B1
ASSIGN INPUT IN_B2 AS BIT 1 ;index bit 1 state matches state of input B2

Program Start:
; <statements>
If Index == 0 ; If neither IN_B1 or IN_B2 is on
 MoveP 0 ; Move to Absolute Position 0
Endif

If Index == 1 ; If IN_B1 is on and IN_B2 is off
 MoveP 10 ; Move to Absolute Position 10
Endif

; If Index == 2

PM94P01C 85

Reference

Table 26: DEFINE

DEFINE Define name Pseudo-statement

Purpose DEFINE is used to define symbolic names for User Variables, constants, and Digital I/O for
programming convenience. Define statements greatly enhance program understanding by allowing
the user to program using symbolic strings (names)relevant to their application. DEFINE can be used
also to substitute a symbolic string.

Syntax DEFINE <name> <string>
name any symbolic string
string User Variable, constant, or Digital I/O Flag that symbolic string will represent

Remarks: DEFINE statements can be located anywhere within the user program (with the exception of events
and the fault handler). Normally practice however is to place definitions at the start of the program
prior to any executable code.

See Also

Example:

Define Start_Button IN_B1 ; Define a Digital Input
Define System_Stop Out2 ; Define a Digital Output
Define Loop_Counter V5 ; Define a User Variable
Define Loop_Increment 1 ; Define a Constant Value

Program_Start: ; Label Program Start
If Start_Button == 0 ; If input B1 is off
 Disable ; Disable Servo
 System_Stop = 1 ; Turn on Output 2
Else ; Otherwise
 System_Stop = 0 ; Turn off Output 2
 Enable ; Enable Servo
 MoveD 10 ; Move (increment) Distance
10
 Loop_Counter = Loop_Counter + Loop_Increment ; Increment Variable V5 by 1
Endif
Goto Program_Start ; Goto Label Program_Start

Table 27: DISABLE

DISABLE Disables the drive Statement

Purpose DISABLE turns OFF the power to the motor. Drive shows ‘Dis’ on display when in a disabled state.

Syntax DISABLE

Remarks Once the DISABLE statement is executed, the power to the motor is turned off and the motor can
move freely. When disabled the drive will continue to monitor feedback and the actual position
variable (APOS) will continue to update with the current position of the motor. The target position
variable (TPOS) will be updated with the value of the actual position variable (APOS) on Enable to
prevent unexpected motion from the motor shaft.

See Also ENABLE

Example:

If Start_Button == 0 ; If input B1 is off
 Disable ; Disable Servo
Else ; Otherwise
 Enable ; Enable Servo
 MoveD 10 ; Move (increment) Distance 10
Endif

PM94P01C86

Reference

Table 28: DO UNTIL

DO UNTIL Do/Until Statement

Purpose The DO / UNTIL statement is used to execute a statement or set of statements repeatedly until a
logical condition becomes true. The Do / Until statements enclose the program code to be repeatedly
executed with the UNTIL statement containing the logical statement for exit of the loop.

Syntax DO
 {statement(s)}…
UNTIL <condition>
 {statement(s)} any valid statement(s)
 <condition> The condition to be tested.

Remarks The loop statement or statements contained within a DO / UNTIL loop will always be executed at least
once because the logical condition to be tested is contained within the UNTIL statement in the last
statement of the loop.

See Also WHILE, IF

Example:
V0 = 0 ; Set V0 to Value 0
 ; Create Loop to perform Move command 12 times
DO ; Start of Do Loop
 V0 = V0 + 1 ; Add 1 to Variable V0
 Moved 5 ; Move (incremental) distance 5
Until V0 == 12 ; Loop back to DO Statement, Repeat Until Logic True

Table 29: ENABLE

ENABLE Enables the drive Statement

Purpose Enable turns on power to the motor. Drive shows ‘Run’ on display when in the enabled state.

Syntax ENABLE

Remarks Once a drive is enabled motion can be commanded from the user program. Commanding motion
while the drive is disabled will result in fault trip (F_27).

See Also DISABLE

Example: If Start_Button == 0 ; If input B1 is off
 Disable ; Disable Servo
Else ; Otherwise
 Enable ; Enable Servo
 MoveD 10 ; Move (increment) Distance 10
Endif

Table 30: END

END END program Statement

Purpose This statement is used to terminate (finish) user program and its events.

Syntax END

Remarks END can be used anywhere in program

See Also DISABLE

Example:

END ;end user program

PM94P01C 87

Reference

Table 31: EVENT

EVENT Starts Event handler Statement

Purpose EVENT keyword is used to create scanned events within the user program.
Statement also sets one of 4 possible types of events.

Syntax Any one of the 4 syntax examples herein may be used:
1. EVENT <name> INPUT <inputname> RISE
2. EVENT <name> INPUT <inputname> FALL
3. EVENT <name> TIME <period>
4. EVENT <name> <expression>
 name any valid alphanumeric string
 inputname any valid input “IN_A1 - IN_C4”
 period any integer number. Expressed in ms
 expression any arithmetic or logical expression
The following statements can not be used within event’s handler:
 MOVE,MOVED,MOVEP,MOVEDR,MOVEPR,MDV
 MOTION SUSPEND
 MOTION RESUME
 STOP MOTION
 DO UNTIL
 GOTO
 GOSUB
 HALT
 VELOCITY ON/OFF
 WAIT
 WHILE

While GOTO or GOSUB are restricted, a special JUMP statement can be used for program flow change from
within event handler. See JUMP statement description in Language Reference section.

Remarks
For syntax 1 and 2:

The Event will occur when the input with the <name/number> transition from L(Low) to H (High), for syntax 1 (RISE) and
from H (High) to L(Low) for syntax 2 (FALL).

For syntax 3:
The Event will occur when the specified , <period>, period of time has expired. This event can be used as periodic event to
check for some conditions.

For syntax 4
The Event will occur when the expression, <expression>, evaluates to be true. The expression can be any valid arithmetic
or logical expression or combination of the two. This event can be used when implementing soft limit switches or when
changing the program flow based on some conditions. Any variable, (user and system), or constants can be used in the
expression. The event will only trigger when the logic transitions from False to True. Further occurrence of the event will not
occur while the condition remains true.

See Also ENDEVENT, EVENT ON, EVENT OFF

Example:

EVENT InEvent IN_A1 RISE
 V0 = V0+1 ;V0 increments by 1 each time IN_A1 transitions from low to high
ENDEVENT
EVENT period TIME 1000 ;1000 ms = 1Sec
 V3=V0-V1 ;Event subtracts V1 from V0 and stores result in V3 every second (1000mS)

ENDEVENT
;--
 EVENT InEvent ON
 EVENT period ON
 {program statements}
END

PM94P01C88

Reference

Table 32: ENDEVENT

ENDEVENT END of Event handler Statement

Purpose Indicates end of the scanned event code

Syntax ENDEVENT

Remarks

See Also EVENT, EVENT ON, EVENT OFF

Example: EVENT InputRise IN_B4 RISE
 V0=V0+1
ENDEVENT

Table 33: EVENT ON/OFF

EVENT ON/OFF Turn events on or off Statement

Purpose Turns ON or OFF events created by an EVENT handler statement

Syntax EVENT <name> ON
EVENT <name> OFF
<name> Event handler name

Remarks

See Also EVENT

Example:

EVENT InputRise ON
EVENT InputRise OFF

PM94P01C 89

Reference

Table 34: EVENTS ON/OFF

EVENTS OFF/ON Globally Disables/enables events Statement

Purpose EVENTS OFF command when executed will disable any events currently enabled (running). EVENTS
ON Command re-enables any events previously disabled through the events off command. EVENTS
ON is not a global enable of all declared events. Events status is indicated through bit #30 of the
DSTATUS register or by system flag ‘F_EVENTSOFF’. EVENTS OFF/ON allows for easy disable and
re-activation of events in sections of the main program or subroutines that the programmer doesn’t
want interrupted by event code.

Syntax EVENTS OFF Disables execution of all events
EVENTS ON Restores execution of previously enabled events.

Remarks Events are globally disabled after a reset is made. Events are re-enable by executing the individual
EVENT <name> ON statement.

See Also EVENT

Example:
**
 EVENT SKIPOUT IN_B4 RISE ;check for rising edge of input B4
 JUMP TOGGLE ;redirect code execution to TOGGLE
 ENDEVENT ;end the event
 EVENT OVERSHOOT IN_B3 RISE ;check for rising edge of input B3
 JUMP SHUTDOWN ;redirect code execution to SHUTDOWN
 ENDEVENT ;end the event
**
 EVENT SKIPOUT ON
 EVENT OVERSHOOOT ON
**
 ……….…User code……………..

 EVENTS OFF ;turns off all events

 ……….…User code……………..

 EVENTS ON ;turns on any event previously activated

Table 35: FAULT

FAULT User generated fault Statement

Purpose Allows the user program to set a custom system fault. This is useful when the programmer needs to
define a fault code and fault process for custom conditions like data supplied by interface out of range
etc. Custom fault numbers must be in region of 128 to 240 (decimal)

Syntax FAULT FaultNumber Sets system fault.
Faultnumber - constant in range 128-240
Variables are not allowed in this statement.

Remarks Custom fault will be processed as any regular fault. There will be a record in the fault log.

See Also ON FAULT

Example:

FAULT 200 ;Sets fault #200

V0=200
FAULT V0 ;Not valid. Variables are not allowed here

PM94P01C90

Reference

Table 36: GOSUB

GOSUB Go To subroutine Statement

Purpose GOSUB transfers control to subroutine.

Syntax GOSUB <subname>

<subname> a valid subroutine name

Remarks After return from subroutine program resumes from next statement after GOSUB

See Also GOTO, JUMP, RETURN

Example:

DO
 GOSUB CALCMOVE ;Go to CALCMOVE Subroutine
 MOVED V1 ;Move distance calculated in Subroutine
UNTIL INA1
END

SUB CALCMOVE:
 V1=(V2+V3)/2 ;Subroutine statement, Calculates value for V1
RETURN ;Return to main program execution

Table 37: GOTO

GOTO Go To Statement

Purpose Transfer program execution to label following the GOTO instruction.

Syntax GOTO <label>

Remarks

See Also GOSUB, JUMP

Example:

GOTO Label2
{Statements…}

Label2:

{Statements…}

Table 38: HALT

HALT Halt the program execution Statement

Purpose Used to halt main program execution. Events are not halted by the HALT statement. Execution will be
resumed by the RESET statement or by executing a JUMP to code from the EVENT handler.

Syntax HALT

Remarks This statement is convenient when writing event driven programs.

See Also RESET

Example:

{Statements…}
HALT ;halt main program execution and wait for event

PM94P01C 91

Reference

Table 39: HOME

HOME Execute homing routine Statement

Purpose Used to initiate homing.

Syntax HOME

Remarks This statement is convenient when writing event driven programs.

See Also

Example:

{Statements…}
HOME ;initiate homing routine

Table 40: ICONTROL ON/OFF

ICONTROL
ON/OFF Enables interface control Statement

Purpose Enables/Disables interface control. Effects bit #27 in DSTATUS register and system flag F_ICONTROLOFF.
All interface motion commands and commands changing any outputs will be disabled. See Host interface
commands manual for details. This command is useful when the program is processing critical states
(example limit switches) and can’t be disturbed by the interface.

Syntax ICONTROL ON
ICONTROL OFF

Enables Interface control
Disables interface control

Remarks After reset interface control is enabled by default.

See Also

Example:
EVENT LimitSwitch IN_A1 RISE ;limit switch event
 Jump LimitSwitchHandler ;jump to process limit switch
ENDEVENT
V0=0 ;V0 will be used to indicate fault condition
EVENT LimitSwitch ON ;Turn on event to detect limit switch activation
Again:
HALT ;system controlled by interface
LimitSwitchHandler:
 EVENTS OFF ;turn off all events
 ICONTROL OFF ;disable interface control
 STOP MOTION QUICK
 DISABLE ;DISABLE
 V0=1 ;indicate fault condition to the interface
 ICONTROL ON ;Enable Interface Control
 EVENTS ON ;turn on events turned off by ‘EVENTS OFF’
 GOTO AGAIN

PM94P01C92

Reference

Table 41: IF

IF IF/ENDIF Statement

Purpose The IF statement tests for a condition and then executes the specific action(s) between the IF and
ENDIF statements if the condition is found to be true. If the condition is false, no action is taken and
the instructions following the ENDIF statement are executed. Optionally, using the ELSE statement, a
second series of statements may be specified to be executed if the condition is false.

Syntax IF <condition>
 {statements 1}
ELSE
 {statements 2}
ENDIF

Remarks

See Also WHILE, DO

Example:

IF APOS > 4 ;If actual position is greater than 4 units
 V0=2
ELSE ;otherwise... (actual position equal or less than 4)
 V0=0
ENDIF
;--
If V1 <> V2 && V3>V4 ;If V1 doesn’t equal V2 AND V3 if greater than V4
 V2=9
ENDIF

Table 42: JUMP

JUMP Jump to label from Event handler Statement

Purpose This is a special purpose statement to be used only in the Event Handler code. When the EVENT is
triggered and this statement is processed, execution of the main program is transferred to the <label>
argument called out in the “JUMP” statement. The Jump statement is useful when there is a need for
the program’s flow to change based on some event(s). Transfer program execution to the instruction
following the label.

Syntax JUMP <label>
<label> is any valid program label

Remarks Can be used in EVENT handler only.

See Also EVENT

Example:

EVENT ExternalFault INPUT IN_A4 RISE ;activate Event when IN_A4 goes high
 JUMP ExecuteStop ;redirect program to <ExecuteStop>
ENDEVENT
StartMotion:
 EVENT ExternalFault ON
 ENABLE
 MOVED 20
 MOVED -100
 {statements}
END
ExecuteStop:
 STOP MOTION ;Motion stopped here
 DISABLE ;drive disabled
 Wait Until !IN_A4 ;Wait Until Input A4 goes low
 GOTO StartMotion

PM94P01C 93

Reference

Table 43: MDV

MDV Segment Move Statement

Purpose MDV defines individual motion segment by specifying distance and final velocity (for each segment) in
User Units. Acceleration (or deceleration) is calculated automatically based on these two parameters.
This technique allows complicated moves to be created that consist of many segments. Each MDV
sequence (series of MDV segments) starts and ends with a velocity of 0. Based on this an MDV
sequence must have at least two segments. The MDV statement doesn’t suspend execution of
the main program. Each segment is loaded into the Motion Queue and the sequence executed
immediately. If the last segment in the Motion Queue doesn’t have a final velocity of 0, the drive will
generate a “Motion Queue Empty” fault #24. If the “S” modifier is used in the statement, then the
velocity acceleration/deceleration will be S-curved as opposed to be linear.

Syntax MDV <[-]segment distance>,<segment final velocity> [,S]

S[-curve] optional modifier specifies S-curve acceleration / deceleration.

See Also MOVE, MOVEP, MOVEPR, MOVED, MOVEDR, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MDV 5, 10 ;Move 5 user units and accelerate to a velocity of 10
MDV 10,10 ;Move 10 user units and maintain a velocity of 10
MDV 10,5 ;Move 10 user units and decelerate to velocity of 5
MDV 5,;0 ;Move 5 user units and decelerate to velocity 0.
 ;The last MDV must have a final velocity of 0.
{Statements…}

Table 44: MEMGET

MEMGET Memory access statements MEMGET Statement

Purpose MEMGET provides command for simplified retrieval of data from the drives RAM memory file through
transfer of data to the variables V0-V31. Using this statement any combinations of variables V0-V31
can be retrieved from the RAM file with a single statement.

Syntax MEMGET <offset> [<varlist>]
<offset> It specifies offset in RAM file where data will be retrieved.
 Range: -32767 to 32767
<varlist> any combinations of variables V0-V31

See Also MEMSET

Example:

MEMGET 5 [V0] ;single variable will be retrieved from location 5
MEMGET V1 [V0,V3,V2] ;variables V0,V3,V2 will be retrieved from
 ;memory location starting at value held in V1
MEMGET 10 [V3-V7] ;variables V3 to V7 inclusively will be retrieved
MEMGET V1 [V0,V2,V4-V8] ;variables V0,V2, V4 through V8 will be retrieved

PM94P01C94

Reference

Table 45: MEMSET

MEMSET Memory access statements MEMSET Statement

Purpose MEMSET provides command for simplified storage of data to the drives RAM memory file through
transfer of data from variables V0-V31. Using this statement any combinations of variables V0-V31
can be stored in the RAM file with a single statement.

Syntax MEMSET <offset> [<varlist>]
 <offset> It specifies offset in RAM file where data will be stored.
 Range: -32767 to 32767
<varlist> any combinations of variables V0-V31

See Also MEMGET

Example:

MEMSET 5 [V0] ;single variable will be stored in location 5
MEMSET V1 [V0,V3,V2] ;variables V0,V3,V2 will be stored in memory
 ;location starting at value held in V1
MEMSET 10 [V3-V7] ;variables V3 to V7 inclusively will be stored
MEMSET V1 [V0,V2,V4-V8] ;variables V0,V2, V4 through V8 will be stored.

Table 46: MOTION RESUME

MOTION RESUME Resume Motion Statement

Purpose Statement resumes motion previously suspended by MOTION SUSPEND. If motion was not
previously suspended, this has no effect on operation.

Syntax MOTION RESUME

See Also MOVE, MOVEP, MOVEDR, MOVED, MOVEPR ,MDV, MOTION SUSPEND

Example:

…{statements}

MOTION RESUME ;Motion is resumed from first command in motion Queue (if any)

…{statements}

Table 47: MOTION SUSPEND

MOTION SUSPEND Suspend Statement

Purpose This statement is used to temporarily suspend motion without flushing the Motion Queue’s contents.
If this statement is executed while a motion profile is being processed, then the motion will not be
suspended until after the completion of the move. If executing a series of segment moves, motion
will not be suspended until after all the MDV segments have been processed. If the Motion Queue is
empty then any subsequent motion statement will be loaded into the queue and will remain there until
the “Motion Resume” statement is executed. Any motion statements without the “C” modifier (except
MDV statements) will lock-up the User Program.

Syntax MOTION SUSPEND

Remarks Performing any MOVEx commands without “C” modifier will lock-up the user program. You will be
able to unlock it only by performing a Reset or Host Interface command “Motion Resume”

See Also MOVE, MOVEP, MOVEDR, MOVED, MOVEPR ,MDV, MOTION RESUME

Example:

…{statements}

MOTION SUSPEND ;Motion will be suspended after current motion
 ;command is finished.

…{statements}

PM94P01C 95

Reference

Table 48: MOVE

MOVE Move Statement

Purpose MOVE UNTIL performs motion until condition becomes TRUE. MOVE WHILE performs motion while
conditions stays TRUE. The statement suspends the programs execution until the motion is completed,
unless the statement is used with C modifier.

Syntax MOVE [BACK] UNTIL <condition> [,C]
MOVE [BACK] WHILE <condition> [,C]

BACK Changes direction of the move.

C (optional) C[ontinue] - modifier allows the program to continue while motion is being performed.
If a second motion profile is executed while the first profile is still in motion, the second
profile will be loaded into the Motion Stack. The Motion Stack is 32 entries deep. The
programmer should check the “F_MQUEUE_FULL” system flag to make sure that there
is available space in the queue. If the queue becomes full, or overflows, then the drive
will generate a fault.

<condition> The condition to be tested. The condition may be a comparison, an input being TRUE or
FALSE (H or L) system flag or a variable is used as flag (if 0 - false, else - true).

Remarks

See Also MOVEP, MOVED, MOVEPR, MOVEDR, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MOVE UNTIL V0<3 ;Move until V0 is less than 3
MOVE BACK UNTIL V0>4 ;Move back until V0 is greater than 4
MOVE WHILE V0<3 ;Move While V0 is less than 3
MOVE BACK WHILE V0>4 ;Move While V0 is greater than 4
MOVE WHILE V0<3,C ;Move While V0 < 3, continue program execution

Table 49: MOVED

MOVED Move Distance Statement

Purpose MOVED performs incremental motion (distance) specified in User Units. The commanded distance
can range from -231 to 231. This statement will suspend the programs execution until the motion is
completed, unless the statement is used with the “C” modifier. If the “S” modifier is used then S-curve
accel is performed during the move.

Syntax MOVED <distance>[,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue executing
while the motion profile is being executed. If the drive is in the process of executing a
previous motion profile the new motion profile will be loaded into the Motion Stack. The
Motion Stack is 32 entries deep. The programmer should check the “F_MQUEUE_FULL”
system flag to make sure that there is available space in the queue. If the queue becomes
full, or overflows, then the drive will generate a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

See Also MOVE, MOVEP, MOVEPR, MOVEDR, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MOVED 3 ;moves 3 user units forward
MOVED BACK 3 ;moves 3 user units backward

{Statements…}

PM94P01C96

Reference

Table 50: MOVEDR

MOVEDR Registered Distance Move Statement

Purpose MOVEDR performs incremental motion, specified in User Units. If during the move the registration
input becomes activated (goes high) then the current position is recorded, and the displacement
value (the second argument in the MOVEDR statement) is added to this position to form a new target
position. The end of the move is then altered to this new target position. This statement suspends
execution of the program until the move is completed, unless the statement is used with the “C”
modifier.

Syntax MOVEDR <distance>,<displacement> [,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue
executing the User Program while a motion profile is being processed. If a new motion
profile is requested while the drive is processing a move the new motion profile will be
loaded into the Motion Stack. The Motion Stack is 32 entries deep. The programmer
should check the “F_MQUEUE_FULL” system flag to make sure that there is available
space in the queue. If the queue becomes full, or overflows, then the drive will generate
a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

See Also MOVE, MOVEP, MOVEPR, MOVED, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MOVEDR 3, 2

{Statements…}

This example moves the motor 3 user units and checks for the registration input.
If registration isn’t detected then the move is completed.
If registration is detected, the registration position is recorded and a displacement value
of 2 is added to the recorded registration position to calculate the new end position.

Table 51: MOVEP

MOVEP Move to Position Statement

Purpose MOVEP performs motion to a specified absolute position in User Units. The command range for an
Absolute move is from -231 to 231 User Units. This statement will suspend the program’s execution
until the motion is completed unless the statement is used with the “C” modifier. If the “S” modifier is
used then an S-curve accel is performed during the move.

Syntax MOVEP <absolute position>[,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue
executing while the motion profile is being executed. If the drive is in the process of
executing a previous motion profile the new motion profile will be loaded into the Motion
Stack. The Motion Stack is 32 entries deep. The programmer should check the “F_
MQUEUE_FULL” system flag to make sure that there is available space in the queue. If
the queue becomes full, or overflows, then the drive will generate a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

See Also MOVE, MOVED, MOVEPR, MOVEDR, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MOVEP 3 ;moves to 3 user units absolute position

{Statements…}

PM94P01C 97

Reference

Table 52: MOVEPR

MOVEPR Registered Distance Move Statement

Purpose MOVEPR performs absolute position moves specified in User Units. If during a move the registration
input becomes activated, i.e., goes high, then the end position of the move is altered to a new target
position. The new position is generated from the second argument in the MOVEPR statement,
(displacement). This statement suspends the execution of the program until the move is completed,
unless the statement is used with the C modifier.

Syntax MOVEPR <distance>,<displacement> [,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue
executing the User Program while a motion profile is being processed. If a new motion
profile is requested while the drive is processing a move the new motion profile will be
loaded into the Motion Stack. The Motion Stack is 32 entries deep. The programmer
should check the “F_MQUEUE_FULL” system flag to make sure that there is available
space in the queue. If the queue becomes full, or overflows, then the drive will generate
a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

See Also MOVE, MOVEP, MOVEDR, MOVED, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MOVEPR 3, 2

{Statements…}

This example moves the motor to the absolute position of 3 user units while checking for
the registration input.
If registration isn’t detected, then the move is completed .
If registration is detected, the registration position is recorded and a displacement value
of 2 is added to the recorded registration position to calculate the new end position.

PM94P01C98

Reference

Table 53: ON FAULT/ENDFAULT

ON FAULT/
ENDFAULT Defines Fault Handler Statement

Purpose This statement initiates the Fault Handler section of the User Program. The Fault Handler is a piece
of code which is executed when a fault occurs in the drive. The Fault Handler program must begin
with the “ON FAULT” statement and end with the “ENDFAULT” statement. If a Fault Handler routine
is not defined, then the User Program will be terminated and the drive disabled upon the drive
detecting a fault. Subsequently, if a Fault Handler is defined and a fault is detected, the drive will be
disabled, all scanned events will be disabled, and the Fault Handler routine will be executed. The
RESUME statement can be used to redirect the program execution from the Fault Handler back to the
main program. If this statement is not utilized then the program will terminate once the ENDFAULT
statement is executed.

The following statements can’t be used in fault handler:
MOVE, MOVED, MOVEP,MOVEDR, MOVEPR, MDV, MOTION SUSPEND, MOTION RESUME,
GOTO, GOSUB, JUMP, ENABLE, WAIT and VELOCITY ON/OFF

Syntax ON FAULT
{…statements}
ENDFAULT

See Also RESUME

Example:

…{statements} ;User program
FaultRecovery: ;Recovery procedure

…{statements}

END

ON FAULT ;Once fault occurs program is directed here

…{statements} ;Any code to deal with fault

RESUME FaultRecovery ;Execution of RESUME ends Fault Handler and directs
 ;execution back to User Program.
ENDFAULT ;If RESUME is omitted the program will terminate here
 Fault routine must end with a ENDFAULT statement

Table 54: REGISTRATION ON

REGISTRATION ON Registration On Statement

Purpose This statement arms the registration input, (input IN_C3). When the registration input is activated,
the Flag Variable “F_REGISTRATION” is set and the current position is captured and stored
to the “RPOS” System Variable. Both of these variables are available to the User Program for
decision making purposes. The “REGISTRATION ON” statement, when executed will reset the “F_
REGISTRATION” flag ready for detection of the next registration input.

Syntax REGISTRATION ON Flag “F_REGISTRATION” is reset and
registration input is armed

See Also MOVEDR, MOVEPR

Example:
; Moves until input is activated and then come back to the sensor position.

…{statements}

REGISTRATION ON ;Arm registration input
MOVE UNTIL F_REGISTRATION ;Move until input is activated, (sensor hit)
MOVEP RPOS ;Absolute move to the position of the sensor

…{statements}

PM94P01C 99

Reference

Table 55: RESUME

RESUME Resume Statement

Purpose This statement redirects the code execution form the Fault Handler routine back to in the User
Program. The specific line in the User Program to be directed to is called out in the argument <label>
in the “RESUME” statement. This statement is only allowed in the fault handler routine.

Syntax RESUME <label>

<label> Label address in User Program to recommence program execution

See Also ON FAULT

Example:

…{statements}

FaultRecovery:

…{statements}

END
ON FAULT ;Once fault occurs program is directed here
…{statements} ;Any code to deal with fault
RESUME FaultRecovery ;Execution of RESUME ends Fault Handler and directs
 ;execution back the “FaultRecovery” label in the User
 ;Program.
ENDFAULT ;If RESUME is omitted the program will terminate here.
 ;Fault routine must end with a ENDFAULT statement

Table 56: RETURN

RETURN Return from subroutine Statement

Purpose This statement will return the code execution back from a subroutine to the point in the program from
where the subroutine was called. If this statement is executed without a previous call to subroutine,
(GOSUB), fault #21 “Subroutine stack underflow” will result.

Syntax RETURN

See Also GOTO, GOSUB

Example:

…{statements}…

GOSUB MySub ;Program jumps to Subroutine “MySub”
MOVED 10 ;Move to be executed once the Subroutine has executed
 ;the RETURN statement.
…{statements}

END ;main program end
MySub: ;Subroutine called out from User Program

…{statements} ;Code to be executed in subroutine

RETURN ;Returns execution to the line of code under the “GOSUB”
 ;command, (MOVED 10 statement).

PM94P01C100

Reference

Table 57: SEND / SEND TO

SEND/SEND TO Send network variable(s) Statement

Purpose This statement is used to share the value of Network Variables between drives on an Ethernet
network. Network Variables are variables NV0 through NV31. The variables to be sent out or
synchronized with, are called out in the “SEND” statement. For example, “SEND [NV5]” will take the
current value of variable NV5 and load it into the NV5 variable of every drive on the network. The
SENDTO statement only updates network variables of the drives with the same group ID listed in the
command.

Syntax SEND [NVa,NVb, NVx-NVy],

SENDTO GroupID [NVa,NVb, NVx-NVy]

a,b,x,y Any number from 0 to 31

GroupID GroupID of the drives whose
variables will be affected (synchronized)

See Also

Example:

…{statements}…

NV1=12 ;Set NV1 equal to 12
SEND [NV1] ;Set the NV1 variable to 12 in every drive in the Network.
SEND [NV5-NV10] ;Sets the NV5 through NV10 variable in all drives on the
Network.
NV20=25 ;Set NV20 equal to 25
SENDTO 2 [NV20] ;Set the NV20 variable to 25 only in drives with GroupID=2

…{statements}

END ;End main program

Table 58: STOP MOTION

STOP MOTION
[Quick] Stop Motion Statement

Purpose This statement is used to stop all motion. When the “STOP MOTION” statement is executed all
motion profiles stored in the Motion Queue are cleared, and motion will immediately be stopped
via the deceleration parameter set in the “DECEL” variable. If the “QUICK” modifier is used, then
the deceleration value will come from the “QDECEL” variable. The main use for this command is
to control an emergency stop or when the End Of Travel sensor is detected. Note that the current
position will not be lost after this statement is executed.

Syntax STOP MOTION

STOP MOTION QUICK

Stops using DECEL deceleration rate

Stops using QDECEL deceleration rate

See Also MOTION SUSPEND

Example:

…{statements}…

DECEL = 100
QDECEL = 10000

…{statements}

STOP MOTION QUICK

PM94P01C 101

Reference

Table 59: VELOCITY ON/OFF

VELOCITY
ON/OFF Velocity Mode Statement

Purpose The VELOCITY ON statement enables velocity mode in the drive. The VELOCITY OFF statement
disables velocity mode and returns drive to its default mode. (Default mode is Positioning). The
velocity value for this mode is set by writing to the System Variable “VEL”. All position related
variables are valid in this mode.

Syntax VELOCITY ON
VELOCITY OFF

Remarks The “VELOCITY ON” statement is considered one of the motion related commands. It has to be
implemented when the drive is enabled. If the “VELOCITY ON” statement is executed while the drive
is disabled, fault # 27-”Drive disabled” will occur.
Execution of any motion related profiles while the drive is in Velocity mode will be loaded into the
Motion Queue. When the “VELOCITY OFF” statement is executed the drive defaults back to Position
mode and immediately begins to execute the motion profiles stored in the Motion Queue. Please note
that the “VEL” variable can be set on the fly, allowing dynamic control of the velocity.

See Also

Example:

VEL=0 ;Set velocity to 0
VELOCITY ON ;Turn on Velocity Mode
VEL = 10 ;Set velocity to 10
…{statements}
VELOCITY OFF ;Turn off Velocity Mode

Table 60: WAIT

WAIT Wait Statement

Purpose This statement suspend the execution of the program until some condition(s) is(are) met. Conditions
include Expressions TRUE or FALSE, Preset TIME expiration, MOTION COMPLETE.

Syntax WAIT UNTIL <expression>

WAIT WHILE <expression>

WAIT TIME <time delay>

WAIT MOTION COMPLETE

wait until expression becomes TRUE

wait while expression is TRUE

wait until <time delay> in mS is expired

wait until last motion in Motion Queue completes

Remarks

See Also

Example:

WAIT UNTIL (APOS>2 && APOS<3) ;Wait until Apos is > 2 and APOS < 3
WAIT WHILE (APOS <2 && APOS>1) ;Wait while Apos is <2 and >1
WAIT TIME 1000 ;Wait 1 Sec (1 Sec=1000mS)
WAIT MOTION COMPLETE ;Wait until motion is done

PM94P01C102

Reference

Table 61: WHILE / ENDWHILE

WHILE/
ENDWHILE While Statement

Purpose The WHILE <expression> executes statement(s) between keywords WHILE and ENDWHILE
repeatedly while the expression evaluates to TRUE.

Syntax WHILE <expression>

 {statement(s)}…

ENDWHILE

Remarks WHILE block of statements has to end with ENDWHILE keyword.

See Also DO/UNTIL

Example:
WHILE APOS<3 ;Execute the statements while Apos is <3
{statement(s)}..
ENDWHILE

PM94P01C 103

Reference

3.2 Variable List
Table 62 provides a complete list of the accessible PositionServo variables. These variables can be accessed from
the user’s program or any supported communications interface protocol. From the user program, any variable can be
accessed by either its variable name or by its index value (using the syntax: @<VARINDEX> , where <VARINDEX> is
the variable index from Table 62). From the communications interface any variable can be accessed by its index value.

The column “Type” indicates the type of variable:

mtr Motor: denotes a motor value
mtn Motion: writing to an “mtn” variable could cause the start of motion
vel Velocity: denotes a velocity or velocity scaling value

The column “Format” provides the native format of the variable:

W 32 bit integer
F float (real)

When setting a variable via an external device the value can be addressed as floating or integer. The value will
automatically adjusted to fit it’s given form.

The column “EPM” shows if a variable has a non-volatile storage space in the EPM memory:

Y Variable has non-volatile storage Space in EPM
N Variable does not exist in EPM memory

The user’s program uses a RAM (volatile) ‘copy’ of the variables stored on the EPM. At power up all RAM copies
of the variables are initialized with the EPM values. The EPM’s values are not affected by changing the variables in
the user’s program. When the user’s program reads a variable it always reads from the RAM (volatile) copy of the
variable. Communications Interface functions can change both the volatile and non-volatile copy of the variable. If the
host interface requests a change to the EPM (non-volatile) value, this change is done both in the user program’s RAM
memory as well as in the EPM. Interface functions have the choice of reading from the RAM (volatile) or from the EPM
(non-volatile) copy of the variable.

The column “Access” lists the user’s access rights to a variable:

R read only
W write only
R/W read/write

Writing to an R (read-only) variable or reading from a W (write-only) variable will not work.

The column “Units” shows units of the variable. Units unique to this manual that are used for motion are:
UU user units
EC encoder counts
S seconds
PPS pulses per sample. Sample time is 255ms - servo loop rate
PPSS pulses per sample per sample. Sample time is 255ms - servo loop rate

PM94P01C104

Reference

Table 62: PositionServo Variable List

Index Name Type Format EPM Access Description Units

1 VAR_IDSTRING N R Drive’s identification string

2 VAR_NAME Y R/W Drive’s symbolic name

3 VAR_SERIAL_NUMBER R Drive’s serial number

4 VAR_MEM_INDEX R/W Position in RAM file (0 - 32767)

5 VAR_MEM_VALUE R/W Value to be read or written to the RAM file

6 VAR_MEM_INDEX_INCREMENT R/W
Holds value the MEM_INDEX will modify
once the R/W operation is complete

7 RESERVED

8 VAR_RSVD_2

9
VAR_DFAULT
Short Name: DFAULTS

R Drive Default Settings

10 VAR_M_ID mtr Y R/W* Motor ID

11 VAR_M_MODEL mtr Y R/W* Motor model

12 VAR_M_VENDOR mtr Y R/W* Motor vendor

13 VAR_M_ESET mtr Y R/W*
Motor Feedback Resolver: ‘Positive for CW’
1 - Positive for CW
0 - none

14 VAR_M_HALLCODE mtr Y R/W*
Hallcode index
Range: 0 - 5

15 VAR_M_HOFFSET mtr Y R/W* Reserved

16 VAR_M_ZOFFSET mtr Y R/W*
Resolver Offset
Range: 0 - 360

17 VAR_M_ICTRL mtr Y R/W* Reserved

18 VAR_M_JM mtr Y R/W*
Motor moment of inertia, Jm
Range: 0 - 0.1

Kgm2

19 VAR_M_KE mtr Y R/W*
Motor voltage or back EMF constant, Ke
Range: 1 - 500

V/Krpm

20 VAR_M_KT mtr Y R/W*
Motor torque or force constant, Kt
Range: 0.01 - 10

Nm/A

21 VAR_M_LS mtr Y R/W*
Motor phase-to-phase inductance, Lm
Range: 0.1 - 500

mH

22 VAR_M_RS mtr Y R/W*
Motor phase-to-phase resistance, Rm
Range: 0.01 - 500

[Ohm]

23 VAR_M_MAXCURRENT mtr Y R/W*
Motor’s max current(RMS)
Range: 0.5 - 50

[A]mp

24 VAR_M_MAXVELOCITY mtr Y R/W*
Motor’s max velocity
Range: 500 - 20,000

RPM

25 VAR_M_NPOLES mtr Y R/W*
Motor’s poles number
Rnage: 2 - 200

26 VAR_M_ENCODER mtr Y R/W*
Encoder resolution
Range: 256 - 65536 * 12/Npoles

PPR

27 VAR_M_TERMVOLTAGE mtr Y R/W*
Nominal Motor’s terminal voltage
Range: 50 - 800

[V]olt

28 VAR_M_FEEDBACK mtr Y R/W*
Feedback type
1 - Encoder
2 - Resolver

* These are all R/W variables but they only become active after variable 247 is set

PM94P01C 105

Reference

Index Name Type Format EPM Access Description Units

29 VAR_ENABLE_SWITCH_TYPE W Y R/W
Enable switch function
0 - inhibit only
1 - Run

Bit

30 VAR_CURRENTLIMIT F Y R/W Current limit [A]mp

31 VAR_PEAKCURRENTLIMIT16 F Y R/W Peak current limit for 16kHz operation [A]mp

32 VAR_PEAKCURRENTLIMIT F Y R/W Peak current limit for 8kHz operation [A]mp

33 VAR_PWMFREQUENCY W Y R/W
PWM frequency selection
0 - 16kHz
1 - 8kHz

34 VAR_DRIVEMODE W Y R/W

Drive mode:
0 - torque
1 - velocity
2 - position

 WARNING! You can
change operating modes
when required during program
execution but do not change
modes on the fly (with drive
enabled), as this may cause
unexpected behavior of the
motor.

35 VAR_CURRENT_SCALE F Y R/W
Analog input #1 current reference scale
Range: Model dependent

A/V

36 VAR_VELOCITY_SCALE vel F Y R/W
Analog input #1 velocity reference scale
Range: -10,000 to +10,000

RPM/V

37 VAR_REFERENCE W Y R/W
Reference selection:
1 - internal source
0 - external

38 VAR_STEPINPUTTYPE W Y R/W

Selects how position reference inputs
operating:
0 - Quadrature inputs (A/B)
1 - Step & Direction

39 VAR_MOTORTHERMALPROTECT W Y R/W
Motor thermal protection function:
0 - disabled
1 - enabled

40 VAR_MOTORPTCRESISTANCE F Y R/W
Motor thermal protection PTC cut-off
resistance in Ohms

[Ohm]

41 VAR_SECONDENCODER W Y R/W
Second encoder:
0 - Disabled
1 - Enabled

42 VAR_REGENDUTY W Y R/W
Regen circuit PWM duty cycle in %
Range: 1-100%

%

43 VAR_ENCODERREPEATSRC W Y R/W

Selects source for repeat buffers:
0 - Model 940 - Encoder Port P4
0 - Model 941 - 2nd Encoder Option Bay
1 - Model 940 - 2nd Encoder Option Bay
1 - Model 941 - Resolver Port P4

44
VAR_VP_GAIN
Short Name: VGAIN P

vel W Y R/W
Velocity loop Proportional gain
Range: 0 - 32767

45
VAR_VI_GAIN
Short Name: VGAIN I

vel W Y R/W
Velocity loop Integral gain
Range: 0 - 32767

46
VAR_PP_GAIN
Short Name: PGAIN_P

W Y R/W
Position loop Proportional gain
Range: 0 - 32767

47
VAR_PI_GAIN
Short Name: PGAIN_I

W Y R/W
Position loop Integral gain
Range: 0 - 16383

48
VAR_PD_GAIN
Short Name: PGAIN D

W Y R/W
Position loop Differential gain
Range: 0 - 32767

PM94P01C106

Reference

Index Name Type Format EPM Access Description Units

49
VAR_PI_LIMIT
Short Name: PGAIN ILIM

W Y R/W
Position loop integral gain limit
Range: 0 - 20000

50 VAR_SEI_GAIN Not Used

51 VAR_VREG_WINDOW vel W Y R/W
Gains scaling coefficient
Range: -16 to +4

52 VAR_ENABLE W N W
Software Enable/Disable
0 - disable
1 - enable

53 VAR_RESET W N W

Drive’s reset (Disables drive, Stops running
program if any, reset active fault)
0 - no action
1 - reset drive

54
VAR_STATUS
Short Name: DSTATUS

W N R Drive’s status register

55 VAR_BCF_SIZE W Y R User’s program Byte-code size Bytes

56 VAR_AUTOBOOT W Y R/W

User’s program autostart flag.
0 - program has to be started manually
(MotionView or interface)
1 - program started automatically after drive
booted

57 VAR_GROUPID W Y R/W
Network group ID
Range: 1 - 32767

58 VAR_VLIMIT_ZEROSPEED F Y R/W
Zero Speed window
Range: 0 - 100

Rpm

59 VAR_VLIMIT_SPEEDWND F Y R/W
At Speed window
Range: 10 - 10000

Rpm

60 VAR_VLIMIT_ATSPEED F Y R/W
Target Velocity for At Speed window
Range: -10000 - +10000

Rpm

61 VAR_PLIMIT_POSERROR W Y R/W
Position error
Range: 1 - 32767

EC

62 VAR_PLIMIT_ERRORTIME F Y R/W
Position error time (time which position error
has to remain to set-off position error fault)
Range: 0.25 - 8000

mS

63 VAR_PLIMIT_SEPOSERROR W Y R/W
Second encoder Position error
Range: 1 - 32767

EC

64 VAR_PLIMIT_SEERRORTIME F Y R/W

Second encoder Position error time (time
which position error has to remain to set-off
position error fault)
Range: 0.25 - 8000

mS

65
VAR_INPUTS
Short Name: INPUTS

W N R
Digital inputs states. A1 occupies
Bit 0, A2- Bit 1 … C4 - bit 11.

66
VAR_OUTPUT
Short Name: OUTPUTS

W N R/W

Digital outputs states. Writing to this
variables sets/resets digital outputs, except
outputs which has been assigned special
function.
Output 1 Bit0
Output 2 Bit 1
Output 3 Bit 2
Output 4 Bit 3

67 VAR_IP_ADDRESS W Y R/W
Ethernet IP address. IP address changes at
next boot up. 32 bit value

68 VAR_IP_MASK W Y R/W
Ethernet IP NetMask. Mask changes at next
boot up. 32 bit value

69 VAR_IP_GATEWAY W Y R/W
Ethernet Gateway IP address. Address
changes at next boot up. 32 bit value

PM94P01C 107

Reference

Index Name Type Format EPM Access Description Units

70 VAR_IP_DHCP W Y R/W
Use DHCP
0-manual
1- use DHCP service

71
VAR_AIN1
Short Name: AIN1

F N R Analog Input AIN1 current value [V]olt

72
VAR_AIN2
Short Name: AIN2

F N R Analog Input AIN2 current value [V]olt

73 VAR_BUSVOLTAGE F N R Bus voltage [V]olt

74 VAR_HTEMP F N R

Heatsink temperature
Returns: 0 - for temperatures < 40C
and actual heat sink temperature for
temperatures >40 C

[c]

75 VAR_ENABLE_ACCELDECEL vel Y R/W

Enable Accel/Decel function for velocity
mode
0 - disable
1 - enable

76
VAR_ACCEL_LIMIT
System variable for ramp parameters in
MotionView

vel F Y R/W
Accel value for velocity mode
Range: 0.1 - 5000000

Rpm*Sec

77
VAR_DECEL_LIMIT
System variable for ramp parameters in
MotionView

vel F Y R/W
Decel value for velocity mode
Range: 0.1 - 5000000

Rpm*Sec

78 VAR_FAULT_RESET W Y R/W

Reset fault configuration:
1 - on deactivation of Enable/Inhibit input
(A3)
0 - on activation of Enable/Inhibit input (A3)

79 VAR_M2SRATIO_MASTER W Y R/W

Master to system ratio.
Master counts range: -32767 - +32767
Value will be applied upon write to PID #80.
Write to this PID followed by writing to
PID#80 to apply new ratio pair

80 VAR_M2SRATIO_SYSTEM W Y R/W

Master to system ratio.
System counts range: 1 - 32767
Writing to this PID also applies value
currently held in PID #79. If you need to
change both values, set #79 first then write
to this PID the desired value to apply new
ratio.

81 VAR_S2PRATIO_SECOND W Y R/W

Secondary encoder to prime encoder ratio.
Second counts range: -32767 - +32767
Value will be applied upon write to PID #82.
Write to this PID followed by writing to
PID#82 to apply new ratio pair

82 VAR_S2PRATIO_PRIME W Y R/W

Secondary encoder to prime encoder ratio.
Prime counts range: 1 - 32767
Writing to this PID also applies value
currently held in PID #81. If you need to
change both values, set #81 first then write
to this PID the desired value to apply new
ratio.

83
VAR_EXSTATUS
Short Name: DEXSTATUS

W N R
Extended status. Lower word copy of DSP
status flags.

84 VAR_HLS_MODE W Y R/W

Hardware limit switches.
0 - not used
1 - stop and fault
2 - fault

PM94P01C108

Reference

Index Name Type Format EPM Access Description Units

85 VAR_AOUT_FUNCTION W Y R/W

Analog output function range: 0 - 8
0 - Not assigned
1 - Phase Current (RMS)
2 - Phase Current (Peak Value)
3 - Motor Velocity
4 - Phase Current R
5 - Phase Current S
6 - Phase Current T
7 - Iq current
8 - Id current

86 VAR_AOUT_VELSCALE F Y R/W
Analog output scale for velocity quantities.
Range: 0 - 10

mV/Rpm

87 VAR_AOUT_CURSCALE F Y R/W
Analog output scale for current related
quantities. Range: 0 - 10

V/A

88
VAR_AOUT
Short Name: AOUT

F N W
Analog output value.(Used if VAR #85 is set
to 0 - no function) Range: 0 - 10

V

89 VAR_AIN1_DEADBAND F Y R/W
Analog input #1 dead-band. Applied when
used as current or velocity reference.
Range: 0 - 100

mV

90 VAR_AIN1_OFFSET Y R/W
Analog input #1 offset. Applied when used
as current/velocity reference
Range: -10,000 to +10,000

mV

91 VAR_SUSPEND_MOTION W N R/W

Suspend motion. Suspends motion produced
by trajectory generator. Current move will be
completed before motion is suspended.
0 - motion suspended
1 - motion resumed

92 VAR_MOVEP
mtn

W N W

Target position for absolute move. Writing
value executes Move to position as per
MOVEP statement using current values of
acceleration, deceleration and max velocity.

UU

93 VAR_MOVED
mtn

W N W

Incremental position. Writing value <0>
executes Incremental move as per
MOVED statement using current values of
acceleration, deceleration and max velocity.

UU

94 VAR_MDV_DISTANCE F N W Distance for MDV move UU

95 VAR_MDV_VELOCITY
mtn

F N W
Velocity for MDV move. Writing to this
variable executes MDV move with Distance
value last written to variable #94

UU

96 VAR_MOVE_PWI1
mtn

W N W

Writing value executes Move in positive
direction while input true (active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

97 VAR_MOVE_PWI0
mtn

W N W

Writing value executes Move in positive
direction while input false (not active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

PM94P01C 109

Reference

Index Name Type Format EPM Access Description Units

98 VAR_MOVE_NWI1
mtn

F N W

Writing value executes Move negative
direction while input true (active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

99 VAR_MOVE_NWI0
mtn

F N W

Writing value executes Move negative
direction while input false (not active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

100
VAR_V0
Short Name: V0

F Y R/W
User variable
General purpose user defined variable

101
VAR_V1
Short Name: V1

F Y R/W
User variable
General purpose user defined variable

102
VAR_V2
Short Name: V2

F Y R/W
User variable
General purpose user defined variable

103
VAR_V3
Short Name: V3

F Y R/W
User variable
General purpose user defined variable

104
VAR_V4
Short Name: V4

F Y R/W
User variable
General purpose user defined variable

105
VAR_V5
Short Name: V5

F Y R/W
User variable
General purpose user defined variable

106
VAR_V6
Short Name: V6

F Y R/W
User variable
General purpose user defined variable

107
VAR_V7
Short Name: V7

F Y R/W
User variable
General purpose user defined variable

108
VAR_V8
Short Name: V8

F Y R/W
User variable
General purpose user defined variable

109
VAR_V9
Short Name: V9

F Y R/W
User variable
General purpose user defined variable

110
VAR_V10
Short Name: V10

F Y R/W
User variable
General purpose user defined variable

111
VAR_V11
Short Name: V11

F Y R/W
User variable
General purpose user defined variable

112
VAR_V12
Short Name: V12

F Y R/W
User variable
General purpose user defined variable

113
VAR_V13
Short Name: V13

F Y R/W
User variable
General purpose user defined variable

114
VAR_V14
Short Name: V14

F Y R/W
User variable
General purpose user defined variable

115
VAR_V15
Short Name: V15

F Y R/W
User variable
General purpose user defined variable

116
VAR_V16
Short Name: V16

F Y R/W
User variable
General purpose user defined variable

117
VAR_V17
Short Name: V17

F Y R/W
User variable
General purpose user defined variable

118
VAR_V18
Short Name: V18

F Y R/W
User variable
General purpose user defined variable

119
VAR_V19
Short Name: V19

F Y R/W
User variable
General purpose user defined variable

PM94P01C110

Reference

Index Name Type Format EPM Access Description Units

120
VAR_V20
Short Name: V20

F Y R/W
User variable
General purpose user defined variable

121
VAR_V21
Short Name: V21

F Y R/W
User variable
General purpose user defined variable

122
VAR_V22
Short Name: V22

F Y R/W
User variable
General purpose user defined variable

123
VAR_V23
Short Name: V23

F Y R/W
User variable
General purpose user defined variable

124
VAR_V24
Short Name: V24

F Y R/W
User variable
General purpose user defined variable

125
VAR_V25
Short Name: V25

F Y R/W
User variable
General purpose user defined variable

126
VAR_V26
Short Name: V26

F Y R/W
User variable
General purpose user defined variable

127
VAR_V27
Short Name: V27

F Y R/W
User variable
General purpose user defined variable

128
VAR_V28
Short Name: V28

F Y R/W
User variable
General purpose user defined variable

129
VAR_V29
Short Name: V29

F Y R/W
User variable
General purpose user defined variable

130
VAR_V30
Short Name: V30

F Y R/W
User variable
General purpose user defined variable

131
VAR_V31
Short Name: V31

F Y R/W
User variable
General purpose user defined variable

132 VAR_MOVEDR_DISTANCE F N W
Registered move distance. Incremental
motion as per MOVEDR statement

UU

133 VAR_MOVEDR_DISPLACEMENT
mtn

F N W
Registered move displacement
Writing to this variable executes the move
MOVEDR using value set by #132

UU

134 VAR_MOVEPR_DISTANCE F N W
Registered move distance. Absolute motion
as per MOVEPR statement

UU

135 VAR_MOVEPR_DISPLACEMENT
mtn

F N W
Registered move displacement
Writing to this variable makes the move
MOVEPR using value set by #134

UU

136 VAR_STOP_MOTION W N W
Stops motion:
1 - stops motion
0 - no action

137 VAR_START_PROGRAM W N W
Starts user program
1 - starts program
0 - no action

138 VAR_VEL_MODE_ON W N W

Turns on Profile Velocity for Internal Position
Mode. (Acts as statement VELOCITY ON)
0 - normal operation
1 - velocity mode on

139
VAR_IREF
Short Name: IREF

F N W

Reference for Internal Torque or Velocity
Mode.
0 - Internal Velocity mode
1 - Internal Torque mode

RPS
Amps

140
VAR_NV0
Short Name: NV0

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

141
VAR_NV1
Short Name: NV1

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

PM94P01C 111

Reference

Index Name Type Format EPM Access Description Units

142
VAR_NV2
Short Name: NV2

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

143
VAR_NV3
Short Name: NV3

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

144
VAR_NV4
Short Name: NV4

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

145
VAR_NV5
Short Name: NV5

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

146
VAR_NV6
Short Name: NV6

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

147
VAR_NV7
Short Name: NV7

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

148
VAR_NV8
Short Name: NV8

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

149
VAR_NV9
Short Name: NV9

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

150
VAR_NV10
Short Name: NV10

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

151
VAR_NV11
Short Name: NV11

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

152
VAR_NV12
Short Name: NV12

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

153
VAR_NV13
Short Name: NV13

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

154
VAR_NV14
Short Name: NV14

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

155
VAR_NV15
Short Name: NV15

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

156
VAR_NV16
Short Name: NV16

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

157
VAR_NV17
Short Name: NV17

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

158
VAR_NV18
Short Name: NV18

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

159
VAR_NV19
Short Name: NV19

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

160
VAR_NV20
Short Name: NV20

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

161
VAR_NV21
Short Name: NV21

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

162
VAR_NV22
Short Name: NV22

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

163
VAR_NV23
Short Name: NV23

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

164
VAR_NV24
Short Name: NV24

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

165
VAR_NV25
Short Name: NV25

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

166
VAR_NV26
Short Name: NV26

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

167
VAR_NV27
Short Name: NV27

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

168
VAR_NV28
Short Name: NV28

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

PM94P01C112

Reference

Index Name Type Format EPM Access Description Units

169
VAR_NV29
Short Name: NV29

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

170
VAR_NV30
Short Name: NV30

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

171
VAR_NV31
Short Name: NV31

F N R/W User defined Network variable.
Variable can be shared across Ethernet network.

172 VAR_SERIAL_ADDRESS W Y R/W RS485 drive ID. Range: 0 - 254

173 VAR_MODBUS_BAUDRATE W Y R/W

Baud rate for ModBus operations:

0 - 2400
1 - 4800
2 - 9600

3 - 19200
4 - 38400
5 - 57600
6 - 115200

174 VAR_MODBUS_DELAY W Y R/W
ModBus reply delay in mS
Range: 0 - 1000

mS

175 VAR_RS485_CONFIG W Y R/W
Rs485 configuration:
0 - normal IP over PPP
1 - ModBus

176

VAR_PPP_BAUDRATE

NOTE: Does NOT apply to
MVOB.

W Y R/W

RS232/485 (normal mode) baud rate:
1 - 4800
2 - 9600
3 - 19200
4 - 38400
5 - 57600
6 - 115200

177 VAR_MOVEPS F N W
Same as variable #92 but using S-curve
acceleration/deceleration

178 VAR_MOVEDS F N W
Same as variable #93 but using S-curve
acceleration/deceleration

179 VAR_MDVS_VELOCITY
mtn

N W

Velocity for MDV move using S-curve
accel/deceleration. Writing to this variable
executes MDV move with Distance value
last written to variable #94 (unless motion is
suspended by #91).

UU

180
VAR_MAXVEL
Short Name: MAXV

F N R/W Max velocity for motion profile UU/S

181
VAR_ACCEL
Short Name: ACCEL

F N R/W Accel value for indexing UU/S2

182
VAR_DECEL
Short Name: DECEL

F N R/W Decel value for indexing UU/S2

183
VAR_QDECEL
Short Name: QDECEL

F N R/W Quick decel value UU/S2

184
VAR_INPOSLIM
Short Name: INPOSLIM

W N R/W Sets window for “In Position” Limits UU

185
VAR_VEL
Short Name: VEL

F N R/W Velocity reference for “Profiled” velocity UU/S

186
VAR_UNITS
Short Name: UNITS

F Y R/W User units

187
VAR_MECOUNTER
Short Name: MECOUNTER

W N R/W A/B inputs reference counter value Count

188
VAR_PHCUR
Short Name: PHCUR

F N R Phase current A

189
VAR_POS_PULSES
Short Name: TPOS PLS

W N R/W Target position in encoder pulses EC

PM94P01C 113

Reference

Index Name Type Format EPM Access Description Units

190
VAR_APOS_PULSES
Short Name: APOS PLS

W N R/W Actual position in encoder pulses EC

191
VAR_POSERROR_PULSES
Short Name: PERROR PLS

W N R Position error in encoder pulses EC

192 VAR_CURRENT_VEL_PPS F N R Set-point (target) velocity in PPS PPS

193 VAR_CURRENT_ACCEL_PPSS F N R
Set-point (target) acceleration (demanded
value) value

PPSS

194 VAR_IN0_DEBOUNCE W Y R/W
Input A1 de-bounce time in mS
Range: 0 - 1000

mS

195 VAR_IN1_DEBOUNCE W Y R/W
Input A2 de-bounce time in mS
Range: 0 - 1000

mS

196 VAR_IN2_DEBOUNCE W Y R/W
Input A3 de-bounce time in mS
Range: 0 - 1000

mS

197 VAR_IN3_DEBOUNCE W Y R/W
Input A4 de-bounce time in mS
Range: 0 - 1000

mS

198 VAR_IN4_DEBOUNCE W Y R/W
Input B1 de-bounce time in mS
Range: 0 - 1000

mS

199 VAR_IN5_DEBOUNCE W Y R/W
Input B2 de-bounce time in mS
Range: 0 - 1000

mS

200 VAR_IN6_DEBOUNCE W Y R/W
Input B3 de-bounce time in mS
Range: 0 - 1000

mS

201 VAR_IN7_DEBOUNCE W Y R/W
Input B4 de-bounce time in mS
Range: 0 - 1000

mS

202 VAR_IN8_DEBOUNCE W Y R/W
Input C1 de-bounce time in mS
Range: 0 - 1000

mS

203 VAR_IN9_DEBOUNCE W Y R/W
Input C2 de-bounce time in mS
Range: 0 - 1000

mS

204 VAR_IN10_DEBOUNCE W Y R/W
Input C3 de-bounce time in mS
Range: 0 - 1000

mS

205 VAR_IN11_DEBOUNCE W Y R/W
Input C4 de-bounce time in mS
Range: 0 - 1000

mS

206 VAR_OUT1_FUNCTION W Y R/W

Programmable Output function
0 - Not Assigned
1 - Zero Speed
2 - In Speed Window
3 - Current Limit
4 - Run time fault
5 - Ready
6 - Brake
7 - In position

207 VAR_OUT2_FUNCTION W Y R/W
Programmable Output Function. See range
(settings) for Variable #206

208 VAR_OUT3_FUNCTION W Y R/W
Programmable Output Function. See range
(settings) for Variable #206

209 VAR_OUT4_FUNCTION W Y R/W
Programmable Output Function. See range
(settings) for Variable #206

210 VAR_HALLCODE W N R

Current hall code
Bit 0 - Hall 1
Bit 1 - Hall 2
Bit 2 - Hall 3

211 VAR_ENCODER W N R Primary encoder current value EC

212
VAR_RPOS_PULSES
Short Name: RPOS_PLS

W N R Registration position EC

PM94P01C114

Reference

Index Name Type Format EPM Access Description Units

213
VAR_RPOS
Short Name: RPOS

F N R Registration position UU

214
VAR_POS
Short Name: TPOS

F N R/W Target position UU

215
VAR_APOS
Short Name: APOS

F N R/W Actual position UU

216
VAR_POSERROR
Short Name: PERROR

W N R Position error EC

217
VAR_CURRENT_VEL
Short Name: TV

F N R Set-point (target) velocity (demanded value) UU/S

218
VAR_CURRENT_ACCEL
Short Name: TA

F N R
Set-point (target) acceleration (demanded
value)

UU/S2

219
VAR_TPOS_ADVANCE
Short Name: TPOS_ADV

W N W

Target position advance. Every write to this
variable adds value to the Target position
summing point. Value gets added once
per write. This variable useful when loop is
driven by Master encoder signals and trying
to correct phase. Value is in encoder counts

EC

220
VAR_IOINDEX
Short Name: INDEX

W N R/W
Same as INDEX variable in user’s program.
See “INDEX” in Language Reference section
Of this manual.

221 VAR_PSLIMIT_PULSES W Y R/W
Positive Software limit switch value in
Encoder counts

EC

222 VAR_NSLIMIT_PULSES W Y R/W
Negative Software limit switch value in
Encoder counts

EC

223 VAR_ SLS_MODE W Y R/W

Soft limit switch action code:
0 - no action
1- Fault.
2- Stop and fault (When loop is driven by
trajectory generator only. With all the other
sources same action as 1) --

224 VAR_PSLIMIT F Y R/W Same as var 221 but value in User Units UU

225 VAR_NSLIMIT F Y R/W Same as var 222 but value in User Units UU

226 VAR_SE_APOS_PULSES W N R
2nd encoder actual position in encoder
counts

EC

227 VAR_SE_POSERROR_PULSES W N R 2nd encoder position error in encoder counts EC

228 VAR_MODBUS_PARITY W Y R/W

Parity for Modbus Control:
0 - No Parity
1 - Odd Parity
2 - Even Parity

229 VAR_MODBUS_STOPBITS W Y R/W

Number of Stopbits for Modbus Control:
0 - 1.0
1 - 1.5
2 - 2.0

230 VAR_M_NOMINALVEL F Y R/W
Induction Motor Nominal Velocity
Range: 500 - 20000 RPM

RPM

231 VAR_M_COSPHI F Y R/W
Induction Motor Cosine Phi
Range: 0 - 1.0

232 VAR_M_BASEFREQUENCY F Y R/W
Induction Motor Base Frequency:
Range: 0 - 400Hz

Hz

233 VAR_M_SERIES Induction Motor Series

PM94P01C 115

Reference

Index Name Type Format EPM Access Description Units

234 VAR_CAN_BAUD_EPM W Y R/W

CAN Bus Parameter: Baud Rate: 1 - 8
1 - 10k
2 - 20k
3 - 50k
4 - 125k
5 - 250k
6 - 500k
7 - 800k
8 - 1000k

235 VAR_CAN_ADDR_EPM W Y R/W CAN Bus Parameter: Address: 1-127

236 VAR_CAN_OPERMODE_EPM W Y R/W

CAN Bus Parameter: Boot-up Mode: 0 - 2
(Operational State Control)
0 - enters into pre-operational state
1 - enters into operational state
2 - pseudo NMT: sends NMT Start Node
command after delay (set by variable 237)

237 VAR_CAN_OPERDELAY_EPM W Y R/W
CAN Bus Parameter: pseudo NMT mode
delay time in seconds (refer to variable 236)

sec

238 VAR_CAN_ENABLE_EPM W Y R/W

CAN Bus Parameter: Mode Control: 0, 1, 2
0 - Disable CAN interface
1 - Enable CAN interface in DS301 mode

Concurrent user’s program execution
possible

2 - Enable CAN interface in DS402 mode
Concurrent user’s program execution
possible

3 - Enable DeviceNet
4 - Enable PROFIBUS DP

239 VAR_HOME_ACCEL F Y R/W Homing Mode: ACCEL rate: 0 - 10000000.0 UU/sec2

240 VAR_HOME_OFFSET F Y R/W
Homing Mode: Home Position Offset
Range: -32767 to +32767

UU

241 VAR_HOME_OFFSET_PULSES W Y R/W
Homing Mode: Home Position Offset in
encoder counts
Range: +/- 2,147,418,112

EC

242 VAR_HOME_FAST_VEL F Y R/W
Homing Mode: Fast Velocity
Range: -10,000 to +10,000

UU/sec

243 VAR_HOME_SLOW_VEL F Y R/W
Homing Mode: Slow Velocity
Range: -10,000 to +10,000

UU/sec

244 VAR_HOME_METHOD W Y R/W
Homing Mode: Homing Method
Range: 1 - 35

245
VAR_START_HOMING
Short Name: HOME

W N W
Homing Mode: Start Homing: 0, 1
0 - No action
1 - Start Homing

246 VAR_HOME_SWITCH_INPUT W Y R/W

Homing Mode: Switch Input Assignment:
Range: 0 - 11
0 - 3: A1 - A4
4 - 7: B1 - B4
8 - 11: C1 - C4
Warning: If using A1, A2, A3, or C3 refer to
the homing section

247 VAR_M_VALIDATE_MOTOR W N W

Makes Drive accept Motor’s parameters
entered in motor data PIDs. Motor
parameters are variables whose identifier
starts with VAR_M_xxxxxx
0 - No Action
1 - Validate Motor Data

PM94P01C116

Reference

Index Name Type Format EPM Access Description Units

248 VAR_M_I2T F Y R/W Motor

249 VAR_M_EABSOLUTE F Y R/W
Indicates type of ABS encoder for models
with ABS encoder support. Otherwise
ignored

250 VAR_M_ABSWAP F Y R/W
Motor Encoder Feedback: B leads A
0 - No Action
1 - B leads A for forward checked (active)

251 VAR_M_HALLS_INVERTED F Y R/W
Motor Encoder Feedback: Halls
0 - No Action
1 - Inverted Halls Box checked (active)

252 RESERVED Do NOT Use

253 RESERVED Do NOT Use

254 RESERVED Do NOT Use

255 RESERVED Do NOT Use

256 RESERVED Do NOT Use

257 RESERVED Do NOT Use

258 RESERVED Do NOT Use

259 RESOLVER_EMU_TRK W Y R/W

Resolver Emulation Track Number
Range: 0 - 15
0 - 1024
1 - 256
2 - 360
3 - 400
4 - 500
5 - 512
6 - 720
7 - 800
8 - 1000
9 - 1024
10 - 2000
11 - 2048
12 - 2500
13 - 2880
14 - 250
15 - 4096

260 VAR_VELOCITY_ACTUAL F N R Actual measured motor velocity UU/sec

NOTE:

PIDs 261-413 are not applicable to PositionServo drives with the PC-installed version of MotionView.

PM94P01C 117

Reference

3.3 Quick Start Examples
Contained in the following four paragraphs are the connections and parameter settings to quickly setup a PositionServo
drive for External Torque/Velocity, External Positioning, Internal Torque/Velocity and Internal Positioning modes. These
Quick Start reference tables are NOT a substitute for reading the PositionServo User Manual. Observe all safety notices
in the PositionServo User and Programming Manuals.

3.3.1 Quick Start - External Torque/Velocity
Table 63: Connections for External Torque/Velocity Mode

I/O (P3)

Pin Name Function

20 AIN2+ Positive (+) of Analog signal input

21 AIN2- Negative (-) of Analog signal input

22 ACOM Analog common

23 AO1 Analog output

24 AIN1+ Positive (+) of Analog signal input

25 AIN1 - Negative (-) of Analog signal input

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group B COM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group C COM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Note 1: Connections highlighted in BLUE are mandatory/necessary for operation in this mode.

PM94P01C118

Reference

Table 64: Parameter Settings for External Torque/Velocity Mode

MV Folder Sub-Folder Setting

Parameters -- Parameter Name Description

Drive Mode Set to [Torque] for Torque Mode; [Velocity] for Velocity Mode

Analog Input (Current Scale) Torque Mode Only: Set to Required Amps per Volt

Analog Input (Velocity Scale) Velocity Mode Only: Set to Required RPM per Volt

Enable Accel/Decel Limits Velocity Mode Only: Set to [Enable] to switch on velocity ramp rates;
Set to [Disable] to switch OFF (accelerate at current limit)

Accel Limit Velocity Mode Only: Set Acceleration Limit in RPM/Sec

Decel Limit Velocity Mode Only: Set Deceleration Limit in RPM/Sec

Reference Set to [External] for external Torque/Velocity Mode

Enable Switch Input Set to [Run] to allow Enable/Disable of the PositionServo to be
controlled via Input A3 (Dedicated Enable)

IO Digital IO Parameter Name Description

Output 1 Function Output # indicates Digital Output No. 1-4;
Set value to select Output Functionality;
Output Function Values: 1=Not Assigned; 2=Zero Speed;
3=In Speed Window; 4=Current Limit; 5=Run Time Fault; 6=Ready;
7=Brake; 8=In Position

Output 2 Function

Output 3 Function

Output 4 Function

IO Analog IO Parameter Name Description

Analog Input Dead Band Set Zero Speed Dead Band in mV for Torque/Velocity Reference on
Analog Input 1

Analog Input Offset Set Torque/Velocity Reference Input Offset on Analog Input 1 to
match Controller Offset

Adjust Analog Input Zero Offset Tool to automatically learn the Analog Input Offset
(of Analog Input 1)

Limits Velocity Limits Parameter Name Description

Zero Speed Velocity Mode Only: Set a bandwidth (around ORPM) for activation of
the Zero Speed Output/Flag

At Speed Velocity Mode Only: Set a Target Speed for activation of the At Speed
Output/Flag

Speed Window Velocity Mode Only: Set a bandwidth (around At Speed parameter) for
activation of the At Speed Output/Flag

Compensation -- Parameter Name Description

Velocity P-Gain Velocity Mode Only: Set P-Gain for Velocity Loop

Velocity I-Gain Velocity Mode Only: Set I-Gain for Velocity Loop

Gain Scaling Velocity Mode Only: Apply Scaling Factor to Velocity Gain Set

Note 1: Parameters highlighted in BLUE are mandatory/necessary for operation in this mode.

PM94P01C 119

Reference

3.3.2 Quick Start - External Positioning
Table 65: Connections for External Positioning Mode

I/O (P3)

Pin Name Function

1 MA+ Master Encoder A+ / Step+ input

2 MA- Master Encoder A- / Step- input

3 MB+ Master Encoder B+ / Direction+ input

4 MB- Master Encoder B- / Direction- input

5 GND Drive Logic Common

6 +5V +5V Output (max 100mA)

7 BA+ Buffered Encoder Output: Channel A+

8 BA- Buffered Encoder Output: Channel A-

9 BB+ Buffered Encoder Output: Channel B+

10 BB- Buffered Encoder Output: Channel B-

11 BZ+ Buffered Encoder Output: Channel Z+

12 BZ- Buffered Encoder Output: Channel Z-

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

30 IN_A4 Digital input A4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Note 1: Connections highlighted in BLUE are mandatory/necessary for operation in this mode.
Note 2: Connections highlighted in GREEN are frequently required in applications of this type.

PM94P01C120

Reference

Table 66: Parameter Settings for External Positioning Mode

MVOB Folder Sub-Folder Setting

Parameters -- Parameter Name Description

Drive Mode Set to [Position] for Position Mode

Reference Set to [External] for external Position Mode

Step Input Type Set to either [Step and Direction] or [Master Encoder] to match the
Position Controller

System to Master Ratio Set Electronic Gear Ratio on Reference Signal to the PositionServo
Motor Output

Enable Switch Input Set to [Run] to allow Enable/Disable of the PositionServo to be
controlled via Input A3 (Dedicated Enable)

Resolver Track If using Resolver Feedback, set value that represents the pulses per
revolution required on the PositionServo simulated encoder.
0=1024ppr; 1=256ppr; 2=360ppr; 3=400ppr; 4=500ppr; 5=512ppr;
6=720ppr; 7=800ppr; 8=1000ppr; 9=1024ppr; 10=2000ppr;
11=2048ppr; 12=2500ppr; 13=2880ppr; 14=250ppr; 15=4096ppr

IO Digital IO Parameter Name Description

Output 1 Function Output # indicates Digital Output No. 1-4;
Set value to select Output Functionality;
Output Function Values: 1=Not Assigned; 2=Zero Speed;
3=In Speed Window; 4=Current Limit; 5=Run Time Fault; 6=Ready;
7=Brake; 8=In Position

Output 2 Function

Output 3 Function

Output 4 Function

Hard Limit Switches Action Set to Enable Inputs A1 and A2 to act as System Hard Limit Switches
and define functionality in the event of an active input.

Limits Position Limits Parameter Name Description

Position Error Set Position Error Limit at which Position Error Timer starts counting

Max Error Time Set Maximum Error Time for Position Error Correction before position
error trip occurs.

Compensation -- Parameter Name Description

Velocity P-Gain Set P-Gain for Velocity Loop

Velocity I-Gain Set I-Gain for Velocity Loop

Position P-Gain Set P-Gain for Position Loop

Position I-Gain Set I-Gain for Position Loop

Position D-Gain Set D-Gain for Position Loop

Position I-Limit The Position I-Limit will clamp the Position I-Gain compensator to
prevent excessive torque overshoot caused by an over-accumulation
of I-Gain.

Gain Scaling Apply Scaling Factor to Velocity Gain Set

Note 1: Parameters highlighted in BLUE are mandatory/necessary for operation in this mode.

PM94P01C 121

Reference

3.3.3 Quick Start - Internal Torque/Velocity
Table 67: Internal Torque/Velocity Mode

Connections for Internal Torque/Velocity: I/O (P3) Variable References for Internal Torque/Velocity

Pin Name Function

20 AIN2+ Positive (+) of Analog signal input

21 AIN2- Negative (-) of Analog signal input

22 ACOM Analog common

23 AO1 Analog output

24 AIN1+ Positive (+) of Analog signal input

25 AIN1 - Negative (-) of Analog signal input

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group B COM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group C COM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Index Name EPM R/W Description

29 VAR_ENABLE_SWITCH_TYPE Y R/W Enable switch function: 0-inhibit only, 1- Run

34 VAR_DRIVEMODE Y R/W Drive mode selection: 0-torque 1-velocity, 2-position

37 VAR_REFERENCE Y R/W Reference source: set to 1 - internal
(for ‘internal torque’ or ‘internal velocity’ mode)

44 VAR_VP_GAIN Y R/W Velocity loop Proportional gain Range: 0 - 32767

45 VAR_VI_GAIN Y R/W Velocity loop Integral gain Range: 0 - 16383

51 VAR_VREG_WINDOW Y R/W Gains scaling coefficient Range: -5 - +4

52 VAR_ENABLE N W Software Enable/Disable: 0 – disable, 1 - enable

58 VAR_VLIMIT_ZEROSPEED Y R/W Zero Speed value Range: 0 - 100

59 VAR_VLIMIT_SPEEDWND Y R/W Speed window Range: 10 - 10000

60 VAR_VLIMIT_ATSPEED Y R/W Target speed for velocity window
Range: -10000 - +10000

71 VAR_AIN1 N R Analog Input AIN1 current value

72 VAR_AIN2 N R Analog Input AIN2 current value

75 VAR_ENABLE_ACCELDECEL Y R/W Enable Accel/Decel (velocity mode),
0 – disable, 1 - enable

76 VAR_ACCEL_LIMIT Y R/W Accel value for velocity mode
Range: 0.1 - 5000000

77 VAR_DECEL_LIMIT Y R/W Decel value for velocity mode
Range: 0.1 - 5000000

139 VAR_IREF N R/W Internal ref Current or Velocity mode

192 VAR_CURRENT_VEL_PPS N R Current velocity in PPS (pulses per sample)

193 VAR_CURRENT_ACCEL_PPSS N R Current acceleration (demanded value) value

217 VAR_CURRENT_VEL N R Current velocity (demanded value)

218 VAR_CURRENT_ACCEL N R Current acceleration (demanded value)

Positional Mode Language Reference - Enable/Disable

Command Syntax Long Name

DISABLE DISBALE Turns OFF Servo output

ENABLE ENABLE Turns ON Servo output

Note 1: Connections highlighted in BLUE are mandatory/necessary for operation in this mode.

PM94P01C122

Reference

Example Internal Torque Program

;Program slowly increases Motor Torque until nominal motor current is reached
VAR_DriveMode = 0 ;Set Drive to Torque mode
VAR_Reference = 1 ;Set Reference to Internal control
Program Start:
IREF = 0 ;Reset Torque Reference to 0(Amps)
Wait While !In_A3 ;Wait while Enable input is OFF
Enable ;Enable Drive
Torque_Loop:
Wait Time 500 ;Set time between step increases in Torque
 If REF < VAR_CurrentLimit ;If Set Torque < Motor Nominal Torque
 IREF = IREF+0.1 ;Then increase by 0.1(Amps)
 GOTO Torque_Loop ;Loop to next torque increase
Else
 Goto Program_Start ;Else restart program
Endif

END

Example Internal Velocity Program

;Program slowly increases and decreases Motor Velocity between Maximum Velocity Forward direction and
;Maximum Velocity Reverse direction producing a saw-tooth velocity profile.
Define MaxVelocityRPS 60 ;Enter Maximum Velocity (RPS) value here
Define VelocityStepRPS 1 ;Define Velocity INC/DEC per Step/Program Loop (RPS)
Define VelocityStepTime 200 ;Define Time for Velocity Steps in mS
Define Velocity_Inc_Dec V0 ;Define a Variable to identify if Velocity is currently INC/DECreasing
VAR_DriveMode = 1 ;Set Drive to Velocity mode
VAR_Reference = 1 ;Set Reference to Internal control
VAR_Enable_AccelDecel = 1 ;Enable Accel/Decel Ramps
VAR_Accel_Limit = 3000 ;Set Accel Rate required in RPS^2
VAR_Decel_Limit = 3000 ;Set Decel Rate required in RPS^2
Program Start:
IREF = 0 ;Reset Velocity Reference to 0(RPS)
Wait While !In_A3 ;Wait while Enable input is OFF
Enable ;Enable Drive
Velocity_Loop:
Wait Time VelocityStep Time ;Set Time between Step Increases/Decreases in Velocity (mS)
 If REF <= MaxVelocityRPS ;If Current Motor Velocity < MaxVelocityRPS
 IREF = IREF+VelocityStepRPS ;Then increase Velocity by VelocityStepRPS
 Else
 Velocity_Inc_Dec = 1 ;Set Variable to start decreasing velocity
 Endif
Else ;If Speed Decreasing
 If REF >= -1* MaxVelocityRPS ;If Current Motor Velocity > -MaxVelocityRPS
 IREF = IREF-VelocityStepRPS ;Then decrease Velocity by VelocityStepRPS
 Else
 Velocity_Inc_Dec = 0 ;Set Variable to start increasing velocity
 Endif
Endif
Goto Velocity_Loop ;Loop to next Velocity Increase/Decrease
END ;End Code - Never Reached
On Fault ;Fault Handler
 Resume Program_Start ;Resume at Program Start
EndFault

PM94P01C 123

Reference

3.3.4 Quick Start - Internal Positioning
Table 68: Internal Positioning

Connections: I/O (P3)

Pin Name Function

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group B COM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group C COM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Language Reference

Enable/Disable

Command Syntax Long Name

DISABLE DISBALE Turns OFF Servo output

ENABLE ENABLE Turns ON Servo output

Program Structure

Command Syntax Long Name

STOP MOTION STOP MOTION Stop AA Motion - Clear

STOP MOTION QUICK STOP MOTION QUICK Motion Slack

WAIT WAIT MOTION COMPLETE Wait

Move / Motion Commands

Command Syntax Long Name

MOVE MOVE [BACK] UNTIL <condition> [,C] Move

MOVED MOVED <distance> [,S] [,C] Move Distance

MOVEP MOVEP <absolute position> [,S] [,C] Move to Position

MOVEDR MOVEDR <distance> , <displacement> [,C] Registered Distance Move

MOVEPR MOVEPR <distance> , <displacement> [,C] Registered Position Move

MDV MDV <[-]segment distance>,<segment final velocity>[,S] Segmented Move

MOTION SUSPEND MOTION SUSPEND Temporarily Suspend Motion

MOTION RESUME MOTION RESUME Statement Resumes Motion

PM94P01C124

Reference

3.4 PositionServo Reference Diagrams
This section contains the process flow diagrams listed in Table 69. These diagrams are for reference only.

Table 69: PositionServo Process Flow Diagrams

Drawing # Description

S999 Position and Velocity Regulator

S1000 Motion Commands -> Motion Queue -> Trajectory Generator

S1001 Current Command -> Motor

S1002 Encoder Inputs

S1003 Analog Inputs

S1004 Analog Outputs

S1005 Digital Inputs

S1006 Digital Outputs

Position and Velocity Regulators

Position
Command

Kff term

Biquad
Convergence
Filter

Biquad
Convergence
Filter

Velocity
Estimator

Secondary
Encoder

Primary
Encoder

Current
Limiter

I term Limit and
unti wind-up

I term Limit and
unti wind-up

P term

D term

I term

=0

=1

+

-

+

+
+

+

+

+

-

P term

D term

Velocity
Window

#41 Second Encoder

Position Feedback

Mechanical Velocity Feedback

Velocity Command

To Torque Amplifier
Current Command

Kff is automatically calculated

+

+

+

-

PM94P01C 125

Reference

Motion Commands, Motion Queue & Trajectory Generator

#1
81

, A
C

C
E

L

#1
82

, D
E

C
E

L

#1
80

, M
A

X
 V

E
L

#1
83

, Q
D

E
C

E
L

#9
1,

 S
U

S
P

E
N

D
/R

E
S

U
M

E

#1
36

, S
T

O
P

 M
O

T
IO

N

M
ot

io
n

C
om

m
an

ds

R
ef

er
 to

P
ro

gr
am

m
er

’s
M

an
ua

l

#4
6,

 P
P

_G
A

IN

#4
7,

 P
I_

G
A

IN

#4
8,

 P
D

_G
A

IN

#4
9,

 P
I_

LI
M

IT

P
os

iti
on

 R
eg

ul
at

or

M
ot

io
n

C
om

m
an

ds
Q

U
E

U
E

32
 e

nt
rie

s

S
eq

ue
nc

e
Lo

gi
c

T
ra

je
ct

or
y

P
ro

fil
er

C
on

ve
rg

en
ce

F
ilt

er
#1

93
, C

U
R

R
E

N
T

_A
C

C
_P

P
S

#1
92

, C
U

R
R

E
N

T
_V

E
L_

P
P

S

C
ur

re
nt

 T
ra

je
ct

or
y

P
oi

nt

#1
91

, #
21

6,
 P

O
S

E
R

R
O

R

#2
27

S
E

_P
O

S
E

R
R

O
R

_P
U

LS
E

S

V
el

oc
ity

 D
em

an
d

F
ro

m
 P

os
iti

on
 R

eg
ul

at
or

D
em

an
de

d
T

ra
je

ct
or

y
P

oi
nt

#1
56

 U
N

IT
S

#2
18

 C
U

R
R

E
N

T
_V

E
L_

P
P

S

#2
17

 C
U

R
R

E
N

T
_V

E
L

PM94P01C126

Reference

Current Command --> Motor

#3
0

C
U

R
R

E
N

T
 L

IM
IT

C
ur

re
nt

 C
om

m
an

d

C
ur

re
nt

 R
eg

ul
at

or
+

S
pa

ce
 V

ec
to

r
P

W
M

C
ur

re
nt

 L
im

ite
r

-

#3
1

P
E

A
K

C
U

R
R

E
N

T
LI

M
IT

16

#3
2

P
E

A
K

C
U

R
R

E
N

T
LI

M
IT

#3
3

V
A

R
_P

W
M

F
R

E
Q

U
E

N
C

Y

#1
88

 P
H

C
U

R

#7
3

B
U

S
V

O
LT

A
G

E

#4
2

R
E

G
E

N
D

U
T

Y

R
E

G
E

N
C

irc
ui

t

R
E

G
E

N
 O

ut
pu

t

U
, V

, W
 M

ot
or

 P
ha

se
 O

ut
pu

ts

#4
12

 P
T

C
 R

E
S

IS
T

A
N

C
E

T
H

E
R

M
A

L
C

irc
ui

t

#3
9

M
O

T
O

R
T

H
E

R
M

A
LP

R
O

T
E

C
T

#4
0

M
O

T
O

R
P

T
C

R
E

S
IS

T
A

N
C

E

B
U

S
 V

O
LT

A
G

E

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

M
O

T
O

R

B
+ B
-

B
R B
-

B
+ P
6

T1V UW T2 P
7

PM94P01C 127

Reference

Encoder Inputs

V
el

oc
ity

 E
st

im
at

or
an

d
F

ilt
er

P
E

F
A

U
LT

S
E

F
A

U
LT

R
es

ol
ve

r
T

ra
ck

 E
m

ul
at

io
n

(”
R

”
D

riv
es

 O
nl

y)

#4
3

E
N

C
O

D
E

R
R

E
P

E
A

T
 S

O
U

R
C

E

E
nc

od
er

 R
ep

ea
t P

or
t

V
E

LO
C

IT
Y

 F
E

E
D

B
A

C
K

S
ec

on
d

E
nc

od
er

 P
or

t

E
nc

od
er

 In
pu

t (
R

es
ol

ve
r

In
pu

t:
“R

”
dr

iv
es

)

#8
1

S
2P

R
A

T
IO

_S
E

C
O

N
D

#8
2

S
2P

R
A

T
IO

_P
R

IM
E

#1
90

, #
21

5
A

P
O

S

#2
26

 S
E

_A
P

O
S

_P
U

LS
E

S

‘d
is

ab
le

’

‘e
na

bl
e’

‘e
na

bl
e’

#2
11

 E
N

C
O

D
E

R

#6
1

P
LI

M
IT

_P
O

S
E

R
R

O
R

#6
2

P
LI

M
IT

_E
R

R
O

R
T

IM
E

T
IM

E
R

T
IM

E
R

#6
4

P
LI

M
IT

_S
E

E
R

R
O

R
T

IM
E

#6
3

P
LI

M
IT

_S
E

P
O

S
E

R
R

O
R

#4
1

S
E

C
O

N
D

E
N

C
O

D
E

R

#1
91

, #
21

6
P

O
S

E
R

R
O

R
T

o
P

os
iti

on
 P

ID

T
o

P
os

iti
on

 P
ID

D
em

an
de

d
T

ra
je

ct
or

y
P

oi
nt

#2
27

 S
E

_P
O

S
E

R
R

O
R

_P
U

LS
E

S
#1

89
, #

21
4

T
P

O
S

#1
87

 M
E

C
O

U
N

T
E

R

#3
7

R
E

F
E

R
E

N
C

E
#3

8
S

T
E

P
IN

P
U

T
T

Y
P

E

#7
9

M
2S

R
A

T
IO

_M
A

S
T

E
R

#8
0

M
2S

R
A

T
IO

_S
LA

V
E

M
as

te
r

E
nc

od
er

 In
pu

t
“I

N
T

 =
 1

”

“E
X

T
 =

 0
”

=
 1

, ‘
en

ab
le

’

=
 0

, ‘
di

sa
bl

e’
“0

”

>
?>
?

+

+-

+
-

#4
1

S
E

C
O

N
D

E
N

C
O

D
E

R

#4
1

S
E

C
O

N
D

E
N

C
O

D
E

R

#2
59

 R
E

S
O

LV
E

R
 T

R
A

C
K

0
D

is
ab

le

1
E

na
bl

e

P
3,

 7
-1

2

P
4

P
12

P
3,

 1
-4

Encoder Resolver

1 25
5026

1 25
5026

1 8
159

Encoder

1 8
159

1 5
96

PM94P01C128

Reference

Analog Inputs

A
na

lo
g

In
pu

ts
 F

un
ct

io
n

V
el

oc
ity

 R
eg

ul
at

or

V
el

oc
ity

 F
ee

db
ac

k
V

el
oc

ity
 D

em
an

d
fr

om
 P

os
iti

on
 R

eg
ul

at
or

C
ur

re
nt

 C
om

m
an

d

#7
 V

E
LO

C
IT

Y
_A

C
T

U
A

L

#1
38

 IR
E

F

S
ca

le
 =

 A

S
ca

le
 =

 R
P

S

#3
6

V
E

LO
C

IT
Y

_S
C

A
LE

#7
2

A
IN

2

#7
1

A
IN

1

#9
1

A
IN

1_
O

F
F

S
E

T

#8
9

A
IN

1_
D

E
A

D
B

A
N

D

#3
5

C
U

R
R

E
N

T
_S

C
A

LE
#3

7
R

E
F

E
R

E
N

C
E

#7
5

E
N

A
B

LE
_A

C
C

E
LD

E
C

E
L

#7
6

A
C

C
E

L_
LI

M
IT

#7
7

D
E

C
E

L_
LI

M
IT

#4
4

P
_G

A
IN

#4
5

I_
G

A
IN

#5
1

V
R

E
G

_W
IN

D
O

W

#3
4

D
R

IV
E

M
O

D
E

#3
4

D
R

IV
E

M
O

D
E

=
 0

IN
T

E
R

N
A

L

IN
T

E
R

N
A

L

A
na

lo
g

In
pu

t #
1

A
na

lo
g

In
pu

t #
2

1
V

el
oc

ity

#1
38

 IR
E

F

E
X

T
E

R
N

A
L

E
X

T
E

R
N

A
L

2
P

os
iti

on

=
 1

 o
r

=
2

P
3.

24

P
3.

20

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

PM94P01C 129

Reference

Analog Output

Iq
 C

U
R

R
E

N
T

P
H

A
S

E
 C

U
R

R
E

N
T

 T

P
H

A
S

E
 C

U
R

R
E

N
T

 P
E

A
K

P
H

A
S

E
 C

U
R

R
E

N
T

 R
M

S

N
O

T
 A

S
S

IG
N

E
D

M
O

T
O

R
 V

E
LO

C
IT

Y

P
H

A
S

E
 C

U
R

R
E

N
T

 R

P
H

A
S

E
 C

U
R

R
E

N
T

 S

A
na

lo
g

O
ut

pu
t C

on
tr

ol

#8
5

V
A

R
_A

O
U

T
_F

U
N

C
T

IO
N

A
O

U
T

1

P
3.

23

0 2 3 4 5 6 7 8
Id

 C
U

R
R

E
N

T

#8
8

V
A

R
_A

O
U

T

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
6

V
A

R
_A

O
U

T
_V

E
LS

C
A

LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

PM94P01C130

Reference

Digital Inputs

#2
05

 IN
11

_D
E

B
O

U
N

C
E

#2
04

 IN
10

_D
E

B
O

U
N

C
E

#2
03

 IN
9_

D
E

B
O

U
N

C
E

#2
01

 IN
7_

D
E

B
O

U
N

C
E

#2
00

 IN
6_

D
E

B
O

U
N

C
E

#1
96

 IN
2_

D
E

B
O

U
N

C
E

#1
95

 IN
1_

D
E

B
O

U
N

C
E

#1
94

 IN
0_

D
E

B
O

U
N

C
E

#1
97

 IN
3_

D
E

B
O

U
N

C
E

#1
98

 IN
4_

D
E

B
O

U
N

C
E

#2
02

 IN
8_

D
E

B
O

U
N

C
E

#1
99

 IN
5_

D
E

B
O

U
N

C
E

D
ig

ita
l I

np
ut

s
F

un
ct

io
n

#8
4

Li
m

it
S

w
itc

h
F

un
ct

io
n

IN
_A

1

IN
_A

2

IN
_A

3

IN
_A

4

IN
_B

1

IN
_B

2

IN
_B

3

IN
_B

4

IN
_C

1

IN
_C

2

IN
_C

3

IN
_C

4

#2
13

, #
21

2
R

P
O

S

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_A
1,

 IN
_A

2

A
P

O
S

1
(S

to
p/

F
au

lt)

P
3.

27

P
3.

28

P
3.

29

P
3.

30

P
3.

32

P
3.

33

P
3.

34

P
3.

35

0
(N

ot
 U

se
d)

2
(S

to
p)

#2
9

E
na

bl
e

F
un

ct
io

n

1
(R

un
)

0
(I

nh
ib

it)

C
3

In
pu

t

R
eg

is
tr

at
io

n
S

ig
na

l

U
se

r
P

ro
gr

am
m

ab
le

S
to

p
&

F
au

lt

F
au

lt

#6
5

V
A

R
_I

N
P

U
T

S
In

hi
bi

t I
N

_A
3

#5
2

V
A

R
_E

N
A

B
LE

E
na

bl
e

IN
_A

4

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
1

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
2

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
3

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
4

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
1

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
2

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
3

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
4

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_A
4

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

P
3.

37

P
3.

38

P
3.

39

P
3.

40

PM94P01C 131

Reference

Digital Outputs

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

1

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

D
ig

ita
l O

ut
pu

t C
on

tr
ol

#2
06

 V
A

R
_O

U
T

1_
F

U
N

C
T

IO
N

O
U

T
1

O
U

T
2

O
U

T
3

O
U

T
4

1

P
3.

43

P
3.

44

P
3.

46

P
3.

45

P
3.

48

P
3.

47

P
3.

50

P
3.

49

0 2 3 4 5 6 7

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

2

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

#2
07

 V
A

R
_O

U
T

2_
F

U
N

C
T

IO
N

10 2 3 4 5 6 7

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

3

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

#2
08

 V
A

R
_O

U
T

3_
F

U
N

C
T

IO
N

10 2 3 4 5 6 7

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

4

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

#2
09

 V
A

R
_O

U
T

4_
F

U
N

C
T

IO
N

10 2 3 4 5 6 7

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

Lenze AC Tech Corporation

630	Douglas	Street	•	Uxbridge,	MA	01569	•	USA
Sales	800	217	9100	•	Service	508	278	9100

www.lenze-actech.com

PM94P01C

***************************** HEADER ***************************************
;Title: Pick and Place example program
;Author: Lenze - AC Technology
;Description: This is a sample program showing a simple sequence that
; picks up a part, moves to a set position and drops the part

;**************************** I/O List ************************************
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enable Input
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

;********************** Initialize and Set Variables ***********************
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
;V1 =
;V2 =

;********************** Events ***
;Set Events handling here

;********************** Main Program **************************************

RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3: ;Make sure that the Enable input is made before
continuing
ENABLE
PROGRAM_START:
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
MOVED -10 ;Move 10 REVs to Place position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
GOTO PROGRAM_START
END

;********************** Sub-Routines ***************************************

Enter Sub-Routine code here

;********************** Fault Handler Routine ******************************

; Enter Fault Handler code here

ON FAULT
ENDFAULT

Programming Manual
Valid for Hardware Version 2

PositionServo with MVOB

Copyright © 2013 - 2010 by Lenze AC Tech Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written permission from
Lenze AC Tech Corporation. The information and technical data in this manual are subject to change without notice.
Lenze AC Tech Corporation makes no warranty of any kind with respect to this material, including, but not limited to,
the implied warranties of its merchantability and fitness for a given purpose. Lenze AC Tech Corporation assumes no
responsibility for any errors that may appear in this manual and makes no commitment to update or to keep current the
information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks or trademarks of Lenze AG in the
United States and other countries.

PM94H201B_13xxxxxx_EN L 1

Contents

1. Introduction ... 4
1.1 Definitions ... 4
1.2 Programming Flowchart ... 5
1.3 MotionView / MotionView Studio .. 6

1.3.1 Main Toolbar ..6
1.3.2 Program Toolbar ..7
1.3.3 MotionView Studio - Indexer Program ...9

1.4 Programming Basics .. 10
1.5 Using Advanced Debugging Features .. 17
1.6 Inputs and Outputs ... 17
1.7 Events ... 22
1.8 User Variables and the Define Statement .. 23
1.9 IF/ELSE Statements ... 24
1.10 Motion ... 25

1.10.1 Drive Operating Modes ..26
1.10.2 Point To Point Moves ...26
1.10.3 Segment Moves ...27
1.10.4 Registration ..28
1.10.5 S-Curve Acceleration/Deceleration ..29
1.10.6 Motion Queue ..29

1.11 Subroutines and Loops ... 30
1.11.1 Subroutines ..30
1.11.2 Loops ...31

2. Programming .. 32
2.1 Program Structure .. 32
2.2 Variables ... 34
2.3 Arithmetic Expressions ... 36
2.4 Logical Expressions and Operators .. 36

2.4.1 Bitwise Operators ..36
2.4.2 Boolean Operators ...37

2.5 Comparison Operators ... 37
2.6 System Variables and Flags ... 37
2.7 System Variables Storage Organization ... 38

2.7.1 RAM File for User’s Data Storage ...38
2.7.2 Memory Access Through Special System Variables ...39
2.7.3 Memory Access Through MEMSET, MEMGET Statements ...40
2.7.4 Store and Retrieve Variables from the EPM ..41

2.8 System Variables and Flags Summary .. 42
2.8.1 System Variables ...42
2.8.2 System Flags ...43

2.9 Control Structures ... 44
2.9.1 IF Structure ..44
2.9.2 DO/UNTIL Structure ..45
2.9.3 WHILE Structure ..45
2.9.4 WAIT Statement ..45
2.9.5 GOTO Statement and Labels ..46
2.9.6 Subroutines ..46

2.10 Scanned Event Statements .. 47

2 L PM94H201B_13xxxxxx_EN

Contents
2.11 Motion ... 48

2.11.1 How Moves Work ...48
2.11.2 Incremental (MOVED) and Absolute (MOVEP) Motion ...48
2.11.3 Incremental (MOVED) Motion ..49
2.11.4 Absolute (MOVEP) Move ...49
2.11.5 Registration (MOVEDR MOVEPR) Moves ..50
2.11.6 Segment Moves ...50
2.11.7 MDV Segments ..50
2.11.8 S-curve Acceleration/Deceleration ..52
2.11.9 Motion SUSPEND/RESUME ...52
2.11.10 Conditional Moves (MOVE WHILE/UNTIL) ...52
2.11.11 Motion Queue and Statement Execution while in Motion ..53

2.12 System Status Register (DSTATUS register) ... 55
2.13 Fault Codes (DFAULTS register) ... 56
2.14 Limitations and Restrictions .. 57
2.15 Homing ... 58

2.15.1 What is Homing? ...58
2.15.2 The Homing Function ..58
2.15.3 Home Offset ...58
2.15.4 Homing Velocity ...59
2.15.5 Homing Acceleration ..59
2.15.6 Homing Switch ...59
2.15.7 Homing Start ..59
2.15.8 Homing Method ...60
2.15.9 Homing Methods ..61
2.15.9.1 Homing Method 1: Homing on the Negative Limit Switch & Index Pulse62
2.15.9.2 Homing Method 2: Homing on the Positive Limit Switch & Index Pulse62
2.15.9.3 Homing Method 3: Homing on the Positive Home Switch & Index Pulse63
2.15.9.4 Homing Method 4: Homing on the Positive Home Switch & Index Pulse63
2.15.9.5 Homing Method 5: Homing on the Negative Home Switch & Index Pulse64
2.15.9.6 Homing Method 6: Homing on the Negative Home Switch & Index Pulse64
2.15.9.7 Homing Method 7: Homing on the Home Switch & Index Pulse ..65
2.15.9.8 Homing Method 8: Homing on the Home Switch & Index Pulse ..66
2.15.9.9 Homing Method 9: Homing on the Home Switch & Index Pulse ..67
2.15.9.10 Homing Method 10: Homing on the Home Switch & Index Pulse ..68
2.15.9.11 Homing Method 11: Homing on the Home Switch & Index Pulse ..69
2.15.9.12 Homing Method 12: Homing on the Home Switch & Index Pulse ..70
2.15.9.13 Homing Method 13: Homing on the Home Switch & Index Pulse ..71
2.15.9.14 Homing Method 14: Homing on the Home Switch & Index Pulse ..72
2.15.9.15 Homing Method 17: Homing to Negative Limit Switch (without index pulse)73
2.15.9.16 Homing Method 18: Homing to Positive Limit Switch (without index pulse)74
2.15.9.17 Homing Method 19: Homing to Homing Switch (without index pulse)75
2.15.9.18 Homing Method 21: Homing to Homing Switch (without index pulse)76
2.15.9.19 Homing Method 23: Homing to Homing Switch (without index pulse)77
2.15.9.20 Homing Method 25: Homing to Homing Switch (without index pulse)78
2.15.9.21 Homing Method 27: Homing to Homing Switch (without index pulse)79
2.15.9.22 Homing Method 29: Homing to Homing Switch (without index pulse)80
2.15.9.23 Homing Method 33: Homing to an Index Pulse ...81
2.15.9.24 Homing Method 34: Homing to an Index Pulse ...81
2.15.9.25 Homing Method 35: Using Current Position as Home ...81
2.15.10 Homing Mode Operation Example ...82

3. Reference ... 83
3.1 Program Statement Glossary ... 83
3.2 Variable List .. 103
3.3 Quick Start Examples ... 122

3.3.1 Quick Start - External Torque/Velocity ...122
3.3.2 Quick Start - External Positioning ..124
3.3.3 Quick Start - Internal Torque/Velocity ..126
3.3.4 Quick Start - Internal Positioning ...128

3.4 PositionServo Reference Diagrams ... 130

PM94H201B_13xxxxxx_EN L 3

About These Instructions

This documentation applies to the programming of the PositionServo drive with model numbers ending in S or M.
This documentation should be used in conjunction with the PositionServo User Manual (Document S94H201) that
shipped with the drive. These documents should be read in their entirety as they contain important technical data
and describe the installation and operation of the drive.

Safety Warnings

Take note of these safety warnings and those in the PositionServo User Manual and related documentation.

WARNING! Hazard of unexpected motor starting!

When using MotionView, or otherwise remotely operating the PositionServo drive, the motor may
start unexpectedly, which may result in damage to equipment and/or injury to personnel. Make sure
the equipment is free to operate and that all guards and covers are in place to protect personnel.

All safety information contained in these Programming Instructions is formatted with this layout including an icon,
signal word and description:

Signal Word! (Characterizes the severity of the danger)

Safety Information (describes the danger and informs on how to proceed)

Table 1: Pictographs used in these Instructions

Icon Signal Words

Warning of hazardous
electrical voltage

DANGER! Warns of impending danger.

Consequences if disregarded: Death or severe injuries.

Warning of a general
danger

WARNING! Warns of potential, very hazardous situations.

Consequences if disregarded: Death or severe injuries.

Warning of damage to
equipment

STOP! Warns of potential damage to material and equipment.

Consequences if disregarded: Damage to the controller/
drive or its environment.

Information NOTE Designates a general, useful note.

If the note is observed then handling the controller/drive
system is made easier.

Related Documents

The documentation listed in Table 2 contains information relevant to the operation and programming of the
PositionServo drive. To obtain the latest documentation, visit the Technical Library at http://www.lenzeamericas.com.

Table 2: Reference Documentation

Document # Description

S94H201 PositionServo (with MVOB) User Manual

PM94H201 PositionServo (with MVOB) Programming Manual

P94MOD01 Position Servo ModBus RTU and ModBus TCP/IP

P94CAN01 PositionServo CANopen Communications Reference Guide

P94DVN01 PositionServo DeviceNet Communications Reference Guide

P94ETH01 PositionServo EtherNet/IP Communications Reference Guide

P94PFB01 PositionServo PROFIBUS DP Communications Reference Guide

4 L PM94H201B_13xxxxxx_EN

Introduction

1. Introduction

1.1 Definitions
Included herein are definitions of several terms used throughout this programming manual and the PositionServo user
manual.

PositionServo: The PositionServo is a programmable digital drive/motion controller, that can be configured as a stand
alone programmable motion controller, or as a high performance torque, velocity or position amplifier for centralized
control systems. The PositionServo family of drives includes the 940 Encoder-based drive and the 941 Resolver-based
drive.

MotionView: MotionView is a universal communication and configuration software that is utilized by the PositionServo
drive family. Starting with revision 4.xx, drives will have MotionView OnBoard (MVOB) built into the drive. MotionView
has an automatic self-configuration mechanism that recognizes what drive it is connected to and configures the tool set
accordingly. The MotionView platform is divided up into three sections or windows, the “Parameter Tree Window”, the
“Parameter View Window” and the “Message Window”. Refer to Section 1.3 for more detail.

MotionView OnBoard (MVOB): MotionView OnBoard is the embedded version of MotionView software in PositionServo
drives with a part number ending in ES, RS, EM or RM.

SimpleMotion Language (SML): SML is the programming language utilized by MotionView. The SML interface within
the MotionView software provides a very flexible development environment for creating solutions to motion applications.
The SML programming statements allow the programmer to create complex and intelligent motion, process I/O, perform
complex logic decision making, execute program branching, utilize timed event processes, as well as a number of other
functions common to the majority of motion control and servo applications.

User Program (or Indexer Program): This is the SML program, developed by the user to describe the programmatic
behavior of the PositionServo drive. The User Program can be stored in a text file on your PC as well as in the
PositionServo’s EPM memory. The User Program needs to be compiled (translated) into binary form with the aid of the
MotionView Studio tools before the PositionServo can execute it.

MotionView Studio: MotionView Studio is the front end programming interface of the MotionView platform. It is a tool
suite containing all the software tools needed to program and debug the PositionServo. These tools include a full-screen
text editor, a program compiler, status and monitoring utilities, an online oscilloscope and a debug function that allows
the user to step through the program during program development.

WARNING!

•	 Hazard of unexpected motor starting! When using the MotionView software, or otherwise remotely
operating the PositionServo drive, the motor may start unexpectedly, which may result in damage
to equipment and/or injury to personnel. Make sure the equipment is free to operate safely, and
that all guards and covers are in place to protect personnel.

•	 Hazard of electrical shock! Circuit potentials are up to 480 VAC above earth ground. Avoid direct
contact with the internal printed circuit boards or with circuit elements to prevent the risk of serious
injury or fatality. Disconnect incoming power and wait 60 seconds before servicing drive. Capacitors
retain charge after power is removed.

NOTE

To run MotionView OnBoard (MVOB) on a Mac OS, run the PC emulation tool first.

PM94H201B_13xxxxxx_EN L 5

Introduction

1.2 Programming Flowchart
MotionView utilizes a BASIC-like programming structure referred to as SimpleMotion Programming Language (SML).
SML is a quick and easy way to create powerful motion applications.

With SML the programmer describes his system’s motion, I/O processing and process flow using the SML structured
code. The programming language includes a full set of arithmetic and logical statements that allow the user to perform
mathematical calculations and comparisons of variables and apply the results within their application.

Before the PositionServo drive can execute the user’s program, the program must first be compiled (translated) into
binary machine code, and downloaded to the drive. Compiling the program is done by selecting the [Compile] button
from the toolbar located within the indexer program folder. The user can also compile and download the program at the
same time by selecting the [Load W Source] button from the toolbar. Once downloaded, the compiled program is stored
in both the PositionServo’s EPM memory and the internal flash memory. Figure 1 illustrates the flow of the program
preparation process.

Start Execution in
debug environment
or at next power up

Load compiled program
to PositionServo drive

NO

Any Error?

Compile Program

YES

Prepare User Program

Fix program errors

Figure 1: Program Preparation

6 L PM94H201B_13xxxxxx_EN

Introduction

1.3 MotionView / MotionView Studio
There are two versions of MotionView Software. The current version of MotionView resides inside the drive’s memory
and is referred to as “MotionView on Board” or MVOB. Previous versions were supplied as a PC-installed software
package and were referred to simply as MotionView. This manual refers only to the MotionView OnBoard software.
MVOB drives are identified by the model number ending in either an ‘S’ or an ‘M’.

Figure 2: MotionView OnBoard Parameters Display

MotionView is the universal programming software used to communicate with and configure the PositionServo drive. The
MotionView platform is segmented into three windows. The first window is the “Parameter Tree Window”. This window
is used much like Windows Explorer. The various parameter groups for the drive are represented here as folders or files.
Once the desired parameter group file is selected, all of the corresponding parameters within that parameter group will
appear in the second window, the “Parameter View Window”. The user can then enable, disable or edit drive features
or parameters from the “Parameter View Window”. The third window is the “Message Window”. This window is located
at the bottom of the screen and will display communication status and errors.

NOTE

To run MotionView OnBoard (MVOB) on a Mac OS, run the PC emulation tool first.

1.3.1 Main Toolbar
The most commonly used functions of MotionView are accessible via the Main Toolbar as illustrated in Figure 3. If a
function icon is greyed out that denotes the function is presently unavailable. A function may be unavailable because a
drive is not physically connected to the network or the present set-up and operation of the drive prohibits access to that
function. Use the pull-down menu in the top right-hand corner to select the language. [English] is the default language.

Figure 3: Main Toolbar

Connect
Build a connection list of the drive(s) to communicate with on the network. Build the connection
list by using any one of these three methods:

Parameter (Node)
Tree Window

Message Window

Parameter View
Window

PM94H201B_13xxxxxx_EN L 7

Introduction

[Discover] button automatically discovers all drives on the network that are
available for connection. Once drives have been discovered they are listed in
the ‘Connect to drive’ list box. To connect one or more drives highlight their IP
address in this window and press the [Connect] button. The [Ctrl] key on the
keyboard can be used to select multiple drives for connection.

If the IP address of the drive to be connected is known, enter it in the IP Address
dialog box and then select [Connect] to access the drive.

If a drive has previously been assigned a name (or text label) within its “Drive
Name” parameter then this name can be used to subsequently connect to that
drive. Enter the drive name into the “Name” dialog box and select [Find by name].
The IP address for that drive will then appear in the “Connect To Drive” list. The
drive can now be connected by highlighting the IP address and pressing the
[Connect] button.

Disconnect Terminate connection to the drive selected (highlighted) in the Parameter (Node) Tree.

Save Connection

Save the connection parameters for all drives currently listed in the Parameter (Node) Tree
window. This function saves MVOB communications setup for the project only (for quick reconnect
of all project drives at a later date), it does not save the individual parameter and programming
configuration of each drive.

Load Connection
Connect (Reconnect) to project. Opens a previously saved connection file and automatically
connects to all drives listed within that file (provided they are available).

Print
Print a configuration report for the currently selected drive, containing all parameter set-up and
programming information.

Save Con�guration
Saves the configuration file of the selected drive. All parameters, indexing program, I/O
configuration and compensation gains will be saved within this file.

Load Con�guration Load a saved configuration to the drive.

Restore Defaults
Set drive parameters back to factory default values. Note: has no effect on motor data or drive
IP address.

Stop/Reset Stops the drive execution and resets the drive.

Upgrade Launches firmware upgrade utility.

1.3.2 Program Toolbar
To view the Program Toolbar, click on the [Indexer Program] folder in the Parameter (Node) Tree. This section contains
a brief description of the programming tools: Compile, Load with Source, Load Without Source, Reload, Export, Import,
Run, Reset, Pause, Step, Step Over and Clear. For detailed descriptions of the program toolbar functions refer to
paragraph 1.4.

Figure 4: Program Toolbar

Compile
Perform compilation and check for syntax errors for the indexer program currently
selected in the List View window.

Load W Source
Compile and Load Binary program and text source file to the PositionServo drive listed
in the Parameter (Node) Tree.

Load WO Source
Compile and Load Binary program only (excluding text source file) to the PositionServo
drive listed in the Parameter (Node) Tree.

8 L PM94H201B_13xxxxxx_EN

Introduction

Reload
Reload the text source file presently stored in the selected drive back into the MotionView
Indexer program folder.

Export
Export text source file (User program). Saves a copy of the program from the Indexer
Program folder as a text file on the PC.

Import Import text source file (User program). Loads a program from a text file stored on the PC
to the Indexer Program folder.

Run
Start/Continue Program execution. Refer to section 1.4 for full description and prior to
operation.

Reset
Reset Drive. Disable drive, stop program execution, and return program processing to
the beginning. Program will not restart program execution automatically.

Pause
Stop program execution on completion of the current statement being executed.
WARNING: Pause button does not place the drive in a disable state or prevent execution
of motion commands waiting on the motion stack.

Step
Execute each line of code in the program sequentially following on each press of the
[Step] button. Include step to instructions contained within subroutines.

Step Over Reserved for future use.

Clear Clears the Indexer code.

WARNING
“Load W/O Source” will delete the text source file from both the indexer screen and the drive memory. The user
must ensure they save a copy of the text source file to their PC before proceeding with this operation.

Figure 5: MotionView OnBoard Studio - Indexer Program Display

User
Program

Area

Program
Toolbar

Main
Toolbar

Breakpoint (blue)

Line Number (white)

Program Progression (green)

Column:

PM94H201B_13xxxxxx_EN L 9

Introduction

1.3.3 MotionView Studio - Indexer Program
The MotionView Studio provides a tool suite used by MotionView OnBoard to enter, compile, load and debug the user
program. To view and develop the user program, select the [Indexer Program] folder in the Parameter (Node) Tree
window. Once selected the program text editor screen and program toolbar are displayed. The program displayed in the
text editor window is uploaded from the drive when the indexer folder is selected, any data not compiled to the drive or
saved to PC file will be lost once this window is exited. Click anywhere in the Parameter View Window to edit the Indexer
program.

Common Programming Actions

Load User program from the PC to the MotionView Indexer Program folder text editor window.

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Import] on the program toolbar.

Select the program to import from the PC folder where it is located. This procedure loads the program from the file to
the editor window. It doesn’t load the program to the drive’s memory.

Compile program and Load to the drive

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Load WO Source] on the program toolbar to compile the program and load the compiled binary code

to the PositionServo drive. A copy of the original source code is not stored to the drive’s memory and therefore
cannot be obtained from the drive subsequently. This feature can be used to protect the program from copy but
the programmer must ensure that a copy of the program is safely stored to his PC.

- Select [Load W Source] on the program toolbar to compile the program and load the source code and the
compiled binary file to the PositionServo drive. The original source code contained in the drive can be viewed
whenever the drive is accessed through MotionView and the Indexer Program folder is opened.

- Select [Compile] to check syntax errors without loading the program to the drive. If the compiler finds any
syntax error, further compilation is halted. Errors are reported in the message window at the bottom of the
screen.

Save User program from MotionView to PC.

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Export]] on the program toolbar.

Provide a name and folder location for the source file to be stored under. The program will be saved to the Windows
“My Documents” folder by default.

Run User program in drive.

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Run] on the program toolbar. Note all warnings contained within product manuals prior to running the

user program.

Step Through the User program.

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Step] on the program toolbar.

If [Step] is selected, the drive will execute the program one step at a time including subroutines. For the Step function to
be used the drive must be in a ‘Indexer program Stopped’ condition. If Indexer program is running then Step functions
are disabled. If the user program displayed in the Indexer program window does not match the program currently residing
within the drive (last compiled and downloaded) then Step functions are also disabled.

Statement execution is tracked by a pointer located in the progression column of the program editor. The pointer indicates
the next line of code to be executed. At each Step the pointer will disappear until the statement has been fully executed
and will then reappear at the next statement.

10 L PM94H201B_13xxxxxx_EN

Introduction

Set Breakpoint(s) in the program

- Select [Indexer Program] in the Parameter (Node) Tree.
- Place the cursor in the ‘Breakpoint’ Column next to the line number on which a breakpoint is to be added.
- Right-click and select Add Breakpoint (or Clear Breakpoint).

A convenient way to debug a user program is to insert breakpoints at critical junctions throughout the program. These
breakpoints are marked by a red plus sign (+) and stop the drive from executing further program statements once a
breakpoint is reached, but do not disable the drive and the position variables. Once the program has stopped, the user
can continue to run the program, step through the program or reset the program.

Pause program execution

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Pause] on the program toolbar.

The program will stop after completing the current statement. Select [Run] or use Step functions to resume the program
from the same point.

IMPORTANT!
The [Pause] button only stops the execution of the program code.
It does not stop motion or disable the drive.

Reset Program execution

- Select [Indexer Program] in the Parameter (Node) Tree.
- Select [Reset] on the program toolbar.

The program will be reset and the drive will be disabled. Variables within the drive are not cleared (reset) when program
execution is reset. It is important that any variables used by the programmer are set to safe values at the start of the
user program.

1.4 Programming Basics
The user program consists of statements which when executed will not only initiate motion but will also process the
drives I/O and make decisions based on drive variables, calculations, and comparisons. Before motion can be initiated,
certain drive and I/O parameters must be configured. When first getting started with PositionServo programming it is
recommended that the following parameters be set within MotionView parameter folders to aid initial program creation.

Parameter setup

Select [Parameter] folder in the Parameter (Node) Tree window and set the following parameters.

Set the Drive Operating Mode:

- Select [Drive mode] from the Parameter View Window.
- Select [Position], [Velocity], or [Torque] from the drop down menu depending on the mode the drive is to be

operated in. In order to execute the examples contained in this section of the manual the drive will need to be
in [Position] mode.

Set the [Reference] to [Internal]:

- Select [Reference] from the Parameter View Window.
- Select [Internal] from the pull down menu to select the user program as the source of the Torque, Velocity, or

Position Reference.

Select [Digital IO] folder in the Parameter (Node) Tree window and set the following parameter.

Set the [Enable switch function] to [Inhibit]:

- Select [Enable switch function] from the Parameter View Window.
- Select [Inhibit] from the menu to allow the user program control of the enable / disable status of the drive.

Input A3 will now act as a hardware inhibit.

I/O Configuration

Input A3 is the Inhibit/Enable special purpose input. Refer to the PS User Manual (S94H201) for more information. Before
executing any motion related statements, the drive must be enabled by executing “ENABLE” statement. “ENABLE”
statement can only be accepted if input A3 is made. If at any time while drive is enabled A3 deactivates then the fault
“F36” (“Drive Disabled”) will result. This is a hardware safety feature.

PM94H201B_13xxxxxx_EN L 11

Introduction

Basic Motion Program

Select [Indexer program] from the Parameter (Node) Tree. The Parameter View window will display the current User Program
stored in the drive. Note that if there is no valid program in the drive’s memory the program editing window will be empty.

WARNING!
This program will cause motion. The motor should be disconnected from the application (free to rotate)
or if a motor is connected, the shaft must be free to spin 10 revs forward and reverse from the location
of the shaft at power up. Also, the machine must be capable of 10 RPS and an accel / decel of 5 RPSS.

In the program area, clear any existing program (save if required) and replace it with the following program:

Program Compile Resultant MotionView OnBoard Messages
UNITS=1
ACCEL = 5
DECEL = 5
MAXV = 10
ENABLE
MOVED 10
MOVEDISTANCE -10
END

Compile

Enter the
program, then
select [Compile]
on the
toolbar. After
compilation
is done, a
“Compilation
Error” message
will appear.

Click [OK] to dismiss the “Compliation error” dialog box. The cause of the compilation error will be displayed in the
Message window, located at the bottom of the MotionView OnBoard screen. MotionView will also highlight the program
line where the error occurred. In the example program above, in the green ‘Program Progression’ column there is a red
box next to the “MOVEDISTANCE -10” statement.

The problem in this example is that “MOVEDISTANCE” is not a valid command. Change the text “MOVEDISTANCE”
to “MOVED”.

Program Compile Resultant MotionView OnBoard Messages
UNITS=1
ACCEL = 5
DECEL = 5
ENABLE
MOVED 10
MOVED -10
END

Compile

After editing the
program, select
[Compile] on the
program toolbar.
After compilation
is done, the
“Compilation
Complete”
message box
should appear.

12 L PM94H201B_13xxxxxx_EN

Introduction

The program has now been compiled without errors. Select [Load W Source] to load the program to the drive’s memory.
Click [OK] to dismiss the dialog box.

Run To Run the program, input A3 must be active to remove the hardware inhibit. Select the [Run] icon
on the program toolbar. The drive will start to execute the User Program. The motor will spin 10
revolutions in the CCW direction and then 10 revolutions in the CW direction. After all the code has
been executed, the program will stop and the drive will stay enabled.

Reset To Restart the program, select the [Reset] icon on the program toolbar. This will disable the drive
and reset the program to execute from the start. The program does not run itself automatically. To
run the program again, select the [Run] icon on the toolbar.

Program Layout

When developing a program, structure is very important. It is recommended that the program be divided up into the
following 7 segments:

Header: The header defines the title of the program, who wrote the program and description of what
the program does. It may also include a date and revision number.

I/O List: The I/O list describes what the inputs and outputs of the drive are used for. For example input A1
might be used as a Start Switch.

Init & Set Var: Initialize and Set Variables defines the drives settings and system variables. For example
here is where acceleration, deceleration and max speed might be set.

Events: An Event is a small program that runs independently of the main program. This section is
used to define the Events.

Main Program: The Main Program is the area where the main process of the drive is defined.
Sub-Routines: This is the area where all sub-routines should reside. These routines will be called out from

the Main Program with a GOSUB command.
Fault Handler: This is the area where the Fault Handler code resides. If the Fault handler is utilized, then this

code will be executed when the drive detects a fault condition.

The following is an example of a Pick and Place program divided up into the above segments.

***************************** HEADER **************************************
;Title: Pick and Place example program
;Author: Lenze - AC Technology
;Description: This is a sample program showing a simple sequence that
; picks up a part, moves to a set position and places the part

;**************************** I/O List ************************************
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enable Input
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

PM94H201B_13xxxxxx_EN L 13

Introduction

;********************** Initialize and Set Variables ***********************
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
;V1 =
;V2 =

;********************** Events ***
;Set Events handling here

;No events are currently defined in this program

;********************** Main Program **************************************

RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3: ;Make sure that the Enable input is made before continuing
ENABLE ;Enable output from drive to motor
PROGRAM_START: ;Place holder for main program loop
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
MOVED -10 ;Move 10 REVs to Place position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
GOTO PROGRAM_START ;Loop back and continuously execute main program loop
END

;********************** Sub-Routines ***************************************

Enter Sub-Routine code here

;********************** Fault Handler Routine ******************************

; Enter Fault Handler code here
ON FAULT ;No Fault Handler is currently defined in this program
ENDFAULT

Saving Configuration File to PC

The “Configuration File” consists of all the parameter settings for the drive, as well as the User Program. Once you are
done setting up the drive’s parameters and have written your User Program, you can save these setting to your computer.
To save the settings, select [Save All] from the Main toolbar. Then simply assign your configuration file a name, (e.g.
Basic Motion), and click [Save] in the dialog box. The configuration file has a “dcf.xml” extension and by default will be
saved to the “My Documents” folder.

Loading Configuration File to the Drive

There are times when it is helpful to import a a complete set-up or drive configuration to another drive. To load the
configuration file from the PC to the drive, select [Load All] from the Main toolbar. Select the configuration file to load
and click [Open] in the dialog box. MotionView will open the selected configuration file, set all parameters within the
drive to the values contained within that file, and then extract, compile and download the saved user program. When the
process is complete the [Compilation Complete] dialog box will appear.

14 L PM94H201B_13xxxxxx_EN

Introduction

Click [OK] to dismiss this dialog box. MotionView will then load the selected file to the drive. When complete, a second
dialog box will appear indicating ‘indexer program compiled and downloaded successfully’. Click [OK] too clear this
message. Load of the configuration file is now complete.

Motion source (Reference)

The PositionServo can be set up to operate in one of three modes: Torque, Velocity, or Position. The drive must be
given a command relative to its mode of operation before it can initiate any motion. The source for commanding this
motion is referred to as the “Reference”. With the PositionServo you have two methods of commanding motion, or
two types of References. When the drive’s reference signal is from an external source, for example a PLC or Motion
Controller, it is referred to as an External Reference. When the drive is being given its reference from the User program
or through one of the system variables it is referred to as an Internal Reference.

Table 3: Setting the Reference

“Reference” Parameter Setting

Mode External Internal

Torque Analog input AIN1 System variable “IREF”

Velocity Analog input AIN1 System variable “IREF”

Position
Step/Direction Inputs

Master Encoder Pulse Train Inputs
User Program/Interface
(Trajectory generator)

Units

All motion statements in the drive work with User units. The statement on the first line of the test program, UNITS=1,
sets the relationship between programming units and motor revolutions. For example, if UNITS=0.5 the motor will turn
1/2 of a revolution when commanded to move 1 Unit. When the UNITS variable is set to zero, programming units for
motion will be in motor feedback pulses (User units set to 1 divided into motor feedback pulses).

Time base

Time base for motion is always in seconds i.e. all time-related values are set in USER UNITS/SEC.
Time Base for programming statements (such as wait statements) are always in milliseconds.

Enable/Disable/Inhibit drive

Set “Enable switch function” to “Run”.

When the “Enable switch function” parameter is set to Run, and the Input A3 is made, the drive will be enabled. Likewise,
toggling input A3 to the off state will disable the drive.

- Select [IO] then [Digital IO] from the Parameter Tree Window.
- Select “Enable switch function” from the Parameter View Window.
- Select “Run” from the drop down menu. This setting is primarily used when operating without any user pro-

gram in torque or velocity mode or as position follower with Step&Direction/Master Encoder reference.

Set “Enable switch function” to “Inhibit”.

In the example of the Enable switch function being set to Run the decision on when to enable and disable the drive is
determined by the logic status of input A3 (typically controlled by an external device, PLC or Motion controller). The
PositionServo’s User Program allows the programmer to define (control) within their program the enable and disable
of the drive through execution of program statements. The drive will execute the User Program whether the drive is
enabled or disabled, however if a motion statement is executed while the drive is disabled, an F27 fault will occur. If the
user program commands the drive to enable and Input A3 (hardware enable) is not present or Input A3 is removed and
the drive is enabled through programming then the drive will trip on Fault 36.

PM94H201B_13xxxxxx_EN L 15

Introduction

When the “Enable switch function” parameter is set to Inhibit, and Input A3 is on, the drive will be disabled and remain
disabled until the ENABLE statement is executed by the User Program.

- Select [IO] then [Digital IO] from the Parameter Tree Window.
- Select “Enable switch function” from the Parameter View Window.
- Select “Inhibit” from the popup menu.

Faults

When a fault condition has been detected by the drive, the following actions will occur:

- Drive will Immediately be placed in a Disabled Condition.
- Motion Stack will be flushed of any Motion Commands
- Execution of the user program will be terminated and program control will be handed over to the Fault Handler

section. If no Fault handler is described then program execution will terminate. See fault handler section.
- A fault code defining the nature of the drive trip will be written to the DFAULTS system variable and can be

accessed by the fault handler. Refer to section 2.13 for a list of fault codes.
- The fault code will will be displayed on the drive display.
- Dedicated Ready/Enabled output will turn off, provided drive was in enable state prior to fault detection.
- Any Output with assigned special function “Fault” will turn on.
- Any Output with assigned special function “ready/enabled” will turn off, provided drive was in enable state prior

to fault detection
- The “enable” status indicator on the drive display will turn off indicating drive in disabled state.

Clearing a fault condition can be done in one of the following ways:

Reset - Select the [Reset] button from the toolbar.
- Execute the RESUME statement at the end of the Fault Handler routine (see Fault Handler

example). This permits the continuation of program execution at the discretion of the programmer
and when the fault does not present an issue to the safety or integrity of the system.

- Send “Reset” command over the Host Interface.
- Cycle power (hard reset).

Fault Handler

The Fault Handler is a code segment that will be executed immediately on the drive detecting a fault condition. The fault
handler allows the programmer to analyze the type of fault and (when necessary) define a recovery process for the drive
Full stop. While the drive is executing the Fault Handler Routine the drive is disabled and therefore will not be able to
detect any additional faults that might occur. Fault handler code is the drive’s first reaction to a fault condition. While it
executes, the drive will not respond to any I/O, interface commands or program events. Therefore the user should use
the fault handler to manipulate time critical and safety related I/O and variables and then exit the Fault Handler Routine
either by executing a “RESUME” statement or by executing the EndFault statement and ending program execution.
The Resume statement permits program execution to leave the fault handler and resume back in the main program
section of the user code. Use the Resume statement to jump back to a section of the main program that designates the
recovery process for the fault. Wait statements within the fault handler for I/O state change or for interface command is
not allowed. If a wait statement is required (for example from a fault reset input) then this must be done subsequent to
the Resume command when program execution is handed back to the main program.

Without Fault Handler

To simulate a fault, restart the Pick and Place example program. While the program is running, switch the ENABLE input
IN_A3 to the off state. This will cause the drive to generate an F_36 fault (Hardware disable while drive enabled in inhibit
mode) and put the drive into Fault Mode. While the drive is in Fault Mode, any digital output currently active will remain
active and any output deactivated will remain deactivated, excluding the dedicated ready output and any output that has
been assigned pre-defined functionality. The program execution will stop and any motion commands will be terminated.

16 L PM94H201B_13xxxxxx_EN

Introduction

With Fault Handler

Add the following code to the end of your sample program. When the program is running, switch the ENABLE input
IN_A3, to the off state. This will cause the drive to generate an F_36 fault ((Hardware disable while drive enabled in
inhibit mode) and put the drive into a Fault Mode. From this point the Fault Handler Routine will take over.

F_PROCESS:
WAIT UNTIL IN_A4==1 ;Wait until reset switch is made
WAIT UNTIL IN_A4==0 ;and then released before
GOTO RESET_DRIVE ;returning to the beginning of the program
END
;*********************** Sub-Routines **************************************
Enter Sub-Routines here;
;*********************** Fault Handler Routine *****************************
ON FAULT ;Statement starts fault handler routine
 ;Motion stopped, drive disabled, and events no longer
 ;scanned while executing the fault handler routine.
OUT2 = 0 ;Output 1 off to Disengage gripper.
 ;This will drop the part in the gripper
OUT1 = 0 ;Retract Pick arm to make sure it is up and out of the way
RESUME F_PROCESS ;program restarts from label F_PROCESS
ENDFAULT ;fault handler MUST end with this statement

NOTE

The following statements can not be used inside the Fault Handler Routine:

ENABLE
WAIT
MOVE
MOVED
MOVEP
MOVEDR
MOVEPR
MDV
MOTION SUSPEND
MOTION RESUME
GOTO, GOSUB
JUMP
VELOCITY ON/OFF
WHILE / ENDWHILE
DO / UNTIL
EVENT (ON, OFF)
EVENTS (ON, OFF)
HOME
HALT
STOP MOTION (QUICK)

Refer to section 2.1 for additional details and the Language Reference section for the statement
“ON FAULT/ENDFAULT”.

PM94H201B_13xxxxxx_EN L 17

Introduction

1.5 Using Advanced Debugging Features
To debug a program or view the I/O, open the Diagnostic panel by clicking on the [Tools] in the Parmeter (Node) Tree
list then click on the [Parameter & I/O View] button. The Diagnostic panel will open. This panel allows the programmer
to monitor and set variables, and to view status of drive digital inputs and outputs.

V Use the up [T] button to move the blue highlighted bar up through the variable list and select a
parameter

Add Use the [Add] button to open the Parameters dialog box. Select the variable(s) to add by clicking on
the box adjacent to the variable #. When finished selecting variables, click [Add] in the Parameter
dialog box to add these variables to the watch window.

>> Use the right arrow button to remove highlighted variable from the watch window.

V Use the down [V] button to move the blue highlighted bar down through the variable list and select
a parameter

Clear Use the [Clear] button to clear all the parameters listed in the watch window.

Load Use the [Load] button to load a set of previously saved variables to the watch window.

Save Use the [Save] button to save the configuration of variables listed in the watch window to a file on
the PC. Configuration can then easily be restored using the [Load] button.

Figure 6: Variable Diagnostic Display

NOTE
Write-only variables cannot be read. Attempts to either display a write-only variable in the diagnostic panel or to
read a write-only variable via network communications can show erroneous data.

1.6 Inputs and Outputs
Analog Input and Output
- The PositionServo has two analog inputs. These analog inputs are utilized by the drive as System Variables and

are labeled “AIN1” and “AIN2”. Their values can be directly read by the User Program or via a Host Interface.
Their value can range from -10 to +10 and correlates to ±10 volts analog input.

- The PositionServo has one analog output. This analog output is utilized by the drive as a System Variable and
is labeled “AOUT”. It can be directly written by the User Program or via a Host Interface. Its value can range
from -10 to +10 which correlates to ± 10 volts analog input.

NOTE
If an analog output is assigned to any special function from MotionView, writing to AOUT from the User Program will have no
effect. If an analog output is set to “Not assigned” then it can be controlled by writing to the AOUT variable.

Variable
List

Watch
Window

I/O Status
Indicators

18 L PM94H201B_13xxxxxx_EN

Introduction

Digital Inputs
- The PositionServo has twelve digital inputs that are utilized by the drive for decision making in the User Program.

Example uses: travel limit switches, proximity sensors, push buttons and hand shaking with other devices.
- Each input can be assigned an individual debounce time via MotionView. From the Parameter Tree, select [IO].

Then select the [Digital Input] folder. The debounce times will be displayed in the Parameter View Window.
Debounce times can be set between 0 and 1000 ms (1ms = 0.001 sec). Debounce times can also be set via
variables in the user program.

- The twelve inputs are separated into three groups: A, B and C. Each group has four inputs and share one
common: Acom, Bcom and Ccom respectfully. The inputs are labeled individually as IN_A1 - IN_A4, IN_B1
- IN_B4 and IN_C1 - IN_C4.

- In addition to monitoring each input individually, the status of all twelve inputs can be represented as one binary
number. Each input corresponds to 1 bit in the INPUTS system variable. Use the following format:

System
Variable
INPUTS

Bit # 11 10 9 8 7 6 5 4 3 2 1 0

Input
Name

C4 C3 C2 C1 B4 B3 B2 B1 A4 A3 A2 A1

- Some inputs can be configured for additional predefined functionality such as Travel Limit switch, Enable input,
and Registration input. Configuration of these inputs is done from MotionView or through variables in the user
program. Input special functionality is summarized in the table below and in the following sections. Table 4
summarizes the special functions for the inputs.

Table 4: Input Functions

Input Name Special Function

Input A1 Negative limit switch

Input A2 Positive limit switch

Input A3 Inhibit/Enable input

Input A4 N/A

Input B1 N/A

Input B2 N/A

Input B3 N/A

Input B4 N/A

Input C1 N/A

Input C2 N/A

Input C3 Registration sensor input

Input C4 N/A

The current status of the drive’s inputs is available to the programmer through dedicated System Flags or as
bits of the System Variable INPUTS.

PM94H201B_13xxxxxx_EN L 19

Introduction

Read Digital Inputs

The Pick and Place example program has been modified below to utilize the “WAIT UNTIL” statement in place of the
“WAIT TIME” statement. IN_A1 and IN_A4 will be used as proximity sensors to detect when the pick and place arm is
extended and when it is retracted. When the arm is extended, IN_A1 will be in an ON state and will equal “1”. When the
arm is retracted, IN_A4 will be in an ON state and will equal “1”.

;********************* Main Program **
RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3 ;Make sure that the Enable input is made before continuing
ENABLE
OUT1 = 0 ;Initialize Pick Arm - Place in Retracted Position
WAIT UNTIL IN_A4==1 ;Check Pick Arm is in Retracted Position
PROGRAM_START:
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVED -10 ;Move 10 REVs to Place position
OUT1 = 1 ;Turn on output 1 on to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm is extended
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Arm is retracted
GOTO PROGRAM_START
END

Once the above modifications have been made, export the program to file and save it as “Pick and Place with I/O”, then
compile, download and test the program.

ASSIGN & INDEX - Using inputs to generate predefined indexes

“INDEX” is a variable on the drive that can be configured to represent a specified group of inputs as a binary number.
“ASSIGN” is the command that designates which inputs are utilized and how they are configured.

Below the Pick and Place program has been modified to utilize this “INDEX” function. The previous example program
simply picked up a part and moved it to a place location. For demonstration purposes we will add seven different place
locations. These locations will be referred to as Bins. What Bin the part is placed in will be determined by the state of
three inputs, B1, B2 and B3.

 Bin 1 - Input B1 is made
 Bin 2 - Input B2 is made
 Bin 3 - Inputs B1 and B2 are made
 Bin 4 - Input B3 is made
 Bin 5 - Inputs B1 and B3 are made
 Bin 6 - Inputs B2 and B3 are made
 Bin 7 - Inputs B1, B2 and B3 are made

The “ASSIGN” command is used to assign the individual input to a bit in the “INDEX” variable. ASSIGN INPUT <input
name> AS BIT <bit #>

;*********************** Initialize and Set Variables *******************
ASSIGN INPUT IN_B1 AS BIT 0 ;Assign the Variable INDEX to equal 1 when IN_B1 is made
ASSIGN INPUT IN_B2 AS BIT 1 ;Assign the Variable INDEX to equal 2 when IN_B2 is made
ASSIGN INPUT IN_B3 AS BIT 2 ;Assign the Variable INDEX to equal 4 when IN_B4 is made

20 L PM94H201B_13xxxxxx_EN

Introduction

Table 5: Bin Location, Inputs & Index Values

Bin Location Input state INDEX Value
Bin 1 Input B1 is made 1

Bin 2 Input B2 is made 2

Bin 3 Inputs B1 and B2 are made 3

Bin 4 Input B3 is made 4

Bin 5 Inputs B1 and B3 are made 5

Bin 6 Inputs B2 and B3 are made 6

Bin 7 Inputs B1, B2 and B3 are made 7

The Main program has been modified to change the end place position based on the value of the “INDEX” variable.

;************************** Main Program **********************************
ENABLE
OUT1 = 0 ;Initialize Pick Arm - Place in Retracted Position
WAIT UNTIL IN_A4==1 ;Check Pick Arm is in Retracted Position
PROGRAM_START:
MOVEP 0 ;Move to (ABS) to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==0 ;Make sure Arm is retracted

IF INDEX==1 ;In this area we use the If statement to
GOTO BIN_1 ;check and see what state inputs B1, B2 & B3
ENDIF ;are in.
IF INDEX==2 ; INDEX = 1 when input B1 is made
GOTO BIN_2 ; INDEX = 2 when input B2 is made
ENDIF ; INDEX = 3 when input B1 & B2 are made.
. ; INDEX = 4 when input B3 is made
. ; INDEX = 5 when input B1 & B3 are made.
. ; INDEX = 6 when input B2 & B3 are made.
IF INDEX==7 ; INDEX = 7 when input B1, B2 & B3 are made
GOTO BIN_7 ;We can now direct the program to one of seven
ENDIF ;locations based on three inputs.

BIN_1: ;Set up for Bin 1
MOVEP 10 ;Move to Bin 1 location
GOTO PLACE_PART ;Jump to place part routine
BIN_2: ;Set up for Bin 2
MOVEP 20 ;Move to Bin 2 location
GOTO PLACE_PART ;Jump to place part routine
BIN_7: ;Set up for Bin 7
MOVEP 70 ;Move to Bin 7 location
GOTO PLACE_PART ;Jump to place part routine
PLACE_PART:
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A4 == 1 ;Arm extends
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4 == 0 ;Arm is retracted
GOTO PROGRAM_START
END

NOTE: with all digital inputs (B1-B3) off, none of the ‘If’ statements to detect place position are true and the program
defaults to placing the part it has picked into bin location 1.

PM94H201B_13xxxxxx_EN L 21

Introduction

NOTE
Any one of the 12 inputs can be assigned as a bit position within the INDEX variable. Only bits 0
through 7 can be used with the INDEX variable. Bits 8-31 are not used and are always set to 0.
Unassigned bits in the INDEX variable are set to 0.

BITS 8-31 (not used) A1 0 A2 A4 0 0 0 0

Limit Switch Input Functions

Inputs A1 and A2 can be configured as special purpose inputs from the [Digital IO] folder in MotionView. They can be set to
one of three settings:

- The “Not assigned” setting designates the inputs as general purpose inputs which can be utilized by the User
Program.

- The “Fault” setting will configure A1 and A2 as Hard Limit Switches. When either input is made the drive will
be disabled, the motor will come to an uncontrolled stop, and the drive will generate a fault. If the negative limit
switch is activated, the drive will display an F-33 fault. If the positive limit switch is activated the drive will display
an F32 fault.

- The “Stop and fault” setting will configure A1 and A2 as End of Travel limit switches. When either input is
made the drive will initiate a rapid stop before disabling the drive and generating an F34 or F35 fault (refer to
section 2.15 for details). The speed of the deceleration will be set by the value stored in the “QDECEL” System
Variable.

NOTE
The “Stop and Fault” function is available in position mode only, (“Drive mode” is set to “Position”).
In all other cases, the Stop and Fault function will act the same as the Fault function.

To set this parameter, select the [IO] folder from the Parameter Tree. Then select the [Digital IO] folder. From the
Parameter View Window, use the pull-down menu next to [Hard Limit Switches Action] to select the status: Not
Assigned, Fault or Stop and Fault.

Digital Outputs Control

- The PositionServo has 5 digital outputs. The “RDY” or READY output is dedicated and will only come on when
the drive is enabled, i.e. in RUN mode. The other outputs are labeled OUT1 - OUT4.

- Outputs can be configured as Special Purpose Outputs. If an output is configured as a Special Purpose Output
it will activate when the state assigned to it becomes true. For example, if an output is assigned the function
“Zero speed”, the assigned output will come on when the motor is not in motion. To configure an output as a
Special Purpose Output, select the [IO] folder from the Parameter Tree. Then select the [Digital IO] folder. From
the Parameter View Window, select the “Output function” parameter you wish to set (1, 2, 3 or 4).

- Outputs that are configured as “Not assigned” can be activated either via the User Program or from a host
interface. If an output is assigned as a Special Purpose Output, neither the user program nor the host interface
can overwrite its status.

- The Systems Variable “OUTPUTS” is a read/write variable that allows the User Program, or host interface,
to monitor and set the status of all four outputs. Each output allocates 1 bit in the OUTPUTS variable. For
example, if you set this variable equal to 15 in the User Program,i.e. 1111 in binary format, then all 4 outputs
will be turned on.

- The example below summarizes the output functions and corresponding System Flags. To set the output, write
any non-0 value (TRUE) to its flag. To clear the output, write a 0 value (FALSE) to its flag. You can also use
flags in an expression. If an expression is evaluated as TRUE then the output will be turned ON. Otherwise, it
will be turned OFF.

OUT1 = 1 ;turn OUT1 ON
OUT2 = 10 ;any value but 0 turns output ON
OUT3 = 0 ;turn OUT3 OFF
OUT2 = APOS>3 && APOS<10 ;ON when position within window, otherwise OFF

22 L PM94H201B_13xxxxxx_EN

Introduction

Figure 7: Digital IO Folder

1.7 Events
A Scanned Event is a small program that runs independently of the main program. An event statement establishes a
condition that is scanned on a regular basis. Once established, the scanned event can be enabled and disabled in the
main program. If condition becomes true and EVENT is enabled, the code placed between EVENT and ENDEVENT
executes. Scanned events are used to trigger the actions independently of the main program.

In the following example the Event “SPRAY_GUNS_ON” will be setup to turn Output 3 on when the drive’s position
becomes greater than 25. Note: the event will be triggered only at the instant when the drive position becomes greater
than 25. It will not continue to execute while the position remains greater than 25. (i.e the event is triggered by the
transition in logic from false to true). Note also that the main program does not need to be interrupted to perform this
action.

;*********************** EVENT SETUP ***************************************
EVENT SPRAY_GUNS_ON APOS>25
OUT3=1
ENDEVENT
;***
Enter the Event code in the EVENT SETUP section of the program. To Setup an Event, the “EVENT” command must
be entered. This is followed by the Event Name “SPRAY_GUNS_ON” and the triggering mechanism, “APOS>25”.
After that a sequence of programming statements can be entered once the event is triggered. In our case, we will turn
on output 3. To end the Event, the “ENDEVENT” command must be used. Events can be activated (turned on) and
deactivated (turned off) throughout the program. To turn on an Event, the “EVENT” command is entered, followed by the
Event Name “SPRAY_GUNS_ON”. This is completed by the desired state of the Event, “ON” or “OFF”. Refer to Section
2.10 for more on Scanned Events.

;***
EVENT SPRAY_GUNS_ON ON
;***

Two Scanned Events have been added to the Pick and Place program below to trigger a spray gun on and off. The
Event will be triggered after the part has been picked up and is passing in front of the spray guns (position greater than
25). Once the part is in position, output 3 is turned on to activate the spray guns. When the part has passed by the spray
guns, (position greater than 75), output 3 is turned off, deactivating the spray guns.

PM94H201B_13xxxxxx_EN L 23

Introduction

;************************** Events **
EVENT SPRAY_GUNS_ON APOS>25 ;Event will trigger as position passes 25 in pos dir.
OUT3=1 ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event
EVENT SPRAY_GUNS_OFF APOS>75 ;Event will trigger as position passes 75 in pos dir.
OUT3=0 ;Turn off the spray guns (out 3 off)
ENDEVENT ;End event
;************************** Main Program **
WAIT UNTIL IN_A3 ;Make sure the Enable input is made before continuing
ENABLE
OUT1 = 0 ;Initialize Pick Arm - Place in Retracted Position
WAIT UNTIL IN_A4==1 ;Check Pick Arm is in Retracted Position
EVENT SPRAY_GUNS_ON ON
EVENT SPRAY_GUNS_OFF ON
PROGRAM_START:
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Make sure Arm is retracted
MOVEP 100 ;Move to Place position
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Arm extends
OUT2 = 0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Arm is retracted
GOTO PROGRAM_START
END

1.8 User Variables and the Define Statement
In the previous program for the pick and place machine constant values were used for position limits to trigger the
events and turn the spray gun ON and OFF. If limits must be calculated based on some parameters unknown before
the program runs (like home origin, material width, etc.), then this system data can be stored in user variables. The
PositionServo provides 32 User Variables V0-V31 and 32 User Network Variables NV0-NV31. Network variables have
an additional function associated to them (refer to ‘Send’ Command) but can, for most purposes, be considered as user
variables in the same way as the standard user variables (V0-31). Hence 64 user variables or data storage locations are
available to the programmer. In the program following the example DEFINE statements, the limit APOS (actual position)
is compared to V1 for an ON event and V2 for an OFF event. The necessary limit values could be calculated earlier in
the program or supplied by an HMI or host PC. The DEFINE statement can be used to assign a name to a constant,
variable, or drive Input/Output. In the program below, constants 1 and 0 are defined as Output_On and Output_Off.
DEFINE is a pseudo statement, i.e it is not executed by the program interpreter, but rather substitutes expressions in
the subsequent program at the time of compilation. Examples of the DEFINE statement:

; Definition of Constant Values
DEFINE Move_1 100
DEFINE BallScrewPitch 0.357

; Definition of Inputs/Outputs
DEFINE System_Run_IP In_B1
DEFINE Process_Run_OP Out1

; Definition User Variables
DEFINE Distance_Travelled V2
DEFINE Network_Healthy NV10

Programming the following statement: Distance_Travelled = Move_1 * BallScrewPitch
Is now the equivalent of writing: V2 = 100 * 0.357

24 L PM94H201B_13xxxxxx_EN

Introduction

;*************************** Initialize and Set Variables ******************************
UNITS = 1 ;Define units for program, 1=revolution of motor shaft
ACCEL = 5 ;Set Acceleration rate for Motion command
DECEL = 5 ;Set Deceleration rate for Motion command
MAXV = 10 ;Maximum Velocity for Motion commands
V1 = 25 ;Set Variable V1 equal to 25
V2 = 75 ;Set Variable V2 equal to 75
DEFINE Output_On 1 ;Define Name for output On
DEFINE Output_Off 0 ;Define Name for output Off
;*************************** EVENTS ***
EVENT SPRAY_GUNS_ON APOS > V1 ;Event will trigger as position passes 25 in pos dir.
OUT3= Output_On ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event

EVENT SPRAY_GUNS_OFF APOS > V2 ;Event will trigger as position passes 75 in pos dir.
OUT3= Output_Off ;Turn off the spray guns (out 3 off)
ENDEVENT ;End event
;*************************** Main Program ***
WAIT UNTIL IN_A3 ;Make sure the Enable input is made before continuing
ENABLE
OUT1 = 0 ;Initialize Pick Arm - Place in Retracted Position
WAIT UNTIL IN_A4==1 ;Check Pick Arm is in Retracted Position
EVENT SPRAY_GUNS_ON ON ;Enable the Event
EVENT SPRAY_GUNS_OFF ON ;Enable the Event
PROGRAM_START:
MOVEP 0 ;Move to position 0 to pick part
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_On ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = Output_Off ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
MOVED 100 ;Move to Place position
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_Off ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = Output_Off ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
GOTO PROGRAM_START
END

1.9 IF/ELSE Statements
An IF/ELSE statement allows the user to execute one or more statements conditionally. The programmer can use an
IF or IF/ELSE construct:

Single IF example:

This example increments a counter, Variable “V1”, until the Variable, “V1”, is greater than 10.

Again:
 V1=V1+1
 IF V1>10
 V1=0
 ENDIF
 GOTO Again
END

PM94H201B_13xxxxxx_EN L 25

Introduction

IF/ELSE example:

This example checks the value of Variable V1. If V1 is greater than 3, then V2 is set to 1. If V1 is not greater than 3,
then V2 is set to 0.

 IF V1>3
 V2=1
 ELSE
 V2=0
 ENDIF
Whether you are using an IF or IF/ELSE statement the construct must end with ENDIF keyword.

1.10 Motion
Figure 8 illustrates the Position and Velocity regulator of the PositionServo drive.

Position
Command

Kff term

Biquad
Convergence
Filter

Biquad
Convergence
Filter

Velocity
Estimator

Secondary
Encoder

Primary
Encoder

Current
Limiter

I term Limit and
unit wind-up

I term Limit and
unit wind-up

P term

D term

I term

=0

=1

+

-

+

+
+

+

+

+

-

P term

D term

Velocity
Window

#41 Second Encoder

Position Feedback

Mechanical Velocity Feedback

Velocity Command

To Torque Amplifier
Current Command

Kff is automatically calculated

+

+

+

-

Figure 8: PositionServo Position and Velocity Regulator’s Diagram

The “Position Command”, as shown in the regulator’s diagram (Figure 9), is produced by a Trajectory Generator.
The Trajectory Generator processes the motion commands produced by the User’s program to calculate the position
increment or decrement, also referred to as the “index” value, for every servo loop. This calculated target (or theoretical)
position is then supplied to the Regulator input.

The main purpose of the Regulator is to set the motors position to match the target position created by the Trajectory
Generator. This is done by comparing the input from the Trajectory Generator with the position feedback from the
primary motor feedback (resolver or encoder) to control the torque and velocity of the motor. There will always be some
error in the position following. Such error is referred to as “Position Error” and is expressed as follows:

Position Error = Target Position - Actual Position

When the actual Position Error exceeds a certain threshold value for greater than the predefined time limit a “Position
Error limit”, fault (F_PE) will be generated. The Position Error limit and Position Error time can be set under the Parameter
(Node) Tree “Limits”/ “Position Limits” in MotionView. The Position Error time specifies how long the actual position error
can exceed the Position Error limit before the fault is generated.

26 L PM94H201B_13xxxxxx_EN

Introduction

1.10.1 Drive Operating Modes
There are three modes of operation for the PositionServo: Torque, Velocity and Position. Torque and Velocity modes
are generally used when the command reference is from an external device (via analog input 1), however mechanisms
also exist for operation in these modes from within the internal user program. Position mode is used when the command
comes from the drives User Program, or from an external device (drive fed from encoder or step/direction signal).
Setting the drive’s mode is done from the [Parameter] folder in MotionView. To command motion from the user program
the drive must be configured to internal reference mode. When the drive is in position mode, it can be placed into a
simulated velocity mode without the need to change operating mode to ‘Velocity’. Velocity profiling from Positioning
mode can be turned on and off from the User Program. Executing the VELOCITY ON statement is used to activate
this mode while VELOCITY OFF will deactivate this mode. This mode is used for special case indexing moves. When
in Velocity simulation mode the target position is constantly advanced with a rate set in the VEL system variable. The
Reference arrangements for the different modes of operation are illustrated in Figure 9.

MA/MB inputs

#37, Reference

"INTERNAL"
#214,#189 TPOSGearing

#79,#80
Master to System

ratio

User's program
Trajectory
Generator

Phase Correction

POSITION
REGULATOR

0. Torque
1. Velocity
2. Position

#35,VELOCITY _SCALE

#89
Dead Band

Analog input #1

#90, Offset

#34, DRIVEMODE

VELOCITY
REGULATOR

CURRENT
REGULATOR

0

1

2
TO MODULATOR

0

1

2

#36,CURRENT_SCALE

IREF

"INTERNAL"

"INTERNAL"

+
+

+

Figure 9: Reference Arrangement Diagram

1.10.2 Point To Point Moves
The PositionServo supports two types of moves: absolute and incremental. The statement MOVEP (Move to Position)
is used to make an absolute move. When executing an absolute move, the motor is instructed to move to a known
position. The move to this known position is always referenced from the motor’s “home” or “zero” location. For example,
the statement (MOVEP 0) will cause the motor to move to its zero or home position, regardless of where the motor is
located at the beginning of the move. The statement MOVED (Move Distance) makes incremental, (or relative), moves
from its current position. For example, MOVED 10, will cause the motor to move forward 10 user units from it current
location.

MOVEP and MOVED statements generate what is called a trapezoidal point to point motion profile. A trapezoidal move
is when the motor accelerates, using the current acceleration setting, (ACCEL), to a pre-defined top speed, (MAXV),
it then maintains that speed for a period of time before decelerating to the end position using the deceleration setting,
(DECEL). If the distance to be moved is fairly small, a triangular move profile will be used. A triangular move is a move
that starts to accelerate toward the Max Velocity setting but has to decelerate before ever achieving the max velocity in
order to reach the desired end point.

PM94H201B_13xxxxxx_EN L 27

Introduction

Velocity

Time

Triangular Move Pro�le

Steady State Velocity
(De�ned by 'DECEL' variable)

Acceleration Rate
(De�ned by 'ACCEL' variable)

Trapezoidal Move Profile

Deceleration Rate
(Defined by 'DECEL' variable)

Acceleration & Deceleration Rates Only
(Defined by 'ACCEL' and 'DECEL' variables)

Figure 10: Trapezoidal Move

1.10.3 Segment Moves
MOVED and MOVEP commands facilitate simple motion to be commanded, but if the required move profile is more
complex than a simple trapezoidal will allow, then the segment MDV move can be used.

The profile shown in Figure 11 is divided into 8 segments or 8 MDV moves. An MDV move (Move Distance Velocity) has
two arguments. The first argument is the distance moved in that segment. This distance is referenced from the motor’s
current position in User Units. The second argument is the desired target velocity for the end of the segment move. That
is the velocity at which the motor will run at the moment when the specified distance in this segment is completed.

70

60

50

40

30

20

10

5 10 15 20 25 30

Segment
1

Segment
2 Segment

4

Segment
3 Segment

8
Segment

6

Segment
5

Segment
7

Distance (User Units)

V
el

o
ci

ty
 (

R
P

S
)

Figure 11: Segment Move

Table 6: Segment Move

Segment Number Distance moved
during segment

Velocity at the end of
segment

1 3 56

2 3 12

3 4 16

4 2 57

5 2.5 57

6 3 11

7 5 20

8 5 0

- - -

28 L PM94H201B_13xxxxxx_EN

Introduction

Here is the user program for the segment move example. The last segment move must have a “0” for the end velocity,
(MDV 5 , 0). Otherwise, fault F_24 (Motion Queue Underflow), will occur.

;Segment moves
LOOP:
WAIT UNTIL IN_A4==0 ;Wait until input A4 is off before starting the move
MDV 3 , 56 ;Move 3 units accelerating to 56 User Units per sec
MDV 3 , 12 ;Move 3 units decelerating to 12 User Units per sec
MDV 4 , 16 ;Move 4 units accelerating to 16 User Units per sec
MDV 2 , 57 ;Move 2 units accelerating to 57 User Units per sec
MDV 2.5 , 57 ;Move 2.5 units maintaining 57 User Units per sec
MDV 3 , 11 ;Move 3 units decelerating to 11 User Units per sec
MDV 5 , 20 ;Move 5 units accelerating to 20 User Units per sec
MDV 5 , 0 ;Move 5 units decelerating to 0 User Units per sec
WAIT UNTIL IN_A4==1 ;Wait until input A4 is on before looping
GOTO LOOP
END

NOTE

When an MDV move is executed, the segment moves are stored to a Motion Queue. A maximum
of 32 moves (MDV segments) can be held on the Motion Queue at any one time. When a move or
segment is completed it is cleared from the Motion Queue. If the program attempts to place more
than 32 moves in the Motion Queue (because motion is complex or the program continuously
loops on itself) then a fault 23 (F_23) will occur to indicate motion queue overflow.

Since a series of MDV segments need to be loaded quickly to the Motion Queue, the [Step]
debugging feature can not be used.

1.10.4 Registration
Both absolute and incremental motion can be used for registration moves. The statements associated with these moves
are MOVEPR and MOVEDR. These statements have two arguments. The first argument specifies the commanded
move distance or position. The second argument specifies the move made after the registration input is detected. If the
registration move is an absolute move, for MovePR, the first argument is absolute (referenced to the 0 position), the
second argument is relative to the registration position. For MoveDR, both arguments are relative. The first is relative to
the shaft position when motion is started and the second is relative to the registration position.

Position Registration
Input is made

Commanded
Move

Registration
Move

Registration Move

Figure 12: Registration Move

PM94H201B_13xxxxxx_EN L 29

Introduction

1.10.5 S-Curve Acceleration/Deceleration
It is often necessary, particularly for very dynamic applications, to smooth transition between periods of acceleration
/ deceleration and steady state velocity. A smoothing of this transition could improve the results of tuning and hence
improve overall performance of the system. Additionally smoothing the ramp rates can have the effect of minimizing
wear and tear on the system’s mechanical components.

With normal straight line ramp rates, the axis is accelerated or decelerated to the target velocity in a linear fashion. With
S-curve acceleration/deceleration, the motor ramp rate changes slowly at the first and then slowly stops accelerating/
decelerating as it reaches the target velocity. In order for the overall or average ramp rate to remain the same (as
specified in the ACCEL/DECEL variables) the slow rates of change at the beginning and the end of the S-curve are
compensated by a faster ramp rate in the middle section of the ramp. Maximum ramp rate (occurring in the mid-point of
the S-curve) is twice that of using straight line ramps and of the values entered in the ramp rate variables. With straight
line ramp rates, the acceleration/deceleration changes can be abrupt at the beginning of the ramp period and again
once the motor reaches the target velocity. With S-curve ramp rates, the ramp rate gradually builds to the peak value
then gradually decreases to no acceleration/deceleration. The disadvantage with S-curve acceleration/deceleration
is that for the same accel/decel distance the peak acceleration/deceleration is twice that of straight line acceleration/
deceleration, which often requires twice the peak torque. Note that the axis will arrive at the target position at the same
time regardless of which acceleration/deceleration method is used.

Distance (Units)

Ve
lo

ci
ty

 (R
M

S)

T2T1 T2T1

Figure 13: Sequential Move

To use S-curve acceleration/deceleration in a MOVED, MOVEP or MDV statement requires only the additional “,S” at
the end of the statement.

Examples:

 MOVED 10 , S
 MOVEP 10 , S
 MDV 10,20,S
 MDV 10,0,S

1.10.6 Motion Queue
The PositionServo drive executes the User Program one statement at a time. When a move statement (MOVED or
MOVEP) is executed, the move profile is stored to the Motion Queue. The program will, by default, wait on that statement
until the Motion Queue has executed the move. Once the move is completed, the next statement in the program will be
executed. By default motion commands (other than MDV statements) effectively suspend the program until the motion
is complete.

In order for subsequent program statements to be executed during a motion command (Move, MoveD, MoveP) an
additional line argument can be used. ‘,C’ placed on the end of the move statement, for example MoveP 0,C or MoveD
100,C will continue user program execution while those motion commands are executed.

Continuous program execution during a move allows for additional move commands or motion profiles to be stored
to the Motion Queue. The Motion Queue has a limit of 32 profiles and exceeding this will result in a ‘Motion Stack
Overflow’. The Continue “C” argument is used when it is necessary to trigger an action (e.g. handle I/O) while the motor
is in motion. The following Pick and Place Example Program has been modified to utilize the Continue, “C”, argument.

30 L PM94H201B_13xxxxxx_EN

Introduction

;**************************** Main Program ********************************
WAIT UNTIL IN_A3 ;Make sure the Enable input is made before continuing
ENABLE
OUT1 = 0 ;Initialize Pick Arm - Place in Retracted Position
WAIT UNTIL IN_A4==1 ;Check Pick Arm is in Retracted Position
PROGRAM_START:
MOVEP 0 ;Move to position 0 to pick part
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
MOVED 100,C ;Move to Place position and continue code execution
WAIT UNTIL APOS >25 ;Wait until pos is greater than 25
OUT3 = 1 ;Turn on output 3 to spray part
WAIT UNTIL APOS >=75 ;Wait until pos is greater than or equal to 75
OUT3 = 0 ;Turn off output 3 to shut off spray guns
WAIT UNTIL APOS >=95 ;Wait until move is almost done before extending arm
OUT1 = 1 ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 =0 ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
GOTO PROGRAM_START
END

When the “C” argument is added to the standard MOVED and MOVEP statements, program execution is not interrupted
by the execution of the motion command. Note: with an MDV move the execution of the program is never suspended.

Generated motion profiles are stored directly to the Motion Queue and are then executed in sequence. If the MOVED
and MOVEP statements don’t have the “C” modifier, then the motion profiles generated by these statements go to the
motion stack and the program is suspended until each profile has been executed.

1.11 Subroutines and Loops

1.11.1 Subroutines
Often it is necessary to repeat a series of program statements in several places in a program. Subroutines are typically
used where code is used multiple times and within various sections of the main program. Subroutines are placed after
the main program, i.e. after the END statement, and must start with the subname: label (where subname is the name of
subroutine), and must end with a statement RETURN.

Note that there can be more than one RETURN statement in a subroutine. Subroutines are called using the GOSUB
statement.

PM94H201B_13xxxxxx_EN L 31

Introduction

1.11.2 Loops
SML language supports WHILE/ENDWHILE block statement which can be used to create conditional loops. Note that
IF-GOTO and DO/UNTIL statements can also be used to create loops.

The following example illustrates calling subroutines as well as how to implement looping by utilizing WHILE / ENDWHILE
statements.

;***************************** Initialize and Set Variables **********************
UNITS = 1 ;Units in Revolutions (R)
ACCEL = 15 ;15 Rev per second per second (RPSS)
DECEL = 15 ;15 Rev per second per second (RPSS)
MAXV = 100 ;100 Rev per second (RPS)/6000RPM
APOS = 0 ;Set current position to 0 (absolute zero position)
DEFINE LOOPCOUNT V1
DEFINE LOOPS 10
DEFINE DIST V2
DEFINE REPETITIONS V3
REPETITIONS = 0

;********************************* Main Program **********************************
WAIT UNTIL IN_A3 ;Make sure the Enable input is made before continuing
ENABLE
PROGRAM_START:
MAINLOOP:
 LOOPCOUNT=LOOPS ;Set up the loopcount to loop 10 times
 DIST=10 ;Set distance to 10
 WHILE LOOPCOUNT ;Loop while loopcount is greater than zero
 GOSUB MDS ;Call to subroutine
 WAIT TIME 100 ;Delay executes after returned from the subroutine
 LOOPCOUNT=LOOPCOUNT-1 ;decrement loop counter
 ENDWHILE
 REPETITIONS=REPETITIONS+1 ;outer loop
 IF REPETITIONS < 5
GOTO MAINLOOP
Wait Motioncomplete ;Wait for MDV segments to be completed
 ENDIF
END

;******************************** Sub-Routines ***********************************
MDS:
 V4=dist/3
 MDV V4,10
 MDV V4,10
 MDV V4,0
RETURN

Note: Execution of this code will most likely result in F_23. There are 3 MDV statements that are executed 10 times
totaling 30 moves. Then the condition set on the repetitions variable makes the program execute the above another
4 times. 4 x 30 = 120. The 120 moves, with no waits anywhere in the program will most likely produce an F_23 fault
(Motion Queue overflow). Where the possibility exists to overflow the Motion Queue additional code should be used to
detect ‘Motion Queue Full’ condition and to wait for space on the Motion Queue to become available.

32 L PM94H201B_13xxxxxx_EN

Programming

2. Programming

2.1 Program Structure
One of the most important aspects of programming is developing the program’s structure. Before writing a program, first
develop a plan for that program. What tasks must be performed? And in what order? What things can be done to make
the program easy to understand and allow it to be maintained by others? Are there any repetitive procedures?

Most programs are not a simple linear list of instructions where every instruction is executed in exactly the same order
each time the program runs. Programs need to perform different functions in response to external events and operator
input. SML contains program control structures and scanned event functions that may be used to control the flow of
execution in an application program. Control structure statements are the instructions that cause the program to change
the path of execution. Scanned events are instructions that execute at the same time as the main body of the application
program.

Header - Enter in program description and title information

;********************************* HEADER *********************************
;Title: Pick and Place example program
;Author: Lenze
;Description: This is a sample program showing a simple sequence that
; picks up a part, moves to a set position and drops the part

I/O List - Define what I/O will be used

;********************************* I/O List ******************************
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enable Input
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
;
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

Initialize and Set Variables - Define and assign Variables values

;**************************** Initialize and Set Variables *****************
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
;V1 =
;V2 =
DEFINE Output_on 1
DEFINE Output_off 0

PM94H201B_13xxxxxx_EN L 33

Programming

Events - Define Event name, Trigger and Program Statements

;***************************** Events **************************************
EVENT SPRAY_GUNS_ON APOS > 25 ;Event will trigger as position passes 25 in pos dir.
 OUT3= Output_On ;Turn on the spray guns (out 3 on)
ENDEVENT ;End event

EVENT SPRAY_GUNS_OFF APOS > 75 ;Event will trigger as position passes 75 in pos dir.
 OUT3= Output_Off ;Turn off the spray guns (out 3 off)
ENDEVENT ;End even

Main Program - Define the motion and I/O handling of the machine

;***************************** Main Program ********************************
RESET_DRIVE: ;Place holder for Fault Handler Routine
WAIT UNTIL IN_A3 ;Make sure the ENABLE input is made before continuing
ENABLE
OUT1 = 0 ;Initialize Pick Arm - Place in Retracted Position
WAIT UNTIL IN_A4==1 ;Check Pick Arm is in Retracted Position
EVENT SPRAY_GUNS_ON ON ;Enable the Event
EVENT SPRAY_GUNS_OFF ON ;Enable the Event
PROGRAM_START:
MOVEP 0 ;Move to position 0 to pick part
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_On ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = Output_Off ;Turn off output 1 to Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
MOVED 100 ;Move to Place position
OUT1 = Output_On ;Turn on output 1 to extend Pick arm
WAIT UNTIL IN_A1==1 ;Check input to make sure Arm is extended
OUT2 = Output_Off ;Turn off output 2 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = Output_Off ;Retract Pick arm
WAIT UNTIL IN_A4==1 ;Check input to make sure Arm is retracted
GOTO PROGRAM_START
END

Sub-Routine - All Sub-Routine code should reside here

;************************* Sub-Routines ***********************************
; Enter Sub-Routine code here

Fault Handler - Define what the program should do when a fault is detected

;************************* Fault Handler Routine **************************
; Enter Fault Handler code here
ON FAULT
ENDFAULT

The header section of the program contains description information, program name, version number, description of
process and programmers name. The I/O List section of the program contains a listing of all the I/O used within the
application. The Initialize and Set Variables section of the program defines the names for the user variables and
constants used in the program and provides initial setting of these and other variables.

34 L PM94H201B_13xxxxxx_EN

Programming

The Events section contains all scanned events. Remember to execute the EVENT <eventname> ON statement in
the main program to enable the events. Please note that not all of the SML statements are executable from within the
EVENT body. For more detail, reference “EVENT” and “ENDEVENT” in Section 3 of the manual. The GOTO statement
can not be executed from within the Event body. However, the JUMP statement can be used to jump to code in the main
program body. This technique allows the program flow to change based on the execution of an event. For more detail,
reference “JUMP”, in Section 3.1 (Program Statement Glossary) of this manual.

The main program body of the program contains the main part of the program, which can include all motion and math
statements, labels, I/O commands and subroutine calls. The main body should be finished with an END statement,
however, if the program loops indefinitely then the END statement can be omitted.

Subroutines are routines that are called from the main body of the program. When a subroutine is called, (GOSUB), the
program’s execution is transferred from the main program to the called subroutine. It will then process the subroutine
until a RETURN statement occurs. Once a RETURN statement is executed, the program’s execution will return back to
the main program at the line of code immediately following the GOSUB statement.

Fault handler is the section of code that is executed when the drive detects a fault. This section of code begins with
the “ON FAULT” statement and ends with an “ENDFAULT” statement. When a fault occurs, the normal program flow is
interrupted, motion is stopped, the drive is disabled, Event scanning is stopped and the statements in the Fault Handler
are executed. The Fault handler can be exited in two ways:

- The “RESUME” statement will cause the program to end the Fault Handler routine and return the execution
to the main program. The location (label) called out in the “RESUME” command will determine where the
program will commence.

- The “ENDFAULT” statement will cause the user program to be terminated.

While the Fault Handler is being executed, Events are not being processed and detection of additional
faults is not possible. Because of this, the Fault Handler code should be kept as short as possible.

If extensive code must be written to process the fault, then this code should be placed in the main
program and the “RESUME” statement should be utilized. Not all SML statements can be utilized
by the Fault Handler. For more details reference “ON FAULT/ENDFAULT”, in Section 3.1 (Program
Statement Glossary) of this manual.

Comments are allowed in any section of the program and are preceded by a semicolon. They may occur on the
same line as an instruction or on a line by themselves. Any text following a semicolon in a line will be ignored by the
compiler.

2.2 Variables
Variables can be System or User. User variables do not have a predefined meaning and are available to the programmer
to store any valid numeric value. System variables have a predefined meaning and are used to configure, control or
monitor the operations of the PositionServo. (Refer to paragraph 2.6 for more information on System Variables).

All variables can be used in valid arithmetic expressions. All variables have their own corresponding index or identification
number. Any variable can be accessed by their identification number from the User’s program or from a Host Interface.
In addition to identification numbers all of the variables have predefined names and can be accessed by that name from
the user program.

The following syntax is used when accessing variables by their identification number:

 @102 = 20 ; set variable #102 to 20
 @88=@100 ; copy value of variable #100 to variable #88

Variable @102 has the variable name ‘V2’; Variable @88 has the variable name ‘VAR_AOUT’ and Variable @100 has
the variable name ‘V0’. Hence the program statements above could be written as:
 V2 = 20
 VAR_AOUT = V0

Using variable names rather than identification numbers creates code that is more easily read and understood.

PM94H201B_13xxxxxx_EN L 35

Programming

There are two types of variables in the PositionServo drive - User Variables and System Variables.

User Variables are a fixed set of variables that the programmer can use to store data and perform arithmetic calculations.
All variables are of a single type. Single type variables, i.e. typeless variables, relieve the programmer of the task of
remembering to apply conversion rules between types, thus greatly simplifying programming.

User Variables
V0-V31 User defined variables. Variables can hold any numeric value including logic (Boolean 0 - FALSE and

non 0 - TRUE) values. They can be used in any valid arithmetic or logical expressions.
NV0-NV31 User defined network variables. Variables can hold any numeric value including logic (Boolean 0

- FALSE and non 0 - TRUE) values. They can be used in any valid arithmetic or logical expressions.
Variables can be shared across Ethernet network with use of statements SEND and SENDTO.

Since SML is a typeless language, there is no special type for Boolean type variables (variables that can be only 0 or
1). Regular variables are used to facilitate Boolean variables. Assigning a variable a “FALSE” state is done by setting it
equal to “0”. Assigning a variable a “TRUE” state is done by assigning it any value other than “0”.

Scope

SML variables are accessible from several sources. Each of the variables can be read and set from the user program
or Host communications interface at any time. There is no provision to protect a variable from change. This is referred
to as global scope.

Volatility

User variables are volatile i.e. they don’t maintain their values after the drive is powered down. After power up the
values of the user variables are set to 0. Loading or resetting the user program doesn’t reset variables values. Two
programming statements are provided should the programmer wish to implement some non-volatile memory storage
within their application (the LoadVars and StoreVars Statements - refer to section 3.1).

In addition to the user variables, system variables are also provided. System variables are dedicated variables that
contain specific information relative to the set-up and operation of the drive. For example, APOS variable holds actual
position of the motor shaft. For more details refer to Section 2.9.

Resolution and Accuracy

Any variable can be used as a condition in a conditional expression. Variables are often used to indicate that some
event has occurred, logic state of an input has changed or that the program has executed to a particular point. Variables
with non ‘0’ values are evaluated as “TRUE” and variables with a “0” value are evaluated as “FALSE”.

Variables are stored internally as 4 bytes (double word) for integer portion and 4 bytes (double word) for fractional
portion. Every variable in the system is stored as 64 bit in 32.32 fixed point format. Maximum number can be represented
by this format is +/- 2,147,483,648. Variable resolution in this format is 2.3E-10.

36 L PM94H201B_13xxxxxx_EN

Programming

2.3 Arithmetic Expressions
Table 7 lists the four arithmetic functions supported by the Indexer program. Constants as well as User and System
variables can be part of the arithmetic expressions.

Examples.

V1 = V1+V2 ;Add two user variables
V1 = V1-1 ;Subtract constant from variable
V2 = V1+APOS ;Add User and System (actual position) variables
APOS = 20 ;Set System variable
V5 = V1*(V2+V3*5/3) ;Complicated expression

Table 7: Supported Arithmetic Expressions

Operator Symbol

Addition +

Subtraction -

Multiplication *

Division /

Register (variable) overflow for “*” and “/” operations will cause arithmetic overflow fault F_19. Register (variable)
overflow/underflow for “+” and “-” operations does not cause an arithmetic fault.

2.4 Logical Expressions and Operators
Bitwise, Boolean, and comparison operators are referred to as Logical Operators. Bitwise operators are used to change
individual bits within an operand (variable). Bitwise operation works at the binary level of the variables, changing
specified bits or bit patterns within those variables.

Boolean operators are used to combine simple or complex expressions within a single logic statement. They are used
to define a condition that ultimately equates to either True or False.

Comparison operators are used to perform a test between two values and to return a result indicating whether or not the
test (Comparison) evaluates to true or false.

2.4.1 Bitwise Operators
Table 8 lists the bitwise operators supported by the Indexer program.

Table 8: Supported Bitwise Operators

Operator Symbol

AND &

OR |

XOR ^

NOT !

Both User or System variables can be used with these operators. In order to perform a bitwise (Boolean) operation,
the value often easier in entered in hexadecimal format. To enter a number in hexadecimal use the characters ‘0x’
immediately prior to the hexadecimal number. Example: bit 22 alone would be referenced as 0x400000.

Examples:

V1 = V2 & 0xF ;clear all bits but lowest 4
IF (INPUTS & 0x3) ;check inputs 0 and 1
V1 = V1 | 0xff ;set lowest 8 bits
V1 = INPUTS ^ 0xF ;invert inputs 0-3
V1 = !IN_A1 ;invert input A1

PM94H201B_13xxxxxx_EN L 37

Programming

2.4.2 Boolean Operators
Table 9 lists the boolean operators supported by the Indexer program. Boolean operators are used in logical expressions.

Table 9: Supported Boolean Operators

Operator Symbol

AND &&

OR ||

NOT !

Examples:

IF (APOS >2 && APOS <6) || (APOS >10 && APOS <20)
 {statements if true}
 ENDIF
The above example checks if APOS (actual position) is within one of two windows; 2 to 6 units or 10 to 20 units.
In other words:

If (APOS is more than 2 AND less than 6)
OR
If (APOS is more than 10 AND less then 20)
THEN the logical expression is evaluated to TRUE. Otherwise it is FALSE

2.5 Comparison Operators
Table 10 lists the comparison operators supported by the Indexer program.

Table 10: Supported Comparison Operators

Operator Symbol

More >

Less <

Equal or more >=

Equal or less =<

Not Equal <>

Equal ==

Examples:

 IF APOS <=10 ;If Actual Position equal or less than 10
 IF APOS > 20 ;If Actual Position greater than 20
 IF V0==5 ;If V0 equal to 5
 IF V1<2 && V2 <>4 ;If V1 less than 2 And V2 doesn’t equal 4

2.6 System Variables and Flags
System variables are variables that have a predefined meaning. They give the programmer/user access to drive
parameters and functions. Some of these variables can also be set via the parameters in MotionView. In most cases
the value of these variables can be read and set in the user program or via a Host Interface. Variables are either read
only, write only or read and write. Read only variables can only be read and can’t be set. For example, INPUTS = 5, is
an illegal action because you can not set an input. Conversely, write-only variables cannot be read. Reading a write-only
variable by either the variable watch window or network communications can result in erroneous data.

System Flags are predefined bits that are used by a program either to remember something or to signal some condition.
Flags are binary values so contain only values 1 or 0 (True or False). For example, IN_A1 is the system flag that reflects
the state of digital input A1. Since inputs can only be ON or OFF, then the value of IN_A1 can only be 0 or 1.

38 L PM94H201B_13xxxxxx_EN

Programming

2.7 System Variables Storage Organization
The PositionServo drive contains dual variable storage locations, the operational memory (RAM), that is the volatile
operating memory, and the EPM memory, that is the non-volatile configuration memory. When the PositionServo is
turned on it copies the retained settings from the EPM non-volatile memory into the RAM memory for use during
program execution.

When a system variable is changed during normal program execution its value is changed only in the RAM memory and
subsequently these values are lost following power down. System variables that are changed through the MotionView
parameter set are stored in both EPM and RAM memory so changes have both immediate effect and are retained after
power down. The StoreVars command (Refer to section 3.1) can be used to store the user variables (V0-V31) from
RAM memory into the EPM memory during program execution so the programmer has the oppertunity to retain these
after power down.

Host Interfaces have the capability of changing all of the system variable values through any one of the adopted
communications protocols available for PositionServo. Communications protocols contain mechanisms to write to RAM
memory only, or to RAM memory and EPM memory.

NOTE:

EPM memory is specified for a limited number of write cycles (approximately 1 million). Care must
be taken not to excessively write to the EPM memory or not to exceed the maximum write cycle
count.

2.7.1 RAM File for User’s Data Storage
In addition to the standard user variables (V0-V31 & NV0-NV31) MotionView OnBoard drives have a section of RAM
memory (256k) allocated as data storage space and available to the programmer for storage of program data.

The RAM file data storage is often required in systems where it is desirable to store large amounts of data prepared by
a host controller (PLC, HMI, PC, etc). This data might represent more complex Pick and Place coordinates, complicated
trajectory coordinates, or sets of gains/limits specific for given motion segments.

RAM memory is also utilized in applications that require data collection during system operation. At the end of a period
of time the collected data can be acquired by the host controller for analysis. For example, position errors and phase
currents collected during the move are then analyzed by the host PLC/PC to qualify system tolerance to error free
operation.

Implementation

There are 256K (262,144) bytes provided as RAM file for data storage. Since the basic data type in the drive is 64 bit
(8 bytes) 32,768 data elements can be stored in the RAM file. The file is accessible from within the User’s program
or through any external communications interface (Ethernet, ModBus, CAN etc.). Two statements and three system
variables are provided for accessing the RAM file memory. The RAM file is volatile storage and is intended for “per
session” usage. The data saved in the RAM file will be lost when the drive is powered off.

The three system variables provided to support file access are:

VAR_MEM_VALUE (PID = 4)
VAR_MEM_INDEX (PID = 5)
VAR_MEM_INDEX_INCREMENT (PID = 6)

In addition, two statements are provided to allow access and storage to the RAM file direct from the user program. The
statements MEMSET, MEMGET are described in paragraph 2.7.3 and Tables 44 & 45.

PM94H201B_13xxxxxx_EN L 39

Programming

2.7.2 Memory Access Through Special System Variables
VAR_MEM_VALUE holds the value that will be read or written to the RAM file. VAR_MEM_INDEX points to the position
in the RAM file (0 to 32767) that data will be read from or written to, and VAR_MEM_INDEX_INCREMENT holds the
value that will be modified after the read or write operation is completed.
The RAM memory access is illustrated with the example program herein.

;---
;User’s program to read/write to RAM file.
;Advance index after writing/reading by 1
;Record position error to RAM file every 100 ms for 10 seconds. 10/0.1 = 100
;locations are needed
;---

DEFINE IndexStart 0
DEFINE MemIncrement 1
DEFINE RecordLength 100
DEFINE PElimit 0.1 ;0.1 user unit

VAR_MEM_INDEX = IndexStart ;set start position
VAR_MEM_INDEX_INCREMENT=MemIncrement ;set increment

;---
EVENT StorePE TIME 100

 VAR_MEM_VALUE = VAR_POSERROR ;store in RAM file.

ENDEVENT

PROGRAMSTART:

 EVENT StorePE ON

 {
 Start some motion activity….

 }
;wait until data collection is over

WHILE VAR_MEM_INDEX < (IndexStart+RecordLength)
ENDWHILE
EVENT StorePE Off ;turn off storage

;Analyze data collected. If PE > PElimit then signal system has low performance…
VAR_MEM_INDEX= IndexStart
WHILE VAR_MEM_INDEX < (IndexStart+RecordLength)
 IF (VAR_MEM_VALUE > PElimit)
 GOTO Label_SignalBad
 ENDIF
ENDWHILE

LabelSignalBad:

 {
 Signal that PE out of limits
 …
 }

END

40 L PM94H201B_13xxxxxx_EN

Programming

In the RAM memory access program example, the values of PE (position error) are stored sequentially in the RAM
file every 100ms for 10 seconds. (100 samples). After collection is done the data is read from the file one by one and
compared with limit value set.

Variable VAR_MEM_INDEX is incremented every read or write by the value stored in VAR_MEM_INDEX_INCREMENT.
This could be any value from -32767 to 32767. This allows for decrement through storage locations in the RAM file
in addition to Increment. If the value is 0 (zero) no increment/decrement is produced. Var_Mem_Index is a modular
variable (it wraps around it maximum or minimum values). I.e. if the next increment or decrement of Var_Mem_Index
results in a value beyond the modulus (32767 or -32767) then the variable will wrap around to the opposite end of the
variable range. This allows for the creation of circular arrays. This feature can be used for diagnostics when certain
parameter(s) are stored in the memory continuously and then, if the system fails, the data array can be examined to
simplify diagnostics.

2.7.3 Memory Access Through MEMSET, MEMGET Statements
The memory access statements MEMSET and MEMGET are provided for simplified transfer of data between the RAM
memory and the user variables V0-V31. Using these statements, any combinations of variables V0-V31 can be stored/
retrieved with a single statement. This allows for efficient access to the RAM memory area. For example, reading 10
values from RAM memory and storing them in 10 user variables using the system variables would normally require 10
separate program statements (Vx = Var_Mem_Value). With the MEMGET statement all 10 user variables can be read
in one program statement. The format of MEMSET/MEMGET is as follows:

 MEMSET <offset> [<varlist>]
 MEMGET <offset> [<varlist>]
<offset> any valid expression that evaluates to a number between -32767 to 32767
 This specifies the offset in the RAM file where data will be stored or retrieved.
<varlist> any combinations of variables V0-V31

Examples for <offset> expression

5 constant
10+23+1 constant expression
V0 variable Must hold values in -32767 to 32767 range
V0+V1+3 expression Must evaluate to -32767 to 32767 range
Example: <offset> =5

RAM file memory
0 1 2 3 4 5 6 ... address increase

data data data data data data data

Examples for <varlist> instruction
[V0] single variable will be stored/retreived
[V0,V3,V2] variables V0,V3,V2 will be stored/retrieved
[V3-V7] variables V3 to V7 inclusively will be stored/retrieved
[V0,V2,V4-V8] variables V0,V2, V4 through V8 will be stored/retrieved

Storage/Retrieval order with MEMSET/MEMGET
Variables in the list are always stored in order: the variable with lowest index first and the variables with highest index
last regardless of the order they appear in the <varlist> argument.
Example: [V0,V3, V5-V7] will be stored in memory in the order of increasing memory index as follows:

RAM file memory
V0 V3 V5 V6 V7 index increase

For comparison: [V5-V7, V0, V3] will have the same storage order as the above list regardless of the order in which the
variables are listed.

PM94H201B_13xxxxxx_EN L 41

Programming

When retrieving data with MEMGET statements memory locations will be sequentially copied to variables starting from
the one with lowest index in the list to the last with highest index. Consider the list for the MEMGET statement:
[V2, V5-V7, V3]

RAM file memory

Data1 Data2 Data3 Data4 Data5 Data6 index increase

Here is how the data will be assigned to variables:
V2 <- Data1
V3 <- Data2
V5 <- Data3
V6 <- Data4
V7 <- Data5

2.7.4 Store and Retrieve Variables from the EPM
The EPM access statements LOADVARS and STOREVARS are provided to store/retrieve the values of the user
variables, V0-V31, to/from the EPM. The LOADVARS statement loads the stored values of the users variables V0-V31
from the EPM. Variable values V0-V31 can be previously stored via the interface or the STOREVARS statement. The
STOREVARS statement stores the values of the user variables V0-V31 to the EPM. Variable values V0-V31 can be
later retrieved via the interface or the LOADVARS statement. Refer to the Program Statement Glossary in section 3.1
for syntax and example details.

NOTE

At Bootup, variables V0-V31 are automatically retrieved from the EPM.

NOTE

EPM memory is specified for a limited number of write cycles (approximately 1 million). Care must
be taken not to excessively write to the EPM memory or not to exceed the maximum write cycle
count.

42 L PM94H201B_13xxxxxx_EN

Programming

2.8 System Variables and Flags Summary

2.8.1 System Variables
Section 3.2 provides a complete list of the system variables. Every aspect of the PositionServo can be controlled by
the manipulation of the values stored in the System Variables. All System Variables start with a “VAR_” followed by the
variable name. Alternatively, System Variables can be addressed as an @NUMBER where the number is the variable
Index. The most frequently used variables also have alternate names as listed in Table 11.

Table 11: System Variables

Index Variable Access Variable Description Units

181 ACCEL R/W Acceleration for motion commands User Units/Sec2

71 AIN1 R Analog input. Scaled in volts. Range from -10 to +10 volts V(olt)

72 AIN2 R Analog input 2. Scaled in Volts. Range from -10 to +10 volts V(olt)

88 AOUT R/W Analog output. Value in Volts. Valid range from -10 to +10 (V)(2) V(olt)

215 APOS R/W Actual motor position User Units

190 APOS_PLS R/W Actual Motor Position Encoder Counts

182 DECEL R/W Deceleration for motion commands User Units/Sec2

83 DEXSTATUS R Drive Extended Status Word -

54 DSTATUS R Status flags register -

DFAULTS R Fault code register -

245 HOME W Start Homing (pre-defined homing) -

INDEX R Lower 8 bits are used. See ASSIGN statement for details. -

184 INPOSLIM R/W Maximum deviation of position for INPOSITION Flag to remain set User Units

65 INPUTS R Digital Inputs states. The first 12 bits correspond to the 12 drive inputs -

139 IREF W Internal Reference: Velocity / Torque RPS/A

187 MECOUNTER R Master Encoder Counts (Master Encoder Input) Encoder Counts

180 MAXV R/W Maximum velocity for motion commands User Units/Sec

140-171 NV0 - NV31 R/W User Network Variables -

66 OUTPUTS R/W Digital outputs. Bits #0 to #4 represent outputs 1 through 5 -

216 PERROR R Position Error Feedback Pls

191 PERROR_PLS R Position Error User Units

48 PGAIN_D R/W Position loop D-gain -

47 PGAIN_I R/W Position loop I-gain -

49 PGAIN_ILIM R/W Position loop I gain limit -

46 PGAIN_P R/W Position loop P-gain -

188 PHCUR R Motor phase current A(mpere)

183 QDECEL R/W Quick Deceleration for STOP MOTION QUICK statement User Units/Sec2

213 RPOS R Registration position. Valid when system flag F_REGISTRATION set User Units

212 RPOS_PLS R Registration position Feedback Pls

218 TA R Commanded acceleration User units/Sec2

214 TPOS R/W Theoretical/commanded position User Units

219 TPOS_ADV W Theoretical/commanded position advance Feedback Pls

189 TPOS_PLS R/W Theoretical/commanded position Feedback Pls

217 TV R Commanded velocity in User Units/Sec

186 UNITS R/W User Units scale.(1) UserUnits/Rev

185 VEL R/W Set Velocity when in velocity mode User Units/Sec

44 VGAIN_P R/W Velocity loop P-gain -

45 VGAIN_I R/W Velocity loop I-gain -

100-131 V0 - V31 R/W User Variables

(1) When a “0”, (zero), value is assigned to the variable “UNITS”, then “USER UNITS” is set to QUAD ENCODER COUNTS.
(2) Any value outside +/- 10 range assigned to AOUT will be automatically trimmed to that range.

PM94H201B_13xxxxxx_EN L 43

Programming

Example:
AOUT=100 , AOUT will be assigned value of 10.
V0=236
VOUT=V0, VOUT will be assigned 10 and V0 will be unchanged.

2.8.2 System Flags
Flags don’t have an Index number assigned to them. They are the product of a BIT mask applied to a particular system
variable within the drive and are available to the programmer only from the User’s program. Table 12 lists the System
Flags with access rights and description.

Table 12: System Flags

Name Access Description

IN_A1-4, IN_B1-4, IN_C1-4 R Digital inputs . TRUE if input active, FALSE otherwise

OUT1, OUT2, OUT3, OUT4, OUT5 W Digital outputs OUTPUT1- OUTPUT5

F_ICONTROLOFF R Interface Control Status (ON/OFF) #27 in DSTATUS register

F_IN_POSITION R
TRUE when Actual Position (APOS) is within limits set by INPOSLIM
variable and motion completed

F_ENABLED R Set when drive is enabled

F_EVENTSOFF R Events Disabled Status (ON/OFF) #30 in DSTATUS register

F_MCOMPLETE R
Set when motion is completed and there are no motion commands
waiting in the Motion Queue

F_MQUEUE_FULL R Motion Queue full

F_MQUEUE_EMPTY R Motion Queue empty

F_FAULT R Set if any fault detected

F_ARITHMETIC_FLT R Arithmetic fault

F_REGISTRATION R
Set when registration mark is detected. Contents of the RPOS
variable valid when this flag is active. Flag reset by any registration
moves MOVEPR, MOVEDR or by command REGISTRATION ON

F_MSUSPENDED R Set if motion suspended by statement MOTION SUSPEND

Flag logic is shown herein.

IF (TPOS-INPOSLIM < APOS) && (APOS < TPOS+INPOSLIM) && F_MCOMPLETE && F_MQUEUE_EMPTY

 Out1 = 1

ELSE

 Out1 = 0

ENDIF

For VELOCITY mode F_MCOMPLETE and F_MQUEUE_EMPTY flags are ignored and assumed TRUE.

44 L PM94H201B_13xxxxxx_EN

Programming

2.9 Control Structures
Control structures allow the user to control the flow of the program’s execution. Most of the control and flexibility of any
programming language comes from its ability to change statement order with structure and loops.

2.9.1 IF Structure
The flowchart and code segment in Figure 17 illustrate the use of the IF statement. The “IF” statement is used to execute
an instruction or block of instructions one time if a condition is true. The simplified syntax for the IF statement is:

 IF condition
 …statement(s)
 ENDIF

…statements

IF IN_A2
 OUT2 = 1
 MOVED 3
ENDIF

..statements

Start

Set Output 2 ON
Move Distance 3

units

End

Yes

NO

Input A2 ON?

Figure 17: IF Code and Flowchart

IF/ELSE

The flowchart and code segment in Figure 18 illustrate the use of the IF/ELSE instruction. The IF/ELSE statement is
used to execute a statement or a block of statements one time if a condition is true and a different statement or block of
statements if condition is false. The simplified syntax for the IF/ELSE statement is:

IF <condition>
 …statement(s)
ELSE
 …statement(s)
ENDIF

…statements

IF IN_A2
 OUT2=1
 MOVED 3
ELSE
 OUT2=0
 MOVED 5
ENDIF

..statements

Start

Input A2 ON?

Set Output 2 ON
Move Distance 3

units

End

Yes

Set Output 2 OFF
Move Distance 5

units

No

Figure 18: IF/ELSE Code and Flowchart

PM94H201B_13xxxxxx_EN L 45

Programming

2.9.2 DO/UNTIL Structure
The flowchart and code segment in Figure 14 illustrate the use of the DO/UNTIL statement. This statement is used
to execute a block of code one time and then continue executing that block until a condition becomes true (satisfied).
The difference between DO/UNTIL and WHILE statements is that the DO/UNTIL instruction tests the condition after
the block is executed so the conditional statements are always executed at least one time. The syntax for DO/UNTIL
statement is:

 DO
 …statements
 UNTIL <condition>

… statements

DO
 MOVED 3
 WAIT TIME 2000
UNTIL IN_A3
…statements

Start

Move DIstance 3
units. Delay 2

seconds

Is input A3 ON?

End

YES

NO

Figure 14: DO/UNTIL Code and Flowchart

2.9.3 WHILE Structure
The flowchart and code segment in Figure 15 illustrate the syntax for the WHILE instruction. This statement is used if
you want a block of code to execute while a condition is true.

WHILE <condition>

 …statements

ENDWHILE

…statements

WHILE IN_A3
 MOVED 3
 WAIT TIME 2000
ENDWHILE

…statements

Start

Is input A3 ON?

End

YES

NO

Move DIstance 3
units. Delay 2

seconds

Figure 15: WHILE Code and Flowchart

2.9.4 WAIT Statement
The WAIT statement is used to suspend program execution until or while a condition is true, for a specified time period
(delay) or until motion has been completed. The simplified syntax for this statement is:

WAIT UNTIL <condition>
WAIT WHILE <condition>
WAIT TIME <time>
WAIT MOTION COMPLETE

46 L PM94H201B_13xxxxxx_EN

Programming

2.9.5 GOTO Statement and Labels
The GOTO statement can be used to transfer program execution to a section of the Main Program identified by a label.
This statement is often executed conditionally based on the logical result of an If Statement. The destination label may
be above or below the GOTO statement in the application program.

Labels must be an alphanumeric string of up to 64 characters in length, ending with a colon “:” and containing no spaces.

GOTO TestInputs
 …statements
TestInputs:
 …statements
IF (IN_A1) GOTO TestInputs

Table 13 provides a short description of the instructions used for program branching.

Table 13: Program Branching Instructions

Name Description

GOTO Transfer code execution to a new line marked by a label

DO/UNTIL Do once and keep doing until conditions becomes true

IF and IF/ELSE Execute once if condition is true

RETURN Return from subroutine

WAIT Wait fixed time or until condition is met

WHILE Execute while a condition is true

GOSUB Go to Subroutine

2.9.6 Subroutines
A subroutine is a group of SML statements that is located at the end of the main body of the program. It starts with a
label which is used by the GOSUB statement to call the subroutine and ends with a RETURN statement. The subroutine
is executed by using the GOSUB statement in the main body of the program. Subroutines can not be called from an
EVENT or from the FAULT handler.

When a GOSUB statement is executed, program execution is transferred to the first line of the subroutine. The subroutine
is then executed until a RETURN statement is met. When the RETURN statement is executed, the program’s execution
returns to the program line (in the main program) following the GOSUB statement. A subroutine may have more than
one RETURN statement in its body.

Subroutines may be nested up to 32 times. Only the main body of the program and subroutines may contain a GOSUB
statement. Refer to Section 3.1 for more detailed information on the GOSUB and RETURN statements. The flowchart
and code segment in Figure 16 illustrate the use of subroutines.

…statements
GOSUB CalcMotionParam
MOVED V1
OUT2=1
…statements
END
;
CalcMotionParam:
V1 = (V3*2)/V4
RETURN

Start

Subroutine
CalcMotionParam

GOSUB
CalcMotionParam

RETURN
Statement

... Statements

MOVED V1
OUT2=1

... Statements

End

V1 = (V3*2)/V4

Jump to
subroutine

Return from
subroutine

Figure 16: GOSUB Code and Flowchart

PM94H201B_13xxxxxx_EN L 47

Programming

2.10 Scanned Event Statements
A Scanned Event is a small program that runs independently of the main program. SCANNED EVENTS are very useful
when it is necessary to trigger an action (i.e. handle I/O) while the motor is in motion or other tasks within the Main
Program are executing. When setting up Events, the first step is to define both the action that will trigger the event
as well as the sequence of statements to be executed once the event has been triggered. Events are scanned every
512µs. Before an Event can be scanned however it must be enabled. Events can be enabled or disabled from the user
program or from another event (see explanations below). Once the Event is defined and enabled, the Event will be
constantly scanned until the trigger condition is met, this scan rate is independent of the main program’s timing. Once
the trigger condition is met, the Event statements will be executed independently of the user program.

Scanned events are used to record events and perform actions independent of the main body of the program. For
example, if the programmer wants output 3 to come ON when the position is greater then 4 units, or if he needs to turn
output 4 ON whenever inputs A4 and B1 are ON, he could use the following scanned event statements.

 EVENT PositionIndicator APOS > 4
 OUT3=1
 ENDEVENT

 EVENT InputsLogic IN_A4 & IN_B1
 OUT4=1
 ENDEVENT

Scanned events may also be used with a timer to perform an action on a periodic time basis.

The program statements contained in the scanned event code cannot include any that are related to the command of
Motion from the motor or that result in a delay to program execution. A full list of illegal event code statements is given
in section 3.1. Syntax for defining Events is as follows.

 EVENT <name> INPUT <inputname> RISE

This scanned event statement is used to execute a block of code each time a specified input <inputname> changes its
state from low to high.

 EVENT <name> INPUT <inputname> FALL

This scanned event statement is used to execute a block of code each time a specified input <inputname> changes its
state from high to low.

 EVENT <name> TIME <timeout>

This scanned event statement is used to execute a block of code with a repetition rate specified by the <timeout>
argument. The range for “timeout” is 0 - 50,000ms (milliseconds). Specifying a timeout period of 0 ms will result in the
event running every event cycle (512ms).

 EVENT <name> expression

This scanned event statement is used to execute a block of code when the expression evaluates as true.

 EVENT <name> ON/OFF

This statement is used to enable/disable a scanned event.

Table 14 contains a summary of instructions that relate to scanned events. Refer to Section 3 “Language Reference”
for more detailed information.

Table 14: Scanned Events Instructions

Name Description

EVENT <name> ON/OFF enable / disable event

EVENT <name> INPUT <inputname> RISE Scanned event when <input name> goes low to high

EVENT <name> INPUT <inputname> FALL Scanned event when <input name> goes high to low

EVENT <name> TIME <value> Periodic event with <value> repetition rate.

EVENT <name> expression Scanned event on expression = true

48 L PM94H201B_13xxxxxx_EN

Programming

2.11 Motion

2.11.1 How Moves Work
The position command that causes motion to be generated comes from the profile generator or profiler for short.
The profile generator is used by the MOVE, MOVED, MOVEP, MOVEPR, MOVEDR and MDV statements. MOVE
commands generate motion in a positive or negative direction, while or until certain conditions are met. For example
you can specify a motion while a specific input remains ON (or OFF). MOVEP generates a move to specific absolute
position. MOVED generates incremental distance moves, i.e. move some distance from its current position. MOVEPR
and MOVEDR are registration moves. MDV commands are used to generate complicated profiles. Profiles generated
by these commands are put into the motion stack which is 32 level. By default when one of these statements (except
for MDV) is executed, the execution of the main User Program is suspended until the generated motion is completed.
Motion requests generated by an MDV statement, or by MOVE statement with the “C” modifier do not suspend the
program. All motion statements are put into the motion stack and executed by the profiler in the order in which they
where loaded. The Motion Stack can hold up to 32 moves. The SML language allows the programmer to load moves
into the stack and continue on with the program. It is the responsibility of the programmer to check the motion stack
to make sure there is room available before loading new moves. This is done by checking the appropriate bits in the
System status register or the appropriate system flag.

2.11.2 Incremental (MOVED) and Absolute (MOVEP) Motion
MOVED and MOVEP statements are used to create incremental and absolute moves respectively. The motion that
results from these commands is by default a trapezoidal velocity move or an S-curved velocity move if the “,S” modifier
is used within the statement.

For example:

 MOVEP 10 ;will result in a trapezoidal move

But

 MOVEP 10,S ;will result in an S-curved move

In the above example, (MOVEP 10), the length of the move is determined by the argument following the MOVEP
command, (10). This argument can be a number, a variable or any valid arithmetic expression. The maximum velocity
of the move is determined by setting the system variable MAXV. The acceleration and deceleration are determined by
setting the system variables ACCEL and DECEL respectively.

If values for velocity, acceleration and deceleration, for a specified distance, are such that there is not enough time to
accelerate to the specified velocity, the motion profile will result in triangular or double S profile Full Stop. The following
code extract generates the motion profiles shown in Figure 19.

ACCEL = 200
DECEL = 200
MAXV = 20
MOVED 4 ;Move 1
MOVED 1.5 ;Move 2
MOVED 4 , S ;Move 3
MOVED 1.5 , S ;Move 4

PM94H201B_13xxxxxx_EN L 49

Programming

Velocity

Trapezoidal moves

Velocity

Velocity

Velocity

Velocity Limit (20)

Velocity Limit (20)

Velocity Limit (20)

Velocity Limit (20)

Time

Time

Time

Time

Move 2: 1.5 unitsMove 1: 4 Units

Move 4: 1.5 units, with S-curveMove 3: 4 units, with S-curve

MOVE 1 MOVE 2

MOVE 3 MOVE 4

S-curve moves

Figure 19: Move Illustration

All four of the moves shown in Figure 19 have the same Acceleration, Deceleration and Max Velocity values. Moves
1 and 3 have a larger value for the move distance than Moves 2 and 4. In Moves 1 and 3 the distance is long enough
to allow the motor to accelerate to the profiled max velocity and maintain that velocity before decelerating down to a
stop. In Moves 2 and 4 the commanded distance is so small that the calculated point of deceleration occurs before
the motor has reached the profiled Maximum velocity. On reaching the calculated deceleration point the drive will start
decelerating the motor in order to arrive at the commanded target position.

2.11.3 Incremental (MOVED) Motion
Incremental motion is defined as a move of some distance from the current position. ‘Move four revolutions from the
current position’ is an example of an incremental move.

MOVED is the statement used to create incremental moves. The simplified syntax is:

MOVED <+/-distance>

+/- sign will tell the drive in which direction to move the motor shaft.

2.11.4 Absolute (MOVEP) Move
Absolute motion is defined as motion that is always specified relative to the same ‘known’ location. The location that
each move is specified relative to is termed the zero (0) position. For example an absolute move of 20 will result in a
move to a position that is 20 user units from the zero position regardless of whether the current shaft location is less
than or greater than this commanded position (required motion is forward or reverse). The Zero position is normally
established during a homing cycle performed after power up where the programmer specifies (using a switch or other
device) a known point within the system mechanics from where they will reference all further motion.

If an incremental move is repeated (e.g. MoveD 10) then a subsequent move will result as motion is relative to the
position of the shaft at the point the motion is initiated. If an absolute move is repeated (e.g. MoveP 10) then only one
motion is executed as the subsequent target position commanded is already equal to the motor shaft’s current position.

50 L PM94H201B_13xxxxxx_EN

Programming

2.11.5 Registration (MOVEDR MOVEPR) Moves
MovePR and MoveDR are move commands subject to (modified by) the drive registration input (C3) activating. They
are defined as registration moves as their function is to capture a position based on a sensor input and then move to
a subsequent position determined by the captured position plus an offset. Registered move commands contain two
motion arguments, the first defining the initial move to attempt detection of registration, and the second defining the
modified motion to complete subject to registration being detected.

The difference between MoveDR and MovePR is that MoveDR is incremental and performs the initial move subject to
its current position while checking for registration. MovePR is absolute so initial target position (motion) is referenced to
the absolute zero position.

If registration is not detected during a MoveDR or MovePR command then the initial move commanded by the first
motion argument will be completed and the registration flag will not be set. If registration is detected then both MoveDR
or MovePR will modify target position to the captured registration position (stored in the RPOS variable) plus the second
motion argument. If registration is detected then the registration flag will be set to true (1).

MOVEPR and MOVEDR are used to move to position or distance respectively just like MOVEP and MOVED. The
difference is that while the statements are being executed they are looking for a registration signal or registration input
(C3). If during the motion a registration signal is detected, then a new end position is generated. With both the MoveDR
and MovePR statements the drive will increment the distance called out in the registration argument. This increment will
be referenced from the position where the registration input has detected.

Example:

MOVEDR 5, 1 ;Statement moves a distance of 5 user units or registration position +
 ;1 user units if registration input is activated during motion.

There are two exceptions to the behavior of registration moves.

Exception one:
The move will not be modified to “Registration position +displacement” if the registration was detected while sys-
tem was decelerating to complete the initial motion command.

Exception two:
Once the registration input is detected, there must be enough distance set by the second argument to allow for
the motor to decelerate to a stop using the profiled Decel Value. If the modified registration move is smaller than
the distance necessary to come to a stop, then the motor will overshoot the programmed registration position.
Over-shoot of the target position is not rectified automatically, either realistic arguments must be entered for the
registered move command and deceleration rate or a comparison statement used to detect and rectify over-shoot.

2.11.6 Segment Moves
In addition to the simple moves that can be generated by MOVED and MOVEP statements, complex profiles can be
generated using segment moves. A segment move represents one portion of a complete move. A complete move is
constructed out of two or more segments, starting and ending at zero velocity.

2.11.7 MDV Segments
Profiles are created using a sequence of MDV statements. The simplified syntax for the MDV (Move Distance with
Velocity) statement is:

 MDV <distance>,<velocity>

The <distance> is the total distance completed during the segment move. The <velocity> is the target velocity for the
end of the segment move. The starting velocity is either zero or the final velocity of the previous segment. The final
segment in a complete profile must have a velocity of zero. If the final segment has a velocity other than zero, a motion
stack under flow fault will occur (F_24).

PM94H201B_13xxxxxx_EN L 51

Programming

The profile shown in Figure 20 can be broken up into 8 MDV moves. The first segment defines the distance between
point 1 and point 2 and the velocity at point 2. So, if the distance between point 1 and 2 was 3 units and the velocity at
point 2 was 56 Units/S, the command would be: MDV 3 , 56. The second segment gives the distance between point 2
and 3 and the velocity at point 3, and so on.

65

55

45

35

25

15

5

5 10 15 20 25 30

Point
1

Point
2

Point
4Point

3

Point
8

Point
9

Point
6

Point
5

Point
7

Distance (units)

Figure 20: MDV Segment Example

Table 15 lists the supporting data for the graph in Figure 20.

Table 15: MDV Segment Example

Segment Number Distance moved during segment Velocity at the end of segment

1 3 56

2 3 12

3 4 16

4 2 57

5 2.5 57

6 3 11

7 5 20

8 5 0

- - -

;Segment moves
MDV 3 , 56
MDV 3 , 12
MDV 4 , 16
MDV 2 , 57
MDV 2.5 , 57
MDV 3 , 11
MDV 5 , 20
MDV 5 , 0
END

The following equation can be used to calculate the acceleration / deceleration that results from a segment move.

Accel = (Vf
2 - V0

2) / [2*D]
Vf = Final velocity
V0 = Starting velocity
D = Distance

52 L PM94H201B_13xxxxxx_EN

Programming

2.11.8 S-curve Acceleration/Deceleration
Instead of using a linear acceleration/deceleration, the motion created using segment moves (MDV statements) can use
S-curve acceleration/deceleration. The syntax for MDV move with S-curve acceleration/deceleration is:

 MDV <distance>,<velocity>,S

Segment moves using S-curve acceleration/deceleration will take the same amount of time as linear acceleration/
deceleration segment moves. S-curve acceleration/deceleration is useful because it is much smoother at the beginning
and end of the segment, however, the peak acceleration/deceleration of the segment will be twice as high as the
acceleration/deceleration used in the linear acceleration/deceleration segment.

2.11.9 Motion SUSPEND/RESUME
At times it is necessary to control motion by preloading the motion stack with motion profiles and then executing them
consecutively, based on the user program and/or some logical condition being detected. The statement “MOTION
SUSPEND” will suspend motion until the statement “MOTION RESUME” is executed. While motion is suspended, any
motion statement executed by the User Program will be loaded into the motion stack. When the “MOTION RESUME”
statement is executed, the preloaded motion profiles will be executed in the order that they were loaded.

Example:

MOTION SUSPEND
MDV 10,2 ;placed in stack
MDV 20,2 ;placed in stack
MDV 2,0 ;placed in stack
MOVED 3,C ;must use “,C “modifier. Otherwise program will hang.
MOTION RESUME

Caution should be taken when using MOVED, MOVEP and MOVE statements. If any of the MOVE instructions are
written without the “C” modifier, the program will hang or lock up. The “MOTION SUSPEND” command effectively halts
all execution of motion. In the example, as the program executes the “MDV” and “MOVED” statements, those move
profiles are loaded into the motion stack. If the final “MOVED” is missing the “C” modifier then the User Program will wait
until that move profile is complete before continuing on. Because motion has been suspended, the move will never be
complete and the program will hang on this instruction.

2.11.10 Conditional Moves (MOVE WHILE/UNTIL)
The statements “MOVE UNTIL <expression>” and “MOVE WHILE <expression>” will both start their motion profiles
based on their acceleration and max velocity profile settings. The “MOVE UNTIL <expression> statement will continue
the move until the <expression> becomes true. The “MOVE WHILE <expression>” will also continue its move while it’s
<expression> is true. Expression can be any valid arithmetic or logical expressions or their combination.

Examples:

MOVE WHILE APOS<20 ;Move while the position is less then 20, then
 ;stop with current deceleration rate.
MOVE UNTIL APOS>V1 ;Move positive until the position is greater than
 ;the value in variable V1
MOVE BACK UNTIL APOS<V1 ;Move negative until the position is less than the
 ;value in variable V1
MOVE WHILE IN_A1 ;Move positive while input A1 is activated.
MOVE WHILE !IN_A1 ;Move positive while input A1 is not activated.
 ;The exclamation mark (!) in front of IN_A1 inverts
 ;(or negates) the value of IN_A1.

This last example is a convenient way to find a sensor or switch.

PM94H201B_13xxxxxx_EN L 53

Programming

2.11.11 Motion Queue and Statement Execution while in Motion
By default when the program executes a MOVE, MOVED or MOVEP statement, it waits until the motion is complete
before going on to the next statement. This effectively will suspend the program until the requested motion is complete.
Note that “EVENTS” are not suspended however and continue executing in parallel with the User Program. The Continue
“C” argument is very useful when it is necessary to trigger an action (handle I/O) while the motor is in motion. Below is
an example of the Continue “C” argument.

;This program monitors I/O in parallel with motion:
START:
 MOVED 100,C ;start moving max 100 revs
WHILE F_MCOMPLETE=0 ;while moving
 IF IN_A2 == 1 ;if sensor detected
 OUT1=1 ;turn ON output
 WAIT TIME 500 ;500 mS
 OUT1=0 ;turn output OFF
 WAIT TIME 500 ;wait 500 ms
 ENDIF
ENDWHILE
MOVED -100 ;Return back
WAIT TIME 1000 ;wait time
GOTO START ;and start all over
END

This program starts a motion of 100 revolutions. While the motor is in motion, input A2 is monitored. If Input A2 is made
during the move, then output 1 is turned on for 500ms and then turned off. The program will continue to loop in the
WHILE statement, monitoring input A2, until the move is completed. If input 2 remains ON, or made, during the move,
then Output 1 will continue to toggle On and Off every 500ms until the move is complete. If input A2 is only made while
the motion passes by a sensor wired to the input, then output 1 will stay on for 500ms only. By adding the “Continue”
argument “C” to the MOVE statement, the program is able to monitor the input while executing the motion profile.
Without this modifier the program would be suspended until all motion is complete. After the motor has traveled the full
distance it then returns back to its initial position and the process repeats.

Figure 21 illustrates the structure and operation of the Motion Queue. All moves are loaded into the Motion Queue
before they are executed. If the move is a standard move, “MOVEP 10” or “MOVED 10”, then the move will be loaded
into the queue and the execution of the User Program will be suspended until the move is completed. If the move has
the continue argument, e.g. “MOVEP 10,C” or “MOVED 10,C”, or if it is an “MDV” move, then the moves will be loaded
into Motion Queue and executed simultaneously with the User Program.

54 L PM94H201B_13xxxxxx_EN

Programming

{...Statements}
......
MOVED 20,C
MDV 10,5
MDV 20,5
MDV 10,0
MOVEP 0,C
.......
{statements}

To Motion Profiler

User Program

EMPTY

EMPTY

MOVED 20

MDV 10,5

MDV 20,5

1

2

3

31

32

MDV 10,0 4

MOVEP 0 5

EMPTY 6

Queue locations

Queue INPUT pointer

Pointer always positions
to next available location

Queue Full
flag

Queue
Empty flag

Figure 21: Motion Queue

The Motion Queue can hold a maximum of 32 motion statements. The System Status Register contains bit values that
indicate the state of the Motion Queue. Additionally, system flags (representing individual bits of the status register) are
available for ease of programming. If the possibility of motion queue overflow exists, the programmer should check the
Motion Queue full flag before executing any MOVE statements, especially in programs where MOVE statements are
executed in a continuous cycle. Attempts to execute a motion statement while the Motion Queue is full will result in fault
#23. MDV statements don’t have the “C” option because the program is never suspended by these statements. If the
last MDV statement in the Queue doesn’t specify a return to 0 velocity then a Stack Underflow (Fault #24) will occur.

The “MOTION SUSPEND” and “MOTION RESUME” statements can be utilized to help manage the User Program
and the Motion Queue. If the motion profiles loaded into the queue are not managed correctly, the Motion Queue can
become overloaded which will cause the drive to fault.

PM94H201B_13xxxxxx_EN L 55

Programming

2.12 System Status Register (DSTATUS register)
System Status Register, (DSTATUS), is a Read Only register. Its bits indicate the various states of the PositionServo’s
subsystems. Some of the bits are available as System Flag Variables and previously summarized in Table 12.

Table 16: DSTATUS Register

Bit in register Description

0 Set when drive enabled

1 Set if DSP subsystem at any fault

2 Set if drive has a valid program

3 Set if byte-code or system or DSP at any fault

4 Set if drive has a valid source code

5 Set if motion completed and target position is within specified limits

6 Set when scope is triggered and data collected

7 Set if motion stack is full

8 Set if motion stack is empty

9 Set if byte-code halted

10 Set if byte-code is running

11 Set if byte-code is set to run in step mode

12 Set if byte-code has reached the end of program

13 Set if current limit is reached

14 Set if byte-code at fault

15 Set if no valid motor selected

16 Set if byte-code at arithmetic fault

17 Set if byte-code at user fault

18 Set if DSP initialization completed

19 Set if registration has been triggered

20 Set if registration variable was updated from DSP after last trigger

21 Set if motion module at fault

22 Set if motion suspended

23 Set if program requested to suspend motion

24 Set if system waits completion of motion

25 Set if motion command completed and motion Queue is empty

26 Set if byte-code task requested reset

27 If set interface control is disabled. This flag is set/clear by ICONTROL ON/OFF statement.

28 Set if positive limit switch active

29 Set if negative limit switch active

30
Events disabled. All events disabled when this flag is set. After executing EVENTS ON all events
previously enabled by EVENT EventName ON statements become enabled again

PositionServo variable #83 provides Extended Status Bits, the encoding of which is listed in Table 17.

56 L PM94H201B_13xxxxxx_EN

Programming

Table 17: Extended Status Bits (Variable #83 EXSTATUS)

Bit # Function Comment
0 Reserved
1 Velocity in specified window Velocity in limits as per parameter #59: VAR_VLIMIT_SPEEDWND

2-4 Reserved
5 Velocity at 0 (zero) Velocity 0: Zero defined by parameter #58: VAR_VLIMIT_ZEROSPEED

6,7 Reserved

8 Bus voltage below under-voltage limit
Utilized to indicate drive is operating from +24V keep alive and a valid DC
bus voltage level is not present.

9,10 Reserved

11 Regen circuit is on
Drive regeneration circuit is active. Drive will be dissipating power through
the braking resistor (if fitted).

12-20 Reserved
21 Set if homing operation in progress Drive executing Pre-defined homing function (see section 2.15).
22 Set if system homed Drive completed Pre-defined homing function (see section 2.15).

23
If set then last fault will remain on the
display until re-enabled.

User can set this bit to retain fault code on the display until re-enabled. It is
useful if there is a fault handler routine. When the fault handler is exited, the
fault number on the display will be replaced by current status (usually DiS if
bit #23 is not set). Setting bit #23 retains diagnostics on the display.

24
Set if EIP IO exclusive owner
connection is established. Cleared if
closed.

Checks if drive is controlled by EthernetIP master. Use bit #24 and bit #25 to
process “loss of connection” condition (if needed) in the user’s program

25
Set if EIP IO exclusive owner
connection times out. Cleared if exc.
owner conn exsists.

Checks if connection with Ethernet/IP master is lost. Use bit #24 and bit #25
to process “loss of connection” condition (if needed) in the user’s program

26-31 Reserved

2.13 Fault Codes (DFAULTS register)
Whenever a fault occurs in the drive, a record of that fault is recorded in the Fault Register (DFAULTS). In addition,
specific flags in the System Status Register will be set helping to indicate what class of fault the current fault belongs to.
Table 18 summarizes the fault codes. Codes from 1 to 16 are used for DSP subsystem errors. Codes above that range
are generated by various subsystems of the PositionServo.

Table 18: DFAULTS Register

Fault
ID

Associated flags
in status register

Description

1 1, 3 Over voltage
2 1, 3 Invalid Hall sensors code
3 1, 3 Over current
4 1, 3 Over temperature
5 1, 3 The drive is disabled by the ISO 13849-1 Safety Function
6 1, 3 Over speed. (Over speed limit set by motor capability in motor file)
7 1, 3 Position error excess.
8 1, 3 Attempt to enable while motor data array invalid or motor was not selected.
9 1,3 Motor over temperature switch activated
10 1,3 Sub processor error

11-13 - Reserved
14 1,3 Under voltage (hardware revision 1)
15 1,3 Hardware current trip protection
16 - Reserved
18 16 Division by zero
19 16 Arithmetic overflow
20 3 Subroutine stack overflow. Exceeded 32 levels subroutines stack depth.

PM94H201B_13xxxxxx_EN L 57

Programming

Fault
ID

Associated flags
in status register

Description

21 3 Subroutine stack underflow. Executing RETURN statement without preceding call to subroutine.
22 3 Variable evaluation stack overflow. Expression too complicated for compiler to process.
23 21 Motion Queue overflow. 32 levels depth exceeded
24 21 Motion Queue underflow. Last queued MDV statement has non 0 target velocity
25 3 Unknown opcode. Byte code interpreter error; Occurs when program is missing END statement

26 3
Unknown byte code. Byte code interpreter error; Occurs when RETURN statement missing from
subroutine; or when EPM data is corrupted at run-time

27 21 Drive disabled. Attempt to execute motion while drive is disabled.

28 16, 21
Accel/Decel too high. Motion statement parameters calculate Accel /Decel value above system
capability

29 16, 21
Accel/Decel too low. Motion statement parameters calculate Accel/Decel value below system
capability.

30 16, 21 Velocity too high. Motion statement parameters calculate a velocity above the system capability.
31 16, 21 Velocity too low. Motion statement parameters calculate a velocity below the system capability.
32 3,21 Positive limit switch engaged
33 3,21 Negative limit switch engaged
34 3,21 Attempt at positive motion with engaged positive limit switch
35 3,21 Attempt at negative motion with engaged negative limit switch
36 3 Hardware disable (enable input not active when attempting to enable drive from program or interface)
37 3 Under voltage (hardware revision 2)
38 3 EPM loss
39 3,21 Positive soft limit reached
40 3,21 Negative soft limit reached
41 3 Attempt to use variable with unknown ID from user program
45 1,3 Second encoder position error excess
49 1,3 Illegal manipulation of APOS variable

2.14 Limitations and Restrictions
Communication Interfaces Usage Restrictions

Simultaneous connection to the RS485 port is allowed for retransmitting (conversion) between interfaces.

WARNING!
Usage of the RS485 simultaneously with Ethernet may lead to unpredictable behavior since the
drive will attempt to perform commands from both interfaces concurrently.

Motion Parameters Limitation

Due to a finite precision in the calculations there are some restrictions for acceleration/deceleration and max velocity for
a move. If the programmer receives arithmetic faults during his program’s execution, it is likely due to these limitations.
Min/Max values are expressed in counts or counts/sample, where the sample is a position loop sample interval (512msec).

Table 19: Motion Parameter Limits

Parameter MIN MAX Units

Accel / Decel 65/(2^32) 512 counts/sample^2

MaxV (maximum velocity) 0 2048 counts/sample

Max move distance 0 +/- 2^31 counts

Stacks and Queues Depth Limitations
Table 20: Stack Depth Limit

Stack/Queue Motion Queue Subroutines Stack Number of Events

Depth 32 32 32

58 L PM94H201B_13xxxxxx_EN

Programming

2.15 Homing

2.15.1 What is Homing?
Homing is the method by which a drive seeks the home position (also called the datum, reference point, or zero point).
There are various methods of achieving this using:

•	 limit switches at the ends of travel, or
•	 a dedicated home switch, or
•	 an Index Pulse or zero reference from the motor feedback device, or
•	 a combination of the above.

Predefined (firmware based) homing functionality is available on PositionServo drives with firmware 3.03 or later.
In addition custom homing functionality can be created by the programmer within the user program by utilizing the
programming command set available.

Examples of custom homing routine creation as well as user program code to replicate each of the predefined homing
routines is available from technical support.

2.15.2 The Homing Function
The homing function provides a set of trajectory parameters to the position loop, as shown in Figure 22. They are
calculated based on user supplied variable values as listed below:

VAR_HOME_OFFSET
VAR_HOME_METHOD
VAR_HOME_SWITCH_INPUT
VAR_HOME_FAST_VEL
VAR_HOME_SLOW_VEL
VAR_HOME_ACCEL
VAR_START_HOMING

Trajectory
Parameter

Position
DemandHoming

Function
Trajectory
Generator

Position
Loop

Home Offset
Homing Method
Homing Speeds
Home Velocity Fast/Slow
Homing Acceleration

Figure: 22: Homing Function

Homing Function Monitoring:

The extended drive status variable (#83 EXSTATUS variable) contains bit values for monitoring the homing function
over a communications interface.

Bit 21 of EXSTATUS indicates homing procedure in progress and is set to logic 1 while homing is being executed.
Bit 22 of EXSTATUS indicates homing complete. It is set to 1 upon the successful completion of the homing routine.

2.15.3 Home Offset
The home offset is the difference between the zero position for the application and the machine home position (found
during homing). During homing the home position is found and once the homing is completed the zero position is offset
from the home position by adding the home offset to the home position. All subsequent absolute moves are made
relative to this new zero position. This is illustrated in Figure 23. Offset can either be set in User Units (UU) by writing
to variable #240, or in encoder counts by writing to variable #241. Setting a value for either variable #240 or #241 will
result in a value automatically being calculated and stored in the respective variable.

VAR_HOME_OFFSET (#240)
VAR_HOME_OFFSET_PULSES (#241)

Home
Position

Zero
Position

home_offset

Figure 23: Home Offset

PM94H201B_13xxxxxx_EN L 59

Programming

2.15.4 Homing Velocity
There are two homing velocities: fast and slow. These velocity variables are used to find the home switch and to find
the index pulse. How the two velocities are implemented within the homing routines depends on the homing routine
selected. Refer to section 2.5.9.

VAR_HOME_FAST_VEL (#242)
VAR_HOME_SLOW_VEL (#243)

2.15.5 Homing Acceleration
Homing acceleration establishes the velocity ramp rate to be used for all accelerations and decelerations within
the standard homing modes. Note that in the pre-defined homing methods, it is not possible to program a separate
deceleration rate.

VAR_HOME_ACCEL (#239)

2.15.6 Homing Switch
The homing switch variable enables the user to select the PositionServo input used for the Home Switch connection.
The Homing Switch Input Assignment range is 0 - 11. Inputs A1-A4 are assigned 0 to 3, respectively; inputs B1-B4 are
assigned 4 to 7, respectively; and inputs C1-C4 are assigned 8 to 11, respectively.

VAR_HOME_SWITCH_INPUT (#246)

WARNING!
•	 Setting inputs A1 and A2 as the home switch, even in methods that do NOT use limit switches

can cause the drive to behave in an unexpected manner.
•	 Input A3 is a dedicated hardware enable input and should never be assigned as the homing

switch input.
•	 Input C3 can be used as the homing switch input only in methods that do not home to an index

pulse.

2.15.7 Homing Start
There are two methods of starting pre-defined homing operation, the ‘HOME’ command and the Var_Start_Homing
variable. When Homing is initiated from the user program the ‘HOME’ command should always be used. The HOME
command is a blocking instruction that prevents further execution of the Main Program until homing operation is
completed. Any events that are enabled whilst homing is carried out will continue to process.

WARNING!
If using firmware prior to 4.50 then execution of homing functionality does not prevent simultaneous
execution of subsequent programming statements and it is required to immediately follow the HOME
command with the following code line:

WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000.

Doing this ensures no further lines of code will be executed until homing is complete.

The home start variable (Var_Start_Homing) is used to initiate pre-defined homing functionality from a host interface. It
should not be used if the drive contains or is executing a user program. Var_Start_Homing range is: 0 or 1. When set to
0, no action occurs. When set to 1, the homing operation is started.

VAR_START_HOMING (#245)

60 L PM94H201B_13xxxxxx_EN

Programming

2.15.8 Homing Method

VAR_HOME_METHOD (#244)

The Home Method variable establishes the method that will be used for homing. All supported methods are summarized
in Table 21 and described in sections 2.15.9.1 through 2.15.9.25. These homing methods define the required operation
of the drive in location of the home position. The zero position is always the home position adjusted by the homing offset.

Table 21: Homing Methods

Method Home Position

0 No operation/reserved. An attempt to execute 0 will result in execution of method 1.

1 Location of first index pulse is on the positive side of the negative limit switch.

2 Location of first index pulse is on the negative side of the positive limit switch.

3 Location of first index pulse is on the negative side of a positive home switch.1

4 Location of first index pulse is on the positive side of a positive home switch.1

5 Location of first index pulse is on the positive side of a negative home switch.2

6 Location of first index pulse is on the negative side of a negative home switch.2

7 Location of first index pulse is on the negative side of the negative edge of an intermittent home switch.3

8 Location of first index pulse is on the positive side of the negative edge of an intermittent home switch.3

9 Location of first index pulse is on the negative side of the positive edge of an intermittent home switch.3

10 Location of first index pulse is on the positive side of the positive edge of an intermittent home switch.3

11 Location of first index pulse is on the positive side of the positive edge of an intermittent home switch.3

12 Location of first index pulse is on the negative side of the positive edge of an intermittent home switch.3

13 Location of first index pulse is on the positive side of the negative edge of an intermittent home switch.3

14 Location of first index pulse is on the negative side of the negative edge of an intermittent home switch.3

15 Reserved for future use.

16 Reserved for future use

17 The edge of a negative limit switch.

18 The edge of a positive limit switch.

19 The edge of a positive home switch.

20 Reserved for future use.

21 The edge of a negative home switch.

22 Reserved for future use.

23 Positive edge of an intermittent home switch.

24 Reserved for future use.

25 The negative edge of an intermittent home switch.

26 Reserved for future use.

27 Negative edge of an intermittent home switch.

28 Reserved for future use.

29 The positive edge of an intermittent home switch.

30 Reserved for future use.

31 Reserved for future use.

32 Reserved for future use.

33 The first index pulse on the negative side of the current position.

34 The first index pulse on the positive side of the current position.

35
Current position becomes home position. Home offset is also active and will be added to current position to
set the zero position.

1 - A positive home switch is one that goes active at a set position, and remains active for all positions greater than the set position.
2 - A negative home switch is one that goes active at a set position, and remains active for all positions less than the set position.
3 - An intermittent home switch is one that is only active for a limited range of travel.

PM94H201B_13xxxxxx_EN L 61

Programming

2.15.9 Homing Methods
There are several types of homing methods but each method establishes the:

•	 Homing signal (positive limit switch, negative limit switch, home switch ,or index pulse)
•	 Direction of actuation and, where appropriate, the direction of the index pulse.

The homing method descriptions and diagrams in this manual are based on those in the CANopen Profile for Drives
and Motion Control (DSP 402). As illustrated in Figure 24, each homing method diagram shows the motor in the starting
position on a mechanical stage. The arrow line indicates direction of motion and the circled number indicates the homing
method (the mode selected by the Homing Method variable).

The location of the circled method number indicates the home position reached with that method. The text designators
(A, B) indicate the logical transition required for the homing function to complete it’s current phase of motion. Dashed
lines overlay these transitions and reference them to the relevant transitions of limit switches, homing sensors, or index
pulses.

Definitions

Positive home switch: goes active at a set position, and remains active for all positions greater than the set position.

Negative home switch: goes active at a set position, and remains active for all positions less than the set position.

Intermittent home switch: is one that is only active for a limited range of travel.

Negative Limit Switch

Index Pulse Positions

Switch active (high) Switch inactive (low)

Starting Position

Direction of Motion

Mechanical Stage Limits

Switch transition

1 Number = Homing Method Number.
Position of the number indicates the home position

A

B 1

Figure 24: Homing Terms

NOTE
In the homing method descriptions, negative motion is leftward and positive motion is rightward

BLUE lines indicate fast velocity moves

GREEN lines indicate slow velocity moves

RED lines indicate slow velocity/100 moves

62 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.1 Homing Method 1: Homing on the Negative Limit Switch & Index Pulse
Using this method, the initial direction of movement is negative if the negative limit switch is inactive (here shown as
low). The home position is at the first index pulse to the positive side of the position where the negative limit switch
becomes active.

Axis will accelerate to fast homing velocity in the negative direction and continue until Negative Limit Switch (A1) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity. If the negative limit switch is already
active when the homing routine commences then this initial move is not executed. Axis will then accelerate to slow
homing velocity in the positive direction. Motion will continue until first the falling edge of the negative limit switch is
detected (position B) and then the rising edge of the first index pulse (position 1) is detected.

A

B
1

Index Pulse
(via Input C3)

Negative Limit Switch
(Input A1)

Figure 25: Homing Method 1

2.15.9.2 Homing Method 2: Homing on the Positive Limit Switch & Index Pulse
Using this method the initial direction of movement is positive if the positive limit switch is inactive (here shown as
low). The position of home is at the first index pulse to the negative side of the position where the positive limit switch
becomes active.

Axis will accelerate to fast homing velocity in the positive direction and continue until Positive Limit Switch (A2) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity. If the positive limit switch is already
active when the homing routine commences then this initial move is not executed. Axis will then accelerate to slow
homing velocity in the negative direction. Motion will continue until first the falling edge of the positive limit switch is
detected (position B) and then the rising edge of the first index pulse (position 2) is detected.

A

B
2

Index Pulse
(via Input C3)

Positive Limit Switch
(Input A2)

Figure 26: Homing Method 2

PM94H201B_13xxxxxx_EN L 63

Programming

2.15.9.3 Homing Method 3: Homing on the Positive Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
first index pulse to the negative side of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.
If the homing switch is already active when the homing routine commences then this initial move is not executed. Axis
will then accelerate to fast homing velocity in negative direction. Motion will continue until first the falling edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 3) is detected.

A

B

3

3

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 27: Homing Method 3

2.15.9.4 Homing Method 4: Homing on the Positive Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is active). The home position is the
first index pulse to the positive side of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity. If the homing switch is already inactive when the homing routine commences then this initial move is not
executed. Axis will then accelerate to fast homing velocity in positive direction. Motion will continue until first the rising
edge of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 4) is
detected.

A

B

4

4

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 28: Homing Method 4

64 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.5 Homing Method 5: Homing on the Negative Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the first index pulse to the positive side of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.
If the homing switch is already active when the homing routine commences then this initial move is not executed. Axis
will then accelerate to fast homing velocity in positive direction. Motion will continue until first the falling edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 5) is detected.

A

B

5

5

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 29: Homing Method 5

2.15.9.6 Homing Method 6: Homing on the Negative Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is active). The home position is the
first index pulse to the negative side of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via Var_
Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero velocity.
If the homing switch is already inactive when the homing routine commences then this initial move is not executed. Axis
will then accelerate to fast homing velocity in negative direction. Motion will continue until first the rising edge of the
Homing switch is detected (position B) and then the rising edge of the first index pulse (position 6) is detected.

A

B

6

6

B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 30: Homing Method 6

PM94H201B_13xxxxxx_EN L 65

Programming

2.15.9.7 Homing Method 7: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
first index pulse to the negative side of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until first the falling edge
of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 7) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above, but moving negative instead of positive and without stopping on detection
of the homing switch rising edge.

A

B
7

7 B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 31: Homing Method 7

66 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.8 Homing Method 8: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is active). The home position is the
first index pulse to the positive side of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already inactive when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until first the rising edge
of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 8) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above.

A

B
8

8B

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 32: Homing Method 8

PM94H201B_13xxxxxx_EN L 67

Programming

2.15.9.9 Homing Method 9: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive. The home position is the first index pulse to the negative
side of the position where the homing switch becomes inactive on its negative edge.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until first the rising edge
of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 9) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above but ignoring the initial move in the positive direction.

A

B
9

A

B
9

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 33: Homing Method 9

68 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.10 Homing Method 10: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive. The home position is the first index pulse to the positive
side of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will continue running at fast homing velocity in the positive direction until the rising edge of the first index pulse
(position 10) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A
10

A
10

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 34: Homing Method 10

PM94H201B_13xxxxxx_EN L 69

Programming

2.15.9.11 Homing Method 11: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the first index pulse to the positive side of the position where the homing switch becomes active.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until first the falling edge
of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 11) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
following the procedure as detailed above, but moving positive instead of negative and without stopping on detection
of the homing switch rising edge.

A

B

B

11

11

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 35: Homing Method 11

70 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.12 Homing Method 12: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is positive (if the homing switch is active). The home position is the
first index pulse to the negative side of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already inactive when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until first the rising edge
of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 12) is detected.

NOTE: if it the axis is on the wrong side of the homing switch when homing is started then the axis will move negative
until it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction
(positive) following the procedure as detailed above.

A

B

B

12

12

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 36: Homing Method 12

PM94H201B_13xxxxxx_EN L 71

Programming

2.15.9.13 Homing Method 13: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative. The home position is the first index pulse to the positive
side of the position where the homing switch becomes inactive on its positive edge.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until first the rising edge
of the Homing switch is detected (position B) and then the rising edge of the first index pulse (position 13) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
following the procedure as detailed above but ignoring the initial move in the negative direction.

A

B

A

B

13

13

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 37: Homing Method 13

72 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.14 Homing Method 14: Homing on the Home Switch & Index Pulse
Using this method the initial direction of movement is negative. The home position is the first index pulse to the negative
side of the position where the homing switch becomes inactive.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will continue running at fast homing velocity in the negative direction until the rising edge of the first index pulse
(position 14) is detected.

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A
14

A
14

Index Pulse
(via Input C3)

Homing Switch
(Var_Home_Switch_Input)

Figure 38: Homing Method 14

PM94H201B_13xxxxxx_EN L 73

Programming

2.15.9.15 Homing Method 17: Homing to Negative Limit Switch (without index pulse)
Method 17 is similar to method 1, except that the home position is not dependent on the index pulse but only on the
negative limit switch translation.

Using this method the initial direction of movement is negative. The home position is the leading edge of the Negative
limit switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until Negative Limit Switch (A1) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the negative limit switch is already active when the homing routine commences then this initial move is not
executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until the falling edge of the
negative limit switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the negative limit switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity divided by 100 in the positive direction. Motion will continue until the
falling edge of the negative limit switch is detected (position 17). This is the home position (excluding offset).

A

B

17

C

Negative Limit Switch
(Input A1)

Figure 39: Homing Method 17

74 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.16 Homing Method 18: Homing to Positive Limit Switch (without index pulse)
Method 18 is similar to method 2, except that the home position is not dependent on the index pulse but only on the
Positive limit switch translation.

Using this method the initial direction of movement is positive. The home position is the leading edge of the Positive
limit switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until Positive Limit Switch (A2) is
activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the positive limit switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until the falling edge of
the positive limit switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
positive limit switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity divided by 100 in the negative direction. Motion will continue until the
falling edge of the positive limit switch is detected (position 18). This is the home position (excluding offset).

A

B

18

C

Positive Limit Switch
(Input A2)

Figure 40: Homing Method 18

PM94H201B_13xxxxxx_EN L 75

Programming

2.15.9.17 Homing Method 19: Homing to Homing Switch (without index pulse)
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until the homing switch is activated
(rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position 19). This is the home position (excluding offset).

A

B

19

C

Homing Switch
(Var_Home_Switch_Input)

Figure 41: Homing Method 19

76 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.18 Homing Method 21: Homing to Homing Switch (without index pulse)
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until the homing switch is activated
(rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until the falling edge of the
homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the falling edge of
the homing switch is detected (position 21). This is the home position (excluding offset).

A

B

21

C

Homing Switch
(Var_Home_Switch_Input)

Figure 42: Homing Method 21

PM94H201B_13xxxxxx_EN L 77

Programming

2.15.9.19 Homing Method 23: Homing to Homing Switch (without index pulse)
Using this method the initial direction of movement is positive (if the homing switch is inactive). The home position is the
leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until the homing switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position 23). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
following the procedure as detailed above but ignoring the initial move in the positive direction.

A

B

23

C

23

B

C

Homing Switch
(Var_Home_Switch_Input)

Figure 43: Homing Method 23

78 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.20 Homing Method 25: Homing to Homing Switch (without index pulse)
Using this method the initial direction of movement is positive. The home position is the negative edge of the homing
switch.

Axis will accelerate to fast homing velocity in the positive direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the falling edge of
the homing switch is detected (position 25). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move positive until
it contacts the positive limit switch (A2). Upon activating the positive limit switch the axis will change direction (negative)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A

B

25

25

A

B

Homing Switch
(Var_Home_Switch_Input)

Figure 44: Homing Method 25

PM94H201B_13xxxxxx_EN L 79

Programming

2.15.9.21 Homing Method 27: Homing to Homing Switch (without index pulse)
Using this method the initial direction of movement is negative. The home position is the negative edge of the homing
switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until Homing Switch (selectable via
Var_Home_Switch_Input Variable) is deactivated (falling edge) shown at position A. Axis then decelerates to zero
velocity.

If the homing switch is already active when the homing routine commences then this does not effect this mode of
homing as the procedure is searching for falling edge of homing switch in both cases.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the rising edge of the
homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the falling edge of
the homing switch is detected (position 27). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
continuing motion until it sees the rising edge of the homing switch. The axis will then stop and follow the procedure as
detailed above.

A

B

27

27

A

B

Homing Switch
(Var_Home_Switch_Input)

Figure 45: Homing Method 27

80 L PM94H201B_13xxxxxx_EN

Programming

2.15.9.22 Homing Method 29: Homing to Homing Switch (without index pulse)
Using this method the initial direction of movement is negative (if the homing switch is inactive). The home position is
the leading edge of the homing switch.

Axis will accelerate to fast homing velocity in the negative direction and continue until the homing switch (selectable via
Var_Home_Switch_Input Variable) is activated (rising edge) shown at position A. Axis then decelerates to zero velocity.

If the homing switch is already active when the homing routine commences then this initial move is not executed.

Axis will then accelerate to fast homing velocity in the positive direction. Motion will continue until the falling edge of the
homing switch is detected (position B), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the negative direction. Motion will continue until the rising edge of
the homing switch is detected (position C), where the axis will decelerate to 0 velocity.

Axis will then accelerate to slow homing velocity in the positive direction. Motion will continue until the falling edge of
the homing switch is detected (position 29). This is the home position (excluding offset).

NOTE: if the axis is on the wrong side of the homing switch when homing is started then the axis will move negative until
it contacts the negative limit switch (A1). Upon activating the negative limit switch the axis will change direction (positive)
following the procedure as detailed above but ignoring the initial move in the negative direction.

A

B

29

C

29

B

C

Homing Switch
(Var_Home_Switch_Input)

Figure 46: Homing Method 29

PM94H201B_13xxxxxx_EN L 81

Programming

2.15.9.23 Homing Method 33: Homing to an Index Pulse
Using this method the initial direction of movement is negative. The home position is the first index pulse to the negative
side of the shaft starting Position. Axis will accelerate to fast homing velocity in the negative direction and continue until
the rising edge of the first index pulse (position 33) is detected.

33

Index Pulse
(via Input C3)

Figure 47: Homing Method 33

2.15.9.24 Homing Method 34: Homing to an Index Pulse
Using this method the initial direction of movement is positive. The home position is the first index pulse to the positive
side of the shaft starting Position. Axis will accelerate to fast homing velocity in the positive direction and continue until
the rising edge of the first index pulse (position 34) is detected.

34

Index Pulse
(via Input C3)

Figure 48: Homing Method 34

2.15.9.25 Homing Method 35: Using Current Position as Home
Using this method the current position of the axis is taken as the home position. There is no motion of the motor shaft
during this procedure. Any offset specified (via the Var_Home_Offset Variable) will be added to the shaft’s present
position to create the home/zero position.

35

Figure 49: Homing Method 35

82 L PM94H201B_13xxxxxx_EN

Programming

2.15.10 Homing Mode Operation Example
The following steps are needed to execute the homing operation from the user program or under interface control.

1. Set Fast homing speed: Variable #242

2. Set Slow homing speed: Variable #243

3. Set Homing accel/decel: Variable #239

4. Set home offset:

a. In User Units Variable #240

b. In encoder pulses Variable #241

5. Set Home Switch Input Variable #246

6. Select Home Method Variable #244

To start, execute the HOME command. Refer to the example herein.

There are two methods of starting pre-defined homing operation, the ‘HOME’ command and the Var_Start_Homing
variable. When Homing is initiated from the user program the ‘HOME’ command should always be used. The HOME
command is a blocking instruction that prevents further execution of the Main Program until homing operation is
completed. Any events that are enabled whilst homing is carried out will continue to process.

WARNING!
If using firmware prior to 4.50 then execution of homing functionality does not prevent simultaneous execution of subsequent
programming statements and it is required to immediately follow the HOME command with the following code line:

WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000.

Doing this ensures no further lines of code will be executed until homing is complete.

The home start variable (Var_Start_Homing) is used to initiate pre-defined homing functionality from a host interface. It
should not be used if the drive contains or is executing a user program. Var_Start_Homing range is: 0 or 1. When set to
0, no action occurs. When set to 1, the homing operation is started.

;Program start--
;
;
 UNITS=1 ;rps

 Accel=1000
 Decel=1000
 MaxV =20

;some program statements…
;
;
;Homing specific set up
 VAR_HOME_FAST_VEL= 10 ;rps
 VAR_HOME_SLOW_VEL= 1 ;rps
 VAR_HOME_ACCEL= 100 ;rps/sec^2
 VAR_HOME_OFFSET= 0 ;no offset from sensor
 VAR_HOME_SWITCH_INPUT= 4 ;input B1 (0-A1, 1-A2…3-A4, 4-B1,…11-C4)
 VAR_HOME_METHOD= 4 ;see table 21
 ENABLE
 HOME ;start homing sequence
;The statement below MUST be included immediately after the Home command on drives containing
;firmware releases prior to version 4.50
 WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000 ;wait for homing complete
;Drive homed

;Program statements…
END

PM94H201B_13xxxxxx_EN L 83

Reference

3. Reference

3.1 Program Statement Glossary
Each programming statement is documented using the tabular format shown in Tables 22 and 23. The individual
program statements are listed in this section in alphabetical order with detailed descriptions in Tables 24 through 62.

Table 22: Language Format

KEYWORD Description Type

Purpose

Syntax KEYWORD <ARGUMEMTS> ,[MODIFIERS]

Remarks

See Also

Example

Table 23: Field Descriptions

Field Descriptions

KEYWORD: The KEYWORD is the name of the programming statement as it would appear in a program.

Description: The description is an interpretation of the keyword. For example: MOVEP is the keyword and Move
to Position would be a description. The description is provided only as an aid to the reader and may
not be used in a program.

Type: The type field will identify the Keyword as either a Statement or a Pseudo statement.
Statements are actual instructions converted to machine code by the compiler and form executable
commands within the drive programming.
Pseudo statements add convenience to the programmer but do not form instructions in their own
right. They are therefore not executable code and are effectively removed when the program is
compiled to it’s native state by the compiler.

Purpose: Purpose or Function of the Keyword (Programming Statement).

Syntax: This field shows proper usage of the keyword. Arguments will be written in < > brackets. Optional
arguments will be contained within [] brackets.

Arguments: The data that is supplied with a statement that modifies the behavior of the statement. For example,
MOVED=100. MOVED is the statement and 100 is the argument.

Remarks: The remark field contains additional information about the use of the statement.

See Also: This field contains a list of statements that are related to the purpose of the keyword.

Example: The example field contains a code segment that illustrates the usage of the keyword

84 L PM94H201B_13xxxxxx_EN

Reference

Table 24: ASSIGN

ASSIGN Assign Input As Index Bit Statement

Purpose Assign keyword causes a specified input to be assigned to a particular bit of system variable INDEX.
Up to 8 digital inputs can be assigned to the first eight bits (bits 0 - 7) of the INDEX system variable in
any order or combination. The purpose of the Assign Keyword and INDEX system Variable is to allow
the creation of a custom input word for inclusion in the user program. Good examples of it’s use are
for implementing easy selection of preset torque, velocity or position values within the user program.

Syntax ASSIGN INPUT <input name> AS BIT <bit #>

Input name (IN_A1..IN_A2 etc.)
Bit# INDEX variable bit number from 0 to 7

Remarks Assign statements typically appear at the start of the program (Initialize and set Variables section) but
can be included in other code sections with the exception of Events and the Fault Handler.

See Also VAR_IOINDEX Variable (#220)

Example:
ASSIGN INPUT IN_B1 AS BIT 0 ;index bit 0 state matches state of input B1
ASSIGN INPUT IN_B2 AS BIT 1 ;index bit 1 state matches state of input B2

Program Start:
; <statements>
If Index == 0 ; If neither IN_B1 or IN_B2 is on
 MoveP 0 ; Move to Absolute Position 0
Endif

If Index == 1 ; If IN_B1 is on and IN_B2 is off
 MoveP 10 ; Move to Absolute Position 10
Endif

; If Index == 2

PM94H201B_13xxxxxx_EN L 85

Reference

Table 25: DEFINE

DEFINE Define name Pseudo-statement

Purpose DEFINE is used to define symbolic names for User Variables, constants, and Digital I/O for
programming convenience. Define statements greatly enhance program understanding by allowing
the user to program using symbolic strings (names) relevant to their application. DEFINE can be used
also to substitute a symbolic string.

Syntax DEFINE <name> <synonym>
name any symbolic string
synonym User Variable, constant, or Digital I/O Flag that symbolic string will represent

Remarks: DEFINE statements can be located anywhere within the user program (with the exception of events
and the fault handler). Normally practice however is to place definitions at the start of the program
prior to any executable code.

See Also

Example:

Define Start_Button IN_B1 ; Define a Digital Input
Define System_Stop Out2 ; Define a Digital Output
Define Loop_Counter V5 ; Define a User Variable
Define Loop_Increment 1 ; Define a Constant Value

Program_Start: ; Label Program Start
If Start_Button == 0 ; If input B1 is off
 Disable ; Disable Servo
 System_Stop = 1 ; Turn on Output 2
Else ; Otherwise
 System_Stop = 0 ; Turn off Output 2
 Enable ; Enable Servo
 MoveD 10 ; Move (increment) Distance 10
 Loop_Counter = Loop_Counter + Loop_Increment ; Increment Variable V5 by 1
Endif
Goto Program_Start ; Goto Label Program_Start

Table 26: DISABLE

DISABLE Disables the drive Statement

Purpose DISABLE turns OFF the drive output to the motor. Drive shows ‘Dis’ on display when in a disabled
state.

Syntax DISABLE

Remarks Once the DISABLE statement is executed, the power to the motor is turned off and the motor can
move freely. When disabled the drive will continue to monitor feedback and the actual position
variable (APOS) will continue to update with the current position of the motor. The target position
variable (TPOS) will be updated with the value of the actual position variable (APOS) on Enable to
prevent unexpected motion from the motor shaft.

See Also ENABLE

WARNING!
Work should not be carried out on the drive/system without the drive first being isolated from its mains
supply. The disabled condition is not an indication that the motor or system is safe to work on as an
Enable/run condition could result from execution of the programmers programming code, from a host
interface, or controller.

Example:

If Start_Button == 0 ; If input B1 is off
 Disable ; Disable Servo
Else ; Otherwise
 Enable ; Enable Servo
 MoveD 10 ; Move (increment) Distance 10
Endif

86 L PM94H201B_13xxxxxx_EN

Reference

Table 27: DO UNTIL

DO UNTIL Do/Until Statement

Purpose The DO / UNTIL statement is used to execute a statement or set of statements repeatedly until a
logical condition becomes true. The Do / Until statements enclose the program code to be repeatedly
executed with the UNTIL statement containing the logical statement for exit of the loop.

Syntax DO
 {statement(s)}…
UNTIL <condition>
 {statement(s)} any valid statement(s)
 <condition> The condition to be tested.

Remarks The statement or statements contained within a DO / UNTIL loop will always be executed at least
once because the logical condition to be tested is contained within the UNTIL statement in the last
statement of the loop.

See Also WHILE, IF

Example:
V0 = 0 ; Set V0 to Value 0
 ; Create Loop to perform Move command 12 times
DO ; Start of Do Loop
 V0 = V0 + 1 ; Add 1 to Variable V0
 Moved 5 ; Move (incremental) distance 5
Until V0 == 12 ; Loop back to DO Statement, Repeat Until Logic True

Table 28: ENABLE

ENABLE Enables the drive Statement

Purpose Enable turns on drive output to the motor. Drive shows ‘Run’ on display when in the enabled state.

Syntax ENABLE

Remarks Once a drive is enabled motion can be commanded from the user program. Commanding motion
while the drive is disabled will result in fault trip (F_27).

See Also DISABLE

Example: If Start_Button == 0 ; If input B1 is off
 Disable ; Disable Servo
Else ; Otherwise
 Enable ; Enable Servo
 MoveD 10 ; Move (increment) Distance 10
Endif

Table 29: END

END END program Statement

Purpose This statement is used to terminate (finish) user program and its events.

Syntax END

Remarks END can be used anywhere in program

See Also DISABLE

Example:

END ;end user program

PM94H201B_13xxxxxx_EN L 87

Reference

Table 30: EVENT

EVENT Starts Event handler Statement

Purpose EVENT keyword is used to create scanned events within the user program.
Statement also sets one of 4 possible types of events.

Syntax Any one of the 4 syntax examples herein may be used:
1. EVENT <name> INPUT <inputname> RISE
2. EVENT <name> INPUT <inputname> FALL
3. EVENT <name> TIME <period>
4. EVENT <name> <expression>
 name any valid alphanumeric string
 inputname any valid input “IN_A1 - IN_C4”
 period any integer number. Expressed in ms
 expression any arithmetic or logical expression

The following statements can not be used within event’s handler:

MOVE MOVED MOVEP MOVEDR

MOVEPR MDV MOTION SUSPEND MOTION RESUME

STOP MOTION DO/UNTIL GOTO GOSUB

HALT VELOCITY ON/OFF WAIT WHILE/ENDWHILE

ASSIGN END ON FAULT/END FAULT RESUME

RETURN

While GOTO or GOSUB are restricted, a special JUMP statement can be used for program flow change from
within event handler. See JUMP statement description in Language Reference section.

Program labels are also not permitted within event code.

Remarks
For syntax 1 and 2:

The Event will occur when the input defined by the <name> transition from low to high, for syntax 1 (RISE) and from high to
low for syntax 2 (FALL).

For syntax 3:
The Event will occur when the specified , <period>, period of time has expired. This event can be used as periodic event to
check for some conditions.

For syntax 4
The Event will occur when the expression, <expression>, evaluates to be true. The expression can be any valid arithmetic
or logical expression or combination of the two. This event can be used when implementing soft limit switches or when
changing the program flow based on some conditions. Any variable, (user and system), or constants can be used in the
expression. The event will only trigger when the logic transitions from False to True. Further occurrence of the event will not
occur while the condition remains true.

See Also ENDEVENT, EVENT ON/OFF, EVENTS ON/OFF

Example:

EVENT InEvent IN_A1 RISE
 V0 = V0+1 ;V0 increments by 1 each time IN_A1 transitions from low to high
ENDEVENT
EVENT period TIME 1000 ;1000 ms = 1Sec
 V3=V0-V1 ;Event subtracts V1 from V0 and stores result in V3 every second
ENDEVENT
;--
 EVENT InEvent ON ;Statements in main program to turn individual events on
 EVENT period ON
 {program statements}
END

88 L PM94H201B_13xxxxxx_EN

Reference

Table 31: ENDEVENT

ENDEVENT END of Event handler Statement

Purpose Indicates end of the scanned event code

Syntax ENDEVENT

Remarks

See Also EVENT, EVENT ON/OFF, EVENTS ON/OFF

Example: EVENT InputRise IN_B4 RISE
 V0=V0+1
ENDEVENT

Table 32: EVENT ON/OFF

EVENT ON/OFF Turn events on or off Statement

Purpose Turns ON or OFF events created by an EVENT statement

Syntax EVENT <name> ON
EVENT <name> OFF
<name> Event name

Remarks

See Also EVENT

Example:

; Events Section
EVENT InputRise IN_B4 RISE
 V0=V0+1
ENDEVENT

; Main Program
EVENT InputRise ON
; statements...
EVENT InputRise OFF

PM94H201B_13xxxxxx_EN L 89

Reference

Table 33: EVENTS ON/OFF

EVENTS OFF/ON Globally Disables/re-enables events Statement

Purpose EVENTS OFF command when executed will disable any events currently enabled (running). EVENTS
ON Command re-enables any events previously disabled through the EVENTS OFF command.
EVENTS ON is not a global enable of all declared events. Events status is indicated through bit #30 of
the DSTATUS register or by system flag ‘F_EVENTSOFF’. EVENTS OFF/ON allows for easy disable
and re-activation of events in sections of the main program or subroutines that the programmer
doesn’t want interrupted by event code.

Syntax EVENTS OFF Disables execution of all events
EVENTS ON Restores execution of previously enabled events.

Remarks Events are globally disabled after a program reset is made or a fault occurs. Events are re-enabled by
executing the individual EVENT <name> ON statement following either a Reset or a Fault Condition.

See Also EVENT

Example:
**
 EVENT SKIPOUT IN_B4 RISE ;check for rising edge of input B4
 JUMP TOGGLE ;redirect code execution to TOGGLE
 ENDEVENT ;end the event
 EVENT OVERSHOOT IN_B3 RISE ;check for rising edge of input B3
 JUMP SHUTDOWN ;redirect code execution to SHUTDOWN
 ENDEVENT ;end the event
**
 EVENT SKIPOUT ON
 EVENT OVERSHOOOT ON
**
 ……….…User code……………..

 EVENTS OFF ;turns off all events

 ……….…User code……………..

 EVENTS ON ;turns on any event previously activated

Table 34: FAULT

FAULT User generated fault Statement

Purpose Allows the user program to set a custom system fault. This is useful when the programmer needs to
define a fault code and fault process for custom conditions like data supplied by interface out of range
etc. Custom fault numbers must be in region of 128 to 240 (decimal)

Syntax FAULT <FaultNumber> Sets system fault.
<FaultNumber> constant in range 128-240

Remarks Custom fault will be processed in the same way as a system fault. There will be a record in the fault
log. Variables are not allowed in this statement.

See Also ON FAULT

Example:

FAULT 200 ;Sets fault #200

90 L PM94H201B_13xxxxxx_EN

Reference

Table 35: GOSUB

GOSUB Go To subroutine Statement

Purpose GOSUB transfers control to subroutine.

Syntax GOSUB <subname>

<subname> a valid subroutine name

Remarks After return from subroutine program resumes from next statement after GOSUB

See Also GOTO, JUMP, RETURN

Example:

DO
 GOSUB CALCMOVE ;Go to CALCMOVE Subroutine
 MOVED V1 ;Move distance calculated in Subroutine
UNTIL INA1
END

SUB CALCMOVE:
 V1=(V2+V3)/2 ;Subroutine statement, Calculates value for V1
RETURN ;Return to main program execution

Table 36: GOTO

GOTO Go To Statement

Purpose Transfer program execution to label following the GOTO instruction.

Syntax GOTO <label>

Remarks <Label> must be a valid program reference label (alphanumeric string, 64 characters in length, and
ending with a colon “:”) contained within the user program. The GOTO statement can be located
either above or below the program label in the user code.

See Also GOSUB, JUMP

Example:

GOTO Label2
{Statements…}

Label2:

{Statements…}

Table 37: HALT

HALT Halt the program execution Statement

Purpose Used to halt main program execution. Events are not halted by the HALT statement. Event code can
restart main program execution by issuing the RESET statement or by executing a JUMP to a Main
Program Label from the EVENT handler. With the RESET statement, Main Program execution will
recommence on the code line immediately following the HALT Statement. With a Jump command
program execution is forced to the program label defined within the argument of the JUMP command.

Syntax HALT

Remarks This statement is convenient when writing event driven programs.

See Also RESET, JUMP, EVENT

Example:

{Statements…}
HALT ;halt main program execution and wait for event

PM94H201B_13xxxxxx_EN L 91

Reference

Table 38: HOME

HOME Execute homing routine Statement

Purpose Used to initiate homing.

Syntax HOME

Remarks Homing is initiated from the user program using the ‘HOME’ command. The HOME command is a
blocking instruction that prevents further execution of the Main Program until homing operation is
completed. Any events that are enabled while homing is carried out will continue to process.

WARNING!
If using firmware prior to 4.50 then execution of homing functionality does not prevent
simultaneous execution of subsequent programming statements and it is required to
immediately follow the HOME command with the following code line:

WAIT UNTIL VAR_EXSTATUS & 0x400000 == 0x400000.

See Also

Example:

{Statements…}
HOME ;initiate homing routine

Table 39: ICONTROL ON/OFF

ICONTROL
ON/OFF Enables interface control Statement

Purpose Enables/Disables interface control. Effects bit #27 in DSTATUS register and system flag F_ICONTROLOFF.
All interface motion commands and commands changing any outputs will be disabled. See Host interface
commands manual for details. This command is useful when the program is processing critical states
(example limit switches) and can’t be disturbed by the interface.

Syntax ICONTROL ON
ICONTROL OFF

Enables Interface control
Disables interface control

Remarks After reset interface control is enabled by default.

See Also

Example:
EVENT LimitSwitch IN_A1 RISE ;limit switch event
 Jump LimitSwitchHandler ;jump to process limit switch
ENDEVENT

V0=0 ;V0 will be used to indicate fault condition
EVENT LimitSwitch ON ;Turn on event to detect limit switch activation
Again:
HALT ;system controlled by interface and Events
LimitSwitchHandler:
 EVENTS OFF ;turn off all events
 ICONTROL OFF ;disable interface control
 STOP MOTION QUICK
 DISABLE ;DISABLE
 V0=1 ;indicate fault condition to the interface
 ICONTROL ON ;Enable Interface Control
 EVENTS ON ;turn on events turned off by ‘EVENTS OFF’
 GOTO AGAIN

92 L PM94H201B_13xxxxxx_EN

Reference

Table 40: IF

IF IF/ENDIF Statement

Purpose The IF statement tests for a condition and then executes the specific action(s) between the IF and
ENDIF statements if the condition is found to be true. If the condition is false, no action is taken and
the instructions following the ENDIF statement are executed. Optionally, using the ELSE statement, a
second series of statements may be specified to be executed if the condition is false.

Syntax IF <condition>
 {statements 1}
ELSE
 {statements 2}
ENDIF

Remarks

See Also WHILE, DO

Example:

IF APOS > 4 ;If actual position is greater than 4 units
 V0=2
ELSE ;otherwise... (actual position equal or less than 4)
 V0=0
ENDIF
;---
If V1 <> V2 && V3>V4 ;If V1 doesn’t equal V2 AND V3 is greater than V4
 V2=9
ENDIF

Table 41: JUMP

JUMP Jump to label from Event handler Statement

Purpose This is a special purpose statement to be used only in the Event Handler code. When the EVENT is
triggered and this statement is processed, execution of the main program is transferred to the <label>
argument called out in the “JUMP” statement. The Jump statement is useful when there is a need
for the program’s flow to change based on some event(s). Transfer of program execution is to the
instruction following the label. When a Jump statement is executed within an event, processing of
subsequent events is suspended until the next event time cycle.

Syntax JUMP <label>
<label> is any valid program label

Remarks Can be used in EVENT handler only.

See Also EVENT

Example:

EVENT ExternalFault INPUT IN_A4 RISE ;activate Event when IN_A4 goes high
 JUMP ExecuteStop ;redirect program to <ExecuteStop>
ENDEVENT
StartMotion:
 EVENT ExternalFault ON
 ENABLE
 MOVED 20
 MOVED -100
 {statements}
END
ExecuteStop:
 STOP MOTION ;Motion stopped here
 DISABLE ;drive disabled
 Wait Until !IN_A4 ;Wait Until Input A4 goes low
 GOTO StartMotion

PM94H201B_13xxxxxx_EN L 93

Reference

Table 42: LOADVARS

LOADVARS EPM access statements LOADVARS Statement

Purpose LOADVARS is the command to retrieve the values of the user variables (V0-V31) from the drive’s
EPM. Using this statement any combinations of variables V0-V31 can be retrieved from the EPM with
a single statement. Loads the values of the user’s variables (V0-V31) from EPM to the drive operating
memory.

Syntax LOADVARS [Va, Vx-Vy]
a,x,y any number from 0 - 31

Remarks Values that are stored in EPM memory for the User Variables V0-V31 (using host interface or
StoreVars command) are automatically transferred into operational memory at power up (a LoadVar
statement is not required). Should a User Variable be altered by the user program it is altered only in
the operational memory of the drive and can be restored back to its EPM value using the LoadVars
statement.

See Also STOREVARS

Example:

…{statements}…
V1=12
STOREVARS [V1] ;Store V1 variable to EPM memory
…{statements}…
LOADVARS [V1] ;Retrieve V1 variable
…{statements}…
END ;End main program

;Example to specify multiple variables list in a single LoadVar Statement

LOADVARS [V0,V1,V5-V20] ;load values of V0, V1, V5-V20

Table 43: MDV

MDV Segment Move Statement

Purpose MDV (Move-Distance-Velocity) defines individual motion segment by specifying distance and final
velocity (for each segment) in User Units. Acceleration (or deceleration) is calculated automatically
based on these two parameters. This technique allows complicated moves to be created that consist
of many segments. Each MDV sequence (series of MDV segments) must start and end with a
velocity of 0, hence an MDV sequence must have at least two segments. The MDV statement doesn’t
suspend execution of the main program. Each segment is loaded into the Motion Queue and the
sequence executed sequentially. If the last segment in the Motion Queue doesn’t have a final velocity
of 0, the drive will generate a “Motion Stack Underflow” fault #24. If the “S” modifier is used in the
statement, then the velocity acceleration/deceleration will be S-curved as opposed to linear.

Syntax MDV <[-]segment distance>,<segment final velocity> [,S]

[,S] optional modifier specifies S-curve acceleration / deceleration.

See Also MOVE, MOVEP, MOVEPR, MOVED, MOVEDR, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MDV 5, 10 ;Move 5 user units and accelerate to a velocity of 10
MDV 10,10 ;Move 10 user units and maintain a velocity of 10
MDV 10,5 ;Move 10 user units and decelerate to velocity of 5
MDV 5,0 ;Move 5 user units and decelerate to velocity 0.
 ;The last MDV must have a final velocity of 0.
{Statements…}

94 L PM94H201B_13xxxxxx_EN

Reference

Table 44: MEMGET

MEMGET Memory access statements MEMGET Statement

Purpose MEMGET provides command for simplified retrieval of data from the drives RAM memory file through
transfer of data to the variables V0-V31. Using this statement any combinations of variables V0-V31
can be retrieved from the RAM file with a single statement.

Syntax MEMGET <offset> [<varlist>]
<offset> specifies offset in RAM file where data will be retrieved.
 Range: -32767 to 32767
<varlist> any combinations of variables V0-V31

See Also MEMSET

Example:

MEMGET 5 [V0] ;single variable will be retrieved from location 5
MEMGET V1 [V0,V3,V2] ;variables V0,V3,V2 will be retrieved from
 ;memory location starting at value held in V1
MEMGET 10 [V3-V7] ;variables V3 to V7 inclusively will be retrieved
MEMGET V1 [V0,V2,V4-V8] ;variables V0,V2, V4 through V8 will be retrieved

Table 45: MEMSET

MEMSET Memory access statements MEMSET Statement

Purpose MEMSET provides command for simplified storage of data to the drives RAM memory file through
transfer of data from variables V0-V31. Using this statement any combinations of variables V0-V31
can be stored in the RAM file with a single statement.

Syntax MEMSET <offset> [<varlist>]
 <offset> specifies offset in RAM file where data will be stored.
 Range: -32767 to 32767
<varlist> any combinations of variables V0-V31

See Also MEMGET

Example:

MEMSET 5 [V0] ;single variable will be stored in location 5
MEMSET V1 [V0,V3,V2] ;variables V0,V3,V2 will be stored in memory
 ;location starting at value held in V1
MEMSET 10 [V3-V7] ;variables V3 to V7 inclusively will be stored
MEMSET V1 [V0,V2,V4-V8] ;variables V0,V2, V4 through V8 will be stored.

Table 46: MOTION RESUME

MOTION RESUME Resume Motion Statement

Purpose Statement resumes motion previously suspended by MOTION SUSPEND. If motion was not
previously suspended, this has no effect on operation.

Syntax MOTION RESUME

Remarks Any motion command executed in the user program while motion is suspended will be placed in the
motion queue but not executed. Motion commands accumulated on the motion stack will be performed
in the order they were loaded to the motion queue on execution of the Motion Resume statement.

See Also MOVE, MOVEP, MOVEDR, MOVED, MOVEPR ,MDV, MOTION SUSPEND

Example:

…{statements}

MOTION RESUME ;Motion is resumed from first command in motion Queue (if any)

…{statements}

PM94H201B_13xxxxxx_EN L 95

Reference

Table 47: MOTION SUSPEND

MOTION SUSPEND Suspend Statement

Purpose This statement is used to temporarily suspend execution of motion. The Motion Suspend command
does not flush the Motion Queue of any accumulated motion commands but will suspended further
motion until the Motion Resume command is processed. If this statement is executed while a motion
profile is already being processed, then the motion will not be suspended until after the completion
of of the current motion profile. If executing a series of segment (MDV) moves, motion will not be
suspended until after all the MDV segments have been processed. Any subsequent motion statement
will be loaded into the queue and will remain there until the “Motion Resume” statement is executed.
Any motion statements executed without the “C” modifier (except MDV statements) while motion is
suspended will lock-up the User Program.

Syntax MOTION SUSPEND

Remarks Performing any MOVEx commands without “C” modifier will lock-up the user program. The
programmer will be able to unlock program execution only by performing a Reset or by issuing a
Motion Resume command from a host interface.

See Also MOVE, MOVEP, MOVEDR, MOVED, MOVEPR ,MDV, MOTION RESUME

Example:

…{statements}

MOTION SUSPEND ;Motion will be suspended after current motion
 ;command is finished.

…{statements}

Table 48: MOVE

MOVE Move Statement

Purpose There are two variations to the Move command, Move Until and Move While. MOVE UNTIL performs
motion until a logical condition becomes TRUE. MOVE WHILE performs motion while a logical condition
stays TRUE. The statement suspends the programs execution until the motion is completed, unless the
statement is used with C modifier.

Syntax MOVE [BACK] UNTIL <condition> [,C]
MOVE [BACK] WHILE <condition> [,C]

BACK Changes direction of the move to negative.

C (optional) C[ontinue] - modifier allows the program to continue while motion is being performed. If a
second motion profile is executed while the first profile is still in motion, the second profile
will be loaded into the Motion Stack. The Motion Stack is 32 entries deep. If the queue
becomes full, or overflows, then the drive will generate a fault.

<condition> The condition to be tested.

See Also MOVEP, MOVED, MOVEPR, MOVEDR, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}

MOVE UNTIL V0<3 ;Move until V0 is less than 3
MOVE BACK UNTIL V0>4 ;Move back until V0 is greater than 4
MOVE WHILE V0<3 ;Move While V0 is less than 3
MOVE BACK WHILE V0>4 ;Move While V0 is greater than 4
MOVE WHILE V0<3,C ;Move While V0 < 3, continue program execution

96 L PM94H201B_13xxxxxx_EN

Reference

Table 49: MOVED

MOVED Move Distance Statement

Purpose MOVED performs incremental motion (distance) specified in User Units. This statement will suspend the
program’s execution until the motion is completed, unless the statement is used with the “C” modifier. If
the “S” modifier is used then S-curve acceleration/deceleration is performed during the move.

Syntax MOVED <distance>[,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue executing
while the motion profile is being executed. If the drive is in the process of executing a
previous motion profile the new motion profile will be loaded into the Motion Stack. The
Motion Stack is 32 entries deep. If the queue becomes full, or overflows, then the drive will
generate a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

Remarks Maximum variable size is 2^32 * Units/QPPR. This is the max value for Var_APOS_Pulses. Maximum
distance is then this maximum value that can be held in a variable divided by the feedback pulses. So
assume a 4096 ppr encoder. Post quad = 16384. Max distance before register overflow = 131072. For
resolver = 32768.
For MoveD, absolute position is not a concern. If overloaded, the register will simply roll over.

See Also MOVE, MOVEP, MOVEPR, MOVEDR, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}
MOVED 3 ;moves 3 user units forward
MOVED BACK 3 ;moves 3 user units backward
MOVED -3 ;moves 3 user units backward
MOVED V5 ;moves distance / direction determined by value in v5
{Statements…}

Table 50: MOVEDR

MOVEDR Registered Distance Move Statement

Purpose MOVEDR performs incremental motion, specified in User Units, in search of the registration input.
If during the move the registration input becomes activated (goes high) then the current position is
recorded, and the displacement value (the second argument in the MOVEDR statement) is added to
the captured registration position to form a new target position. The end of the move is then altered
to this new target position. This statement suspends execution of the program until the move is
completed, unless the statement is used with the “C” modifier. If the “S” modifier is used then S-curve
acceleration/deceleration is performed during the move.

Syntax MOVEDR <distance>,<displacement> [,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue
executing the User Program while a motion profile is being processed. If a new motion
profile is requested while the drive is processing a move the new motion profile will
be loaded into the Motion Stack. The Motion Stack is 32 entries deep. If the queue
becomes full, or overflows, then the drive will generate a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

See Also MOVE, MOVEP, MOVEPR, MOVED, MDV, MOTION SUSPEND, MOTION RESUME

Example: This example moves the motor 3 user units while checking for the registration input.
If registration isn’t detected then the move is completed.
If registration is detected, the registration position is recorded and the displacement value of 2 is
added to the recorded registration position to calculate the new end position.

{Statements…}

MOVEDR 3, 2

{Statements…}

PM94H201B_13xxxxxx_EN L 97

Reference

Table 51: MOVEP

MOVEP Move to Position Statement

Purpose MOVEP performs motion to a specified absolute position in User Units. This statement will suspend the
program’s execution until the motion is completed unless the statement is used with the “C” modifier. If
the “S” modifier is used then an S-curve acceleration/deceleration is performed during the move.

Syntax MOVEP <absolute position>[,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue executing
while the motion profile is being executed. If the drive is in the process of executing a
previous motion profile the new motion profile will be loaded into the Motion Stack. The
Motion Stack is 32 entries deep. If the queue becomes full, or overflows, then the drive
will generate a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

Remarks Maximum variable size is 2^32 * Units/QPPR. This is the max value for Var_APOS_Pulses. Maximum
distance is then this maximum value that can be held in a variable divided by the feedback pulses. So
assume a 4096 ppr encoder. Post quad = 16384. Max distance before register overflow = 131072. For
resolver = 32768.
This matters because if the register overflows, then the absolute position is flipped up-side down.

See Also MOVE, MOVED, MOVEPR, MOVEDR, MDV, MOTION SUSPEND, MOTION RESUME

Example:

{Statements…}
MOVEP 3 ;moves to 3 user units absolute position
MOVEP -3 ;moves to -3 user units absolute position
MOVEP V5 ;moves to absolute position determined by value in v5
{Statements…}

Table 52: MOVEPR

MOVEPR Registered Distance Move Statement

Purpose MOVEPR performs absolute position moves, specified in User Units, in search of the registration
input. If during a move the registration input becomes activated (goes high), then the current position
is recorded, and the displacement value (the second argument in the MOVEPR statement) is added
to the captured registration position to form a new target position. The end of the move is then altered
to this new target position. This statement suspends the execution of the program until the move is
completed, unless the statement is used with the C modifier. If the “S” modifier is used then S-curve
acceleration/deceleration is performed during the move.

Syntax MOVEPR <distance>,<displacement> [,S] [,C]

C[ontinue] The “C” argument is an optional modifier which allows the program to continue
executing the User Program while a motion profile is being processed. If a new motion
profile is requested while the drive is processing a move the new motion profile will
be loaded into the Motion Stack. The Motion Stack is 32 entries deep. If the queue
becomes full, or overflows, then the drive will generate a fault.

S[-curve] optional modifier specifies S-curve acceleration/deceleration.

See Also MOVE, MOVEP, MOVEDR, MOVED, MDV, MOTION SUSPEND, MOTION RESUME

Example: This example moves the motor to the absolute position of 3 user units while checking for the
registration input.
If registration isn’t detected, then the move is completed.
If registration is detected, the registration position is recorded and the displacement value of 2 is
added to the recorded registration position to calculate the new end position.

{Statements…}

MOVEPR 3, 2

{Statements…}

98 L PM94H201B_13xxxxxx_EN

Reference

Table 53: ON FAULT/ENDFAULT

ON FAULT/
ENDFAULT

Defines Fault Handler Statement

Purpose This statement defines the Fault Handler section of the User Program. The Fault Handler is a section
of code which is executed when a fault occurs in the drive. The Fault Handler program must begin
with the “ON FAULT” statement and end with the “ENDFAULT” statement. If a Fault Handler routine
is not defined, then the User Program will be terminated and the drive disabled upon the drive
detecting a fault. Subsequently, if a Fault Handler is defined and a fault is detected, the drive will be
disabled, all scanned events will be disabled, and the Fault Handler routine will be executed. The
RESUME statement can be used to redirect the program execution from the Fault Handler back to the
main program. If this statement is not utilized then the program will terminate once the ENDFAULT
statement is executed.

The following statements can’t be used in fault handler:
DO / UNTIL, ENABLE, EVENT (ON, OFF), EVENTS (ON, OFF), GOTO, GOSUB, HALT, HOME,
JUMP, MDV, MOTION RESUME, MOTION SUSPEND, MOVE, MOVED, MOVEP, MOVEDR,
MOVEPR, STOP MOTION (QUICK), VELOCITY ON/OFF, WAIT and WHILE / ENDWHILE

Syntax ON FAULT
{…statements}
ENDFAULT

See Also RESUME

Example:

…{statements} ;User program
FaultRecovery: ;Recovery procedure

…{statements}

END

ON FAULT ;Once fault occurs program is directed here

…{statements} ;code to deal with fault

RESUME FaultRecovery ;Execution of RESUME ends Fault Handler and directs
 ;execution back to User Program.
ENDFAULT ;If RESUME is omitted the program will terminate here
 Fault routine must end with an ENDFAULT statement

Table 54: REGISTRATION ON

REGISTRATION ON Registration On Statement

Purpose This statement arms the registration input (input IN_C3). When the registration is armed and the
registration input activated the Flag “F_REGISTRATION” is set and the current position is captured
and stored to the “RPOS” System Variable. The “REGISTRATION ON” statement, when executed will
reset the “F_REGISTRATION” flag ready for detection of the next registration input.

Syntax REGISTRATION ON Flag “F_REGISTRATION” is reset and
registration input is armed

See Also MOVEDR, MOVEPR

Example:
; Moves until registration input is activated and then returns to the sensor position.

…{statements}

REGISTRATION ON ;Arm registration input
MOVE UNTIL F_REGISTRATION ;Move until registration flag is activated (triggered by
 ;registration input to C3), (sensor hit)
 ;Drive will decelerate to stop beyond Sensor position
MOVEP RPOS ;Absolute move back to the position of the sensor

…{statements}

PM94H201B_13xxxxxx_EN L 99

Reference

Table 55: RESUME

RESUME Resume Statement

Purpose This statement redirects the code execution form the Fault Handler routine back to in the User
Program. The specific line in the User Program to be directed to is called out in the argument <label>
of the “RESUME” statement. This statement is only allowed in the fault handler routine.

Syntax RESUME <label>

<label> Label in User Program to recommence program execution

See Also ON FAULT

Example:

;Main Program Section

…{statements}

FaultRecovery:

…{statements}

END

;Fault Handler Section
ON FAULT ;Once fault occurs program is directed here
…{statements} ;code to deal with fault
RESUME FaultRecovery ;Execution of RESUME ends Fault Handler and directs
 ;execution back the “FaultRecovery” label in the User
 ;Program.
ENDFAULT ;If RESUME is omitted the program will terminate here.
 ;Fault routine must end with a ENDFAULT statement

Table 56: RETURN

RETURN Return from subroutine Statement

Purpose This statement will return the code execution back from a subroutine to the point in the main program
from where the subroutine was called. If this statement is executed without a previous call to
subroutine, (GOSUB), fault #21 “Subroutine stack underflow” will result.

Syntax RETURN

See Also GOSUB

Example:

;Main Program Section

…{statements}…

GOSUB MySub ;Program jumps to Subroutine “MySub”
MOVED 10 ;Move to be performed once the Subroutine has executed
…{statements}

END ;main program end

;Subroutine Section
MySub: ;Subroutine called out from User Program

…{statements} ;Code to be executed in subroutine

RETURN ;Returns execution to the line of code under the “GOSUB”
 ;command, (MOVED 10 statement).

100 L PM94H201B_13xxxxxx_EN

Reference

Table 57: SEND / SEND TO

SEND/SEND TO Send network variable(s) Statement

Purpose This statement is used to share the value of Network Variables between drives on an Ethernet
network. Network Variables are variables NV0 through NV31. The variables to be sent out or
synchronized between drives, are called out in the “SEND” statement. For example, “SEND [NV5]” will
take the current value of variable NV5 in the drive executing the command and load it into the NV5
variable of every other drive on the network. The SENDTO statement only updates network variables
of the drives set with the same group ID given in the command.

Syntax SEND [NVa,NVb, NVx-NVy],

SENDTO GroupID [NVa,NVb, NVx-NVy]

a,b,x,y Any number from 0 to 31

GroupID GroupID of the drives whose variables will be affected (synchronized)

See Also

Example:

…{statements}…

NV1=12 ;Set NV1 equal to 12
SEND [NV1] ;Set the NV1 variable to 12 in every drive in the Network.
SEND [NV5-NV10] ;Sets the NV5 through NV10 variables in all drives on the Network.
NV20=25 ;Set NV20 equal to 25
SENDTO 2 [NV20] ;Set the NV20 variable to 25 only in drives with GroupID=2

…{statements}

END ;End main program

Table 58: STOP MOTION

STOP MOTION
[Quick]

Stop Motion Statement

Purpose This statement is used to stop all motion. When the “STOP MOTION” statement is executed all
motion profiles stored in the Motion Queue are cleared, and motion will immediately be stopped
via the deceleration parameter set in the “DECEL” variable. If the “QUICK” modifier is used, then
the deceleration value will come from the “QDECEL” variable. The main use for this command is
to control an emergency stop or when the End Of Travel sensor is detected. Note that the current
position will not be lost after this statement is executed.

Syntax STOP MOTION

STOP MOTION QUICK

Stops using DECEL deceleration rate

Stops using QDECEL deceleration rate

Remarks Drive output is not disabled following a STOP MOTION [QUICK] command. Also Motion is not
suspended after a STOP MOTION [QUICK] so any motion command processed subsequently will be
loaded to the Motion Queue and will be executed.

See Also MOTION SUSPEND

Example:

…{statements}…

DECEL = 100
QDECEL = 10000

…{statements}

STOP MOTION QUICK

PM94H201B_13xxxxxx_EN L 101

Reference

Table 59: STOREVARS

STOREVARS EPM access statements STOREVARS Statement

Purpose STOREVARS is the command to store the values of the user variables (V0-V31) to the drive’s
EPM. Using this statement any combinations of variables V0-V31 can be stored to the EPM with a
single statement. Stores the values of the user’s variables (V0-V31) to the EPM. The purpose of the
STOREVARS command is to store user variables from the drives operational memory to the EPM
memory so they are retained on power down, or so they can be restored back to the operational
memory should their values be altered during the execution of the user program (or by host interface).

Syntax STOREVARS [Va, Vx-Vy]
a,x,y any number from 0 - 31

Remarks Values that are stored in EPM memory for the User Variables V0-V31 (using StoreVars command) are
automatically transferred into operational memory at power up (a LoadVar statement is not required).
Should a User Variable be altered by the user program, it is altered only in the operational memory of
the drive and can be restored back to its EPM value using the LoadVars statement.
Care must be taken with the STOREVAR statement not to exceed EPM write capacity of 1 million
cycles.

See Also LOADVARS

Example:

…{statements}…
V1=12 ;Set V1=12 in drives operational memory (volatile)
…{statements}…
STOREVARS [V1] ;store V1 variable to EPM Memory (non-volatile)
…{statements}…
LOADVARS [V1] ;Restore value of V1 from EPM memory
END ;End main program
;--
;Example to specify multiple variables list in a single STOREVARS statement

STOREVARS [V0,V1,V5-V20] ;store values of V0, V1, V5-V20

Table 60: VELOCITY ON/OFF

VELOCITY
ON/OFF

Velocity Mode Statement

Purpose The VELOCITY ON statement enables the drive to simulate velocity mode operation while remaining in
internal position mode. This allows the drive to transition between internal velocity and position mode
while the drive is still enabled. The VELOCITY OFF statement disables velocity mode and returns drive to
position mode. The velocity value for this mode is set by writing to the System Variable “VEL”. All position
related variables are valid in this mode.

Syntax VELOCITY ON
VELOCITY OFF

Remarks The “VELOCITY ON” statement has to be implemented when the drive is enabled. If the “VELOCITY ON”
statement is executed while the drive is disabled, fault # 27 - ”Motion Attempted While Drive Disabled” will
occur. Execution of any motion related profiles while the drive is in Velocity mode will be loaded into the
Motion Queue. When the “VELOCITY OFF” statement is executed the drive will default back to Position
mode and any motion commands contained in the Motion Queue will execute in sequence. Please note
that the “VEL” variable can be set on the fly, allowing dynamic control of the velocity.

See Also

Example:

VEL=0 ;Set velocity to 0
VELOCITY ON ;Turn on Velocity Mode
VEL = 10 ;Set velocity to 10
…{statements}
VELOCITY OFF ;Turn off Velocity Mode

102 L PM94H201B_13xxxxxx_EN

Reference

Table 61: WAIT

WAIT Wait Statement

Purpose This statement suspends the execution of the program until logical condition or conditions are met.
Conditions can include logical expressions, time expiration, or completion of motion commands.

Syntax WAIT UNTIL <expression> wait until expression becomes TRUE

WAIT WHILE <expression> wait while expression is TRUE

WAIT TIME <time delay> wait until <time delay> in mS is expired

WAIT MOTION COMPLETE wait until last motion in Motion Queue completes

<expression> Logical expression evaluating to True or False

<time delay> time delay expressed in milliseconds

Remarks Events that have been declared and enabled will continue to process while the main program
executes a WAIT statement. Events containing a JUMP statement could interrupt a WAIT statement
and cause an immediate jump to another point in the main program.

See Also

Example:

WAIT UNTIL (APOS>2 && APOS<3) ;Wait until Apos is > 2 and APOS < 3
WAIT WHILE (APOS <2 && APOS>1) ;Wait while Apos is <2 and >1
WAIT TIME 1000 ;Wait 1 Sec (1 Sec=1000mS)
WAIT MOTION COMPLETE ;Wait until motion is done

Table 62: WHILE / ENDWHILE

WHILE/
ENDWHILE

While Statement

Purpose The WHILE <expression> executes statement(s) between keywords WHILE and ENDWHILE
repeatedly while the expression contained in the WHILE statement evaluates to TRUE.

Syntax WHILE <expression>

 {statement(s)}…

ENDWHILE

Remarks WHILE block of statements has to end with ENDWHILE keyword.

See Also DO/UNTIL

Example:
WHILE APOS<3 ;Execute the statements while Apos is <3
{statement(s)}..
ENDWHILE

PM94H201B_13xxxxxx_EN L 103

Reference

3.2 Variable List
Table 63 provides a complete list of the accessible PositionServo variables. These variables can be accessed from
the user’s program or any supported communications interface protocol. From the user program, any variable can be
accessed by either its variable name or by its index value (using the syntax: @<VARINDEX> , where <VARINDEX> is
the variable index from Table 63). From the communications interface any variable can be accessed by its index value.

The column “Type” indicates the type of variable:

mtr Motor: denotes a motor value
mtn Motion: writing to an “mtn” variable could cause the start of motion
vel Velocity: denotes a velocity or velocity scaling value

The column “Format” provides the native format of the variable:

W 32 bit integer
F float (real)

When setting a variable via an external device the value can be addressed as floating or integer. The value will
automatically adjusted to fit it’s given form.

The column “EPM” shows if a variable has a non-volatile storage space in the EPM memory:

Y Variable has non-volatile storage Space in EPM
N Variable does not exist in EPM memory

The user’s program uses a RAM (volatile) ‘copy’ of the variables stored on the EPM. At power up all RAM copies
of the variables are initialized with the EPM values. The EPM’s values are not affected by changing the variables in
the user’s program. When the user’s program reads a variable it always reads from the RAM (volatile) copy of the
variable. Communications Interface functions can change both the volatile and non-volatile copy of the variable. If the
host interface requests a change to the EPM (non-volatile) value, this change is done both in the user program’s RAM
memory as well as in the EPM. Interface functions have the choice of reading from the RAM (volatile) or from the EPM
(non-volatile) copy of the variable. LOADVARDS AND STOREVARD commands can be used to move user variables
(V0-V31) between RAM and EPM memory.

The column “Access” lists the user’s access rights to a variable:

R read only
W write only
R/W read/write

Writing to an R (read-only) variable or reading from a W (write-only) variable is not permitted and many result in
erroneous data.

The column “Units” shows units of the variable. Units unique to this manual that are used for motion are:
UU user units
EC encoder counts
S seconds
PPS pulses per sample. Sample time is 512ms - servo loop rate
PPSS pulses per sample per sample. Sample time is 512ms - servo loop rate

104 L PM94H201B_13xxxxxx_EN

Reference

Table 63: PositionServo Variable List

Index Name Type Format EPM Access Description Units

1 VAR_IDSTRING N R Drive’s identification string

2 VAR_NAME Y R/W Drive’s symbolic name

3 VAR_SERIAL_NUMBER R Drive’s serial number

4 VAR_MEM_INDEX R/W Position pointer in RAM file (0 - 32767)

5 VAR_MEM_VALUE R/W Value to be read or written to the RAM file

6 VAR_MEM_INDEX_INCREMENT R/W
Holds value the MEM_INDEX will increment
once the R/W operation is complete

7 VAR_VELOCITY_ACTUAL F N R Actual measured motor velocity UU/sec

8 VAR_RSVD_2

9
VAR_DFAULT
Short Name: DFAULTS R

Drive faults register. Holds current trip / fault
code

10 VAR_M_ID mtr Y R/W* Motor ID

11 VAR_M_MODEL mtr Y R/W* Motor model

12 VAR_M_VENDOR mtr Y R/W* Motor vendor

13 VAR_M_ESET mtr Y R/W*
Motor Feedback Resolver: ‘Positive for CW’
1 - Positive for CW
0 - negative for clockwise

14 VAR_M_HALLCODE mtr Y R/W*
Hallcode index
Range: 0 - 5

15 VAR_M_HOFFSET mtr Y R/W* Reserved

16 VAR_M_ZOFFSET mtr Y R/W*
Resolver Offset
Range: 0 - 360

17 VAR_M_ICTRL mtr Y R/W* Reserved

18 VAR_M_JM mtr Y R/W*
Motor moment of inertia, Jm
Range: 0 - 0.1

Kgm2

19 VAR_M_KE mtr Y R/W*
Motor voltage or back EMF constant, Ke
Range: 1 - 500

V/Krpm

20 VAR_M_KT mtr Y R/W*
Motor torque or force constant, Kt
Range: 0.01 - 10

Nm/A

21 VAR_M_LS mtr Y R/W*
Motor phase-to-phase inductance, Lm
Range: 0.1 - 500

mH

22 VAR_M_RS mtr Y R/W*
Motor phase-to-phase resistance, Rm
Range: 0.01 - 500

[Ohm]

23 VAR_M_MAXCURRENT mtr Y R/W*
Motor’s max current(RMS)
Range: 0.5 - 50

[A]mp

24 VAR_M_MAXVELOCITY mtr Y R/W*
Motor’s max velocity
Range: 500 - 20,000

RPM

25 VAR_M_NPOLES mtr Y R/W*
Motor’s poles number
Rnage: 2 - 200

26 VAR_M_ENCODER mtr Y R/W*
Encoder resolution
Range: 256 - 65536 * 12/Npoles

PPR

27 VAR_M_TERMVOLTAGE mtr Y R/W*
Nominal Motor’s terminal voltage
Range: 50 - 800

[V]olt

28 VAR_M_FEEDBACK mtr Y R/W*
Feedback type
1 - Encoder
2 - Resolver

* These are all R/W variables that only become active after variable 247 is set.

PM94H201B_13xxxxxx_EN L 105

Reference

Index Name Type Format EPM Access Description Units

29 VAR_ENABLE_SWITCH_TYPE W Y R/W
Enable switch function
0 - inhibit only
1 - Run

Bit

30 VAR_CURRENTLIMIT F Y R/W Current limit [A]mp

31 VAR_PEAKCURRENTLIMIT16 F Y R/W Peak current limit for 16kHz operation [A]mp

32 VAR_PEAKCURRENTLIMIT F Y R/W Peak current limit for 8kHz operation [A]mp

33 VAR_PWMFREQUENCY W Y R/W
PWM frequency selection
0 - 16kHz
1 - 8kHz

34 VAR_DRIVEMODE W Y R/W

Drive mode
0 - torque
1 - velocity
2 - position

 WARNING! You can
change operating modes
when required during program
execution but do not change
modes on the fly (with drive
enabled), as this may cause
unexpected behavior of the
motor.

35 VAR_CURRENT_SCALE F Y R/W
Analog input #1 current reference scale
Range: model dependent

A/V

36 VAR_VELOCITY_SCALE vel F Y R/W
Analog input #1 velocity reference scale
Range: -10,000 to +10,000

RPM/V

37 VAR_REFERENCE W Y R/W
Reference selection:
1 - internal source
0 - external

38 VAR_STEPINPUTTYPE W Y R/W
External Position Mode - Input configuration
0 - Quadrature inputs (A/B)
1 - Step & Direction

39 VAR_MOTORTHERMALPROTECT W Y R/W
Motor thermal protection function:
0 - disabled
1 - enabled

40 VAR_MOTORPTCRESISTANCE F Y R/W
Motor thermal protection PTC cut-off
resistance in Ohms

[Ohm]

41 VAR_SECONDENCODER W Y R/W
Second encoder:
0 - Disabled
1 - Enabled

42 VAR_REGENDUTY W Y R/W
Regen circuit PWM duty cycle in %
Range: 1-100%

%

43 VAR_ENCODERREPEATSRC W Y R/W

Selects source for repeat buffers:
0 - Model 940 - Encoder Port P4
0 - Model 941 - 2nd Encoder Option Bay
1 - Model 940 - 2nd Encoder Option Bay
1 - Model 941 - Resolver Port P4

44
VAR_VP_GAIN
Short Name: VGAIN_P vel W Y R/W

Velocity loop Proportional gain
Range: 0 - 32767

45
VAR_VI_GAIN
Short Name: VGAIN_I vel W Y R/W

Velocity loop Integral gain
Range: 0 - 32767

46
VAR_PP_GAIN
Short Name: PGAIN_P W Y R/W

Position loop Proportional gain
Range: 0 - 32767

47
VAR_PI_GAIN
Short Name: PGAIN_I W Y R/W

Position loop Integral gain
Range: 0 - 16383

48
VAR_PD_GAIN
Short Name: PGAIN_D W Y R/W

Position loop Differential gain
Range: 0 - 32767

49
VAR_PI_LIMIT
Short Name: PGAIN_ILIM W Y R/W

Position loop integral gain limit
Range: 0 - 20000

106 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

50 VAR_SEI_GAIN Not used

51 VAR_VREG_WINDOW vel W Y R/W
Gains scaling coefficient
Range: -16 to +4

52 VAR_ENABLE W N W
Software Enable/Disable
0 - disable
1 - enable

53 VAR_RESET W N W

Drive reset. Disables drive, halts program
execution, reset active fault
0 - no action
1 - reset drive

54
VAR_STATUS
Short Name: DSTATUS

W N R Drive’s status register

55 VAR_BCF_SIZE W Y R User’s program Byte-code size Bytes

56 VAR_AUTOBOOT W Y R/W

User’s program autostart flag.
0 - program has to be started manually
(MotionView or interface)
1 - program started automatically after drive
power up

57 VAR_GROUPID W Y R/W
Network group ID
Range: 1 - 32767

58 VAR_VLIMIT_ZEROSPEED F Y R/W
Zero Speed window
Range: 0 - 100

Rpm

59 VAR_VLIMIT_SPEEDWND F Y R/W
At Speed window
Range: 10 - 10000

Rpm

60 VAR_VLIMIT_ATSPEED F Y R/W
Target Velocity for At Speed window
Range: -10000 - +10000

Rpm

61 VAR_PLIMIT_POSERROR W Y R/W
Position error
Range: 1 - 32767

EC

62 VAR_PLIMIT_ERRORTIME F Y R/W
Position error time (time which position error
has to remain to set-off position error fault)
Range: 0.25 - 8000

mS

63 VAR_PLIMIT_SEPOSERROR W Y R/W
Second encoder Position error
Range: 1 - 32767

EC

64 VAR_PLIMIT_SEERRORTIME F Y R/W

Second encoder Position error time (time
which position error has to remain to set-off
position error fault)
Range: 0.25 - 8000

mS

65
VAR_INPUTS
Short Name: INPUTS

W N R
Digital inputs status variable. A1 occupies
Bit 0, A2- Bit 1 … C4 - bit 11.

66
VAR_OUTPUT
Short Name: OUTPUTS

W N R/W

Digital outputs status variable. Writing to this
variable sets/resets digital outputs, except
outputs which have been assigned special
function.
Output 1 Bit0
Output 2 Bit 1
Output 3 Bit 2
Output 4 Bit 3

67 VAR_IP_ADDRESS W Y R/W
Ethernet IP address. IP address changes at
next boot up. 32 bit value

68 VAR_IP_MASK W Y R/W
Ethernet IP NetMask. Mask changes at next
boot up. 32 bit value

69 VAR_IP_GATEWAY W Y R/W
Ethernet Gateway IP address. Address
changes at next boot up. 32 bit value

PM94H201B_13xxxxxx_EN L 107

Reference

Index Name Type Format EPM Access Description Units

70 VAR_IP_DHCP W Y R/W
Use DHCP
0-manual
1- use DHCP service

71
VAR_AIN1
Short Name: AIN1

F N R Analog Input AIN1 current value [V]olt

72
VAR_AIN2
Short Name: AIN2

F N R Analog Input AIN2 current value [V]olt

73 VAR_BUSVOLTAGE F N R Bus voltage current value [V]olt

74 VAR_HTEMP F N R

Heatsink temperature
Returns: 0 - for temperatures < 40C and
actual heat sink temperature for temperatures
>40 C

[c]

75 VAR_ENABLE_ACCELDECEL vel Y R/W

Enable Accel/Decel function for velocity
mode
0 - disable
1 - enable

76
VAR_ACCEL_LIMIT
System variable for ramp parameters in
MotionView

vel F Y R/W
Accel value for velocity mode
Range: 0.1 - 5000000

Rpm*Sec

77
VAR_DECEL_LIMIT
System variable for ramp parameters in
MotionView

vel F Y R/W
Decel value for velocity mode
Range: 0.1 - 5000000

Rpm*Sec

78 VAR_FAULT_RESET W Y R/W
Fault Reset configuration:
1 - on deactivation of Enable/Inhibit input A3
0 - on activation of Enable/Inhibit input (A3)

79 VAR_M2SRATIO_MASTER W Y R/W

Master to system ratio.
Master counts range: -32767 - +32767
Value will be applied upon write to PID #80.
Write to this PID followed by writing to
PID#80 to apply new ratio pair

80 VAR_M2SRATIO_SYSTEM W Y R/W

Master to system ratio.
System counts range: 1 - 32767
Writing to this PID also applies value
currently held in PID #79. If you need to
change both values Set #79 first then write to
this PID desired value to apply new ratio.

81 VAR_S2PRATIO_SECOND W Y R/W

Secondary encoder to prime encoder ratio.
Second counts range: -32767 - +32767
Value will be applied upon write to PID #82.
Write to this PID followed by writing to
PID#82 to apply new ratio pair

82 VAR_S2PRATIO_PRIME W Y R/W

Secondary encoder to prime encoder ratio.
Prime counts range: 1 - 32767
Writing to this PID also applies value
currently held in PID #81. If you need to
change both values Set #81 first then write to
this PID desired value to apply new ratio.

83
VAR_EXSTATUS
Short Name: DEXSTATUS

W N R
Extended status. Lower word copy of DSP
status flags.

84 VAR_HLS_MODE W Y R/W

Hardware limit switches.
0 - not used
1 - stop and fault
2 - fault

 NOTE: When the Hard Limit Switches
are activated, the drive will remember this
state until the drive is disabled or a fault
occurs.

108 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

85 VAR_AOUT_FUNCTION W Y R/W

Analog output function range: 0 - 8
0 - Not assigned
1 - Phase Current (RMS)
2 - Phase Current (Peak Value)
3 - Motor Velocity
4 - Phase Current R
5 - Phase Current S
6 - Phase Current T
7 - Iq current
8 - Id current

86 VAR_AOUT_VELSCALE F Y R/W
Analog output scale for velocity quantities.
Range: 0 - 10

mV/Rpm

87 VAR_AOUT_CURSCALE F Y R/W
Analog output scale for current related
quantities. Range: 0 - 10

V/A

88
VAR_AOUT
Short Name: AOUT

F N W
Analog output value.(Used if VAR #85 is set
to 0 - no function) Range: 0 - 10

V

89 VAR_AIN1_DEADBAND F Y R/W
Analog input #1 dead-band. Applied when
used as current or velocity reference.
Range: 0 - 100

mV

90 VAR_AIN1_OFFSET Y R/W
Analog input #1 offset. Applied when used as
current/velocity reference
Range: -10,000 to +10,000

mV

91 VAR_SUSPEND_MOTION W N R/W

Suspend motion. Suspends motion produced
by trajectory generator. Current move will be
completed before motion is suspended.
0 - motion suspended
1 - motion resumed

92 VAR_MOVEP
mtn

W N W

Target position for absolute move. Writing
value executes Move to position as per
MOVEP statement using current values of
acceleration, deceleration and max velocity.

UU

93 VAR_MOVED
mtn

W N W

Incremental position. Writing value executes
Incremental move as per MOVED statement
using current values of acceleration,
deceleration and max velocity.

UU

94 VAR_MDV_DISTANCE F N W Distance for MDV move UU

95 VAR_MDV_VELOCITY
mtn

F N W
Velocity for MDV move. Writing to this
variable executes MDV move with Distance
value last written to variable #94

UU

96 VAR_MOVE_PWI1
mtn

W N W

Writing value executes Move in positive
direction while input true (active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

97 VAR_MOVE_PWI0
mtn

W N W

Writing value executes Move in positive
direction while input false (not active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

PM94H201B_13xxxxxx_EN L 109

Reference

Index Name Type Format EPM Access Description Units

98 VAR_MOVE_NWI1
mtn

F N W

Writing value executes Move negative
direction while input true (active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

99 VAR_MOVE_NWI0
mtn

F N W

Writing value executes Move negative
direction while input false (not active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

100
VAR_V0
Short Name: V0 F Y R/W

User variable
General purpose user defined variable

101
VAR_V1
Short Name: V1 F Y R/W

User variable
General purpose user defined variable

102
VAR_V2
Short Name: V2 F Y R/W

User variable
General purpose user defined variable

103
VAR_V3
Short Name: V3 F Y R/W

User variable
General purpose user defined variable

104
VAR_V4
Short Name: V4 F Y R/W

User variable
General purpose user defined variable

105
VAR_V5
Short Name: V5 F Y R/W

User variable
General purpose user defined variable

106
VAR_V6
Short Name: V6 F Y R/W

User variable
General purpose user defined variable

107
VAR_V7
Short Name: V7 F Y R/W

User variable
General purpose user defined variable

108
VAR_V8
Short Name: V8 F Y R/W

User variable
General purpose user defined variable

109
VAR_V9
Short Name: V9 F Y R/W

User variable
General purpose user defined variable

110
VAR_V10
Short Name: V10 F Y R/W

User variable
General purpose user defined variable

111
VAR_V11
Short Name: V11 F Y R/W

User variable
General purpose user defined variable

112
VAR_V12
Short Name: V12 F Y R/W

User variable
General purpose user defined variable

113
VAR_V13
Short Name: V13 F Y R/W

User variable
General purpose user defined variable

114
VAR_V14
Short Name: V14 F Y R/W

User variable
General purpose user defined variable

115
VAR_V15
Short Name: V15 F Y R/W

User variable
General purpose user defined variable

116
VAR_V16
Short Name: V16 F Y R/W

User variable
General purpose user defined variable

117
VAR_V17
Short Name: V17 F Y R/W

User variable
General purpose user defined variable

118
VAR_V18
Short Name: V18 F Y R/W

User variable
General purpose user defined variable

119
VAR_V19
Short Name: V19 F Y R/W

User variable
General purpose user defined variable

120
VAR_V20
Short Name: V20 F Y R/W

User variable
General purpose user defined variable

110 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

121
VAR_V21
Short Name: V21 F Y R/W

User variable
General purpose user defined variable

122
VAR_V22
Short Name: V22 F Y R/W

User variable
General purpose user defined variable

123
VAR_V23
Short Name: V23 F Y R/W

User variable
General purpose user defined variable

124
VAR_V24
Short Name: V24 F Y R/W

User variable
General purpose user defined variable

125
VAR_V25
Short Name: V25 F Y R/W

User variable
General purpose user defined variable

126
VAR_V26
Short Name: V26 F Y R/W

User variable
General purpose user defined variable

127
VAR_V27
Short Name: V27 F Y R/W

User variable
General purpose user defined variable

128
VAR_V28
Short Name: V28 F Y R/W

User variable
General purpose user defined variable

129
VAR_V29
Short Name: V29 F Y R/W

User variable
General purpose user defined variable

130
VAR_V30
Short Name: V30 F Y R/W

User variable
General purpose user defined variable

131
VAR_V31
Short Name: V31 F Y R/W

User variable
General purpose user defined variable

132 VAR_MOVEDR_DISTANCE F N W
Registered move distance. Incremental
motion as per MOVEDR statement

UU

133 VAR_MOVEDR_DISPLACEMENT
mtn

F N W
Registered move displacement
Writing to this variable executes the move
MOVEDR using value set by #132

UU

134 VAR_MOVEPR_DISTANCE F N W
Registered move distance. Absolute motion
as per MOVEPR statement

UU

135 VAR_MOVEPR_DISPLACEMENT
mtn

F N W
Registered move displacement
Writing to this variable makes the move
MOVEPR using value set by #134

UU

136 VAR_STOP_MOTION W N W
Stops motion:
1 - stops motion
0 - no action

137 VAR_START_PROGRAM W N W
Starts user program
1 - starts program
0 - no action

138 VAR_VEL_MODE_ON W N W

Turns on Profile Velocity for Internal Position
Mode. (Acts as statement VELOCITY ON)
0 - normal operation
1 - velocity mode on

139
VAR_IREF
Short Name: IREF

F N W
Internal Reference: Torque or Velocity mode
Set value in Amps for Torque mode
Set Value in RPM for Velocity Mode

RPS
Amps

140
VAR_NV0
Short Name: NV0 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

141
VAR_NV1
Short Name: NV1 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

142
VAR_NV2
Short Name: NV2 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

143
VAR_NV3
Short Name: NV3 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

PM94H201B_13xxxxxx_EN L 111

Reference

Index Name Type Format EPM Access Description Units

144
VAR_NV4
Short Name: NV4 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

145
VAR_NV5
Short Name: NV5 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

146
VAR_NV6
Short Name: NV6 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

147
VAR_NV7
Short Name: NV7 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

148
VAR_NV8
Short Name: NV8 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

149
VAR_NV9
Short Name: NV9 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

150
VAR_NV10
Short Name: NV10 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

151
VAR_NV11
Short Name: NV11 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

152
VAR_NV12
Short Name: NV12 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

153
VAR_NV13
Short Name: NV13 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

154
VAR_NV14
Short Name: NV14 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

155
VAR_NV15
Short Name: NV15 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

156
VAR_NV16
Short Name: NV16 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

157
VAR_NV17
Short Name: NV17 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

158
VAR_NV18
Short Name: NV18 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

159
VAR_NV19
Short Name: NV19 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

160
VAR_NV20
Short Name: NV20 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

161
VAR_NV21
Short Name: NV21 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

162
VAR_NV22
Short Name: NV22 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

163
VAR_NV23
Short Name: NV23 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

164
VAR_NV24
Short Name: NV24 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

165
VAR_NV25
Short Name: NV25 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

166
VAR_NV26
Short Name: NV26 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

167
VAR_NV27
Short Name: NV27 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

168
VAR_NV28
Short Name: NV28 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

169
VAR_NV29
Short Name: NV29 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

170
VAR_NV30
Short Name: NV30 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

112 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

171
VAR_NV31
Short Name: NV31 F N R/W User defined Network variable.

Variable can be shared across Ethernet network.

172 VAR_SERIAL_ADDRESS W Y R/W RS485 drive ID. Range: 0 - 254

173 VAR_MODBUS_BAUDRATE W Y R/W

Baud rate for ModBus operations:
2 - 9600
3 - 19200
4 - 38400
5 - 57600
6 - 115200

174 VAR_MODBUS_DELAY W Y R/W
ModBus reply delay in mS
Range: 0 - 1000

mS

175 VAR_RS485_CONFIG W Y R/W
Rs485 configuration:
0 - normal IP over PPP
1 - ModBus

176

VAR_PPP_BAUDRATE

NOTE: Does NOT apply to
MVOB.

W Y R/W

RS232/485 (normal mode) baud rate:
2 - 9600
3 - 19200
4 - 38400
5 - 57600
6 - 115200

177 VAR_MOVEPS
mtn

F N W
Same as variable #92 but using S-curve
acceleration/deceleration

178 VAR_MOVEDS
mtn

F N W
Same as variable #93 but using S-curve
acceleration/deceleration

179 VAR_MDVS_VELOCITY
mtn

N W

Velocity for MDV move using S-curve accel/
deceleration. Writing to this variable executes
MDV move with Distance value last written
to variable #94 (unless motion is suspended
by #91).

UU

180
VAR_MAXVEL
Short Name: MAXV F N R/W Max velocity for motion profile UU/S

181
VAR_ACCEL
Short Name: ACCEL F N R/W Accel value for indexing UU/S2

182
VAR_DECEL
Short Name: DECEL F N R/W Decel value for indexing UU/S2

183
VAR_QDECEL
Short Name: QDECEL F N R/W Quick decel value UU/S2

184
VAR_INPOSLIM
Short Name: INPOSLIM W N R/W Sets window for “In Position” Limits UU

185
VAR_VEL
Short Name: VEL F N R/W Velocity reference for “Profiled” velocity UU/S

186
VAR_UNITS
Short Name: UNITS F Y R/W User units

187
VAR_MECOUNTER
Short Name: MECOUNTER W N R/W A/B inputs reference counter value Count

188
VAR_PHCUR
Short Name: PHCUR F N R Phase current A

189
VAR_POS_PULSES
Short Name: TPOS_PLS W N R/W Target position in encoder pulses EC

190
VAR_APOS_PULSES
Short Name: APOS_PLS W N R/W Actual position in encoder pulses EC

191
VAR_POSERROR_PULSES
Short Name: PERROR_PLS W N R Position error in encoder pulses EC

PM94H201B_13xxxxxx_EN L 113

Reference

Index Name Type Format EPM Access Description Units

192 VAR_CURRENT_VEL_PPS F N R Set-point (target) velocity in PPS PPS

193 VAR_CURRENT_ACCEL_PPSS F N R
Set-point (target) acceleration (demanded
value) value

PPSS

194 VAR_IN0_DEBOUNCE W Y R/W
Input A1 de-bounce time in mS
Range: 0 - 1000

mS

195 VAR_IN1_DEBOUNCE W Y R/W
Input A2 de-bounce time in mS
Range: 0 - 1000

mS

196 VAR_IN2_DEBOUNCE W Y R/W
Input A3 de-bounce time in mS
Range: 0 - 1000

mS

197 VAR_IN3_DEBOUNCE W Y R/W
Input A4 de-bounce time in mS
Range: 0 - 1000

mS

198 VAR_IN4_DEBOUNCE W Y R/W
Input B1 de-bounce time in mS
Range: 0 - 1000

mS

199 VAR_IN5_DEBOUNCE W Y R/W
Input B2 de-bounce time in mS
Range: 0 - 1000

mS

200 VAR_IN6_DEBOUNCE W Y R/W
Input B3 de-bounce time in mS
Range: 0 - 1000

mS

201 VAR_IN7_DEBOUNCE W Y R/W
Input B4 de-bounce time in mS
Range: 0 - 1000

mS

202 VAR_IN8_DEBOUNCE W Y R/W
Input C1 de-bounce time in mS
Range: 0 - 1000

mS

203 VAR_IN9_DEBOUNCE W Y R/W
Input C2 de-bounce time in mS
Range: 0 - 1000

mS

204 VAR_IN10_DEBOUNCE W Y R/W
Input C3 de-bounce time in mS
Range: 0 - 1000

mS

205 VAR_IN11_DEBOUNCE W Y R/W
Input C4 de-bounce time in mS
Range: 0 - 1000

mS

206 VAR_OUT1_FUNCTION W Y R/W

Programmable Output function
0 - Not Assigned
1 - Zero Speed
2 - In Speed Window
3 - Current Limit
4 - Run time fault
5 - Ready
6 - Brake
7 - In position

207 VAR_OUT2_FUNCTION W Y R/W
Programmable Output Function. See range
(settings) for Variable #206

208 VAR_OUT3_FUNCTION W Y R/W
Programmable Output Function. See range
(settings) for Variable #206

209 VAR_OUT4_FUNCTION W Y R/W
Programmable Output Function. See range
(settings) for Variable #206

210 VAR_HALLCODE W N R

Current hall code
Bit 0 - Hall 1
Bit 1 - Hall 2
Bit 2 - Hall 3

211 VAR_ENCODER W N R Primary encoder current value EC

212
VAR_RPOS_PULSES
Short Name: RPOS_PLS

W N R Registration position in encoder pulses EC

213
VAR_RPOS
Short Name: RPOS

F N R Registration position UU

214
VAR_POS
Short Name: TPOS

F N R/W Target position UU

114 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

215
VAR_APOS
Short Name: APOS

F N R/W Actual position UU

216
VAR_POSERROR
Short Name: PERROR

W N R Position error EC

217
VAR_CURRENT_VEL
Short Name: TV

F N R Set-point (target) velocity (demanded value) UU/S

218
VAR_CURRENT_ACCEL
Short Name: TA

F N R
Set-point (target) acceleration (demanded
value)

UU/S2

219
VAR_TPOS_ADVANCE
Short Name: TPOS_ADV

W N W

Target position advance. Every write to this
variable adds value to the Target position
summing point. Value gets added once per
write. This variable useful when loop is driven
by Master encoder signals and trying to
correct phase. Value is in encoder counts

EC

220
VAR_IOINDEX
Short Name: INDEX

W N R/W
Same as INDEX variable in user’s program.
See “INDEX” in Language Reference section
of this manual.

221 VAR_PSLIMIT_PULSES W Y R/W
Positive Software limit switch value in
Encoder counts

EC

222 VAR_NSLIMIT_PULSES W Y R/W
Negative Software limit switch value in
Encoder counts

EC

223 VAR_ SLS_MODE W Y R/W

Soft limit switch action code:
0 - no action
1- Fault.
2- Stop and fault (When loop is driven by
trajectory generator only. With all the other
sources same action as 1) --

224 VAR_PSLIMIT F Y R/W Same as var 221 but value in User Units UU

225 VAR_NSLIMIT F Y R/W Same as var 222 but value in User Units UU

226 VAR_SE_APOS_PULSES W N R
2nd encoder actual position in encoder
counts

EC

227 VAR_SE_POSERROR_PULSES W N R 2nd encoder position error in encoder counts EC

228 VAR_MODBUS_PARITY W Y R/W

Parity for Modbus Control:
0 - No Parity
1 - Odd Parity
2 - Even Parity

229 VAR_MODBUS_STOPBITS W Y R/W

Number of Stopbits for Modbus Control:
0 - 1.0
1 - 1.5
2 - 2.0

230 VAR_M_NOMINALVEL F Y R/W
Induction Motor Nominal Velocity
Range: 500 - 20000 RPM

RPM

231 VAR_M_COSPHI F Y R/W
Induction Motor Cosine Phi
Range: 0 - 1.0

232 VAR_M_BASEFREQUENCY F Y R/W
Induction Motor Base Frequency:
Range: 0 - 400Hz

Hz

233 VAR_M_SERIES Induction Motor Series

PM94H201B_13xxxxxx_EN L 115

Reference

Index Name Type Format EPM Access Description Units

234 VAR_CAN_BAUD_EPM W Y R/W

CAN Bus Parameter: Baud Rate: 1 - 8
1 - 10k
2 - 20k
3 - 50k
4 - 125k
5 - 250k
6 - 500k
7 - 800k
8 - 1000k

235 VAR_CAN_ADDR_EPM W Y R/W CAN Bus Parameter: Address: 1-127

236 VAR_CAN_OPERMODE_EPM W Y R/W

CAN Bus Parameter: Boot-up Mode: 0 - 2
(Operational State Control)
0 - enters into pre-operational state
1 - enters into operational state
2 - pseudo NMT: sends NMT Start Node
command after delay (set by variable 237)

237 VAR_CAN_OPERDELAY_EPM W Y R/W
CAN Bus Parameter: pseudo NMT mode
delay time in seconds (refer to variable 236)

sec

238 VAR_CAN_ENABLE_EPM W Y R/W

CAN Bus Parameter: Mode Control: 0, 1, 2
0 - Disable CAN interface
1 - Enable CAN interface in DS301 mode

Concurrent user’s program execution
possible

2 - Enable CAN interface in DS402 mode
Concurrent user’s program execution
possible

3 - Enable DeviceNet
4 - Enable PROFIBUS DP

239 VAR_HOME_ACCEL F Y Homing Mode: ACCEL rate: 0 - 10000000.0 UU/sec2

240 VAR_HOME_OFFSET F Y R/W
Homing Mode: Home Position Offset
Range: -32767 to +32767

UU

241 VAR_HOME_OFFSET_PULSES W Y R/W
Homing Mode: Home Position Offset in
encoder counts
Range: +/- 2,147,418,112

EC

242 VAR_HOME_FAST_VEL F Y R/W
Homing Mode: Fast Velocity
Range: -10,000 to +10,000

UU/sec

243 VAR_HOME_SLOW_VEL F Y R/W
Homing Mode: Slow Velocity
Range: -10,000 to +10,000

UU/sec

244 VAR_HOME_METHOD W Y R/W
Homing Mode: Homing Method
Range: 1 - 35

245
VAR_START_HOMING
Short Name: HOME

W N W
Homing Mode: Start Homing: 0, 1
0 - No action
1 - Start Homing

246 VAR_HOME_SWITCH_INPUT W Y R/W

Homing Mode: Switch Input Assignment:
Range: 0 - 11
0 - 3: A1 - A4
4 - 7: B1 - B4
8 - 11: C1 - C4
Warning: If using A1, A2 or C3 refer to the
homing section. Do not use input A3 as
homing switch.

116 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

247 VAR_M_VALIDATE_MOTOR W N W

Initiate / accept drive motor parameters
entered in motor data PIDs.
Motor parameters are variables whose
identifier starts with VAR_M_xxxxxx
0 - No Action
1 - Validate Motor Data

248 VAR_M_I2T F Y R/W Not used

249 VAR_M_EABSOLUTE F Y R/W
Indicates type of ABS encoder for models
with ABS encoder support. Otherwise
currently not active.

250 VAR_M_ABSWAP F Y R/W
Motor Encoder Feedback: B leads A
0 - No Action
1 - B leads A for forward checked (active)

251 VAR_M_HALLS_INVERTED F Y R/W
Motor Encoder Feedback: Halls
0 - No Action
1 - Inverted Halls Box checked (active)

252 RESERVED Do NOT use

253 RESERVED Do NOT use

254 RESERVED Do NOT use

255 RESERVED Do NOT use

256 RESERVED Do NOT use

257 RESERVED Do NOT use

258 RESERVED Do NOT use

259 RESOLVER_EMU_TRK W Y R/W

Resolver Emulation Track Number
Range: 0 - 15
0 - 1024
1 - 256
2 - 360
3 - 400
4 - 500
5 - 512
6 - 720
7 - 800
8 - 1000
9 - 1024
10 - 2000
11 - 2048
12 - 2500
13 - 2880
14 - 250
15 - 4096

260 RESERVED

261 VAR_CIP_LINK_A_IN_CTRL W Y R/W
Datalink “A” for input assembly
(Refer to Ethernet/IP manual for details)

262 VAR_CIP_LINK_B_IN_CTRL W Y R/W
Datalink “B” for input assembly
(Refer to Ethernet/IP manual for details)

263 VAR_CIP_LINK_C_IN_CTRL W Y R/W
Datalink “C” for input assembly
(Refer to Ethernet/IP manual for details)

264 VAR_CIP_LINK_D_IN_CTRL W Y R/W
Datalink “D” for input assembly
(Refer to Ethernet/IP manual for details)

265 VAR_CIP_LINK_A_OUT_CTRL W Y R/W
Datalink “A” for output assembly
(Refer to Ethernet/IP manual for details)

PM94H201B_13xxxxxx_EN L 117

Reference

Index Name Type Format EPM Access Description Units

266 VAR_CIP_LINK_B_OUT_CTRL W Y R/W
Datalink “B” for output assembly
(Refer to Ethernet/IP manual for details)

267 VAR_CIP_LINK_C_OUT_CTRL W Y R/W
Datalink “C” for output assembly
(Refer to Ethernet/IP manual for details)

268 VAR_CIP_LINK_D_OUT_CTRL W Y R/W
Datalink “D” for output assembly
(Refer to Ethernet/IP manual for details)

269 VAR_CIP_DAT_REG_CTRL W Y R/W
Data format control for Ethernet/IP
assemblies
(Refer to Ethernet/IP manual for details)

270 VAR_CIP_CTRL_REG W Y R/W
Control register for control via Ethernet/IP
(Refer to Ethernet/IP manual for details)

271 VAR_CIP_STATUS_REG W N R
Status register 2 (Fromat for Ethernet/IP)
(Refer to Ethernet/IP manual for details)

272 VAR_CIP_HEART_BEAT W Y R/W CIP Heart beat timer (Ethernet/IP)

273 VAR_EIP_MCACT_TTL W Y R/W
Ethernet/IP multicast “time to leave”
parameter

274 VAR_EIP_MCAST_CTRL W Y R/W
Multicast enable/disable control register
(Ethernet/IP)

275 EIP_MCAST_ADDRESS W Y R/W Multicast address (Default = 239,192,15,32)

276 DNET_SCALE_POLL_IO W Y R/W
DeviceNet polled IO data scale factor
(Refer to DeviceNet manual for details)

277 TCP_REPLY_DELAY W Y R/W TCP reply delay value

278 RESERVED Do NOT use

279 RESERVED Do NOT use

280 RESERVED Do NOT use

281 RESERVED Do NOT use

282 RESERVED Do NOT use

118 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

NOTE: PIDs 283 - 309 are for REFERENCE ONLY. These variables are set through MotionView. Do NOT use directly.

283 PBUS_ADDR W Y R/W Profibus address

284 PBUS_DOUT_SIZE W Y R/W
Number of Profibus Data Out channels
Range: 0 - 12

285 PBUS_DIN_SIZE W Y R/W
Number of Profibus Data In channels
Range: 0 - 12

286 PBUS_OUT_LINK1 W Y R/W Profibus Data Out, Channel link 1 PID map

287 PBUS_OUT_LINK2 W Y R/W Profibus Data Out, Channel link 2 PID map

288 PBUS_OUT_LINK3 W Y R/W Profibus Data Out, Channel link 3 PID map

289 PBUS_OUT_LINK4 W Y R/W Profibus Data Out, Channel link 4 PID map

290 PBUS_OUT_LINK5 W Y R/W Profibus Data Out, Channel link 5 PID map

291 PBUS_OUT_LINK6 W Y R/W Profibus Data Out, Channel link 6 PID map

292 PBUS_OUT_LINK7 W Y R/W Profibus Data Out, Channel link 7 PID map

293 PBUS_OUT_LINK8 W Y R/W Profibus Data Out, Channel link 8 PID map

294 PBUS_OUT_LINK9 W Y R/W Profibus Data Out, Channel link 9 PID map

295 PBUS_OUT_LINK10 W Y R/W Profibus Data Out, Channel link 10 PID map

296 PBUS_OUT_LINK11 W Y R/W Profibus Data Out, Channel link 11 PID map

297 PBUS_OUT_LINK12 W Y R/W Profibus Data Out, Channel link 12 PID map

298 PBUS_IN_LINK1 W Y R/W Profibus Data In, Channel link 1 PID map

299 PBUS_IN_LINK2 W Y R/W Profibus Data In, Channel link 2 PID map

300 PBUS_IN_LINK3 W Y R/W Profibus Data In, Channel link 3 PID map

301 PBUS_IN_LINK4 W Y R/W Profibus Data In, Channel link 4 PID map

302 PBUS_IN_LINK5 W Y R/W Profibus Data In, Channel link 5 PID map

303 PBUS_IN_LINK6 W Y R/W Profibus Data In, Channel link 6 PID map

304 PBUS_IN_LINK7 W Y R/W Profibus Data In, Channel link 7 PID map

305 PBUS_IN_LINK8 W Y R/W Profibus Data In, Channel link 8 PID map

306 PBUS_IN_LINK9 W Y R/W Profibus Data In, Channel link 9 PID map

307 PBUS_IN_LINK10 W Y R/W Profibus Data In, Channel link 10 PID map

308 PBUS_IN_LINK11 W Y R/W Profibus Data In, Channel link 11 PID map

309 PBUS_IN_LINK12 W Y R/W Profibus Data In, Channel link 12 PID map

310 PBUS_ACYC_MODE W Y R/W
Profibus Acyclic Mode Type
Refer to Profibus Manual (P94PFB01)

NOTE: PIDs 311 - 406 are for REFERENCE ONLY. These variables are set through MotionView. Do NOT use directly
These variables are used by MotionView for non-volatile settings of CAN TPDO/RPDO.

311 VAR_RPDO_1_COM Receive PDO

312 VAR_RPDO_2_COM

313 VAR_RPDO_3_COM

314 VAR_RPDO_4_COM

PM94H201B_13xxxxxx_EN L 119

Reference

Index Name Type Format EPM Access Description Units

315 VAR_RPDO_5_COM

316 VAR_RPDO_6_COM

317 VAR_RPDO_7_COM

318 VAR_RPDO_8_COM

319 VAR_RPDO_1_MAP1 RPDO Mapping

320 VAR_RPDO_1_MAP2

321 VAR_RPDO_1_MAP3

322 VAR_RPDO_1_MAP4

323 VAR_RPDO_2_MAP1

324 VAR_RPDO_2_MAP2

325 VAR_RPDO_2_MAP3

326 VAR_RPDO_2_MAP4

327 VAR_RPDO_3_MAP1

328 VAR_RPDO_3_MAP2

329 VAR_RPDO_3_MAP3

330 VAR_RPDO_3_MAP4

331 VAR_RPDO_4_MAP1

332 VAR_RPDO_4_MAP2

333 VAR_RPDO_4_MAP3

334 VAR_RPDO_4_MAP4

335 VAR_RPDO_5_MAP1

336 VAR_RPDO_5_MAP2

337 VAR_RPDO_5_MAP3

338 VAR_RPDO_5_MAP4

339 VAR_RPDO_6_MAP1

340 VAR_RPDO_6_MAP2

341 VAR_RPDO_6_MAP3

342 VAR_RPDO_6_MAP4

343 VAR_RPDO_7_MAP1

344 VAR_RPDO_7_MAP2

345 VAR_RPDO_7_MAP3

346 VAR_RPDO_7_MAP4

347 VAR_RPDO_8_MAP1

348 VAR_RPDO_8_MAP2

349 VAR_RPDO_8_MAP3

350 VAR_RPDO_8_MAP4

351 VAR_TPDO_1_COM Transmit PDO

352 VAR_TPDO_2_COM

353 VAR_TPDO_3_COM

354 VAR_TPDO_4_COM

355 VAR_TPDO_5_COM

356 VAR_TPDO_6_COM

120 L PM94H201B_13xxxxxx_EN

Reference

Index Name Type Format EPM Access Description Units

357 VAR_TPDO_7_COM

358 VAR_TPDO_8_COM

359 VAR_TPDO_1_MAP1 TPDO Mapping

360 VAR_TPDO_1_MAP2

361 VAR_TPDO_1_MAP3

362 VAR_TPDO_1_MAP4

363 VAR_TPDO_2_MAP1

364 VAR_TPDO_2_MAP2

365 VAR_TPDO_2_MAP3

366 VAR_TPDO_2_MAP4

367 VAR_TPDO_3_MAP1

368 VAR_TPDO_3_MAP2

369 VAR_TPDO_3_MAP3

370 VAR_TPDO_3_MAP4

371 VAR_TPDO_4_MAP1

372 VAR_TPDO_4_MAP2

373 VAR_TPDO_4_MAP3

374 VAR_TPDO_4_MAP4

375 VAR_TPDO_5_MAP1

376 VAR_TPDO_5_MAP2

377 VAR_TPDO_5_MAP3

378 VAR_TPDO_5_MAP4

379 VAR_TPDO_6_MAP1

380 VAR_TPDO_6_MAP2

381 VAR_TPDO_6_MAP3

382 VAR_TPDO_6_MAP4

383 VAR_TPDO_7_MAP1

384 VAR_TPDO_7_MAP2

385 VAR_TPDO_7_MAP3

386 VAR_TPDO_7_MAP4

387 VAR_TPDO_8_MAP1

388 VAR_TPDO_8_MAP2

389 VAR_TPDO_8_MAP3

390 VAR_TPDO_8_MAP4

391 VAR_TPDO_1_COM_ET

392 VAR_TPDO_2_COM_ET

393 VAR_TPDO_3_COM_ET

394 VAR_TPDO_4_COM_ET

395 VAR_TPDO_5_COM_ET

396 VAR_TPDO_6_COM_ET

NOTE: PIDs 311 - 406 are for REFERENCE ONLY. Do NOT use directly. These variables are used by MotionView for non-volatile settings of CAN TPDO/RPDO

PM94H201B_13xxxxxx_EN L 121

Reference

Index Name Type Format EPM Access Description Units

397 VAR_TPDO_7_COM_ET

398 VAR_TPDO_8_COM_ET

399 VAR_TPDO_1_COM_IT

400 VAR_TPDO_2_COM_IT

401 VAR_TPDO_3_COM_IT

402 VAR_TPDO_4_COM_IT

403 VAR_TPDO_5_COM_IT

404 VAR_TPDO_6_COM_IT

405 VAR_TPDO_7_COM_IT

406 VAR_TPDO_8_COM_IT

407 VAR_CAN_HEARTBEAT R/W
CAN Heartbeat rate (0x1017)
Range: 0 - 65335 milliseconds

408 VAR_PBUS_STATUS R PROFIBUS Status

409 VAR_PBUS_MASTER_TIMEOUT_VAL R/W Timeout Value for PROFIBUS master

410 VAR_PBUS_DATA_EXCHANGE_TIMEOUT R/W
Data Exchange Timeout for PROFIBUS
Range: 0 - 327680 milliseconds

411 VAR_PTC_RX R PTC resistance in ohms

412 VAR_PBUS_FIRMWARE_REV
PROFIBUS firmware revision (hex number):
1ST word = major; Least word = minor
Example: 0x00010001 = rev 1.1

413 VAR_PBUS_TIMEOUT_ACTION_CFG Y

PROFIBUS timeout action. Bits encoded as:
Data Exchange Timeout:
Bit 0 = 1 Fault, Bit 0 = 0 No Action
Master Monitor TImeout:
Bit 1 = 1 Fault, Bit 1 = 0 No Action
Module Timeout (card not present):
Bit 2 = 1 Fault, Bit 2 = 0 No Action

433 VAR_BRAKE_RELEASE_DELAY R/W Range: 0 - 1000 milliseconds; Default 0mS mS

NOTE: PIDs 311 - 406 are for REFERENCE ONLY. Do NOT use directly. These variables are used by MotionView for non-volatile settings of CAN TPDO/RPDO

122 L PM94H201B_13xxxxxx_EN

Reference

3.3 Quick Start Examples
Contained in the following four sections are the connections and parameter settings to quickly setup a PositionServo
drive for External Torque/Velocity, External Positioning, Internal Torque/Velocity and Internal Positioning modes. These
Quick Start reference tables are NOT a substitute for reading the PositionServo User Manual. Observe all safety notices
in the PositionServo User and Programming Manuals.

3.3.1 Quick Start - External Torque/Velocity

Table 64: Connections for External Torque/Velocity Mode

I/O (P3)

Pin Name Function

5 GND Drive Logic Common

6 +5V +5V Output (max 100mA)

7 BA+ Buffered Encoder Output: Channel A+

8 BA- Buffered Encoder Output: Channel A-

9 BB+ Buffered Encoder Output: Channel B+

10 BB- Buffered Encoder Output: Channel B-

11 BZ+ Buffered Encoder Output: Channel Z+

12 BZ- Buffered Encoder Output: Channel Z-

22 ACOM Analog common

23 AO1 Analog output

24 AIN1+ Positive (+) of Analog signal input

25 AIN1 - Negative (-) of Analog signal input

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Note 1: Connections highlighted in BLUE are mandatory/necessary for operation in this mode.

PM94H201B_13xxxxxx_EN L 123

Reference

Table 65: Parameter Settings for External Torque/Velocity Mode

MVOB Folder Sub-Folder Setting

Parameters -- Parameter Name Description

Drive Mode Set to [Torque] for Torque Mode; [Velocity] for Velocity Mode

Analog Input (Current Scale) Torque Mode Only: Set to Required Amps per Volt

Analog Input (Velocity Scale) Velocity Mode Only: Set to Required RPM per Volt

Enable Accel/Decel Limits Velocity Mode Only: Set to [Enable] to switch on velocity ramp rates;
Set to [Disable] to switch OFF (accelerate at current limit)

Accel Limit Velocity Mode Only: Set Acceleration Limit in RPM/Sec

Decel Limit Velocity Mode Only: Set Deceleration Limit in RPM/Sec

Reference Set to [External] for external Torque/Velocity Mode

Enable Switch Input Set to [Run] to allow Enable/Disable of the PositionServo to be
controlled via Input A3 (Dedicated Enable)

IO Digital IO Parameter Name Description

Output 1 Function Output # indicates Digital Output No. 1-4;
Set value to select Output Functionality;
Output Function Values: 1=Not Assigned; 2=Zero Speed;
3=In Speed Window; 4=Current Limit; 5=Run Time Fault; 6=Ready;
7=Brake; 8=In Position

Output 2 Function

Output 3 Function

Output 4 Function

IO Analog IO Parameter Name Description

Analog Input Dead Band Set Zero Speed Dead Band in mV for Torque/Velocity Reference on
Analog Input 1

Analog Input Offset Set Torque/Velocity Reference Input Offset on Analog Input 1 to
match Controller Offset

Adjust Analog Input Zero Offset Tool to automatically learn the Analog Input Offset
(of Analog Input 1)

Limits Velocity Limits Parameter Name Description

Zero Speed Velocity Mode Only: Set a bandwidth (around ORPM) for activation of
the Zero Speed Output/Flag. Set digital output function to ‘2’.

At Speed Velocity Mode Only: Set a Target Speed for activation of the At Speed
Output/Flag

Speed Window Velocity Mode Only: Set a bandwidth (around At Speed parameter)
for activation of the At Speed Output/Flag. Set digital output function
to ‘3’.

Compensation -- Parameter Name Description

Velocity P-Gain Velocity Mode Only: Set P-Gain for Velocity Loop

Velocity I-Gain Velocity Mode Only: Set I-Gain for Velocity Loop

Gain Scaling Velocity Mode Only: Apply Scaling Factor to Velocity Gain Set

Note 1: Parameters highlighted in BLUE are mandatory/necessary for operation in this mode.

124 L PM94H201B_13xxxxxx_EN

Reference

3.3.2 Quick Start - External Positioning

Table 66: Connections for External Positioning Mode

I/O (P3)

Pin Name Function

1 MA+ Master Encoder A+ / Step+ input

2 MA- Master Encoder A- / Step- input

3 MB+ Master Encoder B+ / Direction+ input

4 MB- Master Encoder B- / Direction- input

5 GND Drive Logic Common

6 +5V +5V Output (max 100mA)

7 BA+ Buffered Encoder Output: Channel A+

8 BA- Buffered Encoder Output: Channel A-

9 BB+ Buffered Encoder Output: Channel B+

10 BB- Buffered Encoder Output: Channel B-

11 BZ+ Buffered Encoder Output: Channel Z+

12 BZ- Buffered Encoder Output: Channel Z-

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Note 1: Connections highlighted in BLUE are mandatory/necessary for operation in this mode.
Note 2: Connections highlighted in GREEN are frequently required in applications of this type.

PM94H201B_13xxxxxx_EN L 125

Reference

Table 67: Parameter Settings for External Positioning Mode

MVOB Folder Sub-Folder Setting

Parameters -- Parameter Name Description

Drive Mode Set to [Position] for Position Mode

Reference Set to [External] for external Position Mode

Step Input Type Set to either [Step and Direction] or [Master Encoder] to match the
Position Controller

System to Master Ratio Set Electronic Gear Ratio for Reference Signal to the PositionServo
Motor Output

Enable Switch Input Set to [Run] to allow Enable/Disable of the PositionServo to be
controlled via Input A3 (Dedicated Enable)

Resolver Track If using Resolver Feedback, set value that represents the pulses per
revolution required on the PositionServo simulated encoder.
0=1024ppr; 1=256ppr; 2=360ppr; 3=400ppr; 4=500ppr; 5=512ppr;
6=720ppr; 7=800ppr; 8=1000ppr; 9=1024ppr; 10=2000ppr;
11=2048ppr; 12=2500ppr; 13=2880ppr; 14=250ppr; 15=4096ppr

IO Digital IO Parameter Name Description

Output 1 Function Output # indicates Digital Output No. 1-4;
Set value to select Output Functionality;
Output Function Values: 1=Not Assigned; 2=Zero Speed;
3=In Speed Window; 4=Current Limit; 5=Run Time Fault; 6=Ready;
7=Brake; 8=In Position

Output 2 Function

Output 3 Function

Output 4 Function

Hard Limit Switches Action Set to Enable Inputs A1 and A2 to act as System Hard Limit Switches
and define functionality in the event of an active input.

Limits Position Limits Parameter Name Description

Position Error Set Position Error Limit at which Position Error Timer starts counting

Max Error Time Set Maximum Error Time for Position Error Correction before position
error trip occurs.

Compensation -- Parameter Name Description

Velocity P-Gain Set P-Gain for Velocity Loop

Velocity I-Gain Set I-Gain for Velocity Loop

Position P-Gain Set P-Gain for Position Loop

Position I-Gain Set I-Gain for Position Loop

Position D-Gain Set D-Gain for Position Loop

Position I-Limit The Position I-Limit will clamp the Position I-Gain compensator to
prevent excessive torque overshoot caused by an over-accumulation
of I-Gain.

Gain Scaling Apply Scaling Factor to Velocity Gain Set

Note 1: Parameters highlighted in BLUE are mandatory/necessary for operation in this mode.

126 L PM94H201B_13xxxxxx_EN

Reference

3.3.3 Quick Start - Internal Torque/Velocity

Table 68: Internal Torque/Velocity Mode

Connections for Internal Torque/Velocity: I/O (P3) Variable References for Internal Torque/Velocity

Pin Name Function

20 AIN2+ Positive (+) of Analog signal input

21 AIN2- Negative (-) of Analog signal input

22 ACOM Analog common

23 AO1 Analog output

24 AIN1+ Positive (+) of Analog signal input

25 AIN1 - Negative (-) of Analog signal input

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group B COM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group C COM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Index Name EPM R/W Description

29 VAR_ENABLE_SWITCH_TYPE Y R/W Enable switch function: 0-inhibit only, 1- Run

34 VAR_DRIVEMODE Y R/W Drive mode selection: 0-torque 1-velocity, 2-position

37 VAR_REFERENCE Y R/W Reference source: set to: 1 - internal (for ‘internal torque’ or
‘internal velocity’ mode)

44 VAR_VP_GAIN Y R/W Velocity loop Proportional gain Range: 0 - 32767

45 VAR_VI_GAIN Y R/W Velocity loop Integral gain Range: 0 - 16383

51 VAR_VREG_WINDOW Y R/W Gains scaling coefficient Range: -5 - +4

52 VAR_ENABLE N W Software Enable/Disable: 0 – disable, 1 - enable

58 VAR_VLIMIT_ZEROSPEED Y R/W Zero Speed value Range: 0 - 100

59 VAR_VLIMIT_SPEEDWND Y R/W Speed window Range: 10 - 10000

60 VAR_VLIMIT_ATSPEED Y R/W Target speed for velocity window Range: -10000 - +10000

71 VAR_AIN1 N R Analog Input AIN1 current value

72 VAR_AIN2 N R Analog Input AIN2 current value

75 VAR_ENABLE_ACCELDECEL Y R/W Enable Accel/Decel (velocity mode), 0 – disable, 1 - enable

76 VAR_ACCEL_LIMIT Y R/W Accel value for velocity mode Range: 0.1 - 5000000

77 VAR_DECEL_LIMIT Y R/W Decel value for velocity mode Range: 0.1 - 5000000

139 VAR_IREF N R/W Internal ref Current or Velocity mode

192 VAR_CURRENT_VEL_PPS N R Current velocity in PPS (pulses per sample)

193 VAR_CURRENT_ACCEL_PPSS N R Current acceleration (demanded value) value

217 VAR_CURRENT_VEL N R Current velocity (demanded value)

218 VAR_CURRENT_ACCEL N R Current acceleration (demanded value)

Positional Mode Language Reference - Enable/Disable

Command Syntax Long Name

DISABLE DISBALE Turns OFF Servo output

ENABLE ENABLE Turns ON Servo output

Note 1: Connections highlighted in BLUE are mandatory/necessary for operation in this mode.

PM94H201B_13xxxxxx_EN L 127

Reference

Example Internal Torque Program

;Program slowly increases Motor Torque until nominal motor current is reached
VAR_DriveMode = 0 ;Set Drive to Torque mode
VAR_Reference = 1 ;Set Reference to Internal control
Program Start:
IREF = 0 ;Reset Torque Reference to 0(Amps)
Wait While !In_A3 ;Wait while Enable input is OFF
Enable ;Enable Drive
Torque_Loop:
Wait Time 500 ;Set time between step increases in Torque
 If REF < VAR_CurrentLimit ;If Set Torque < Motor Nominal Torque
 IREF = IREF+0.1 ;Then increase by 0.1(Amps)
 GOTO Torque_Loop ;Loop to next torque increase
Else
 Goto Program_Start ;Else restart program
Endif

END

Example Internal Velocity Program

;Program slowly increases and decreases Motor Velocity between Maximum Velocity Forward direction and
;Maximum Velocity Reverse direction producing a saw-tooth velocity profile.
Define MaxVelocityRPS 60 ;Enter Maximum Velocity (RPS) value here
Define VelocityStepRPS 1 ;Define Velocity INC/DEC per Step/Program Loop (RPS)
Define VelocityStepTime 200 ;Define Time for Velocity Steps in mS
Define Velocity_Inc_Dec V0 ;Define a Variable to identify if Velocity is currently INC/DECreasing
VAR_DriveMode = 1 ;Set Drive to Velocity mode
VAR_Reference = 1 ;Set Reference to Internal control
VAR_Enable_AccelDecel = 1 ;Enable Accel/Decel Ramps
VAR_Accel_Limit = 3000 ;Set Accel Rate required in RPS^2
VAR_Decel_Limit = 3000 ;Set Decel Rate required in RPS^2
Program Start:
IREF = 0 ;Reset Velocity Reference to 0(RPS)
Wait While !In_A3 ;Wait while Enable input is OFF
Enable ;Enable Drive
Velocity_Loop:
Wait Time VelocityStep Time ;Set Time between Step Increases/Decreases in Velocity (mS)
 If REF <= MaxVelocityRPS ;If Current Motor Velocity < MaxVelocityRPS
 IREF = IREF+VelocityStepRPS ;Then increase Velocity by VelocityStepRPS
 Else
 Velocity_Inc_Dec = 1 ;Set Variable to start decreasing velocity
 Endif
Else ;If Speed Decreasing
 If REF >= -1* MaxVelocityRPS ;If Current Motor Velocity > -MaxVelocityRPS
 IREF = IREF-VelocityStepRPS ;Then decrease Velocity by VelocityStepRPS
 Else
 Velocity_Inc_Dec = 0 ;Set Variable to start increasing velocity
 Endif
Endif
Goto Velocity_Loop ;Loop to next Velocity Increase/Decrease
END ;End Code - Never Reached
On Fault ;Fault Handler
 Resume Program_Start ;Resume at Program Start
EndFault

128 L PM94H201B_13xxxxxx_EN

Reference

3.3.4 Quick Start - Internal Positioning
Table 69: Internal Positioning

Connections: I/O (P3)

Pin Name Function

26 IN_A_COM Digital input group A COM terminal

27 IN_A1 Digital input A1

28 IN_A2 Digital input A2

29 IN_A3 Digital input A3

30 IN_A4 Digital input A4

31 IN_B_COM Digital input group B COM terminal

32 IN_B1 Digital input B1

33 IN_B2 Digital input B2

34 IN_B3 Digital input B3

35 IN_B4 Digital input B4

36 IN_C_COM Digital input group C COM terminal

37 IN_C1 Digital input C1

38 IN_C2 Digital input C2

39 IN_C3 Digital input C3

40 IN_C4 Digital input C4

41 RDY+ Ready output Collector

42 RDY- Ready output Emitter

43 OUT1-C Programmable output #1 Collector

44 OUT1-E Programmable output #1 Emitter

45 OUT2-C Programmable output #2 Collector

46 OUT2-E Programmable output #2 Emitter

47 OUT3-C Programmable output #3 Collector

48 OUT3-E Programmable output #3 Emitter

49 OUT4-C Programmable output #4 Collector

50 OUT4-E Programmable output #4 Emitter

Language Reference

Enable/Disable

Command Syntax Long Name

DISABLE DISBALE Turns OFF Servo output

ENABLE ENABLE Turns ON Servo output

Program Structure

Command Syntax Long Name

STOP MOTION STOP MOTION Stop AA Motion - Clear

STOP MOTION QUICK STOP MOTION QUICK Motion Slack

WAIT WAIT MOTION COMPLETE Wait

Move / Motion Commands

Command Syntax Long Name

MOVE MOVE [BACK] UNTIL <condition> [,C] Move

MOVED MOVED <distance> [,S] [,C] Move Distance

MOVEP MOVEP <absolute position> [,S] [,C] Move to Position

MOVEDR MOVEDR <distance> , <displacement> [,C] Registered Distance Move

MOVEPR MOVEPR <distance> , <displacement> [,C] Registered Position Move

MDV MDV <[-]segment distance>,<segment final velocity>[,S] Segmented Move

MOTION SUSPEND MOTION SUSPEND Temporarily Suspend Motion

MOTION RESUME MOTION RESUME Statement Resumes Motion

PM94H201B_13xxxxxx_EN L 129

Reference

Example Internal Positioning Program

;** HEADER **
;Title: Pick and Place example program
;Author: 940 Product Management
;Description: This is a sample program that shows a simple application that
; picks up a part moves to a set position and drops the part

;** I/O List **
; Input A1 - not used
; Input A2 - not used
; Input A3 - Enabled
; Input A4 - not used
; Input B1 - not used
; Input B2 - not used
; Input B3 - not used
; Input B4 - not used
; Input C1 - not used
; Input C2 - not used
; Input C3 - not used
; Input C4 - not used
;
; Output 1 - Pick Arm
; Output 2 - Gripper
; Output 3 - not used
; Output 4 - not used

;******************************** Initialize and Set Variables **************************************
UNITS = 1
ACCEL = 75
DECEL =75
MAXV = 10
APOS = 0

;** Events **
;Set Events handling here

;*** Main Program ***
RESET_DRIVE:
WAIT UNTIL IN_A3 ;Check the Enable / Inhibit switch is made before continuing
ENABLE ;Enable the Drive
PROGRAM_START:
MOVEP 0 ;Move to Pick position
OUT1 = 1 ;Turn on output 1 on to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 1 ;Turn on output 2 to Engage gripper
WAIT TIME 1000 ;Delay 1 sec to Pick part
OUT1 = 0 ;Turn off output 1 to Retract Pick arm
MOVEP 100 ;Move to Place position
OUT1 = 1 ;Turn on output 1 on to extend Pick arm
WAIT TIME 1000 ;Delay 1 sec to extend arm
OUT2 = 0 ;Turn off output 1 to Disengage gripper
WAIT TIME 1000 ;Delay 1 sec to Place part
OUT1 = 0 ;Retract Pick arm
GOTO PROGRAM_START
END

;** Sub-Routines **
; Enter Sub-Routine code here

;*************************************** Fault Handler Routine **************************************
; Enter Fault Handler code here
ON FAULT

ENDFAULT

130 L PM94H201B_13xxxxxx_EN

Reference

3.4 PositionServo Reference Diagrams
This section contains the process flow diagrams listed in Table 70. These diagrams are for reference only.

Table 70: PositionServo Process Flow Diagrams

Drawing # Description

S999 Position and Velocity Regulator

S1000 Motion Commands -> Motion Queue -> Trajectory Generator

S1001 Current Command -> Motor

S1002 Encoder Inputs

S1003 Analog Inputs

S1004 Analog Outputs

S1005 Digital Inputs

S1006 Digital Outputs

Position and Velocity Regulators

Position
Command

Kff term

Biquad
Convergence
Filter

Biquad
Convergence
Filter

Velocity
Estimator

Secondary
Encoder

Primary
Encoder

Current
Limiter

I term Limit and
unit wind-up

I term Limit and
unit wind-up

P term

D term

I term

=0

=1

+

-

+

+
+

+

+

+

-

P term

D term

Velocity
Window

#41 Second Encoder

Position Feedback

Mechanical Velocity Feedback

Velocity Command

To Torque Amplifier
Current Command

Kff is automatically calculated

+

+

+

-

PM94H201B_13xxxxxx_EN L 131

Reference

Motion Commands, Motion Queue & Trajectory Generator

#1
81

, A
C

C
E

L

#1
82

, D
E

C
E

L

#1
80

, V
A

R
_M

A
X

V
E

L

#1
83

, Q
D

E
C

E
L

#9
1,

 S
U

S
P

E
N

D
/R

E
S

U
M

E

#1
36

, S
T

O
P

 M
O

T
IO

N

M
ot

io
n

C
om

m
an

ds

R
ef

er
 to

P
ro

gr
am

m
er

’s
M

an
ua

l

#4
6,

 P
P

_G
A

IN

#4
7,

 P
I_

G
A

IN

#4
8,

 P
D

_G
A

IN

#4
9,

 P
I_

LI
M

IT

P
os

iti
on

 R
eg

ul
at

or

M
ot

io
n

C
om

m
an

ds
Q

U
E

U
E

32
 e

nt
rie

s

S
eq

ue
nc

e
Lo

gi
c

T
ra

je
ct

or
y

P
ro

fil
er

C
on

ve
rg

en
ce

F
ilt

er
#1

93
, C

U
R

R
E

N
T

_A
C

C
_P

P
S

#1
92

, C
U

R
R

E
N

T
_V

E
L_

P
P

S

C
ur

re
nt

 T
ra

je
ct

or
y

P
oi

nt

#1
91

, #
21

6,
 P

O
S

E
R

R
O

R

#2
27

S
E

_P
O

S
E

R
R

O
R

_P
U

LS
E

S

V
el

oc
ity

 D
em

an
d

F
ro

m
 P

os
iti

on
 R

eg
ul

at
or

D
em

an
de

d
T

ra
je

ct
or

y
P

oi
nt

#1
56

 U
N

IT
S

#2
18

 C
U

R
R

E
N

T
_V

E
L_

P
P

S

#2
17

 C
U

R
R

E
N

T
_V

E
L

132 L PM94H201B_13xxxxxx_EN

Reference

Current Command --> Motor

#3
0

C
U

R
R

E
N

T
 L

IM
IT

C
ur

re
nt

 C
om

m
an

d

C
ur

re
nt

 R
eg

ul
at

or
+

S
pa

ce
 V

ec
to

r
P

W
M

C
ur

re
nt

 L
im

ite
r

-

#3
1

P
E

A
K

C
U

R
R

E
N

T
LI

M
IT

16

#3
2

P
E

A
K

C
U

R
R

E
N

T
LI

M
IT

#3
3

V
A

R
_P

W
M

F
R

E
Q

U
E

N
C

Y

#1
88

 P
H

C
U

R

#7
3

B
U

S
V

O
LT

A
G

E

#4
2

R
E

G
E

N
D

U
T

Y

R
E

G
E

N
C

irc
ui

t

R
E

G
E

N
 O

ut
pu

t

U
, V

, W
 M

ot
or

 P
ha

se
 O

ut
pu

ts

#4
12

 P
T

C
 R

E
S

IS
T

A
N

C
E

T
H

E
R

M
A

L
C

irc
ui

t

#3
9

M
O

T
O

R
T

H
E

R
M

A
LP

R
O

T
E

C
T

#4
0

M
O

T
O

R
P

T
C

R
E

S
IS

T
A

N
C

E

B
U

S
 V

O
LT

A
G

E

C
U

R
R

E
N

T
 F

E
E

D
B

A
C

K

M
O

T
O

R

MOTOR

B
+ B
-

B
R B
-

B
+ P
6

T1V UW T2 P
7

PM94H201B_13xxxxxx_EN L 133

Reference

Encoder Inputs

V
el

oc
ity

 E
st

im
at

or
an

d
F

ilt
er

P
E

F
A

U
LT

S
E

F
A

U
LT

R
es

ol
ve

r
T

ra
ck

 E
m

ul
at

io
n

(”
R

”
D

riv
es

 O
nl

y)

#4
3

E
N

C
O

D
E

R
R

E
P

E
A

T
 S

O
U

R
C

E

E
nc

od
er

 R
ep

ea
t P

or
t

V
E

LO
C

IT
Y

 F
E

E
D

B
A

C
K

S
ec

on
d

E
nc

od
er

 P
or

t

E
nc

od
er

 In
pu

t (
R

es
ol

ve
r

In
pu

t:
“R

”
dr

iv
es

)

#8
1

S
2P

R
A

T
IO

_S
E

C
O

N
D

#8
2

S
2P

R
A

T
IO

_P
R

IM
E

#1
90

, #
21

5
A

P
O

S

#2
26

 S
E

_A
P

O
S

_P
U

LS
E

S

‘d
is

ab
le

’

‘e
na

bl
e’

‘e
na

bl
e’

#2
11

 E
N

C
O

D
E

R

#6
1

P
LI

M
IT

_P
O

S
E

R
R

O
R

#6
2

P
LI

M
IT

_E
R

R
O

R
T

IM
E

T
IM

E
R

T
IM

E
R

#6
4

P
LI

M
IT

_S
E

E
R

R
O

R
T

IM
E

#6
3

P
LI

M
IT

_S
E

P
O

S
E

R
R

O
R

#4
1

S
E

C
O

N
D

E
N

C
O

D
E

R

#1
91

, #
21

6
P

O
S

E
R

R
O

R
T

o
P

os
iti

on
 P

ID

T
o

P
os

iti
on

 P
ID

D
em

an
de

d
T

ra
je

ct
or

y
P

oi
nt

#2
27

 S
E

_P
O

S
E

R
R

O
R

_P
U

LS
E

S
#1

89
, #

21
4

T
P

O
S

#1
87

 M
E

C
O

U
N

T
E

R

#3
7

R
E

F
E

R
E

N
C

E
#3

8
S

T
E

P
IN

P
U

T
T

Y
P

E

#7
9

M
2S

R
A

T
IO

_M
A

S
T

E
R

#8
0

M
2S

R
A

T
IO

_S
LA

V
E

M
as

te
r

E
nc

od
er

 In
pu

t
“I

N
T

 =
 1

”

“E
X

T
 =

 0
”

=
 1

, ‘
en

ab
le

’

=
 0

, ‘
di

sa
bl

e’
“0

”

>
?>
?

+

+-

+
-

#4
1

S
E

C
O

N
D

E
N

C
O

D
E

R

#4
1

S
E

C
O

N
D

E
N

C
O

D
E

R

#2
59

 R
E

S
O

LV
E

R
 T

R
A

C
K

0
D

is
ab

le

1
E

na
bl

e

P
3,

 7
-1

2

P
4

P
12

P
3,

 1
-4

Encoder Resolver

1 25
5026

1 25
5026

1 8
159

Encoder

1 8
159

1 5
96

134 L PM94H201B_13xxxxxx_EN

Reference

Analog Inputs

A
na

lo
g

In
pu

ts
 F

un
ct

io
n

V
el

oc
ity

 R
eg

ul
at

or

V
el

oc
ity

 F
ee

db
ac

k
V

el
oc

ity
 D

em
an

d
fr

om
 P

os
iti

on
 R

eg
ul

at
or

C
ur

re
nt

 C
om

m
an

d

#7
 V

E
LO

C
IT

Y
_A

C
T

U
A

L

#1
38

 IR
E

F

S
ca

le
 =

 A

S
ca

le
 =

 R
P

S

#3
6

V
E

LO
C

IT
Y

_S
C

A
LE

#7
2

A
IN

2

#7
1

A
IN

1

#9
1

A
IN

1_
O

F
F

S
E

T

#8
9

A
IN

1_
D

E
A

D
B

A
N

D

#3
5

C
U

R
R

E
N

T
_S

C
A

LE
#3

7
R

E
F

E
R

E
N

C
E

#7
5

E
N

A
B

LE
_A

C
C

E
LD

E
C

E
L

#7
6

A
C

C
E

L_
LI

M
IT

#7
7

D
E

C
E

L_
LI

M
IT

#4
4

P
_G

A
IN

#4
5

I_
G

A
IN

#5
1

V
R

E
G

_W
IN

D
O

W

#3
4

D
R

IV
E

M
O

D
E

#3
4

D
R

IV
E

M
O

D
E

=
 0

IN
T

E
R

N
A

L

IN
T

E
R

N
A

L

A
na

lo
g

In
pu

t #
1

A
na

lo
g

In
pu

t #
2

1
V

el
oc

ity

#1
38

 IR
E

F

E
X

T
E

R
N

A
L

E
X

T
E

R
N

A
L

2
P

os
iti

on

=
 1

 o
r

=
2

P
3.

24

P
3.

20

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

PM94H201B_13xxxxxx_EN L 135

Reference

Analog Output

Iq
 C

U
R

R
E

N
T

P
H

A
S

E
 C

U
R

R
E

N
T

 T

P
H

A
S

E
 C

U
R

R
E

N
T

 P
E

A
K

P
H

A
S

E
 C

U
R

R
E

N
T

 R
M

S

N
O

T
 A

S
S

IG
N

E
D

M
O

T
O

R
 V

E
LO

C
IT

Y

P
H

A
S

E
 C

U
R

R
E

N
T

 R

P
H

A
S

E
 C

U
R

R
E

N
T

 S

A
na

lo
g

O
ut

pu
t C

on
tr

ol

#8
5

V
A

R
_A

O
U

T
_F

U
N

C
T

IO
N

A
O

U
T

1

P
3.

23

0 2 3 4 5 6 7 8
Id

 C
U

R
R

E
N

T

#8
8

V
A

R
_A

O
U

T

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
6

V
A

R
_A

O
U

T
_V

E
LS

C
A

LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

#8
7

V
A

R
_A

O
U

T
_C

U
R

S
C

A
LE

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

136 L PM94H201B_13xxxxxx_EN

Reference

Digital Inputs

#2
05

 IN
11

_D
E

B
O

U
N

C
E

#2
04

 IN
10

_D
E

B
O

U
N

C
E

#2
03

 IN
9_

D
E

B
O

U
N

C
E

#2
01

 IN
7_

D
E

B
O

U
N

C
E

#2
00

 IN
6_

D
E

B
O

U
N

C
E

#1
96

 IN
2_

D
E

B
O

U
N

C
E

#1
95

 IN
1_

D
E

B
O

U
N

C
E

#1
94

 IN
0_

D
E

B
O

U
N

C
E

#1
97

 IN
3_

D
E

B
O

U
N

C
E

#1
98

 IN
4_

D
E

B
O

U
N

C
E

#2
02

 IN
8_

D
E

B
O

U
N

C
E

#1
99

 IN
5_

D
E

B
O

U
N

C
E

D
ig

ita
l I

np
ut

s
F

un
ct

io
n

#8
4

Li
m

it
S

w
itc

h
F

un
ct

io
n

IN
_A

1

IN
_A

2

IN
_A

3

IN
_A

4

IN
_B

1

IN
_B

2

IN
_B

3

IN
_B

4

IN
_C

1

IN
_C

2

IN
_C

3

IN
_C

4

#2
13

, #
21

2
R

P
O

S

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_A
1,

 IN
_A

2

A
P

O
S

1
(S

to
p/

F
au

lt)

P
3.

27

P
3.

28

P
3.

29

P
3.

30

P
3.

32

P
3.

33

P
3.

34

P
3.

35

0
(N

ot
 U

se
d)

2
(S

to
p)

#2
9

E
na

bl
e

F
un

ct
io

n

1
(R

un
)

0
(I

nh
ib

it)

C
3

In
pu

t

R
eg

is
tr

at
io

n
S

ig
na

l

U
se

r
P

ro
gr

am
m

ab
le

S
to

p
&

F
au

lt

F
au

lt

#6
5

V
A

R
_I

N
P

U
T

S
In

hi
bi

t I
N

_A
3

#5
2

V
A

R
_E

N
A

B
LE

E
na

bl
e

IN
_A

4

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
1

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
2

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
3

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_B
4

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
1

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
2

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
3

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_C
4

#6
5

V
A

R
_I

N
P

U
T

S
U

se
r

P
ro

gr
am

m
ab

le
IN

_A
4

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

P
3.

37

P
3.

38

P
3.

39

P
3.

40

PM94H201B_13xxxxxx_EN L 137

Reference

Digital Outputs

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

1

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

D
ig

ita
l O

ut
pu

t C
on

tr
ol

#2
06

 V
A

R
_O

U
T

1_
F

U
N

C
T

IO
N

O
U

T
1

O
U

T
2

O
U

T
3

O
U

T
4

1

P
3.

43

P
3.

44

P
3.

46

P
3.

45

P
3.

48

P
3.

47

P
3.

50

P
3.

49

0 2 3 4 5 6 7

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

2

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

#2
07

 V
A

R
_O

U
T

2_
F

U
N

C
T

IO
N

10 2 3 4 5 6 7

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

3

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

#2
08

 V
A

R
_O

U
T

3_
F

U
N

C
T

IO
N

10 2 3 4 5 6 7

IN
 P

O
S

IT
IO

N

B
R

A
K

E

IN
 S

P
E

E
D

 W
IN

D
O

W

Z
E

R
O

 S
P

E
E

D

#6
6

V
A

R
_O

U
T

4

C
U

R
R

E
N

T
 L

IM
IT

R
U

N
 T

IM
E

 F
A

U
LT

R
E

A
D

Y

#2
09

 V
A

R
_O

U
T

4_
F

U
N

C
T

IO
N

10 2 3 4 5 6 7

CO
NT

RO
LL

ER
 I/

O

1 25

P3

5026

Lenze AC Tech Corporation

630	Douglas	Street	•	Uxbridge,	MA	01569	•	USA
Sales	800	217	9100	•	Service	508	278	9100

www.lenzeamericas.com

PM94201B

Dynamic Link Library (DLL)
Communication Reference Guide

P94DLL01A

� P94DLL01A

Copyright ©�007 by AC Technology Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written
permission from AC Technology Corporation. The information and technical data in this manual are subject
to change without notice. AC Tech makes no warranty of any kind with respect to this material, including,
but not limited to, the implied warranties of its merchantability and fitness for a given purpose. AC Tech
assumes no responsibility for any errors that may appear in this manual and makes no commitment to
update or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks or trademarks of
Lenze AG in the United States and other countries.

Microsoft Windows®, Visual Basic®, Visual C++® and all related indicia are registered trademarks of the
Microsoft Corporation in the United States and other countries.

This document printed in the United States of America

About These Instructions
This documentation applies to the implementation of DLL with the PositionServo drive and should be used
in conjunction with the PositionServo User Manual (S94P01) that shipped with the drive. These documents
should be read carefully as they contain important technical data and describe the installation and opera-
tion of the drive. This manual describes the use of DLL with the PositionServo drives. It contains informa-
tion for anyone who participates in the evaluation of or design of a distributed motion control system. The
user should have prior knowledge of motion control, networks and software development.

�P94DLL01A

Table of Contents

1. Safety Information .. 4
1.1 Warnings, Cautions & Notes ...4

1.� Reference Documents ...5

�. PositionServo DLL Overview ... 6

� Files in the DLL Library ... 6

4 Communication Flowchart .. 7

5 DLL Functions Overview ... 8

6 Return Codes ... 8

7 DLL Functions Usage Examples .. 8

8 DLL Functions ... 9
8.1 Connection Services Functions ...9

8.� Data Manipulation Functions ..10

4 P94DLL01A

1. Safety Information

1.1 Warnings, Cautions & Notes
General

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, with the
potential to cause attached motors to move or rotate. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation
creates the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be car-
ried out by qualified, skilled personnel (IEC �64 and CENELEC HD �84 or DIN VDE 0100 and IEC report 664
or DIN VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with
the installation, assembly, commissioning, and operation of the product and who have the qualifications
necessary for their occupation.

Application as directed

Drive controllers are components which are designed for installation in electrical systems or machinery.
They are not to be used as appliances. They are intended exclusively for professional and commercial
purposes according to EN 61000-�-�. The documentation includes information on compliance with the EN
61000-�-�.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/�7/EC
(Machinery Directive); EN 60�04 must be observed.

Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the
EMC Directive (89/��6/EEC).

The drive controllers meet the requirements of the Low Voltage Directive 7�/��/EEC. The harmonised
standards of the series EN 50178/DIN VDE 0160 apply to the controllers.

The availability of controllers is restricted according to EN 61800-3. These products can cause
radio interference in residential areas.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not
change any insulation distances during transport or handling. Do not touch any electronic components and
contacts.

Controllers contain electrostatically sensitive components, which can easily be damaged by inappropriate
handling. Do not damage or destroy any electrical components since this might endanger your health!

Electrical connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g.
VBG 4) must be observed.

The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-
sections, fuses, PE connection). Additional information can be obtained from the national regulation docu-
mentation. In the United States, electrical installation is regulated by the National Electric Code (nec) and
NFPA 70 along with state and local regulations.

5P94DLL01A

Operation
Systems including controllers must be equipped with additional monitoring and protection devices accord-
ing to the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.).
You are allowed to adapt the controller to your application as described in the standards documentation.

DANGER!

• After the controller has been disconnected from the supply voltage,
do not touch live components or power connection until capacitors can
discharge. Wait at least � minutes before servicing the drive Please
observe the corresponding notes on the controller.

• Do not continuously cycle input power to the controller more than once
every three minutes.

• Please close all protective covers and doors during operation.

WARNING!

Network control permits automatic operation of the inverter drive. The
system design must incorporate adequate protection to prevent person-
nel from accessing moving equipment while power is applied to the
drive system.

Pictographs used in these instructions:

Pictograph Signal Word Meaning Consequence if Ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent dan-
ger that may result in death or
serious personal injury if the
corresponding measures are
not taken.

WARNING! Impending or possible danger to
personnel

Death or injury

STOP! Possible damage to equipment Damage to drive system or its
surroundings

NOTE Useful tip: If note is observed, it
will make using the drive easier

1.� Reference Documents
• PositionServo Programming Manual: PM94P01

• PositionServo User Manual: S94P01C

• MotionView Software Manual: IM94MV01A

 Refer to: http://www.actech.com

6 P94DLL01A

�. PositionServo DLL Overview
This reference guide assumes that the reader has a working knowledge of DLL protocol and familiarity with
the programming and operation of motion control equipment. This guide is intended as a reference only.

PositionServo Communication Dynamic-link Library (DLL) provides a set of functions to control, configure
and monitor PositionServo drives over Ethernet, RS-485 or RS-��� interfaces. PositionServo drives sup-
port the Remote Procedure Call (RPC) protocol to transmit data to and from a master communication unit
(PC or controller) and a client-server communication model can be effectively implemented.

All technical details about open standard ONC RPC protocols can be found in RFC-18�1 and RFC-18��
documents. PositionServo uses UDP transport (UDP/IP) to send or receive data over network. In case of
serial communications RS��� or RS485, the IP data packets are additionally encapsulated by PPP frame
and can be transmitted over the serial interfaces. All encapsulation and data preparation are done by the
PositionServo Communication Dynamic-link Library (DLL). See the communication flowchart in Section 4
for detailed steps when writing communication software.

� Files in the DLL Library
The following DLL library files can be found in the MotionView help folder: “…\Help\940 Communication
DLL Library”. The sample codes to demonstrate their usage can be found in Section 7. See the detailed
descriptions of the functions in the DLL library in Section 8.

SS940Control.dll Main Control DLL Library

oncrpc.dll RPC protocol library

SS940Control.lib Static Links

SS940API.h DLL API

Paramid.h PositionServo 940 Parameter Definitions

AD485DLL.dll RS��� or RS485 Communication Support Files

940ControlDeclares.bas DLL functions declarations for Visual Basic (VB)

NOTE:
Note 1: SS940Control.dll must be kept in the project root directory or in the envi-

ronment declared path.

Note �: SS940Control.dll and oncrpc.dll must also be in %SysPath%\SYSTEM di-
rectory.

Note �: If RS��� or RS485 communication is used, AD485DLL.dll must also be
kept in the project root directory or in the environment declared path.

7P94DLL01A

4 Communication Flowchart
The flowchart in Figure 1 provides the instructions of how to use DLL functions for communication over
Ethernet or serial communications ports.

Begin

Ethernet or Serial Port
Communication?

Ethernet

Known

Serial Port
Drive’s Symbolic Name

Known?

Unknown

Execute function:
SS940_EnableSerialInterface

Execute function:
SS940_FindByName

to obtain the drive’s IP address

Execute function:
OpenInterfaceB

with IP = 127 . 0 . 0 . N
where N is the drive’s address 1

Execute function:
OpenInterfaceB

with the drive’s IP address

Communicate with drive
by setting/reading the drive’s variables

Execute function:
SS940_CloseInterface and SS940_DisableInterface

(if serial port was used)
when communication is done

NOTE:
All Bold Italic phrases are function names.

Refer to Section 8 for details.

Figure 1 Communication Flowchart

8 P94DLL01A

5 DLL Functions Overview
Every aspect of the PositionServo drive can be manipulated by writing or reading the variable(s) inside
the drive. All variables are addressable by their respective index number. See the full list of variables in
the Appendix A “Complete list of variables” in PositionServo Model Programming Manual (Document No
PM94P01).

Every variable can be interpreted as a �� bit integer or as DOUBLE. For Read/Write, and Set/Get functions,
there are two function versions to read/write variables as integer or double precision types. Each variable
has its native format inside the drive, regardless of how the value was sent. The received value will be cast
to its natural format by the drive.

All variables are located in RAM but some of them have a non-volatile copy in the EPM (Electronic Program-
ming Module) memory. The DLL library provides two types of functions for writing such variables. One
type (SET) changes only RAM (run time) copy of the variables when the other (WRITE) changes both – the
run time copy in RAM and the non-volatile copy in EPM. At the drive reboot, the variables which have non-
volatile copies will be initialized with the values stored in EPM.

Two types of functions are also provided for reading. One type (GET) reads the RAM (run time) value of the
variables. The other (READ) reads the non-volatile variable value from EPM.

SET and GET function types also include LIST function versions. The corresponding LIST functions write or
read a sequential list of the variables up to 10 variables in one function call.

6 Return Codes
Table 1 lists the return codes, their abbreviation and description.

Table 1: PositionServo DLL Return Codes

Abbreviation Code Description

EC_CMD_NS 0 Command is not specified

EC_OK 1 Command is performed OK

EC_VALUE_TOOSMALL -1 Value for variable is too small. Value is boosted and accepted

EC_VALUE_TOOBIG � Value for variable is too big. Truncated and accepted

EC_INVALID_HANDLE 100 Invalid handle

EC_TIMEOUT 101 Request is timed out

EC_COMPORT_ENABLED �00 COM port is enabled

EC_COMPORT_FAILED �01 Failed to open/operate the specified COM port

7 DLL Functions Usage Examples
Sample projects with the complete source codes are provided for demonstration purposes of DLL function
usage. Two sets of source codes written in Visual Basic and Visual C++ are available under the MotionView
help folder “…\Help\940 Communication DLL Library\940 Communication DLL Source Codes”.

9P94DLL01A

8 DLL Functions
All functions in the DLL library are described in detail in paragraphs 8.1 “Connection Services Functions”
and 8.� “Data Manipulation Functions”.

8.1 Connection Services Functions
There are six DLL Connection Service functions applicable to the PositionServo drive. The function names
are identified by bold italic text.

long GetDllVersion()

Purpose: To obtain the DLL version

Inputs: none

Returns: DLL version as an integer number

long SS940_EnableSerialInterface (long port, long baudrate)

Purpose: To open the specified serial port for communication and redirect all communication requests
to the serial port.

Inputs: port serial port number (example: 1 selects COM port 1)

 baudrate port baudrate (example: 115�00)

Returns: error code. Value 1 indicates OK.

long SS940_DisableSerialInterface ()

Purpose: To close the serial port for communication and stops redirecting all communication to the se-
rial port.

Inputs: none

Returns: error code

SHANDLE SS940_OpenInterfaceB (BYTE* address, int timeout)

Purpose: To open communication interface to device with the IP address supplied

Inputs: address byte array containing 4 bytes IP address of the drive.

 Example: Form byte array for device IP 19�.168.�4.1�

 BYTE address[] = { 192,168,24,12 };

 NOTE: For operation with a serial port use IP = 1�7.0.0.N, where N is the drive’s
serial address in the range 0-�1. The function SS940_EnableSerialInterface
must be executed before communication is routed to the serial port

 timeout request timeout in milliseconds. Set this value as �000 in general case.

Returns: Handle to open interface. Valid handle is a non-zero number.

10 P94DLL01A

long SS940_CloseInterface (SHANDLE handle)

Purpose: To close the communication interface to device with the specific handle.

Inputs: handle to the previously opened interface by the function SS940_OpenInterfaceB.

Return: error code

long SS940_FindByName (char* name, BYTE* ip_address, BYTE* ser_num, int timeout)

Purpose: To find PositionServo drives on the network by their names and retrieve their IP addresses and
serial address numbers.

Inputs: name ASCII string containing the drive’s name

 Timeout request time out in ms. Set it in �000 ms for general use

Return: ip_address 4 bytes drive’s IP address.

 ser_num 4 bytes serial number information

8.� Data Manipulation Functions
There are twelve DLL Data Manipulation Functions that apply to the PositionServo drive.

long SS940_ReadParamAsDouble (SHANDLE h, int pid, double& param)

Purpose: To read the EPM copy of the variable as a DOUBLE type with the index specified by pid and
return it in argument parameter.

Inputs: h handle to interface opened by SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in double format

long SS940_ReadParamAsInteger (SHANDLE h, int pid, int& param)

Purpose: To read EPM copy of the variable as a ��-bit INTEGER type with index specified by pid and
return it in argument parameter.

Inputs: h handle to interface opened by SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in integer format

11P94DLL01A

long SS940_GetParamAsDouble (SHANDLE h, int pid, double& param)

Purpose: To read a RAM (run time) variable as a DOUBLE type with index specified by pid and return it
in argument parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in double format

long SS940_GetParamAsInteger (SHANDLE h, int pid, int& param)

Purpose: To read the RAM (run time) variable as a ��-bit INTEGER type with index specified by pid and
return it in argument parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in integer format

long SS940_WriteParamAsDouble (SHANDLE h, int pid, double param)

Purpose: To write the RAM (run time) and EPM copies of the variable as a DOUBLE type with index speci-
fied by pid and return it in argument parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in double format

long SS940_WriteParamAsInteger (SHANDLE h, int pid, int param)

Purpose: To write the RAM (run time) and EPM copies of the variable as a DOUBLE type with index speci-
fied by pid and return it in argument parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in integer format

1� P94DLL01A

long SS940_SetParamAsDouble (SHANDLE h, int pid, double param)

Purpose: To write the RAM (run time) variable as a DOUBLE type with index specified by pid and return
it in argument parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in double format

long SS940_SetParamAsInteger (SHANDLE h, int pid, int param)

Purpose: To write the RAM (run time) variable as a DOUBLE type with index specified by pid and return
it in argument param.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pid variable (parameter) index

Returns: param variable value in integer format

long SS940_GetArrayAsDouble (SHANDLE h, BYTE* pids, double* params, int count)

Purpose: To read the RAM (run time) array of variables (up to 10 variables) as a DOUBLE type with indexes
specified by elements of array pids and return it in array parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pids array of variable’s indexes

 count number of array elements. Maximum number of elements is 10.

Returns: params array of values of type DOUBLE.

long SS940_GetArrayAsInteger (SHANDLE h, BYTE* pids, long* params, int count)

Purpose: To read the RAM (run time) array of variables (up to 10 variables) as a ��- bit INTEGER type
with indexes specified by elements of array pids and return it in array parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pids array of variable’s indexes

 count number of array elements. Maximum number of elements is 10.

Returns: params array of values of type DOUBLE.

1�P94DLL01A

long SS940_SetArrayAsDouble (SHANDLE h, long* pids, double* params, int count)

Purpose: To write the RAM (run time) array of variables (up to 10 variables) as a DOUBLE type with in-
dexes specified by elements of array pids and return it in array parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pids array of variable’s indexes

 count number of array elements. Maximum number of elements is 10.

Returns: params array of error codes

long SS940_SetArrayAsInteger (SHANDLE h, long* pids ,longt* params, int count)

Purpose: To write the RAM (run time) array of variables (up to 10 variables) as a type �� bit INTEGER type
with indexes specified by elements of array pids and return it in array parameter.

Inputs: h handle to interface opened by the function SS940_OpenInterfaceB

 pids array of variable’s indexes

 count number of array elements. Maximum number of elements is 10.

Returns: params array of error codes

AC Technology Corporation
www.actech.com
6�0 Douglas Street
Uxbridge, MA 01569
Telephone: (508) �78-9100
Facsimile: (508) �78-787�

P94DLL01A

CANopen Communication Module
Communications Interface Reference Guide

P94CAN01B

Addendum ADPS01D June 2009

Addendum

Lenze AC Tech Corporation • 630 Douglas Street • Uxbridge MA 01569 • USA • Sales (800) 217-9100 • Service (508) 278 9100 • www.lenze-actech.com

Addendum to: PositionServo CANopen Communication Reference Guide, Document: P94CAN01B
Date: 06-05-2009
Note: Release of 5-pin CANopen Option Module (E94ZACAN1)

Page 10, Paragraph 2.2: Electrical Installation

Replace entire paragraph, Table 1 and Figure 2 with the following information:

An optional CANopen communication module (E94ZACAN1) is available for the PositionServo drive. Installed in Option Bay
1 as P21, the CANopen module is optically isolated from the rest of the drive’s circuitry. The 3-pin CANopen module is for
HW/SW 1A10 and the 5-pin CANopen module is for HW/SW 1B10 or higher. Refer to the PS CANopen Reference Guide
(P94CAN01) for more information.

CANopen Interface Pin Assignments

3-pin 5-pin
Pin Name Function Pin Name Function
1 ICOM Isolated Common 1 ICOM Isolated Common
2 CAN L CAN Bus Low 2 CAN L CAN Bus Low
3 CAN H CAN Bus High 3 Shield

4 CAN H CAN Bus High
5 NC No connection

1
23

CAN H
CAN L

ICOM

12
3 ICOM

CAN L
Shield

CAN H
NC

12
3

4
5

ADPS01D

�P94CAN01B

Copyright ©�007 by AC Technology Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written
permission from AC Technology Corporation. The information and technical data in this manual are subject to
change without notice. AC Technology makes no warranty of any kind with respect to this material, including,
but not limited to, the implied warranties of its merchantability and fitness for a given purpose. AC Technology
assumes no responsibility for any errors that may appear in this manual and makes no commitment to update
or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks or trademarks of Lenze
AG in the United States and other countries.

CANopen® is a registered trademark of ‘CAN in Automation (CiA)’.

This document is printed in the United States of America

About These Instructions
This documentation applies to the optional CANopen Communication Module for the PositionServo drive and
should be used in conjunction with the PositionServo User Manual (S94P01) that shipped with the drive. These
documents should be read carefully as they contain important technical data and describe the installation and
operation of the drive and this option module. This manual describes the CANopen implementation developed
by AC Tech Corporation for the PositionServo drives. It contains information for anyone who participates in the
evaluation of or design of a distributed motion control system. The user should have prior knowledge of motion
control, networks, and CANopen before implementing a CANopen program.

� P94CAN01B

Table of Contents

1. Safety Information ... 5

1.1 Warnings, Cautions & Notes .. 5

1.� Reference Documents... 7

1.� Conventions for Object Descriptions .. 7

1.4 Commonly Used Terms, Acronyms & Definitions ... 8

� Installation .. 9

�.1 Mechanical Installation ... 9

�.� Electrical Installation ... 10

� Introduction ... 11

�.1 CAN Overview .. 11

�.� PositionServo Drive Configuration ... 1�

�.� CAN Protocol .. 14

�.4 Accessing the Object Dictionary .. 16
�.4.1 SDOs and PDOs ...16

�.4.� SDOs: Description and Examples ...17

�.4.� PDOs: Description and Examples ...18

�.4.4 SDO or PDO? Design Considerations ..�0

�.4.5 Mapping a PDO ..�0

�.5 Objects that Define SDO’s and PDO’s .. �1

4 Network Management ... �5

4.1 Network Management Overview ... �5
4.1.1 Network Management Services and Objects ..�5

4.1.� General Device State Control..�5

4.1.� Device Monitoring ..�6

4.1.4 Time Stamp PDOs ..�7

4.1.5 Emergency Messages ..�7

4.� Network Management Objects .. �8

5 Device Configuration and Control through Native Variables List ... �9

5.1 Native Control ... �9

5.� Objects to Access the Drive’s RAM Variables... �9

6 Device Control, Configuration and Status ... �0

6.1 Device Control and Status Overview .. �0
6.1.1 Control Word, Status Word, and Device Control Function ..�0

6.1.� State Changes Diagram ...��

6.� Device Control and Status Objects .. �4

6.� Error Management Objects ... �7

6.4 Basic Amplifier Configuration Objects ... 40

6.5 Basic Motor Configuration Objects .. 46

4P94CAN01B

7 Control Loops .. 51

7.1 Control Loop Configuration .. 51
7.1.1 Nested Control Loops ...51

7.1.� The Position Loop ..5�

7.1.� The Velocity Loop ..5�

7.1.4 The Current Loop ...54

7.� Position Loop Configuration Objects .. 55

7.� Velocity Loop Configuration Objects .. 59

7.4 Current Loop Configuration Objects ... 60

8 Non Profiled Operating Modes ... 6�

8.1 Current Follower Mode.. 6�

8.� Velocity Follower Mode ... 6�

9 Homing Mode ... 6�

9.1 Homing Mode Operation ... 6�
9.1.1 Homing Overview ...6�

9.1.� Homing Methods ...64

9.1.� Homing Method 1: Homing on the Negative Limit Switch ...64

9.1.4 Homing Method �: Homing on the Positive Limit Switch ...65

9.1.5 Homing Method � and 4: Homing on the Positive Home Switch and Index Pulse65

9.1.6 Homing Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse66

9.1.7 Homing Methods 7-14: Homing on the Home Switch and Index Pulse ..66

9.1.8 Homing Methods 15, 16, �0, ��, �4, �6, �8, and �0: Reserved ...67

9.1.9 Homing Methods 17 and 18: Homing without an Index Pulse ...67

9.1.10 Homing Methods 19, �1, ��, �5, �7, and �9: Homing without an Index Pulse67

9.1.11 Homing Methods �1 and ��: Reserved ..68

9.1.1� Homing Methods �� and �4: Homing on the Index Pulse ..68

9.1.1� Homing Method �5: Homing on the Current Position ..68

9.� Homing Mode Operation Objects ... 69

10 Profile Position and Profile Velocity Mode Operation .. 71

10.1 Profile Position Mode Operation Overview ... 71
10.1.1 Point-to-Point Motion Profiles ..71

10.1.� Handling a Series of Point-to-Point Moves ...7�

10.1.� Point-to-Point Move Parameters and Related Data ...7�

10.1.4 Point-To-Point Move Sequence Examples ..75

10.� Profile Velocity Mode Operation .. 76
10.�.1 Position and Velocity Loops ..76

10.� Profile Position, Profile Velocity Mode Objects. .. 77

5 P94CAN01B

1. Safety Information

1.1 Warnings, Cautions & Notes
General

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, with the
potential to cause attached motors to move or rotate. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation creates
the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be carried
out by qualified, skilled personnel (IEC �64 and CENELEC HD �84 or DIN VDE 0100 and IEC report 664 or DIN
VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with the
installation, assembly, commissioning, and operation of the product and who have the qualifications necessary
for their occupation.

Application as directed

Drive controllers are components which are designed for installation in electrical systems or machinery. They
are not to be used as appliances. They are intended exclusively for professional and commercial purposes
according to EN 61000-�-�. The drive user manual includes information on compliance with EN 61000-�-�.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/�7/EEC
(Machinery Directive); EN 60�04 must be observed.

Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the EMC
Directive (89/��6/EEC).

The drive controllers meet the requirements of the Low Voltage Directive 7�/��/EEC. The harmonised standards
of the series EN 50178/DIN VDE 0160 apply to the controllers.

The availability of controllers is restricted according to EN 61800-3. These products can cause radio
interference in residential areas.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not
change any insulation distances during transport or handling. Do not touch any electronic components and
contacts.

Controllers contain electrostatically sensitive components, which can easily be damaged by inappropriate
handling. Damaging or destroying electrical components may pose a danger to your health.

Electrical connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g. VBG
4) must be observed.

The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections,
fuses, PE connection). Additional information can be obtained from the national regulation documentation. In
the United States, electrical installation is regulated by the National Electric Code (nec) and NFPA 70 along with
state and local regulations.

6P94CAN01B

The standards documentation contains information about installation in compliance with EMC (shielding,
grounding, filters and cables). These notes must also be observed for CE-marked controllers.

The manufacturer of the system or machine is responsible for compliance with the required limit values
demanded by EMC legislation.

Operation
Systems including controllers must be equipped with additional monitoring and protection devices according to
the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). You are
allowed to adapt the controller to your application as described in the documentation.

DANGER!

• After the controller has been disconnected from the supply voltage,
do not touch live components or the power connection until capacitors
have had enough time to discharge. Wait at least � minutes before
servicing the drive. Observe the corresponding notes on the controller.

• Do not continuously cycle input power to the controller more than once
every three minutes.

• Please close all protective covers and doors during operation.

WARNING!

Network control permits automatic operation of the inverter drive.
The system design must incorporate adequate protection to prevent
personnel from accessing moving equipment while power is applied to
the drive system.

Pictographs used in these instructions:

Pictograph Signal Word Meaning Consequence if Ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent
danger that may result in death
or serious personal injury if the
corresponding measures are
not taken.

WARNING! Impending or possible danger to
personnel

Death or injury

STOP! Possible damage to equipment Damage to drive system or its
surroundings

NOTE Useful tip: If note is observed, it
will make using the drive easier

7 P94CAN01B

1.2 Reference Documents
CAN and CANopen Specifications: “CAN in Automation (CiA)”; visit: http://www.can-cia.de/

PositionServo Programming Manual: PM94P01; Refer to: http://www.actech.com

PositionServo User Manual: S94P01; Refer to: http://www.actech.com

MotionView Software Manual: IM94MV01; Refer to: http://www.actech.com

1.3 Conventions for Object Descriptions
In this manual, object descriptions are as illustrated in the sample below. Each object description includes
summary information including object type, access, units, range, map PDO and memory capability in tabular
format. The table header includes the object title and index/sub-index number.

Object Index Sub-Index

SERVER SDO Parameters 0x1200

Type Access Units Range Map PDO Memory

Record RO -- -- NO --

Description
The Server SDO object holds the COB-ID values needed for access the drive’s SDO. Sub-index 0 holds the number of sub-elements of the record.
The COB-ID is the communication object ID or the CAN message ID.

Object Index Sub-Index

SDO Receive COB-ID 0x1200 1

Type Access Units Range Map PDO Memory

Unassigned �� RO -- 0x600 – 0x671 NO --

Description
The SDO Receive COB-ID is the CANopen object ID used by the drive to receive an SDO packet. The SDO Receive COB-ID value is 0x600 plus the
drive’s CAN node ID.

Relationships of Sub-Index Objects

This manual describes both objects and sub-index objects. Object descriptions and Sub-Index object descriptions
are included in the bottom portion of the table. The Sub-index object 0 always contains the number of elements
contained by the record.

Object Summary Description Fields

Field Name Description

Type The object type: Record, Array, Float, Visible String, Integer (8/16/��), Unassigned (8/16/��)

Access The object’s access type: RO, WO, RW

RO: read only

WO: write only

RW: read and write

Units The units used to express the object’s value.

Range The acceptable range of values if less then that specified by Type.

Map PDO Object PDO map capability: YES, NO, EVENT

YES: the object can be mapped to a PDO

NO: the object cannot be mapped to a PDO

EVENT: the object can be mapped and can be set to event triggering.

Memory F: object can be held in the amplifier’s flash memory

R: object can be held in the amplifier’s RAM

RF: object can be held in the amplifier’s flash memory and RAM

-- (dash):object can not be stored or object contains sub-index objects

•

•

•

•

8P94CAN01B

1.4 Commonly Used Terms, Acronyms & Definitions
CAN Control Area Network

CANopen Communication protocol to open and communicate with the Control Area Network

CMS CAN-based Message Specification

COB-ID Communication Object Identifier

CP Communication Profile

CRC Cyclic Redundancy Check

DCF Device Configuration File: an ASCII file containing a description of the object
configuration of an individual device

DP Device Profile: defines the OD objects for a particular type of device

EDS Electronic Data Sheet: an ASCII file containing a device’s communication
functionality and objects; plus its device-specific objects
and their default values

EMCY Emergency Object

Index 4-digit hexadecimal code used to identify an object: 16-bits
 Sub-Index: decimal code to further identify object’s parameters: 8-bits

NMT Network Management

OD Object Dictionary

Object Communication message - 4 types:
 Administrative: NMT
 Service Data Object: SDO
 Process Data Object: PDO
 Pre-Defined or Special Function Object: SYNC; TIME STAMP; EO

PDO Process Data Object:

RPDO Receive PDO

SDO Service Data Object:

SYNC Synchronization Special Function Object

TIME STAMP Provides a common time reference, implemented as a CMS object

TPDO Transmit PDO (also known as TxPDO)

Transferring Data: SDO: for large low priority data transfer between devices (i.e. configuring devices on
CANopen network)

 PDO: for fast data transfer of 8 bytes or less without protocol overhead (i.e. the data
content has been previously defined)

Transmission Modes: Sychronous: synchronization by receipt of a SYNC message
 Cyclic: transmission triggered periodically after every ‘n’ SYNC message
 Acylic: transmission ‘pre-triggered’ by remote transmission request from another

device or by the occurrence of an object-specific event specified in the
device profile

 Asychronous: transmission is triggered by a remote transmission request from
another device (by a CAN Frame)

9 P94CAN01B

2 Installation

2.1 Mechanical Installation
Install the CAN Communications Module as illustrated in Figure 1.

Disconnect power from drive and wait � minutes.

Remove the two COMM module screws that secure Option Bay 1.

With a flat head screwdriver, pry up the Option Bay 1 cover plate.

Install the CAN COMM Module (E94ZACAN1) in Option Bay 1.

Secure with two COMM module screws (max torque: 0.�Nm/�lb-in).

S9�1a

Figure 1: Installation of CAN Communications Module

10P94CAN01B

2.2 Electrical Installation
Table 1 and Figure � illustrate the pinout of the PositionServo CAN Module connector. This connector provides
�-wire plus isolated ground connection to the network.

Table 1: CAN Bus Interface Pin Assignments

Terminal Name Description

1 ICOM Isolated Common

� CAN L CAN Bus Low

� CAN H CAN Bus High

Figure �: CAN Bus Interface Pinout

Connections and Shielding

Figure � illustrates the connection of the cables for a PositionServo drive in a CAN master/slave network. A
1�0ohm (1%) termination is necessary between the high and low terminals of the first and last slaves in the
network.

PLC/PC
CANopen Master

PositionServo
CANopen Slave

PositionServo
CANopen Slave

GND CAN H CAN L GND GNDCAN H CAN HCAN L CAN L

120Ω120Ω

CAN NetworkCAN Network

Figure �: 1�0W (1%) Termination in CAN Network

11 P94CAN01B

3 Introduction
This reference guide assumes that the reader has a working knowledge of CANopen protocol and familiarity
with the programming and operation of motion control equipment. This guide is intended as a reference only.
The optional CANopen communication module (P/N E94ZACAN1) is required for the PositionServo drive to
communicate on a CAN network.

3.1 CAN Overview
The backbone of CANopen is CAN, a serial bus network originally designed by Robert Bosch GmbH to coordinate
multiple control systems in automobiles. The CAN model lends itself to distributed control. Any device can
broadcast messages on the network. Each device receives all messages and uses filters to accept only the
appropriate messages. Thus, a single message can reach multiple nodes, reducing the number of messages
that need to be sent. This also greatly reduces bandwidth required for addressing, allowing distributed control
at real-time speeds across the entire system.

CANopen Device

Communication Interface

PDOs
SDOs

Special Function Objects
NMT Objects

Object Dictionary

Data Types

Communication Objects

Application Objects

Application

Application Program

Device Profile Implementation

CAN

I/O

Figure 4: CANbus Network

CAN and CANopen Architecture

CAN specifies the data link and physical connection layers of a fast, reliable network. The CANopen profiles
specify how various types of devices, including motion control devices, can use the CAN network in a more
efficient manner.

In a CANopen motion control system, control loops are closed on the individual amplifiers, not across the
network. A master application coordinates multiple devices, using the network to transmit commands and
receive status information. Each device can transmit to the master or any other device on the network. CANopen
provides the protocol for mapping device and master internal commands to messages that can be shared
across the network. A CANopen network can support up to 1�7 nodes. Each node has a seven-bit node ID in
the range of 1-1�7. (Node ID 0 is reserved and should not be used.)

1�P94CAN01B

Master Controller

CAN
Module CANopen

Sensor Motor

CAN Network

Node 1 Node 2

CANopen CANopenCAN
Module

CAN
Module

MotorSensor

I/OI/O

. . . to 127 nodes

Fe
ed

ba
ck

Fe
ed

ba
ck

St
at

us

Control

PositionServo Drive PositionServo Drive

Figure 5: CANopen Network

Node-IDFunction Code

Bit Number

012345678910

Figure 6: 11-bit CAN Identifier

Example of a CANopen Move Sequence:

CANopen master transmits a control word to initialize all devices.

Devices transmit messages indicating their status (in this example, all are operational).

CANopen master transmits a message instructing devices to perform homing operations.

Devices indicate that homing is complete.

CANopen master transmits messages instructing devices to enter position profile mode (point-to-point
motion mode) and issues first set of point-to-point move coordinates.

Devices execute their moves, using local position, velocity, and current loops, and then transmit actual
position information back to the network.

CANopen master issues next set of position coordinates.

3.2 PositionServo Drive Configuration
Before AC Tech drives can be used in a CANopen network they need to be properly connected and configured.
Refer to the PositionServo User’s Manual for details on hardware connection.

There are a few parameters that need to be configured before the PositionServo can operate in a CANopen
network. These parameters are listed under the <Communication> <CAN> folder in the MotionView software
program. Alternatively these parameters can be reached from the drive’s front display and keypad. CAN related
parameters are explained herein:

CAN Control Enabled/Disabled: Use this parameter to enable or disable CAN followed by reboot.
This parameter takes effect after the drive has been re-booted (power cycled).

CAN baud rate 10k- 1000k: Parameter takes effect after drive has been re-booted (power cycled).

CAN address 1-1�7: sets drive’s CAN ID. This parameter takes effect after the drive has been re-
booted (power cycled).

•

•

•

•

•

•

•

•

•

•

1� P94CAN01B

CAN Boot Up Mode Pre-Operational, Operational or Pseudo Master modes are available after power up.

Pre-Operational default mode for CAN Open slave. Drive will await message from master to enter
Operational mode

Operational drive will enter Operational mode immediately after power up without receiving
activation message from master. This feature is useful in a master-less network.

Pseudo Master in this mode drive will send activation message (with specified delay, see below) for
all CAN slaves waiting in Pre-Operational mode. This mode is useful when emulating
master functionality and activating passive slaves. Only one drive can be configured
as the pseudo master and only when there is no other master device.

CAN Boot up delay If drive is configured for Pseudo Master mode it will send activation message with
delay specified in this parameter. Delay is used to allow specified slaves to boot up
and configure their hardware to listen to the Master messages.

Figure 7: MotionView CANopen Communication Parameters

CANopen configuration parameters in MotionView

To configure the drive for CANopen operations follow steps:
Start MotionView and perform connection to the drive.

Open <Communication><CAN> folder to see CAN related parameters.

Set proper communication speed

Set drive’s CAN ID

Set the [CAN Bootup Mode]. Select pre-operational mode if the drive is going to be part of CANopen network with a CANopen
Master controller (or the other drive is set to Pseudo-Master mode)

If you selected “Pseudo Master Mode” in step 5, set the [CAN Bootup Delay].

Set the [CAN Control] parameter to “Enable”

Re-boot the drive.

After drive boots it enters selected boot up mode and is ready for operation under CAN control

To turn off CAN mode, set parameter [CAN Control] to disable and re-boot the drive. Drive will return to normal operation mode

thereafter.

•

•

•

•

•

1.

�.

�.

4.

5.

6.

7.

8.

9.

10.

14P94CAN01B

NOTE:
1. The user program is disabled while in CAN control mode and attempting to access it will result
in a warning message. The program however is not erased from the memory and will be made
available for execution upon return from CANopen mode ([CAN Control] set to Disable).

�. MotionView can be connected to drive for monitoring of parameters, reviewing faults,
oscilloscope operations etc. Drive’s variables can be viewed from <Tools><Diagnostic> folder.

All CAN parameters can be accessed from the front panel. The parameter names as seen from the built in
display are:

Name Description Input Value

CAnb CAN baud rate 1 10k

� �5k

� 50k

4 1�5k

5 �50k

6 500k

7 800k

8 1000k

CAnA CAN address 1 - 1�7

Cano Bootup Op mode 0 pre-operational

1 operational

� pseudo master mode

CAnE CAN control parameter 0 disabled

1 enabled

NOTE:
CAnE , CAnA and CAnb require a reboot to change.

3.3 CAN Protocol
The physical layer of CAN is a differentially driven, two-wire bus, terminated by 1�0-ohm resistors at each end.
The maximum bit rate supported by CAN is 1,000,000 bits/second for up to �5 meters. Lower bit rates may be
used for longer network lengths.

The CAN Message

CANopen messages are transmitted within CAN messages.

CAN Message Format

CAN messages are communicated over the bus in the form of network packets. Each packet consists of an
identifier (CAN message ID), control bits, and zero to eight bytes of data. (The CAN message is sometimes
referred to as a communication object or COB and the CAN message ID as a COB-ID.)

CRC Error Checking

Each packet is sent with CRC (cyclic redundancy check) information to allow controllers to identify and re-send
incorrectly formatted packets.

15 P94CAN01B

CAN Message ID

Every CAN message has a CAN message ID. The message ID plays two important roles:

It provides the criteria by which the message is accepted or rejected by a node.

It determines the message’s priority.

CAN Message Priority

The priority of a CAN message is encoded in the message ID. The lower the value of the message ID, the higher
the priority of the message. When two or more devices attempt to transmit packets at the same time, the
packet with the highest priority succeeds. The other devices back off and re-attempt later.

Objects and Dictionaries

The primary means of controlling a device on a CANopen network is by writing to device parameters, and
reading device status information. For this purpose, each device defines a group of parameters that can be
written, and status values that can be read. These parameters and status values are collectively referred to as
the device’s objects. These objects define and control every aspect of a device’s identity and operation. Some
objects define basic information such as device type, model, and serial number. Others are used to check
device status and deliver motion commands. The entire set of objects defined by a device is called the device’s
Object Dictionary (OD). Every device on a CANopen network must define an object dictionary, and nearly every
CANopen network message involves reading values from or writing values to the object dictionaries of devices
on the network.

Object Dictionary as Interface

The object dictionary is an interface between a device and other entities on the network.

CANopen Profiles and the Object Dictionary

The CANopen profiles specify the mandatory and optional objects that comprise most of an object dictionary.
The Communication Profile specifies how all devices must communicate with the CAN network. The
Communication Profile specifies dictionary objects that set up a device’s ability to send and receive messages.
The device profiles specify how to access particular functions of a device. The Profile for Drives and Motion
Control specifies objects used to control device homing and position control. In addition to the objects specified
in the Application Layer and Communication Profile and device profiles, CANopen allows manufacturers to add
device-specific objects to a dictionary.

Object Dictionary Structure

An object dictionary is a lookup table. Each object is identified by a 16-bit index with an eight-bit sub-index.
Most objects represent simple data types, such as 16-bit integers, ��-bit integers, and strings. These can be
accessed directly by the 16-bit index.

Other objects use the sub-index to represent groups of related parameters. For instance, the Motor Data object
(index 0x6410, paragraph 6.5, page 47) has �4 sub-index objects defining basic motor characteristics such as
motor type, motor wiring configuration, and hall sensor type. (The subindex provides up to �55 sub-entries for
each index.)

•

•

16P94CAN01B

The organization of the dictionary is specified in the profiles, as shown herein.

Index Range Objects

0000 not used

0001-001F Static Data Types

00�0-00�F Complex Data Types

0040-005F Manufacturer Specific Complex Data Types

0060-007F Device Profile Specific Static Data Types (including those specific to motion control)

0080-009F Device Profile Specific Complex Data Types (including those specific to motion control)

00A0-0FFF Reserved for further use

1000-1FFF Communication Profile Area (DS �01)

�000-5FFF Manufacturer Specific Profile Area

6000-9FFF Standardized Device Profile Area (including Profile for Motion Control)

A000-FFFF Reserved for future use

3.4 Accessing the Object Dictionary
CANopen provides two methods to access a device’s object dictionary:

The Service Data Object (SDO)
The Process Data Object (PDO)

Each can be described as a channel for access to an object dictionary.

3.4.1 SDOs and PDOs
The basic characteristics of PDOs and SDOs are listed in Table �. For help deciding whether to use an SDO or
a PDO refer to paragraph �.4.4 “SDO or PDO? Design Considerations”.

Table �: Basic PDO & SDO Characteristics

SDO PDO

The SDO protocol allows any object in the object dictionary to be
accessed, regardless of the object’s size. This comes at the cost of
significant protocol overhead.

One PDO message can transfer up to eight bytes of data in a CAN
message. There is no additional protocol overhead for PDO messages.

Transfer is always confirmed. PDO transfers are unconfirmed.

Has direct, unlimited access to the object dictionary. Requires prior setup, wherein the CANopen master application uses
SDOs to map each byte of the PDO message to one or more objects.
Thus, the message itself does not need to identify the objects, leaving
more bytes available for data.

Employs a client/server communication model, where the CANopen
master is the sole client of the device object dictionary being
accessed.

Employs a peer-to-peer communication model. Any network can
initiate a PDO communication, and multiple nodes can receive it.

An SDO has two CAN message identifiers: a transmit identifier for
messages from the device to the CANopen master, and a receive
identifier for messages from the CANopen master.

Transmit PDOs are used to send data from the device, and receive
PDOs are used to receive data.

SDOs can be used to access the object dictionary directly. A PDO can be used only after it has been configured using SDO
transfers.

Best suited for device configuration, PDO mapping, and other
infrequent, low priority communication between the CANopen master
and individual devices. Such transfers tend to involve the setting up of
basic node services; thus, the term service data object.

Best suited for high-priority transfer of small amounts of data, such
as delivery of set points from the CANopen master or broadcast
of a device’s status. Such transfers tend to relate directly to the
application process; thus, the term process data object.

For more information about SDOs, refer to “SDOs: Description and
Examples”, paragraph �.4.�, page 17

For more information about PDOs, refer to “PDOs: Description and
Examples”, paragraph �.4.�, page 18

•
•

17 P94CAN01B

The Communication Profile requires the support of at least one SDO per device. (Without an SDO, there would
be no way to access the object dictionary.) It also specifies default parameters for four PDOs. AC Tech CANopen
amplifiers each support 1 SDO and 16 PDOs (eight transmit PDOs and eight receive PDOs).

3.4.2 SDOs: Description and Examples
Each PositionServo amplifier provides one SDO. The CANopen master can use this SDO to configure, monitor,
and control the device by reading from and writing to its object dictionary.

SDO CAN Message IDs

The SDO protocol uses two CAN message identifiers. One ID is for messages sent from the CANopen master
(SDO client) to the amplifier (SDO server). The other ID is for messages sent from the SDO server to the SDO
client.

The CAN message ID numbers for these two messages are fixed by the CANopen protocol. They are based on
the device’s node ID (which ranges from 1 to 1�7). The ID used for messages from the SDO client to the SDO
server (i.e. from the CANopen master to the amplifier) is the hex value 0x600 + the node ID. The message from
the SDO server to the SDO client is 0x580 + the node ID. For example, an amplifier with node ID 7 uses CAN
message IDs 0x587 and 0x607 for its SDO protocol.

Client/ Server Communication

The SDO employs a client/server communication model. The CANopen master is the sole client. The device is
the server. The CANopen master application should provide a client SDO for each device under its control. The
CAN message ID of an SDO message sent from the CANopen master to a device should match the device’s
receive SDO message identifier. In response, the CANopen master should expect an SDO message whose CAN
message ID matches the device’s transmit SDO message identifier.

SDO Message Format

The SDO uses a series of CAN messages to send the segments that make up a block of data. The full details
of the SDO protocol are described in the CANopen Application Layer and Communication Profile.

Confirmation

Because an SDO transfer is always confirmed, each SDO transfer requires at least two CAN messages (one
from the master and one from the slave).

Confirmation Example

To update an object that holds an eight-byte long value requires six CAN messages:

1. The master sends a message to the device indicating its intentions to update the object.

�. The message includes the object’s index and sub-index values as well as the size (in bytes) of the data
to be transferred.

�. The device responds to the CANopen master indicating that it is ready to receive the data.

4. The CANopen master sends one byte of message header information and the first 7 bytes of data.
(Because SDO transfers use one byte of the CAN message data for header information, the largest
amount of data that can be passed in any single message is 7 bytes.)

5. The device responds indicating that it received the data and is ready for more.

6. The CANopen master sends the remaining byte of data.

7. The device responds indicating success.

18P94CAN01B

Segmented, Expedited and Block Transfers

As in the example above, most SDO transfers consist of an initial transfer request from the client, followed
by series of confirmed eight-byte messages. Each message contains one byte of header information and
a segment (up to seven bytes long) of the data being transferred. For the transfer of short blocks of data
(four bytes or less), the Communication Profile specifies an expedited SDO method. The entire data block is
included in the initial SDO message (for uploads) or in the response (for downloads). Thus, the entire transfer
is completed in two messages.

The Communication Profile also describes a method called block SDO transfers, where many segments can
be transferred with a single acknowledgment at the end of the transfer. AC Tech CANopen amplifiers do not
require the use of the block transfer protocol.

Using an SDO

To use an SDO, the CANopen master needs an SDO client to communicate with the SDO on each device.

3.4.3 PDOs: Description and Examples
PositionServo amplifiers provide eight transmit PDOs and eight receive PDOs. A transmit PDO is used to transmit
information from the device to the network. A receive PDO is used to update the device.

Default PDO Message Identifiers

The Communication Profile reserves four CAN message identifiers for transmit PDOs and four identifiers
for receive PDOs. Refer to the sections on Receive PDO Communication Parameters and Transmit PDO
Communication Parameters.

The first four transmit PDOs and receive PDOs provided in AC Tech CANopen amplifiers use these default
addresses. The addresses of the remaining four transmit PDOs and receive PDOs are null by default. Any PDO
message identifier can be reconfigured by the programmer.

PDO Peer-to-Peer Communication

Peer-to-peer relationships match the transmit PDO identifier of the sending node to a receive PDO identifier
of one or more other nodes on the network. Any device can broadcast a PDO message using one of its eight
transmit PDOs. The CAN identifier of the outgoing message matches the ID of the sending PDO. Any node with
a matching receive PDO identifier will accept the message.

PDO Peer-to-Peer Example:

Node 1 = transmit PDO 1, has a CAN message ID of 0x0189. Node � = receive PDO 1 has a matching ID, as
does Node �. They both accept the message. Other nodes do not have a matching receive PDO, so they do not
accept the message.

PDO Mapping

For optimal of the CAN message’s eight-byte data area use PDO mapping. For each byte in the PDO message,
mapping uses the SDO to configure dictionary objects in both the sending and the receiving node to know:

The index and sub-index which objects are to be accessed

The type of data

The length of the data

The PDO message itself carries no transfer control information, leaving all eight bytes available for data.
(Contrast this with the SDO, which uses one byte of the CAN message data area to describe the objects being
written or read, and the length of the data.)

•

•

•

19 P94CAN01B

Default PDO Mappings

The Profile for Drives and Motion Control specifies default mappings for the first eight transmit PDOs and the
first eight receive PDOs. AC Tech CANopen amplifiers are shipped with these default PDO mappings. These
default PDO mappings can be re-mapped by the programmer.

Mappable Objects

Not all objects in a device’s object dictionary can be mapped to a PDO. This manual notes this ability (or lack
thereof) in the description of each object.

Dynamic PDO Mapping

AC Tech supports dynamic PDO mapping, which allows the CANopen master to change the mapping of a PDO
during operation. For instance, a PDO might use one mapping in Homing Mode, and another mapping in Profile
Position Mode.

PDO Transmission Modes

PDOs can be sent in one of two transmission modes:

Synchronous: Messages are sent only after receipt of a specified number of synchronization (SYNC) objects,
sent at regular intervals by a designated synchronization device. (For more information on the SYNC object,
see SYNC and high-resolution Time Stamp messages)

Asynchronous: The receipt of SYNC messages does not govern message transmission.

Synchronous transmission can be cyclic, where the message is sent after a predefined number of SYNC
messages, or acyclic, where the message is triggered by some internal event but does not get sent until the
receipt of a SYNC message.

PDO Triggering Modes

The transmission of a transmit PDO message from a node can be triggered in one of three ways:

Trigger Description

Event Message transmission is triggered by the occurrence of an object specific event. For
synchronous PDOs this is the expiration of the specified transmission period, synchronized
by the reception of the SYNC object. For acyclicly transmitted synchronous PDOs and
asynchronous PDOs the triggering of a message transmission is a device specific event
specified in the device profile.

SYNC message For synchronous PDOs, the message is transmitted after a specified number of SYNC cycles
have occurred.

Remote Request The transmission of an asynchronous PDO is initiated upon receipt of a remote request
initiated by any other device.

PDO Examples

The programmer has broad discretion in the use of PDOs. Consider some of the default receive PDO mappings
specified in the Profile for Drives and Motion Control:

PDO Default Objects Mapped Purpose

Receive PDO 1 Control Word (0x6040) Controls the state of the device

Receive PDO � Control Word (0x6040)
Mode of Operation (0x6060)

Controls the state and operating mode of the device

Receive PDO � Control Word (0x6040)
Target Position (0x607a)

Controls the state and target position of the amplifier
in profile position mode

•

•

�0P94CAN01B

Here are some other examples:

On the device designated as the SYNC message and time stamp producer, map a transmit PDO to transmit
the high-resolution time stamp message on a periodic basis. Map receive PDOs on other devices to receive
this object.

Another transmit PDO could transmit general amplifier status updates.

3.4.4 SDO or PDO? Design Considerations
Differences Between SDO and PDO

As stated earlier, SDOs and PDOs can both be described as channels through which CAN messages are sent,
and both provide access to a device’s object dictionary. However, each has characteristics that make it more
appropriate for certain types of data transfers. Table � provides a review of the differences between SDOs and
PDOs, and some design considerations indicated by those differences.

Table �: SDO & PDO Design Considerations

SDO PDO Design Considerations

The accessed device always confirms SDO
messages. This makes SDOs slower.

PDO messages are unconfirmed. This makes
PDOs faster.

To transfer 8 bytes or less at real-time speed, use
a PDO. For instance, to receive control instructions
and transmit status updates. To transfer large
amounts of low priority data, use the SDO. Also, if
confirmation is absolutely required, use an SDO.

One SDO transfer can send long blocks
of data, using as many CAN messages as
required.

A PDO transfer can only send small amounts
of data (up to eight bytes) in a single CAN
message. Mapping allows very efficient use
of those eight bytes.

Asynchronous. Synchronous or asynchronous. Cyclic or
acyclic.

Use PDO when synchronous or broadcast
communications are required. For instance,
to communicate set points from the master to
multiple devices for a multi-axis move, or to have
a device broadcast its status.

The SDO employs a client-server
communication model. The CANopen master
is the client. It reads from and writes to the
object dictionaries of devices. The device
being accessed is the server.

The PDO employs a peer-to-peer
communication model. Any device can send
a PDO message, and a PDO message can be
received and processed by multiple devices..

All communications can be performed
through the SDO without using any PDOs.

The CANopen master application uses SDO
messages to map the content of the PDO, at a
cost of increased CPUcycles on the CANopen
master and increased bus traffic.

If the application does not benefit from the use of
a PDO for a certain transfer,consider using SDO
to avoid the extra overhead. For instance, if an
object’s value is updated only once (as with many
configuration objects), the SDO is more efficient. If
the object’s value is updated repeatedly, a PDO is
more efficient.

3.4.5 Mapping a PDO
Reasons for mapping or remapping a PDO include:

changes to the amplifier’s Manufacturer Status Register object (index 0x100�, paragraph 6.�, page �6)

changes in the CANopen status word

amplifier I/O change

amplifier PVT status changes

Two objects in the device’s object dictionary define a PDO:

• A PDO’s communication object defines the PDO’s CAN message ID and its communication type (synchronous
or asynchronous) and triggering type (event-drive or cyclic).

• A PDOs mapping object maps every data byte in the PDO message to an object in the device’s object
dictionary.

Mapping a PDO is the process of configuring the PDO’s communication and mapping objects.

•

•

•

•

•

•

�1 P94CAN01B

To Map a Receive PDO

The general procedure for mapping a receive PDO is listed in Table 4. The procedure for mapping a transmit
PDO is similar.

Table 4: Mapping a Receive PDO

Stage Step Sub-Steps / Comments

1 Disable the PDO In the PDO’s mapping object (Receive PDO Mapping Parameters,
index 0x1601), set the sub-index 0 (NUMBER OF MAPPED
OBJECTS) to zero. This disables the PDO

� Set the communication parameters If necessary, set the PDO’s CAN message ID (PDO COB-ID) using
sub-index 1 of the PDO’s RECEIVE PDO Communication Parameters
(index 0x1401). Choose the PDO’s transmission type (PDO TYPE)
in sub-index � of object 0x1401. A value in the range [0-�40] =
synchronous; [�54-�55] = asynchronous.

� Map the data Using the PDO’s mapping parameters (sub-indexes 1-4 of Receive
PDO Mapping Parameters, index 0x1601), you can map up to 4
objects (whose contents must total to no more than 8 bytes), as
follows: In bits 0-7 of the mapping value, enter the size (in bits) of
the object to be mapped, as specified in the object dictionary. In
bits 8-15, enter the sub-index of the object to be mapped. Clear
bits 8-15 if the object is a simple variable. In bits 16-�1, enter the
index of the object to be mapped.

4 Set the number of mapped objects
and enable the PDO

In the PDO’s Receive PDO Mapping Parameters (index 0x1601),
set sub-index 0 (NUMBER OF MAPPED OBJECTS) to the actual
number of objects mapped. This properly configures the PDO.
Also, the presence of a non-zero value in the NUMBER OF MAPPED
OBJECTS object enables the PDO

Example: Mapping a Receive PDO

This example illustrates the general procedure for mapping a receive PDO. In the example, the second receive
PDO is mapped to the device’s Control Word object (index 0x6040) to receive device state change commands
and to the Mode of Operation object (index 0x6060) to receive mode change commands.

3.5 Objects that Define SDO’s and PDO’s
To define an SDO or PDO, use the objects included in Table 5.

Table 5: Objects the Define an SDO or PDO

Object Index Sub-Index

Receive Object

Receive PDO Communication Parameters 0x1400 - 0x1407 --

PDO COB_ID Index 0x1400-7 1

PDO Type 0x1400-7 �

Receive PDO Mapping Parameters 0x1600 - 0x1607 --

Number of Mapped Objects 0x1600-7 0

PDO Mapping 0x1600-7 1-8

Transmit Object

Transmit PDO Communication Parameters 0x1800 - 0x1807 --

PDO COB-ID 0x1800-7 1

PDO Type 0x1800-7 �

Transmit PDO Mapping Parameters 0x1A00 - 0x1A07 --

Number of Mapped Objects 0x1A00-7 0

PDO Mapping 0x1A00-7 1-8

��P94CAN01B

Object Index Sub-Index

RECEIVE PDO COMMUNICATION PARAMETERS 0x1200 1

Type Access Units Range Map PDO Memory

Record RW -- -- NO --

Description
These objects allow configuration of the communication parameters of each receive PDO. Subindex 0 contains the number of sub-elements of this
record.

Object Index Sub-Index

PDO COB-ID 0x1200 1

Type Access Units Range Map PDO Memory

Unsigned �� RW -- Refer to Description NO R

Description
CAN message ID used by the PDO. The ID is formatted as follows:
Bit Description
0-10 Give the 11-bit identifier for standard (CAN �.0A) identifiers, or the lower 11 bits for extended (CAN �.0B) identifiers.
11-�8 Give the upper 18 bits of extended identifiers. For standard identifiers these bits should be written as zeros.
�9 Defines the identifier format. This bit is clear for standard (11-bit) identifiers, and set for extended (�9-bit) identifiers.
�0 Reserved for future use.
�1 Identifies the PDO as valid if clear. If set, the PDO is disabled and its mapping may be changed.
Default Values
The default values for this object are specified in the DS-�01 CANopen specification. These values are:
Index Default ID
0x1400 0x00000�00 + amplifier CAN node ID.
0x1401 0x00000�00 + amplifier CAN node ID.
0x140� 0x00000400 + amplifier CAN node ID.
0x140� 0x00000500 + amplifier CAN node ID.
0x1404 0x80000000
0x1405 0x80000000
0x1406 0x80000000
0x1407 0x80000000

Object Index Sub-Index

PDO Type 0x1400 – 7 2

Type Access Units Range Map PDO Memory

Unsigned 8 RW -- Refer to Description NO R

Description
This object controls the behavior of the PDO when new data is received. The following codes are defined for receive PDOs:
Code Behavior
0-�40 The received data is held until the next SYNC message. When the SYNC message is received the data is applied.
�41-�5� Reserved.
�54-�55 The received data is applied to its mapped objects immediately upon reception.

Object Index Sub-Index

Receive PDO Mapping Parameters 0x1600 – 0x1607 --

Type Access Units Range Map PDO Memory

Record RW -- -- NO --

Description
These objects allow the mapping of each of the receive PDO objects to be configured.

�� P94CAN01B

Object Index Sub-Index

Number of Mapped Objects 0x1600 – 7 0

Type Access Units Range Map PDO Memory

Unsigned 8 RW -- 0 - 8 NO R

Description
This value gives the total number of objects mapped to this PDO. It can be set to 0 to disable the PDO operation and must be set to 0 before
changing the PDO mapping. Once the PDO mapping has been established by configuring the objects in sub-indexes 1 – 8, this value should be
updated to indicate the actual number of objects mapped to the PDO.

Object Index Sub-Index

PDO Mapping 0x1600 – 7 1 - 8

Type Access Units Range Map PDO Memory

Unsigned �� RW -- Refer to Description NO R

Description
When a PDO message is received, the data passed with the PDO message (up to 8 bytes) is used to update the objects mapped to the PDO. The
values in the PDO mapping objects identify which object(s) the PDO data maps to. The first object is specified by the value in sub-index 1; the
second object is identified by sub-index �, etc. Each of the PDO mapping values consist of a ��-bit value structured as follows:
Bit Description
0-7 Size (in bits) of the object being mapped. Must match the actual object size as defined in the object dictionary.
8-15 Sub-index of the object to be mapped.
16-�1 Index of the object to be mapped.

Object Index Sub-Index

Transmit PDO Communication Parameters 0x1800 – 0x1807 --

Type Access Units Range Map PDO Memory

Record RW -- -- NO --

Description
These objects allow configuration of communication parameters of each transmit PDO object. Sub-index 0 contains the number of sub-elements of
this record.

Object Index Sub-Index

PDO COB-ID 0x1800 – 7 1

Type Access Units Range Map PDO Memory

Unsigned �� RW -- Refer to Description NO R

Description
This object holds the CAN object ID used by the PDO. The ID is formatted as follows:
Bit Description
0-10 11-bit identifier for standard (CAN �.0A) identifiers, or the lower 11 bits for extended (CAN �.0B) identifiers.
11-�8 Upper 18 bits of extended identifiers. For standard identifiers these bits should be written as zeros.
�9 Identifier format. This bit is clear for standard (11-bit) identifiers, and set for extended (�9-bit) identifiers.
�0 If set, remote transmit requests (RTR) are not allowed on this PDO. If clear, the PDO is transmitted in response to a remote request.
�1 Identifies the PDO as valid if clear. If set, the PDO is disabled and its mapping may be changed.

Default Values
The default values for this object are specified in the DS-�01 CANopen specification. These values are:
Index Default ID
0x1800 0x00000180 + amplifier CAN node ID.
0x1801 0x00000�80 + amplifier CAN node ID.
0x180� 0x00000�80 + amplifier CAN node ID.
0x180� 0x00000480 + amplifier CAN node ID.
0x1804 0x80000000
0x1805 0x80000000
0x1806 0x80000000
0x1807 0x80000000

�4P94CAN01B

Object Index Sub-Index

PDO Type 0x1800 – 7 2

Type Access Units Range Map PDO Memory

Unsigned 8 RW -- Refer to Description EVENT R

Description
This object identifies which events trigger a PDO transmission:
Code Behavior
0 The PDO is transmitted on the next SYNC message following a PDO event. See PDO Events, below, for a description of a PDO event.
1-�40 The PDO is transmitted every N SYNC messages, where N is the PDO type code. For example, a PDO with type code 7 would be

transmitted on every 7th SYNC message.
�41-�51 Reserved.
�5� The PDO is transmitted on the SYNC message following a remote request.
�5� The PDO is transmitted immediately in response to a remote request.
�54-�55 The PDO is transmitted immediately in response to an internal PDO event.

PDO Events

Some objects in the object dictionary have special PDO events associated with them. If such an object is
mapped to a transmit PDO, then the PDO may be configured with a code that relies on this event to trigger its
transmission. The codes that use PDO events are 0, �54, and �55.

An example of an object that has a PDO event associated with it is the Device Status object (index 0x6041). This
object triggers an event to any mapped transmit PDO each time its value changes.

A transmit PDO which included this object in its mapping would have its event signaled each time the status
register changed. Most objects in the object dictionary do not have PDO events associated with them. Those
that do are identified by the word EVENT in the PDO Mapping fields of their descriptions.

Object Index Sub-Index

Transmit PDO Mapping Parameters 0x1A00 – 0x1A07 --

Type Access Units Range Map PDO Memory

Record RW -- -- NO --

Description
These objects allow the mapping of each of the transmit PDO objects to be configured.

Object Index Sub-Index

Number of Mapped Objects 0x1A00 – 7 0

Type Access Units Range Map PDO Memory

Unsigned 8 RW -- 0 - 8 NO R

Description
Total number of objects mapped to this PDO. It can be set to 0 to disable the PDO operation, and must be set to 0 before changing the PDO
mapping. Once the PDO mapping has been established by configuring the objects in sub-indexes 1 – 4, this value should be updated to indicate
the actual number of objects mapped to the PDO.

Object Index Sub-Index

PDO Mapping 0x1A00 – 7 1 - 8

Type Access Units Range Map PDO Memory

Unsigned �� RW -- Refer to Description NO R

Description
When a PDO message is transmitted, the data passed with the PDO message (up to 8 bytes) is gathered from the objects mapped to the PDO.
The values in the PDO Mapping objects identify which object(s) the PDO data maps to. The first object is specified by the value in sub-index 1; the
second object is identified by sub-index �, etc. Each of the PDO mapping values consist of a ��-bit value structured as follows:
Bit Description
0-7 Size (in bits) of the object being mapped. This value must match the actual object size as defined in the object dictionary.
8-15 Sub-index of the object to be mapped.
16-�1 Index of the object to be mapped.

�5 P94CAN01B

4 Network Management
This chapter describes the messages, methods, and objects used to manage devices on a CANopen network.

4.1 Network Management Overview

4.� Network Management Objects

4.1 Network Management Overview
This section describes the objects, messages, and methods used to control the CANopen network.

4.1.1 Network Management Services and Objects
Network management services on the CANopen network include device state control, device monitoring,
synchronization, and emergency handling. Special communication objects, as summarized herein, provide
these services.

Object Description

Network Management (NMT) This object provides services to control the state of the device, including the
initialization, starting, monitoring, resetting, and stopping of nodes. It also
provides device-monitoring services (node-guarding and heartbeat).

Synchronization (SYNC) Broadcast periodically by a specified device or the CANopen master to allow
synchronized activity among multiple devices. The CAN message ID of the
SYNC message is 80.

Time Stamp Broadcast periodically by a specified device or the CANopen master to allow
devices to synchronize their clocks.

Emergency Transmitted by a device when an internal error occurs.

Network Manager Node

In general applications, a single node (such as a PC) is designated as the network manager. The network
manager runs the software that issues all NMT messages. The network manager node can be the same node
that runs the CANopen master application.

4.1.2 General Device State Control
State Machine

Every CANopen device implements a simple state machine. The machine defines three states (pre-operational,
operational and stopped). The network manager application uses NMT messages to interact with the state
machine and control state changes.

Device States

The following states are defined for AC Technology CANopen amplifiers:

State Description

Pre-operational Every node enters this state after power-up or reset. In this state, the device is not functional,
but will communicate over the CANopen network. PDO transfers are not allowed in pre-
operational state, but SDO transfers may be used.

Operational This is the normal operating state for all devices. SDO and PDO transfers are both allowed.

Stopped No communication is allowed in this state except for network management messages.
Neither SDO nor PDO transfers may be used.

�6P94CAN01B

State Control Messages

NMT messages can be used to control state changes on network devices. The following NMT messages are
sent by the network manager to control these state changes. Each of these messages can be either sent to a
single node (by node ID), or broadcast to all nodes:

NMT Message Cause/Effect

Reset Causes each receiving node to perform a soft reset and come up in pre-operational
state.

Reset communications Causes each receiving node to reset its CANopen network interface to power-on state,
and enter pre-operational state. This is not a full device reset, just a reset of the
CANopen interface.

Pre-operational Causes the receiving node(s) to enter pre-operational state. No reset is performed.

Start Causes the node(s) to enter operational state.

Stop Causes the node(s) to enter stopped state.

4.1.3 Device Monitoring
Monitoring Protocols

In addition to controlling state machines, NMT messages provide services for monitoring devices on the
network. Monitoring services use one of two protocols: heartbeat and node guarding.

Heartbeat Protocol

The heartbeat protocol allows the network manager application to detect problems with a device or its network
connection. The CANopen master configures the device to periodically transmit a heartbeat message indicating
the device’s current state (pre-operational, operational, or stopped). The network manager monitors the
heartbeat messages. Failure to receive a node’s heartbeat messages indicates a problem with the device or its
connection to the network.

Node-guarding Protocol

The node-guarding protocol is similar to the heartbeat, but it allows both the device and the network manager
to monitor the connection between them. The network manager configures the device (node) to expect node-
guarding messages at some interval. The network manager then sends a message to the configured device at
that frequency, and the device responds with a node-guarding message. This allows both the network manager
and the device to identify a network failure if the guarding messages stop.

SYNC and High-resolution Time Stamp Messages

The SYNC message is a standard CANopen message used to synchronize multiple devices and to trigger
the synchronous transmission of PDOs. In addition, to allow more accurate synchronization of device clocks,
CANopen amplifiers use the optional high-resolution time stamp message specified in the Communication
Profile. Normally, a single device produces both the SYNC message and the high-resolution time stamp
message.

�7 P94CAN01B

4.1.4 Time Stamp PDOs
The device designated as the time stamp producer should have a transmit PDO mapped for the high-resolution
time stamp message. This PDO should be configured for synchronous transmission, based on the SYNC
message. It is recommended to send this message approximately every 100 milliseconds.

Every other device (all time stamp consumers) should have a receive PDO mapped for the high resolution time
stamp message. The message ID of each receive PDO used to receive a time stamp should match the ID of the
transmit PDO used to send the time stamp.

Configuring the devices in this fashion causes the time stamp producer to generate a transmit PDO for every N
sync messages. This PDO is received by each of the time stamp consumers on the network and causes them to
update their internal system times based on the message content. The result is that all devices on the network
act as though they share the same clock input, and remain tightly synchronized.

4.1.5 Emergency Messages
A device sends an 8-byte emergency message (EMCY) when an error occurs in the device. It contains information
about the error type, and AC Tech-specific information. A device need only send one EMCY message per event.
Any device can be configured to accept EMCY messages.

EMCY Message Structure

The EMCY message is structured as follows:

Bytes Description

0, 1 Emergency error code. See EMCY Message CANopen Error Codes

� Error register object value See Error Register object index 0x1001

� Reserved for future use (0 for now).

4,5 Bit mask of active error conditions on the amplifier EMCY: AC Tech-Specific Error Conditions.

6,7 Reserved for future use (0 for now).

EMCY Message CANopen Error Codes

Bytes 0 and 1 of the EMCY message describe the standard CANopen error codes. AC Tech amplifiers support
Error codes 00xx and 10xx.

Error Code (hex Description Error Code (hex Description

00xx Error Reset or No Error 6�xx User Software

10xx Generic Error 6�xx Data Set

�0xx Current 70xx Additional Modules

�1xx Current, device input side 80xx Monitoring

��xx Current inside the device 81xx Communication

��xx Current, device output side 8110 CAN Overrun (Objects lost)

�0xx Voltage 81�0 CAN in Error Passive Mode

�1xx Mains Voltage 81�0 Life Guard Error or Heartbeat Error

��xx Voltage inside the device 8140 recovered from bus off

��xx Output Voltage 8150 Transmit COB-ID

40xx Temperature 8�xx Protocol Error

41xx Ambient Temperature 8�10 PDO not processed due to length error

4�xx Device Temperature 8��0 PDO length exceeded

50xx Device Hardware 90xx External Error

60xx Device Software F0xx Additional Functions

61xx Internal Software FFxx Device specific. XX represents fault number
specified in Programmer’s manual

�8P94CAN01B

4.2 Network Management Objects
This section describes objects closely related to network management. They include:

COB-ID SYNC MESSAGE INDEX 0X1005

PRODUCER HEARTBEAT TIME INDEX 0X1017

EMERGENCY OBJECT ID INDEX 0X1014

EMERGENCY OBJECT ID INHIBIT TIME INDEX 0X1015

Object Index Sub-Index

COB-ID SYNC MESSAGE 0X1005 --

Type Access Units Range Map PDO Memory

Unsigned �� RW -- See SYNC ID Format NO R

Description
This object establishes an amplifier as the SYNC producer and defines the CAN object ID (COBID) associated with the SYNC message. The SYNC
message is a standard CANopen message type used to synchronize multiple devices on a CANopen network.
SYNC ID Format: The SYNC message ID is formatted as follows:
Bits Description
0-10 Give the 11-bit identifier for standard (CAN �.0A) identifiers, or the lower 11 bits for extended (CAN �.0B) identifiers.
11-�8 Give the upper 18 bits of extended identifiers. For standard identifiers these bits should be written as zeros.
�9 Identifier format. This bit is clear for standard (11-bit) identifiers, and set for extended (�9-bit) identifiers.
�0 If set, the amplifier is configured as the SYNC message producer. This bit should be set in at most one amplifier on a network.
�1 Reserved

Object Index Sub-Index

PRODUCER HEARTBEAT TIME 0X1017 --

Type Access Units Range Map PDO Memory

Unsigned 16 RW milliseconds -- NO R

Description
This object gives the frequency at which the amplifier will produce heartbeat messages. This object may be set to zero to disable heartbeat
production. Note that only one of the two nodeguarding methods may be used at once. If this object is non-zero, then the heartbeat protocol is used
regardless of the settings of the node-guarding time and lifetime factor.

Object Index Sub-Index

EMERGENCY OBJECT ID 0X1014 --

Type Access Units Range Map PDO Memory

Unsigned �� RW -- -- NO R

Description
CAN message ID used with the emergency object. Refer to the CANopen Application Layer and Communication Profile (DS �01).

Object Index Sub-Index

EMERGENCY OBJECT ID INHIBIT TIME 0X1015 --

Type Access Units Range Map PDO Memory

Unsigned 16 RW milliseconds -- NO R

Description
Inhibit time for the emergency object. Refer to the CANopen Application Layer and Communication Profile (DS �01).

�9 P94CAN01B

5 Device Configuration and Control through Native Variables List
5.1 Native Control

5.� Objects to Access Drive Variables

5.1 Native Control
Every aspect of the PositionServo can be manipulated by writing or reading the drive’s internal variable(s). All
variables are addressed by their respective index number. Variables are listed in the “complete list of variables”
in the PositionServo Programmer’s Manual.

Every variable can be interpreted as �� bit Integer or as DOUBLE. Each variable has its native format inside
and without regards to how the value was sent, it will be casted to its natural format by the drive. For example:
Drive variable #�0 is the drive’s current limit. Its natural format is float. However this variable can be set as
Integer type as well. Of course the fractional portion of the value can’t be changed by Integer type but if integer
precision is enough it can be used.

All variables are located in RAM but some of them have non-volatile copy in EPM memory. Implementation of
the CANopen interface provides 4 types of objects to access the drive’s variables. Objects with indexes 0x�000
– 0x��FF read or write RAM time copies of the variables as �� bit integers. Objects with indexes 0x�400 – 0x
�7FF read or write RAM time copies of the variables as Float numbers. Objects with indexes 0x�000-0x��FF
write RAM and EPM copies and read EPM copies of the variables as Integer �� numbers. Objects with indexes
0x�400-0x�7FF write RAM and EPM copies and read EPM copies of the variables as Float numbers.

This organization gives the user unified access to variables and simplifies implementation of communication
software.

5.2 Objects to Access the Drive’s RAM Variables

Object Index Sub-Index

RAM VARIABLES 0X2000-0X23FF --

Type Access Units Range Map PDO Memory

Unsigned �� RW -- -- NO R

Description
Objects in this range Read or Write corresponding internal drive’s RAM copies of the variables as Integer �� values. Object Index to access
particular variable calculated as: Object Index = 0x�000 + VarID ,
where:
VarID is the variable ordinal index from the variable table. (Variable table is provided in Programmer’s Manual).
For Units and Range of every particular variable please refer to Complete list of Variables in Programmer’s Manual.

Object Index Sub-Index

RAM VARIABLES 0X2400-0X27FF --

Type Access Units Range Map PDO Memory

Unsigned �� R/W -- -- NO R

Description
Objects in this range Read or Write corresponding internal drive’s RAM copies of the variables as Float values. Object Index to access particular
variable calculated as: Object Index = 0x�400 + VarID,
where:
VarID is the variable ordinal index from the variable table. (Variable table is provided in Programmer’s Manual).
For Units and Range of every particular variable please refer to Complete list of Variables in Programmer’s Manual.

�0P94CAN01B

Object Index Sub-Index

RAM VARIABLES 0X3000-0X33FF --

Type Access Units Range Map PDO Memory

Float R/W -- -- NO RF

Description
Objects in this range:
• Write corresponding internal drive’s RAM and EPM copies of the variables as Integer �� values.
• Read corresponding internal drive’s EPM copies of the variables as Integer �� values
Object Index to access particular variable calculated as: Object Index = 0x�000 + VarID,
where:
VarID is the variable ordinal index from the variable table. (Variable table is provided in Programmer’s Manual).
For Units and Range of every particular variable please refer to Complete list of Variables in Programmer’s Manual.

Object Index Sub-Index

RAM VARIABLES 0X3400-0X37FF --

Type Access Units Range Map PDO Memory

Float R/W -- -- NO RF

Description
Objects in this range:
• Write corresponding internal drive’s RAM and EPM copies of the variables as Float values.
• Read corresponding internal drive’s EPM copies of the variables as Float values
Object Index to access particular variable calculated as: Object Index = 0x�000 + VarID ,
where:
VarID is the variable ordinal index from the variable table. (Variable table is provided in Programmer’s Manual).
For Units and Range of every particular variable please refer to Complete list of Variables in Programmer’s Manual.

6 Device Control, Configuration and Status
This chapter describes a wide range of device control, configuration, and status methods and objects.

6.1 Device Control and Status Overview

6.� Device Control and Status Objects

6.� Error Management Objects

6.4 Basic Amplifier Configuration Objects

6.5 Basic Motor Configuration Objects

6.1 Device Control and Status Overview
This section describes the objects and functions used to control the status of an amplifier including:

6.1.1 Control Word, Status Word, and Device Control Function

6.1.� State Changes Diagram

6.1.1 Control Word, Status Word, and Device Control Function
Device Control Function Block

The Profile for Drives and Motion Control describes control of the amplifier in terms of a control function block
with two major sub-elements: the operation modes and the state machine.

Control and Status Words

As illustrated in Figure 8, the Control Word object (index 0x6040, paragraph 6.�, page �4) manages device
mode and state changes. The Status Word object (index 0x6041, paragraph 6.�, page �4) identifies the current
state of the amplifier. Other factors affecting control functions include: digital input signals, fault conditions,
and settings in various dictionary objects.

�1 P94CAN01B

Status Word (0x6041)

Control Word (0x6040)

Digital

Fault

Modes of Operation (0x6060)

Device Control Function Block

State MachineOperation Mode

Homing;
Profile Position; Profile Velocity;

Current; Voltage

Figure 8: Control and Status Words

Operation Modes

As mentioned elsewhere in this manual, AC Tech CANopen amplifiers support these operation modes:

Homing

Profile position

Profile velocity

Current follower

Velocity follower

State Machine Nesting and States

Note that the Communication Profile also specifies a state machine, with three states: preoperational,
operational, and stopped. The entire device control function block described in this chapter, including the
device state machine, operates in the operational state of the Communication Profile state machine.

The state machine describes the status and possible control sequences of the drive. The state also determines
which commands are accepted. States are described herein:

State Description

Not Ready to Switch On Low-level power (e.g. _ 15V, 5V) has been applied to the drive. The drive is being
initialized or is running self-test. A brake, if present, is applied in this state. The drive
function is disabled.

Switch On Disabled Drive initialization is complete. The drive parameters have been set up. Drive
parameters may be changed. The drive function is disabled.

Ready to Switch On The drive parameters may be changed. The drive function is disabled.

Switched On High voltage has been applied to the drive. The power amplifier is ready. The drive
parameters may be changed. The drive function is disabled.

Operation Enable No faults have been detected. The drive function is enabled and power is applied
to the motor. The drive parameters may be changed. (This corresponds to normal
operation of the drive.)

•

•

•

•

•

��P94CAN01B

Quick Stop Active The drive parameters may be changed. The quick stop function is being executed.
The drive function is enabled and power is applied to the motor. If the ‘Quick-Stop-
Option-Code’ is switched to 5 (Stay in Quick-Stop), the amplifier cannot exit the
Quick-Stop-State, but can be transmitted to ‘Operation Enable’ with the command
‘Enable Operation.”

Fault Reaction Active The drive parameters may be changed. A non-fatal fault has occurred in the drive.
The quick stop function is being executed. The drive function is enabled and power
is applied to the motor.

Fault The drive parameters may be changed. A fault has occurred in the drive. The drive
function is disabled.

6.1.2 State Changes Diagram
The diagram illustrated in Figure 9 is from the Profile for Drives and Motion Control and shows the possible
state change sequences of an amplifier. Each transition is numbered and described in the legend herein.

Operation Enable

Start

Quick Stop Active

Fault

Power
Enabled

Fault

Fault Reaction Active

Not Ready to Switch ON

Switch ON Disabled

Ready to Switch ON

Switched ON

Power
Disabled

1

0

2

3

4 5

6

7

89

10

11

12

16

13

14

15

Figure 9: State Changes

�� P94CAN01B

State Changes Diagram Legend

From State To State Event/Action

0 Startup Not Ready to Switch On Event: Reset.
Action: The drive self-tests and/or self-initializes

1 Not Ready to Switch On Switch On Disabled Event: The drive has self-tested and/or initialized successfully.
Action: Activate communication and process data monitoring

� Switch On Disabled Ready to Switch On Event: ‘Shutdown’ command received from host.
Action: None

� Ready to Switch On Switched On Event: ‘Switch On’ command received from host.
Action: The power section is switched on if it is not already switched on

4 Switched On Operation Enable Event: ‘Enable Operation’ command received from host.
Action: The drive function is enabled.

5 Operation Enable Switched On Event: ‘Disable Operation’ command received from host.
Action: The drive operation is disabled.

6 Switched On Ready to Switch On Event: ‘Shutdown’ command received from host.
Action: The power section is switched off.

7 Ready to Switch On Switch On Disabled Event: ‘Quick stop’ command received from host.
Action: None

8 Operation Enable Ready to Switch On Event: ‘Shutdown’ command received from host.
Action: The power section is switched off immediately, and the motor is free to
rotate if unbraked

9 Operation Enable Switch On Disabled Event: ‘Disable Voltage’ command received from host.
Action: The power section is switched off immediately, and the motor is free to
rotate if unbraked

10 Switched On Switch On Disabled Event: ‘Disable Voltage’ or ‘Quick Stop’ command received from host.Action:
The power section is switched off immediately, and the motor is free to rotate
if unbraked

11 Operation Enable Quick Stop Active Event: ‘Quick Stop’ command received from host. \
Action: The Quick Stop function is executed.

1� Quick Stop Active Switch On Disabled Event: ‘Quick Stop’ is completed or ‘Disable Voltage’ command received from
host. This transition is possible if the Quick-Stop-Option-Code is not 5 (Stay in
Quick-Stop)
Action: The power section is switched off.

1� FAULT Fault Reaction Active Event: A fatal fault has occurred in the drive.
Action: Execute appropriate fault reaction.

14 Fault Reaction Active Fault Event: The fault reaction is completed.
Action: The drive function is disabled. The power section may be switched off.

15 Fault Switch On Disabled Event: ‘Fault Reset’ command received from host.
Action: A reset of the fault condition is carried out if no fault exists currently
on the drive. After leaving the ‘Fault’ state the Bit ‘Fault Reset’ of the Control
Word has to be cleared by the host.

16 Quick Stop Active Operation Enable Event: ‘Enable Operation’ command received from host. This transition is
possible if the Quick-Stop-Option-Code is 5, 6, 7, or 8 (see the Quick Stop
Option Code object, index 0x6085, paragraph 6.�, page �5).
Action: The drive function is enabled.

�4P94CAN01B

6.2 Device Control and Status Objects
This section describes the objects used to control the status of an amplifier including:

CONTROL WORD INDEX 0X6040

STATUS WORD INDEX 0X6041

QUICK STOP OPTION CODE INDEX 0X605A

SHUTDOWN OPTION CODE INDEX 0X605B

DISABLE OPERATION OPTION CODE INDEX 0X605C

MODE OF OPERATION INDEX 0X6060

MODE OF OPERATION DISPLAY INDEX 0X6061

REFERENCE SOURCE INDEX 0X�0�5

MANUFACTURER STATUS REGISTER INDEX 0X100�

Object Index Sub-Index

CONTROL WORD 0X6040 --

Type Access Units Range Map PDO Memory

Unsigned 16 RW -- See Description YES R

Description
This object is used to controls the state of the amplifier. It can be used to enable / disable the amplifier output, start, and abort moves in all
operating modes, and clear fault conditions.
Control Word Bit Mapping: The value programmed into this object is bit-mapped as follows:
Bits Description
0 Switch On. This bit must be set to enable the amplifier.
1 Enable Voltage. This bit must be set to enable the amplifier.
� Quick Stop. If this bit is clear, then the amplifier is commanded to perform a quick stop.
� Enable Operation. This bit must be set to enable the amplifier.
4-6 Operation mode specific. Descriptions appear in the sections that describe the various operating modes
7 Reset Fault. A low-to-high transition of this bit makes the amplifier attempt to clear any latched fault condition.
8-15 Reserved for future use.

Object Index Sub-Index

STATUS WORD 0X6041 --

Type Access Units Range Map PDO Memory

Unsigned 16 RO -- Refer to Description YES --

Description
This object identifies the current state of the amplifier and is bit-mapped as follows:
Bits Description
0 Ready to switch on.
1 Switched on.
� Operation Enabled. Set when the amplifier is enabled.
� Fault. If set, a latched fault condition is present in the amplifier.
4 Voltage enabled. Set if the amplifier bus voltage is above the minimum necessary for normal operation.
5 Quick Stop. When clear, the amplifier is performing a quick stop.
6 Switch on disabled.
8 Set if the last trajectory was aborted rather then finishing normally.
 Remote. Set when the amplifier is being controlled by the CANopen interface. When clear, the amplifier may be monitored through this

interface, but some other input source is controlling it.
10 Target Reached. This bit is set when the motor has come to rest at the target position. This bit is cleared when a trajectory is running,

or when the position error is greater then the tracking window value.
11 Internal Limit Active. This bit is set when amplifier limits current.
1�-1� The meanings of these bits are operation mode specific.
14-15 Set when the amplifier is performing a move and cleared when the trajectory finishes. This bit is cleared immediately at the end of the

move, not after the motor has settled into position.

�5 P94CAN01B

Object Index Sub-Index

QUICK STOP OPTION CODE 0X605A --

Type Access Units Range Map PDO Memory

Unsigned 16 RW -- Refer to Description NO R

Description
This object defines the behavior of the amplifier when a quick stop command is issued. The following values are defined:
Value Description
0 Disable the amplifier’s outputs
1 Slow down using the slow down ramp (i.e. the normal move deceleration value). When the move has been successfully aborted the

amplifier’s state will transition to the ‘switch on disabled’ state.
� Slow down using the quick stop ramp, then transition to ‘switch on disabled’.
5 Slow down using the slow down ramp. The amplifier state will remain in the ‘quick stop’ state after the move has been finished.
6 Slow down using the quick stop ramp and stay in ‘quick stop’ state.
All other values will produce unspecified results and should not be used.

Object Index Sub-Index

SHUTDOWN OPTION CODE 0X605B --

Type Access Units Range Map PDO Memory

Unsigned 16 RW -- Refer to Description NO R

Description
This object defines the behavior of the amplifier when the amplifier’s state is changed from ‘operation enabled’ to ‘ready to switch on’. The
following values are defined:
Value Description
0 Disable the amplifier’s outputs
1 Slow down using the slow down ramp (i.e. the normal move deceleration value).
All other values will produce unspecified results and should not be used.

Object Index Sub-Index

DISABLE OPERATION OPTION CODE 0X605C --

Type Access Units Range Map PDO Memory

Unsigned 16 RW -- Refer to Description NO R

Description
This object defines the behavior of the amplifier when the amplifier’s state is changed from ‘operation enabled’ to ‘switched on’. The following
values are defined:
Value Description
0 Disable the amplifier’s outputs
1 Slow down using the slow down ramp (i.e. the normal move deceleration value).
All other values will produce unspecified results and should not be used.

Object Index Sub-Index

MODE OF OPERATION 0X6060 --

Type Access Units Range Map PDO Memory

Unsigned 8 RW -- Refer to Description YES R

Description
This object selects the amplifier’s mode of operation. The modes of operation presently supported by this device are:
Mode Description
-1 Single loop Current follower
-� Single loop Velocity follower
1 Profile Position mode
� Profile Velocity mode
6 Homing mode
The amplifier will not accept other values. Note that there may be some delay between setting the mode of operation and the amplifier assuming
that mode. To read the active mode of operation, use object 0x6061.

�6P94CAN01B

Object Index Sub-Index

MODE OF OPERATION DISPLAY 0X6061 --

Type Access Units Range Map PDO Memory

Unsigned 8 RO -- Refer to Description YES --

Description
This object displays the current mode of operation. Refer to Mode of Operation (index 0x6060, paragraph 6.�, page �5).

Object Index Sub-Index

REFERENCE SOURCE 0X2025 --

Type Access Units Range Map PDO Memory

Unsigned 16 RW -- Refer to Description YES --

Description
This object configures type of the reference for Velocity follower or Current follower modes. Refer to Mode of Operation (index 0x6060, paragraph
6.�, page �5) ,NON PROFILED OPERATING MODES (paragraph 8, page 6�) and Control Loop Configuration (paragraph 7, page 51). Possible values
are:
Value Description
0 Reference configured to be Analog input #1
1 Reference configured to a digital value. Object number depends on the operating mode

Object Index Sub-Index

MANUFACTURER STATUS REGISTER 0X1002 --

Type Access Units Range Map PDO Memory

Unsigned �� RO -- Refer to Description YES --

Description
This ��-bit object is a bit-mapped status register with the following fields:
Bit in register Description
0 Set when drive enabled
1 Set if DSP subsystem at any fault
� Set if drive has a valid program
� Set if byte-code or system or DSP at any fault
4 Set if drive has a valid source code
5 Set if motion completed and target position is within specified limits
6 Set when scope is triggered and data collected
7 Set if motion stack is full
8 Set if motion stack is empty
9 Set if byte-code halted
10 Set if byte-code is running
11 Set if byte-code is set to run in step mode
1� Set if byte-code is reached the end of program
1� Set if current limit is reached
14 Set if byte-code at fault
15 Set if no valid motor selected
16 Set if byte-code at arithmetic fault
17 Set if byte-code at user fault
18 Set if DSP initialization completed
19 Set if registration has been triggered
�0 Set if registration variable was updated from DSP after last trigger
�1 Set if motion module at fault
�� Set if motion suspended
�� Set if program requested to suspend motion
�4 Set if system waits completion of motion
�5 Set if motion command completed and motion Queue is empty
�6 Set if byte-code task requested reset
�7 If set interface control is disabled. This flag is set/clear by ICONTROL ON/OFF statement.
�8 Set if positive limit switch reached
�9 Set if negative limit switch reached
�0 Events disabled. All events disabled when this flag is set. After executing EVENTS ON all events previously enabled by EVENT

EventName ON statements become enabled again
�1 Set if ‘under voltage’ condition detected

�7 P94CAN01B

Object Index Sub-Index

EXTENDED STATUS REGISTER 0X2053 --

Type Access Units Range Map PDO Memory

Unsigned �� RO -- Refer to Description YES --

Description
This ��-bit object is a bit-mapped extended status register with the following fields:
Bit in register Description
0 DSP subsystem in run mode
1 Velocity in specified velocity window
� Registration input detected
� DSP system in fault state
4 DSP system ready to run
5 Velocity within Zero limits
6 Reserved
7 Reserved
8 Reserved
9 Encoder lost
10 Encoder data invalid
11 Regen output ON (active)
1� Motor powered
1� Over-current flag
14 Reserved
15 Reserved
16 Event processor is running
17 Events are set to run in step mode
18 Reserved
19 Set if parameter’s flash file is not valid (checksum doesn’t match)
�0 Set if indexer program protected by password
�1 If set then PositionServo is in Test Mode

6.3 Error Management Objects
This section describes the objects used to view error status and define error limits and error handling. They
include:

PRE-DEFINED ERROR OBJECT INDEX 0X100�

NUMBER OF ERRORS INDEX 0X100� SUB-INDEX 0

STANDARD ERROR FIELD INDEX 0X100� SUB-INDEX 1-8

ERROR REGISTER INDEX 0X1001

FAULT STATUS INDEX 0X�009

This is the FAULT History access:

Object Index Sub-Index

PRE-DEFINED ERROR OBJECT 0X1003 --

Type Access Units Range Map PDO Memory

Array RW -- -- NO R

Description
This object provides an error history. Each sub-index object holds an error that has occurred on the device and has been signaled via the
Emergency Object. Refer to Emergency Messages. The entry at sub-index 0 contains the number of errors that are recorded in the array starting at
sub-index 1. Each new error is stored at sub-index 1. Older errors move down the list.

�8P94CAN01B

Object Index Sub-Index

NUMBER OF ERRORS 0X1003 0

Type Access Units Range Map PDO Memory

Unsigned 8 RW -- 0 - 8 NO R

Description
This object provides the number of errors in the error history (number of sub-index objects 1-8). Writing a 0 deletes the error history (empties the
array). Writing a value higher than 0 results in an error.

Object Index Sub-Index

STANDARD ERROR FIELD 0X1003 1-8

Type Access Units Range Map PDO Memory

Unsigned �� RW -- -- NO R

Description
One sub-index object for each error found, up to 8 errors. Each is composed of a 16-bit error code and a 16-bit additional error information field.
The error code is contained in the lower � bytes (LSB) and the additional information is included in the upper � bytes (MSB).

Object Index Sub-Index

ERROR REGISTER 0X1001 --

Type Access Units Range Map PDO Memory

Unsigned 8 RO -- Refer to Description YES --

Description
This object is a bit-mapped list of error conditions present in the amplifier. The bits used in this register are mapped as follows:
Bits Description
0 Generic error. This bit is set any time there is an error condition in the amplifier.
1 Current error. Indicates either a short circuit on the motor outputs, or excessive current beyond amplifier capability was detected.
� Voltage error. The DC bus voltage supplied to the amplifier is either over or under the amplifier’s limits.
� Temperature error. Either the amplifier or motor is over temperature. Note that the amplifier will only detect a motor over temperature

condition if an amplifier input has been configured to detect this condition.
4 Communication error. The amplifier does not presently use this bit.
5 Reserved. Undefined
6 Reserved. Always 0.
7 The following errors cause this bit to be set; tracking error, limit switch active.

�9 P94CAN01B

Object Index Sub-Index

FAULT STATUS 0X2009 --

Type Access Units Range Map PDO Memory

Unsigned �� RO -- Refer to Description YES R

Description
This object allows latching fault conditions to be viewed. When the object is read, any set bit will indicate a latching fault condition:
Fault ID Associated Flags* Description
1 1, � Overvoltage
� 1, � Invalid hall sensors code
� 1, � Overcurrent
4 1, � Overtemperature
5 1, � Reserved
6 1, � Overspeed. (Overspeed limit set by motor capability in motor file)
7 1, � Position error excess.
8 1, � Attempt to enable while motor data array invalid or motor was not selected.
9 1,� Motor overtemperature switch activated
10 1,� Subprocessor error
11-1� - Reserved
14 1,� Undervoltage
15 1,� Hardware current trip protection
16 - Reserved
17 � Unrecoverable error.
18 16 Division by zero
19 16 Arithmetic overflow
�0 � Subroutine stack overflow. Exceeded 16 levels subroutines stack depth.
�1 � Subroutine stack underflow. Attempt to execute RETURN statement without preceding call to subroutine.
�� � Variable evaluation stack overflow. Expression too complicated for compiler to process.
�� �1 Motion Queue overflow. �� levels depth exceeded
�4 �1 Motion Queue underflow. Last queued MDV statement has non 0 target velocity
�5 � Unknown opcode. Byte code interpreter error
�6 � Unknown byte code. Byte code interpreter error
�7 �1 Drive disabled. Attempt to execute motion while drive is disabled.
�8 16, �1 Accel too big. Motion statement parameters result in calculating too big Accel value for system to handle
�9 16, �1 Accel too small. Motion statement parameters result in calculating too small Accel value for system to handle
�0 16, �1 Velocity too big. Motion statement parameters result in calculating too big velocity value for system to handle
�1 16, �1 Velocity too small. Motion statement parameters result in calculating too small velocity value for system to handle

* Associated Flags in Status Register (Object Index 0x100�, paragraph 6.�, page �6)

40P94CAN01B

6.4 Basic Amplifier Configuration Objects
Objects described in this section provide access to basic amplifier parameters. They include:

DEVICE TYPE INDEX 0X1000

DEVICE NAME INDEX 0X1008

HARDWARE VERSION STRING INDEX 0X1009

SOFTWARE VERSION NUMBER INDEX 0X100A

IDENTITY OBJECT INDEX 0X1018

VENDOR ID INDEX 0X1018 SUB-INDEX 1

PRODUCT CODE INDEX 0X1018 SUB-INDEX �

REVISION NUMBER INDEX 0X1018 SUB-INDEX �

SERIAL NUMBER INDEX 0X1018 SUB-INDEX 4

AMPLIFIER NAME INDEX 0X�060

CANOPEN NETWORK CONFIGURATION INDEX 0X�0EA

SUPPORTED DRIVE MODES INDEX 0X650�

AMPLIFIER MODEL NUMBER INDEX 0X650�

AMPLIFIER MANUFACTURER INDEX 0X6504

MANUFACTURER’S WEB ADDRESS INDEX 0X6505

AMPLIFIER DATA INDEX 0X6510

AMPLIFIER SERIAL NUMBER INDEX 0X6510 SUB-INDEX 1

AMPLIFIER DATE CODE INDEX 0X6510 SUB-INDEX �

AMPLIFIER PEAK CURRENT INDEX 0X6510 SUB-INDEX �

AMPLIFIER CONTINUOUS CURRENT INDEX 0X6510 SUB-INDEX 4

AMPLIFIER PEAK CURRENT TIME INDEX 0X6510 SUB-INDEX 5

AMPLIFIER MAXIMUM VOLTAGE INDEX 0X6510 SUB-INDEX 6

AMPLIFIER MINIMUM VOLTAGE INDEX 0X6510 SUB-INDEX 7

AMPLIFIER MAXIMUM TEMPERATURE INDEX 0X6510 SUB-INDEX 8

AMPLIFIER CURRENT LOOP PERIOD INDEX 0X6510 SUB-INDEX 9

AMPLIFIER SERVO LOOP PERIOD INDEX 0X6510 SUB-INDEX 10

AMPLIFIER TYPE CODE INDEX 0X6510 SUB-INDEX 11

DEVICE TYPE INDEX 0X67FF

Object Index Sub-Index

DEVICE TYPE 0X1000 --

Type Access Units Range Map PDO Memory

Unsigned �� RO -- Refer to Description NO --

Description
Describes the type of device and its functionality. This ��-bit value is composed of two 16-bit components. The lower two bytes identify the device
profile supported by the device. This amplifier supports the DSP40� device profile, indicated by the value 0x019�. The upper two bytes give
detailed information about the type of motors the drive can control. The bit mapping of this value is defined by the Profile for Drives and Motion
Control. CANopen amplifiers, this value is 0x000�, indicating that supports servo devices.

41 P94CAN01B

Object Index Sub-Index

DEVICE NAME 0X1008 --

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO --

Description
An ASCII string which gives the amplifier’s model number.

Object Index Sub-Index

HARDWARE VERSION STRING 0X1009 --

Type Access Units Range Map PDO Memory

String Const -- -- NO --

Description
Describes amplifier hardware version.

Object Index Sub-Index

SOFTWARE VERSION NUMBER 0X100A --

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO --

Description
Contains an ASCII string listing the software version number of the amplifier.

Object Index Sub-Index

IDENTITY OBJECT 0X1018 --

Type Access Units Range Map PDO Memory

Record RO -- -- NO --

Description
This object can uniquely identify an amplifier by unique manufacturer ID, serial number, and product revision information. Sub-index 0 contains the
number of sub-elements of this record.

Object Index Sub-Index

VENDOR ID 0X1018 1

Type Access Units Range Map PDO Memory

Unsigned �� RO -- 0x0000019C NO --

Description
A unique identifier assigned to AC Technology Corp. The value of this identifier is fixed at: 0x0000019C

Object Index Sub-Index

PRODUCT CODE 0X1018 2

Type Access Units Range Map PDO Memory

Unsigned �� RO -- Refer to Description NO --

Description
A value that uniquely identifies the amplifier type. The currently defined values for this object are:
Value Product
940 940 Position Servo

4�P94CAN01B

Object Index Sub-Index

REVISION NUMBER 0X1018 3

Type Access Units Range Map PDO Memory

Unsigned �� RO -- -- NO --

Description
Identifies the revision of the CANopen interface.

Object Index Sub-Index

SERIAL NUMBER 0X1018 4

Type Access Units Range Map PDO Memory

Unsigned �� RO -- -- NO --

Description
Identifies the amplifier’s serial number.

Object Index Sub-Index

AMPLIFIER NAME 0X2002 --

Type Access Units Range Map PDO Memory

Visible string RW -- -- NO F

Description
This object may be used to assign a name an amplifier. The data written here is stored to flash memory and is not used by the amplifier. Although
this object is documented as holding a string (i.e. ASCII data), any values may be written here.

Object Index Sub-Index

CANOPEN NETWORK CONFIGURATION 0X20EA --

Type Access Units Range Map PDO Memory

Unsigned 16 RW -- Refer to Description NO RF

Description
This object is used to configure the CANopen network bit rate and node ID for the amplifier. Values written here are stored to flash memory. The
new network configuration will not take effect until the amplifier is reset.
Bit Description
0-6 Node ID value.
7 Reserved for future use.
8-11 Reserved
1�-15 Network bit rate setting.

On power-up (or after a reset), the amplifier will determine its node ID programmed in bits 0-6. Note that the node ID value zero is not a legal
CANopen ID, and will result in unspecified action.The network bit rate is encoded as one of the following values:

Code Bit Rate (bits / second)
0 1,000,000
1 800,000
� 500,000
� �50,000
4 1�5,000
5 50,000
6 �0,000
7-15 Reserved for future use

4� P94CAN01B

Object Index Sub-Index

SUPPORTED DRIVE MODES 0X6502 --

Type Access Units Range Map PDO Memory

Unsigned �� RO -- Refer to Description NO --

Description
This bit-mapped value gives the modes of operation supported by the amplifier. The standard device profile (DSP40�) defines several modes of
operation. Each mode is assigned one bit in this variable. A drive indicates its support for the mode of operation by setting the corresponding bit.
The modes of operation supported by this device, and their corresponding bits in this object, are as follows:
Bit Description
0	 Position	profile	mode
1 Velocity mode
2	 Profile	velocity	mode
� Profile torque mode
5	 Homing	mode	
6 Interpolated Position Mode
7-15 Reserved
16	 Single	loop	current	follower	(AC	Technology	specific)
17	 Single	loop	velocity	follower	(AC	Technology	specific)

The current version of amplifier firmware supports only modes that are intialized. Their bits are st in the word and therefore the expected value of this
object is 0x000�00�5.

Object Index Sub-Index

AMPLIFIER MODEL NUMBER 0X6503 --

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO --

Description
This ASCII string gives the amplifier model number (ID string).

Object Index Sub-Index

AMPLIFIER MANUFACTURER 0X6504 --

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO --

Description
This ASCII string identifies the amplifier’s manufacturer as “AC Tech Corp.”

Object Index Sub-Index

MANUFACTURER’S WEB ADDRESS 0X6505 --

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO --

Description
This ASCII string gives the web address of AC Technology Corp. (www.actech.com)

Object Index Sub-Index

AMPLIFIER DATA 0X6510 --

Type Access Units Range Map PDO Memory

Record RO -- -- NO --

Description
This record lists various amplifier parameters. Sub-index 0 contains the number of sub-elements of this record.

44P94CAN01B

Object Index Sub-Index

AMPLIFIER SERIAL NUMBER 0X6510 1

Type Access Units Range Map PDO Memory

Integer �� RO -- -- NO --

Description
Gives the amplifier serial number.

Object Index Sub-Index

AMPLIFIER BUILD AND DATE CODE NUMBER 0X6510 2

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO --

Description
This ASCII string gives the manufacturing build code.

Object Index Sub-Index

AMPLIFIER PEAK CURRENT 0X6510 3

Type Access Units Range Map PDO Memory

Integer 16 RO 0.01 A -- NO --

Description
The amplifier’s peak current rating in 0.01-amp units. Peak current rating for PositionServo amplifiers are �X continues current (sub-index 4).

Object Index Sub-Index

AMPLIFIER CONTINUOUS CURRENT 0X6510 4

Type Access Units Range Map PDO Memory

Integer 16 RO 0.01 A -- NO --

Description
The amplifier’s continuous current rating in 0.01-amp units.

Object Index Sub-Index

AMPLIFIER PEAK CURRENT TIME 0X6510 5

Type Access Units Range Map PDO Memory

Integer 16 RO milliseconds -- NO --

Description
The time the amplifier is rated to output peak current in milliseconds. Expected value for PositionServo amplifier �000 (mS)

Object Index Sub-Index

AMPLIFIER MAXIMUM VOLTAGE 0X6510 6

Type Access Units Range Map PDO Memory

Integer 16 RO 0.1 V -- NO --

Description
Maximum bus voltage rating for amplifier in 0.1-volt units.

45 P94CAN01B

Object Index Sub-Index

AMPLIFIER MINIMUM VOLTAGE 0X6510 7

Type Access Units Range Map PDO Memory

Integer 16 RO 0.1 V -- NO --

Description
Minimum bus voltage rating for amplifier in 0.1-volt units.
Over-voltage hysteresis for amplifier in 0.1-volt units.

Object Index Sub-Index

AMPLIFIER MAXIMUM TEMPERATURE 0X6510 8

Type Access Units Range Map PDO Memory

Integer 16 RO degrees C -- NO --

Description
Temperature limit for amplifier in degrees centigrade. PositionServo has set to 100 degree centigrade.

Object Index Sub-Index

AMPLIFIER CURRENT LOOP PERIOD 0X6510 9

Type Access Units Range Map PDO Memory

Integer 16 RO 10ns -- NO --

Description
Current loop update period in 10-nanosecond units.

Object Index Sub-Index

AMPLIFIER SERVO LOOP PERIOD 0X6510 10

Type Access Units Range Map PDO Memory

Integer 16 RO -- -- NO --

Description
Servo loop update period as a multiple of the current loop period. (4 for PositionServo models.)

Object Index Sub-Index

AMPLIFIER TYPE CODE 0X6510 11

Type Access Units Range Map PDO Memory

String RO -- Refer to Description NO --

Description
� digit string “X XX” that identifies the type of amplifier in terms of mains voltage (V) and output current capability (A rms).
Digit 1 Description Digits � & � Description
X B = �40V AC XX 0� = �A rms 06 = 6A rms 10 = 10A rms
 C = 480V AC 04 = 4A rms 08 = 8A rms 1� = 1�A rms
 05 = 5A rms 09 = 9A rms 18 = 18A rms

Object Index Sub-Index

DEVICE TYPE 0X67FF --

Type Access Units Range Map PDO Memory

Unsigned �� RO -- -- NO --

Description
Holds the same data as object 0x1000. Repeated as required by the CANopen specification.

46P94CAN01B

6.5 Basic Motor Configuration Objects
Objects described in this section provide access to basic motor parameters. They include:

MOTOR MODEL NUMBER INDEX 0X640�

MOTOR MANUFACTURER INDEX 0X6404

MOTOR DATA INDEX 0X6410

MOTOR TYPE INDEX 0X6410 SUB-INDEX 1

MOTOR TYPE INDEX 0X6410 SUB-INDEX �

SYMBOLIC MOTOR MODEL INDEX 0X6410 SUB-INDEX �

MOTOR VENDOR NAME INDEX 0X6410 SUB-INDEX 4

FEEDBACK CONFIGURATION INDEX 0X6410 SUB-INDEX 5

HALLCODE INDEX INDEX 0X6410 SUB-INDEX 6

HALL OFFSET INDEX 0X6410 SUB-INDEX 7

Zero OFFSET INDEX 0X6410 SUB-INDEX 8

ICTRL (RESERVED) INDEX 0X6410 SUB-INDEX 9

MOTOR INERTIA INDEX 0X6410 SUB-INDEX 10

MOTOR BACK EMF INDEX 0X6410 SUB-INDEX 11

MOTOR TORQUE CONSTANT INDEX 0X6410 SUB-INDEX 1�

MOTOR INDUCTANCE INDEX 0X6410 SUB-INDEX 1�

MOTOR RESISTANCE INDEX 0X6410 SUB-INDEX 14

MOTOR MAX CONT. CURRENT INDEX 0X6410 SUB-INDEX 15

MOTOR MAX VELOCITY INDEX 0X6410 SUB-INDEX 16

MOTOR POLES INDEX 0X6410 SUB-INDEX 17

ENCODER COUNT INDEX 0X6410 SUB-INDEX 18

MOTOR NOMINAL TERMINAL VOLTAGE INDEX 0X6410 SUB-INDEX 19

MOTOR FEEDBACK DEVICE TYPE INDEX 0X6410 SUB-INDEX 19

Object Index Sub-Index

MOTOR MODEL NUMBER 0X6403 --

Type Access Units Range Map PDO Memory

Visible String RW -- -- NO F

Description
This object gives a location to store the motor’s model number for future reference. M_MODEL. Note that this parameter is always stored to non-
volatile memory on the amplifier. The programmed value is preserved across power cycles.

Object Index Sub-Index

RESERVED 0X6404 --

Type Access Units Range Map PDO Memory

Visible String RO -- -- NO F

Description
Reserved for future use.

47 P94CAN01B

Object Index Sub-Index

MOTOR DATA 0X6410 --

Type Access Units Range Map PDO Memory

Record RW -- -- NO --

Description
This record holds a variety of motor parameters. Note that all motor parameters are stored to non-volatile memory on the amplifier. The
programmed values are preserved across power cycles. Sub-index 0 contains the number of sub-elements of this record.

Object Index Sub-Index

MOTOR ID 0X6410 1

Type Access Units Range Map PDO Memory

Integer 16 RW -- Refer to Description NO F

Description
Returns motor catalog ID. This field needs to be set to “-1” for any motor which doesn’t have AC Technology Corp. catalog ID assigned.

Object Index Sub-Index

MOTOR TYPE 0X6410 2

Type Access Units Range Map PDO Memory

Integer 16 RW -- Refer to Description NO F

Description
M_SERIES
Defines the type of motor connected to the amplifier. For proper operation, this object must be set to one of the following values:
Type Description
1-999 Rotary AC Synchronous servo motor
1000-1999 Linear AC Synchronous servo motor
�000-�999 Rotary AC induction motor

Object Index Sub-Index

RESERVED 0X6410 3

Type Access Units Range Map PDO Memory

Visible String RO -- Refer to Description NO F

Description
This index is reserved for future use.

Object Index Sub-Index

MOTOR VENDOR NAME 0X6410 4

Type Access Units Range Map PDO Memory

Visible String RW -- -- NO F

Description
Defines symbolic motor’s vendor name. Example: “Lenze”

48P94CAN01B

Object Index Sub-Index

FEEDBACK CONFIGURATION 0X6410 5

Type Access Units Range Map PDO Memory

Integer 16 RW -- Refer to Description NO F

Description
Describes motor’s feedback device configuration data as follows:
Value Description
0 reserved
1 encoder feedback
� resolver feedback
� Absolute encoder (BiSS, SPI)
4 Absolute encoder (EnDat)
5 Absolute encoder (HyperFace)

Object Index Sub-Index

HALL CODE 0X6410 6

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 - 5 NO F

Description
Defines motor hallcode index. Index shows hall sensors mapping to the corresponding motor phases U,V or W:
Code Hall ordering
0 U V W
1 U W V
� V U W
� V W U
4 W V U
5 W U V

Object Index Sub-Index

HALL OFFSET 0X6410 7

Type Access Units Range Map PDO Memory

Integer 16 RO -- 0 NO F

Description
Reserved for future use by AC Technology Corp. Must be set to 0.

Object Index Sub-Index

Zero OFFSET 0X6410 8

Type Access Units Range Map PDO Memory

Integer 16 RW 0.1 mech. degree �6000 - �6000 NO F

Description
Description (Value /100) * (655�6/�60) Value/100 must be modulo �60 - positive. Sets the resolver offset value in 0.01 mechanical degree. Must
be 0 for motors with incremental encoders.

Object Index Sub-Index

ICTRL (RESERVED) 0X6410 9

Type Access Units Range Map PDO Memory

Integer 16 RW -- -- NO F

Description
Reserved. Must be set to 0.

49 P94CAN01B

Object Index Sub-Index

MOTOR INERTIA 0X6410 10

Type Access Units Range Map PDO Memory

Integer �� RW 0.000001 kg / cm� 0 -�,147,48�,647 NO F

Description
M_JM - kg / m^� Value in * 10e� - gives kg/m^� - write to PID
Motor inertia in units of 0.000001 kg / cm�.

Object Index Sub-Index

MOTOR BACK EMF 0X6410 11

Type Access Units Range Map PDO Memory

Integer �� RW 0.01 V/kRPM 0 - �,147,48�,647 NO F

Description
M_KE – Value * 100 ->PID
Motor back-EMF constant. Units are 0.01 V/kRPM.

Object Index Sub-Index

MOTOR TORQUE CONSTANT 0X6410 12

Type Access Units Range Map PDO Memory

Integer �� RW 0.001 Nm / Amp 0 - �,147,48�,647 NO F

Description
M_KT Value * 1000 - > PID
Motor torque constant, units: 0.001 Nm / Amp.

Object Index Sub-Index

MOTOR INDUCTANCE 0X6410 13

Type Access Units Range Map PDO Memory

Integer 16 RW 0.01 milli Henry 0 - ��,767 NO F

Description
M_LS Value *100 -> PID
Motor winding inductance, in 0.01-milli Henry units.

Object Index Sub-Index

MOTOR RESISTANCE 0X6410 14

Type Access Units Range Map PDO Memory

Integer 16 RW 0.01 Ohm 0 - ��,767 NO F

Description
M_RS Value * 100 -> PID
Motor winding resistance, in 0.01-Ohm units.

Object Index Sub-Index

MOTOR MAX CONT. CURRENT 0X6410 15

Type Access Units Range Map PDO Memory

Integer 16 RW 0.01 A(Rms) 0 - ��,767 NO F

Description
M_MAXCURRENT Value * 100 -> PID
Motor continous RMS current per phase in 0.01 A Rms units.

50P94CAN01B

Object Index Sub-Index

MOTOR MAX VELOCITY 0X6410 16

Type Access Units Range Map PDO Memory

Integer 16 RW 1 RPM 0 - ��,767 NO F

Description
M_MAXVELOCITY -> direct
Motor maximum velocity in RPM.

Object Index Sub-Index

MOTOR POLES 0X6410 17

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 - ��,767 NO F

Description
M_NPOLES -> direct
Number of motor poles per rotation. For proper operation this value must be set correctly for the motor being controlled. This parameter is only
used for rotary motors. For linear motors its value needs to be set to �.

Object Index Sub-Index

ENCODER COUNTS 0X6410 18

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts / rev 0 - �,147,48�,647 NO F

Description
M_ENCODER -> Value *4
For rotary motors gives the number of encoder counts / motor revolution. For linear motors this parameter represents ration between pole pair pitch
and linear encoder resolution. Value to write for linear motors can be calculated as follows:

Encoder counts = Lpp / LEres
where

Lpp - pole pair pitch (S-S or N-N distance in linear motor)
LEres – linear encoder resolution.

Object Index Sub-Index

MOTOR NOMINAL TERMINAL VOLTAGE 0X6410 19

Type Access Units Range Map PDO Memory

Integer 16 RW 1 Volt 0 - ��,767 NO F

Description
M_TERMVOLTAGE - direct
Sets motor normal terminal voltage in 1 Volt units.

Object Index Sub-Index

MOTOR FEEDBACK DEVICE TYPE 0X6410 20

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 - ��,767 NO F

Description
Describes motor’s feedback device configuration data as follows:
Value Description
0 reserved
1 encoder feedback
� resolver feedback
� Absolute encoder (BiSS, SPI)
4 Absolute encoder (EnDat)
5 Absolute encoder (HyperFace)

51 P94CAN01B

7 Control Loops
This chapter describes the nested control loop model used by AC Tech amplifiers to control the position of the
motor.

7.1 Control Loop Configuration

7.� Position Loop Configuration Objects

7.� Velocity Loop Configuration Objects

7.4 Current Loop Configuration Objects

7.1 Control Loop Configuration
This section provides an overview of the control loops. Topics include:

7.1.1 Nested Control Loops

7.1.� The Position Loop

7.1.� The Velocity Loop

7.1.4 The Current Loop

7.1.1 Nested Control Loops
AC Tech amplifiers use up to three nested control loops - current, velocity, and position – to control a motor in
three associated operating modes. In position mode, The amplifier uses all three loops, as shown in Figure 10.
The loops are nested: the current loop within the velocity loop, within the position loop. Stated another way, the
position loop drives the velocity loop, which drives the current loop

Actual
CurrentTarget Position

Motor Current Sensor

Current DemandVelocity DemandPositionDemand

Trajectory Generator Position Loop Filter Velocity Loop Filter Current Limiter Current Loop Filter PWM Signals

dt

Motor Position Sensor

Actual
Position

Figure 10: Nested Loops

5�P94CAN01B

Basic Attributes of All Control Loops

These loops (and servo control loops in general) share several common attributes including command input,
limits, feedback, gain and outputs.

Loop Attribute Description

Command Input Every loop is given a value which it will attempt to control. For example, the velocity loop
receives a velocity demand that is the desired motor speed.

Limits Limits are set on current loop to protect the motor and/or mechanical system.

Feedback The nature of servo control loops is that they receive feedback from the device they are
controlling. For example, the position loop uses the actual motor position as feedback.

Gains These are constant values that are used in the mathematical equation of the servo loop. The
values of these gains can be adjusted during amplifier setup to improve the loop performance.
Adjusting these values is often referred to as tuning the loop.

Output The loop generates a control signal. This signal can be used as the command signal to
another control loop or the input to a power amplifier.

7.1.2 The Position Loop
The CANopen master provides a target position to the amplifier’s internal trajectory generator. In turn the
generator provides the position loop a position demand and velocity and acceleration limit values. The position
loop applies corrective gains in response to feedback to forward a velocity demand to the velocity loop. The
inputs to the position loop vary with different operating modes.

Trajectory Generator Inputs

The inputs to the trajectory generator include profile position, velocity, and acceleration values. They are
accessed through different sets of mode-specific objects as summarized in Table 7.

Table 7: Trajectory Generator Inputs

Mode Input Object Name Object ID Description

Homing Homing Method 0x6098 Defines the method to find the motor home position

Homing Speeds 0x6099 The sub-index objects of 0x6099 hold the two velocities (fast and slow) used when homing

Homing Acceleration 0x609A Defines the acceleration used for all homing moves

Home Offset 0x607C Used in homing mode as an offset between the home sensor position and the zero position

Profile Position Motion Profile Type 0x6086 Selects the type of trajectory profile to use. Choices are trapezoidal and s-curve.

Target Position 0x607A Destination position of the move

Profile Velocity 0x6081 The velocity that the trajectory generator attempts to achieve when running in position
profile mode

Profile Acceleration 0x608� Acceleration that the trajectory generator attempts to achieve when running in position
profile mode

Profile Deceleration 0x6084 Deceleration that the trajectory generator attempts to achieve at the end of a trapezoidal
profile when running in position profile mode

Position Loop Feedback

The feedback to the loop is the actual motor position, obtained from a position sensor attached to the motor
(most often a quadrature encoder). This is provided by the Position Actual Value object (index 0x606�, paragraph
7.�, page 55).

5� P94CAN01B

Position Loop Gains

The following gains are used by the position loop to calculate the output value: PP, PI, PL, and PD.

Gain Description

PP - Position loop proportional The loop calculates its position error as the difference between the Position
Actual Value and the Position Demand Value. This error in turn is multiplied
by the proportional gain value. The primary effect of this gain is to reduce the
following error.

PI – Integral The position error gets accumulated. The primary effect of this gain is to
decrease steady error. Accumulated error multiplies on PI gain value and
added to the velocity demand

PL - Limit Limit influence produced by PI gain to allow faster settling time

PD – Differential The position error in previous step gets substructed from the current position
error forming error change rate. Error rate of change multiplies on PD gain and
added to velocity demand. This gain primarily contributes to stability of the
loop acting as a “shock absorber”.

These gains are accessed through the sub-index objects of the Position Loop Gains object (index 0x60FB,
paragraph 7.�, page 57).

7.1.3 The Velocity Loop
As shown the summing junction takes the velocity demand from position loop, subtracts the actual velocity,
represented by the feedback signal, and produces an error signal. This error signal is then processed using the
integral and proportional gains to produce a current demand.

During normal operation in position mode velocity loop driven by the position loop. When device placed in
velocity mode velocity loop can be driven by analog reference, or value taken from internal variable manipulated
by any of the device’s interfaces such as RS-���, RS-485, Ethernet, CAN etc. Set of limiting parameters for this
occasion is set by following objects:

Object Name Object ID Object Note

*Analog Input #1 Velocity scaling factor 0x�4�4 (used only without position loop)

*Velocity Loop Acceleration 0x�44C (used only without position loop)

*Velocity Loop Deceleration 0x�44D (used only without position loop)

*Not used when the velocity loop is controlled by the position loop.

Velocity Loop Input

If drive is in position mode then output of the position loop is the input of the velocity loop . If drive is in velocity
follower mode then input of the velocity loop could be an internal object (index 0x�48B) or analog input #1.
Selection is done using the Reference Source object (index 0x�0�5, paragraph 6.�, page �6).

54P94CAN01B

Velocity Loop Gains

The velocity loop uses the following gains. Refer to the Velocity Loop Gains object (index 0x60F9, paragraph
7.�, page 60).

Gain Name Description

Vp Velocity loop proportional The velocity error (the difference between the actual and the limited
commanded velocity) is multiplied by this gain. The primary effect of this
gain is to increase bandwidth (or decrease the step-response time) as the
gain is increased.

Vw Velocity wide This is additional proportional gain applied to output of velocity loop to
allow wider range of gain values. This gain can range from -16 to +4

Vi Velocity loop integral The integral of the velocity error is multiplied by this value. Integral gain
reduces the velocity error to zero over time. It controls the DC accuracy
of the loop, or the flatness of the top of a square wave signal. The error
integral is the accumulated sum of the velocity error value over time.

7.1.4 The Current Loop
Current loop starts from current limiter.The current limiter accepts a current demand from the velocity loop,
applies limits, and passes a limited current value to the summing junction. The summing junction takes the
commanded current, subtracts the actual current (represented by the feedback signal), and produces an error
signal. This error signal is then processed using the integral and proportional gains to produce a voltage
command. This command is then applied to the amplifier’s power stage.

Current Loop Input

If drive is in position or velocity mode then output of the velocity loop is the input of the current loop . If drive
is in current mode then input of the current loop could be an internal object (index 0x�48B) or analog input #1.
Selection is done by the Reference Source object (index 0x�0�5). In case if analog loop is driven by analog input
#1 scale value applied by object Analog Input #1 Current scaling factor (index 0x�4��)

Current Loop Limits

The commanded current value is first reduced based on a set of current limit parameters designed to protect
the motor. These current limits are accessed through the following objects:

Object Name Object ID Description

Peak Current Limit 16 0x�41F Maximum current that can be generated by the amplifier if carrier
frequency selected is 16kHz for a short duration of time. This value
cannot exceed the peak current rating of the amplifier.

Peak Current Limit 8 0x�4�0 Maximum current that can be generated by the amplifier if carrier
frequency selected is 8kHz for a short duration of time. This value
cannot exceed the peak current rating of the amplifier.

Continuous Current Limit 0x�41E Maximum current that can be constantly generated by the amplifier.

Analog Input # 1 CSF 0x�4�� (CSF: Current Scaling Factor) Current scaling value when driven by
analog input #1

55 P94CAN01B

7.2 Position Loop Configuration Objects
This section describes the objects used to configure the position control loop.

POSITION DEMAND VALUE INDEX 0X606�

POSITION ACTUAL VALUE INDEX 0X606�

POSITION ACTUAL VALUE INDEX 0X6064

FOLLOWING ERROR WINDOW INDEX 0X6065

FOLLOWING ERROR TIME INDEX 0X6066

POSITION WINDOW INDEX 0X6067

ACTUAL VELOCITY INDEX 0X6069

VELOCITY DEMAND VALUE INDEX 0X606B

ACTUAL VELOCITY INDEX 0X606C

FOLLOWING ERROR INDEX 0X60F4

POSITION LOOP GAINS INDEX 0X60FB

POSITION LOOP PROPORTIONAL GAIN INDEX 0X60FB SUB-INDEX 1

POSITION LOOP INTEGRAL GAIN INDEX 0X60FB SUB-INDEX �

POSITION LOOP DERIVIATIVE GAIN INDEX 0X60FB SUB-INDEX �

POSITION LOOP INTEGRAL GAIN LIMIT INDEX 0X60FB SUB-INDEX 4

SOFTWARE POSITION LIMITS INDEX 0X607D

NEGATIVE SOFTWARE LIMIT POSITION INDEX 0X607D SUB-INDEX 1

POSITIVE SOFTWARE LIMIT POSITION INDEX 0X607D SUB-INDEX �

SOFTWARE LIMITS MODE INDEX 0X607D SUB-INDEX �

Object Index Sub-Index

POSITION DEMAND VALUE 0X6062 --

Type Access Units Range Map PDO Memory

Integer �� RO encoder counts -- YES --

Description
This is the motor position (in units of encoder counts) to which the amplifier is currently trying to move the axis. This value is updated every servo
cycle based on the amplifier’s internal trajectory generator. Units: encoder counts.

Object Index Sub-Index

POSITION ACTUAL VALUE 0X6063 --

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts -- YES R

Description
This is the actual motor position in units of encoder counts as calculated by the amplifier every servo cycle based on the state of the encoder input
lines.

56P94CAN01B

Object Index Sub-Index

POSITION ACTUAL VALUE 0X6064 --

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts -- YES R

Description
This object holds the same value as Position Actual Value object (index 0x606�).

Object Index Sub-Index

FOLLOWING ERROR WINDOW 0X6065 --

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts 0 – ��767 YES RF

Description
This object holds allowable following error. If at any time following error exceeds this value for time more then specified by Following Error Time
object (index 0x6066) amplifier will enter fault state.

Object Index Sub-Index

FOLLOWING ERROR TIME 0X6066 --

Type Access Units Range Map PDO Memory

Integer �� RW ms 0 – 8000 YES RF

Description
This object holds allowable following error time i.e maximum time following error can set by object index 0X6065 before fault will be generated.

Object Index Sub-Index

POSITION WINDOW 0X6067 --

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts 0 - �,147,48�,647 YES RF

Description
Size of the amplifier’s tracking window. The “target reached” bit of the amplifier’s status word is set when the amplifier is not running a trajectory,
and the position error has been within the tracking window for the programmed tracking window time. Bit #5 in manufacturer status window is
affected by this object as well. Bit #5 is set when current profile command is completed and motor actual position is within specified position
window.

Object Index Sub-Index

ACTUAL VELOCITY 0X6069 --

Type Access Units Range Map PDO Memory

Integer �� RO 0.1 enc counts / sec -- YES --

Description
Actual motor velocity in units of 0.1 encoder counts / second.

Object Index Sub-Index

VELOCITY DEMAND VALUE 0X606B --

Type Access Units Range Map PDO Memory

Integer �� RO 0.1 enc counts / sec -- YES --

Description
Velocity that the velocity loop is currently trying to attain. When the amplifier is running in homing or profile position mode, the velocity demand
value is the output of the position loop, and the input to the velocity loop. AC Tech CANopen amplifiers support some modes in which the velocity
demand is produced from a source other then the position loop. In these modes the demand velocity comes from the analog reference input, or the
internal velocity preset memory location.

57 P94CAN01B

Object Index Sub-Index

ACTUAL VELOCITY 0X606C --

Type Access Units Range Map PDO Memory

Integer �� RO 0.1 enc counts / sec -- YES --

Description
This object contains exactly the same information as object 0x6069.

Object Index Sub-Index

FOLLOWING ERROR 0X60F4 --

Type Access Units Range Map PDO Memory

Integer �� RO encoder counts -- YES --

Description
This object gives the difference, in units of encoder counts, between the Position Actual Value object (index 0x606�) and the Position Demand
Value object (index 0x60fc). This value is calculated as part of the position control loop. It is also the value that the various tracking windows are
compared to. Refer to the Position Window object (index 0x6067, paragraph 7.�, page 56), and the Error Window object (index 0x6065, page 56).

Object Index Sub-Index

POSITION LOOP GAINS 0X60FB --

Type Access Units Range Map PDO Memory

Record RW -- -- YES --

Description
This object contains the various gain values used to optimize the position control loop. Sub-index 0 contains the number of sub-elements of this
record.

Object Index Sub-Index

POSITION LOOP PROPORTIONAL GAIN 0X60FB 1

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 –��,767 YES RF

Description
This gain value is multiplied by the position loop error. The position loop error is the difference between the instantaneous commanded position and
the actual motor position.

Object Index Sub-Index

POSITION LOOP INTEGRAL GAIN 0X60FB 2

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 –16,�8� YES RF

Description
This value is multiplied by position loop error over the time. The position loop error is the difference between the instantaneous commanded
position and the actual motor position.

Object Index Sub-Index

POSITION LOOP DERIVIATIVE GAIN 0X60FB 3

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 –��,767 YES RF

Description
This value is multiplied by position loop error’s difference. Error difference is taking by subtracting loop error value in last servo cycle and loop error
value in present servo cycle.

58P94CAN01B

Object Index Sub-Index

POSITION LOOP INTEGRAL GAIN LIMIT 0X60FB 4

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 –�000 YES RF

Description
This value limits influence of the integral gain (object 0x60FB sub index �.) term. This value internaly scaled to 1/�000 meaning that �000 would
represent 100% of the term influence.

Object Index Sub-Index

SOFTWARE POSITION LIMITS 0X607D --

Type Access Units Range Map PDO Memory

Array RW -- -- YES --

Description
This array holds the two software position limit values Negative Software Limit Position and Positive Software Limit Position. Sub-index 0 contains
the number of sub-elements of this record.

Object Index Sub-Index

NEGATIVE SOFTWARE LIMIT POSITION 0X607D 1

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts -- YES RF

Description
The Software Position Limits array holds the two software position limit values: Negative Software Limit Position and Positive Software Limit
Position. Sub-index 0 contains the number of sub-elements of this record.

Object Index Sub-Index

POSITIVE SOFTWARE LIMIT POSITION 0X607D 2

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts -- YES RF

Description
The Software Position Limits array holds the two software position limit values: Negative Software Limit Position and Positive Software Limit
Position. Sub-index 0 contains the number of sub-elements of this record.

Object Index Sub-Index

SOFTWARE LIMITS MODE 0X607D 3

Type Access Units Range Map PDO Memory

Integer �� RW -- 0-� YES RF

Description
Enables or Disables software position limits. Possible settings 0-disabled or 1-enabled(will disable and fault when hit), �- enabled (will decelerate
to stop and generate fault).

59 P94CAN01B

7.3 Velocity Loop Configuration Objects
This section describes the objects used to configure the velocity control loop including:

VELOCITY LOOP MAXIMUM ACCELERATION INDEX 0X�44C

VELOCITY LOOP MAXIMUM DECELERATION INDEX 0X�44D

VELOCITY LIMITS ENABLED INDEX 0X�04B

ANALOG INPUT VELOCITY SCALE INDEX 0X�4�4

PROGRAMMED VELOCITY INDEX 0X�48B

VELOCITY LOOP GAINS INDEX 0X60F9

VELOCITY LOOP PROPORTIONAL GAIN INDEX 0X60F9 SUB-INDEX 1

VELOCITY LOOP INTEGRAL GAIN INDEX 0X60F9 SUB-INDEX �

VELOCITY LOOP GAIN SCALER INDEX 0X60F9 SUB-INDEX �

Object Index Sub-Index

VELOCITY LOOP MAXIMUM ACCELERATION 0X244C --

Type Access Units Range Map PDO Memory

Float RW RPM*Sec 0.1 – 5,000,000 YES RF

Description
This acceleration value limits the maximum rate of change of the commanded velocity input to the velocity loop. This limit only applies when the
absolute value of the velocity change is positive (i.e. the speed is increasing in either direction). Units are RPM*Sec. This value is only used if
velocity demand is produced by a source other than the Position Loop. The value is applied if Accel/ Decel limiting is enabled by object 0x�04B.

Object Index Sub-Index

VELOCITY LOOP MAXIMUM DECELERATION 0X244D --

Type Access Units Range Map PDO Memory

Float RW RPM*Sec 0.1 – 5,000,000 YES RF

Description
This acceleration value limits the maximum rate of change of the commanded velocity input to the velocity loop. This limit only applies when the
absolute value of the velocity change is negative (i.e. the speed is decreasing in either direction). Units are RPM*Sec. This value is only used if
velocity demand is produced by a source other than the Position Loop. The value is applied if Accel/Decel limiting is enabled by object Velocity
Limits Enabled (index 0x�04B).

Object Index Sub-Index

VELOCITY LIMITS ENABLED 0X204B --

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 – 1 YES RF

Description
This object enables or disables acceleration and deceleration limiting for sources other than the position loop output. Possible values: 0 – limits
disabled and 1 – limits enabled.

Object Index Sub-Index

ANALOG INPUT VELOCITY SCALE 0X2424 --

Type Access Units Range Map PDO Memory

Float RW RPM/V -�000 to +�000 YES --

Description
When analog input #1 is used as velocity loop reference (set velocity) ,this object gives the scaling factor in RPM/V units.

60P94CAN01B

Object Index Sub-Index

PROGRAMMED VELOCITY 0X248B --

Type Access Units Range Map PDO Memory

Float RW RPS -�50 to +�50 YES RF

Description
Gives the commanded velocity value when running in velocity follower mode (Operating mode= -�)

Object Index Sub-Index

VELOCITY LOOP GAINS 0X60F9 --

Type Access Units Range Map PDO Memory

Record RW -- -- YES --

Description
This object contains the various gain values used to optimize the velocity control loop. Sub-index 0 contains the number of sub-elements of this
record.

Object Index Sub-Index

VELOCITY LOOP PROPORTIONAL GAIN 0X60F9 1

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 – ��,767 YES RF

Description
This gain value is multiplied by the velocity error value. The velocity error is the difference between the desired and actual motor velocity.

Object Index Sub-Index

VELOCITY LOOP INTEGRAL GAIN 0X60F9 2

Type Access Units Range Map PDO Memory

Integer 16 RW -- 0 – ��,767 YES RF

Description
This gain value is multiplied by the integral of the velocity loop error.

Object Index Sub-Index

VELOCITY LOOP GAIN SCALER 0X60F9 3

Type Access Units Range Map PDO Memory

Integer 16 RW -- -16 to +4 YES RF

Description
A shift value that allows more range on the velocity loop gains when using a different encoders. The output of the velocity loop is multiplied by
velocity loop gain scaler after the other gains have been used.

7.4 Current Loop Configuration Objects
This section describes the objects used to configure the current control loop including:

USER PEAK CURRENT LIMIT16 INDEX 0X�41F

USER PEAK CURRENT LIMIT8 INDEX 0X�4�0

USER CONTINUOUS CURRENT LIMIT INDEX 0X�41E

ACTUAL MOTOR CURRENT INDEX 0X�4BC

PROGRAMMED CURRENT INDEX 0X�48B

ANALOG INPUT CURRENT SCALE INDEX 0X�4��

61 P94CAN01B

Object Index Sub-Index

USER PEAK CURRENT LIMIT16 0X241F --

Type Access Units Range Map PDO Memory

Float RW Amps (RMS) 0 – 50 YES RF

Description
Specifies a peak current limit in phase Amps (RMS) when drive PWM carrier frequency is set to 16kHz

Object Index Sub-Index

USER PEAK CURRENT LIMIT8 0X2420 --

Type Access Units Range Map PDO Memory

Float RW Amps (RMS) 0 – 50 YES RF

Description
Specifies a peak current limit in phase Amps (RMS) when drive PWM carrier frequency is set to 8kHz.

Object Index Sub-Index

USER CONTINUOUS CURRENT LIMIT 0X241E --

Type Access Units Range Map PDO Memory

Float RW Amps (RMS) 0 – 50 YES RF

Description
Specifies a continues current limit in phase Amps (RMS).

Object Index Sub-Index

ACTUAL MOTOR CURRENT 0X24BC --

Type Access Units Range Map PDO Memory

Float RO Amps (RMS) -- YES --

Description
Actual motor RMS per phase current.

Object Index Sub-Index

PROGRAMMED CURRENT 0X248B --

Type Access Units Range Map PDO Memory

Float RW Amps (RMS) -50 to +50 YES RF

Description
This object gives the programmed current value (0.01 Amps) used when running in current (torque) mode.

Object Index Sub-Index

ANALOG INPUT CURRENT SCALE 0X2423 --

Type Access Units Range Map PDO Memory

Float RW Amps (RMS) -5 to +5 YES --

Description
When analog input #1 is used as a current loop reference (set current), this object gives the scaling factor in A/V units.

6�P94CAN01B

8 Non Profiled Operating Modes
This chapter describes the operation of an amplifier in non-profiles modes such as velocity follower and current
follower. Contents include:

8.1 Current Follower Mode
8.� Velocity Follower Mode

8.1 Current Follower Mode
Current follower mode is set by setting the Mode of Operation object (index 0x6060, paragraph 6.�, page �5) to
-1. In this mode the current loop input is disconnected from the velocity loop output. Reference for the current
loop could be the value of the Programmed Current object (index 0x�48B) or analog input #1. If the analog
signal #1 is used for the current loop reference then the analog signal at the analog input #1 is multiplied
by the Analog Input Current Scale object (index 0x�4��) and then fed to the current loop summing junction
(reference). The Reference Source object (index 0x�0�5) controls the reference source configuration.

8.2 Velocity Follower Mode
Velocity follower mode is set by setting object Mode of Operation (index 0x6060, paragraph 6.�, page �5)
to -�. In this mode the velocity loop input is disconnected from the position loop output. Reference for the
velocity loop could be the value of the Programmed Velocity object (index 0x�48B) or analog input #1. If analog
signal #1 is used for the velocity loop reference then the analog signal at the analog input #1 is multiplied by
the Analog Input Velocity Scale object (index 0x�4�4) and then fed to the velocity reference limiter and then
to the velocity loop summing junction. The Reference Source object (index 0x�0�5) controls the reference
source configuration. The velocity reference limiter has � objects: Velocity Loop Maximum Acceleration (index
0x�44C); Velocity Loop Maximum Deceleration (index 0x�44D) and Velocity Limit Enabled (index 0x�04B).

9 Homing Mode

9.1 Homing Mode Operation
This section describes control of the amplifier in homing mode. Contents of this section include:

9.1.1 Homing Overview

9.1.� Homing Methods

9.1.� Method 1: Homing on the Negative Limit Switch

9.1.4 Method �: Homing on the Positive Limit Switch

9.1.5 Methods �-4: Homing on the Positive Limit Switch and Index Pulse

9.1.6 Methods 5-6: Homing on the Negative Limit Switch and Index Pulse

9.1.7 Methods 7-14: Homing on the Home Switch and Index Pulse

9.1.8 Methods 15, 16, �0, ��, �4, �6, �8 & �0: Reserved

9.1.9 Methods 17-18: Homing without an Index Pulse

9.1.10 Methods 19, �1, ��, �5, �7 & �9: Homing without an Index Pulse

9.1.11 Methods �1-��: Reserved

9.1.1� Methods ��-�4: Homing on the Index Pulse

9.1.1� Method �5: Homing on the Current Position

6� P94CAN01B

9.1.1 Homing Overview
What is Homing? Homing is the method by which a drive seeks the home position (also called the datum,
reference point, or zero point). There are various methods of achieving this using:

limit switches at the ends of travel, or

a dedicated home switch.

Most of the methods also use the index pulse input from an incremental encoder.

The Homing Function

The homing function provides a set of trajectory parameters to the position loop, as shown in Figure 11. The
parameters are generated by the homing function and are not directly accessible through CANopen dictionary
objects. They include the profile mode and velocity, acceleration, and deceleration data.

Trajectory
Parameter

Position
DemandHoming

Function
Trajectory
Generator

Position
Loop

Home Offset
Homing Method
Homing Speeds
Home Velocity Fast/Slow
Homing Acceleration

Figure 11: Homing Function

Initiating and Verifying a Homing Sequence

For the amplifier to operate in homing mode, the Mode of Operation object (index 0x6060, paragraph 6.�, page
�5) should be set to 6. A homing move is started by setting bit 4 of the Control Word object (index 0x6040,
paragraph 6.�, page �4). The results of a homing operation can be accessed in the Status Word (index 0x6041,
paragraph 6.�, page �4).

Home Offset

The home offset is the difference between the zero position for the application and the machine home position
(found during homing). During homing the home position is found and once the homing is completed the zero
position is offset from the home position by adding the Home Offset to the home position. All subsequent
absolute moves shall be taken relative to this new zero position. This is illustrated in Figure 1�.

Home
Position

Zero
Position

home_offset

Figure 1�: Home Offset

Homing Speeds

There are two homing speeds: fast and slow. The fast speed is used to find the home switch and he slow speed
is used to find the index pulse. Refer to the Homing Speeds object (index 0x6099, paragraph 9.�, page 70)

Homing Acceleration

Homing Acceleration (index 0x609A) establishes the acceleration to be used for all accelerations and
decelerations with the standard homing modes. Note that in homing, it is not possible to program a separate
deceleration rate.

•

•

64P94CAN01B

9.1.2 Homing Methods
There are several homing methods, each supported by objects described later in this chapter. Each method
establishes the:

Homing signal (positive limit switch, negative limit switch, home switch)

Direction of actuation and, where appropriate, the position of the index pulse.

Legend to Homing Method Descriptions

Homing method descriptions and diagrams in this manual are based on those in theCANopen Profile for Drives
and Motion Control (DSP 40�). As highlighted in the example below, each homing method diagram shows
the motor in the starting position on a mechanical stage. The arrow line indicates direction of motion, and the
circled number indicates the homing method (the mode selected in the Homing Method object). The location
of the circled method number indicates the home position reached with that method. Solid line stems on the
index pulse line indicate index pulse locations. Longer dashed lines overlay these stems as a visual aid. Finally,
the relevant limit switch is represented, showing the active and inactive zones and transition.

Negative Limit Switch

Index Pulse Locations

Index Pulse

Switch active (high) Switch inactive (low)

1

Starting Position

Direction of Motion

Mechanical Stage Limits

Switch transition

1 Number = Homing Method Number Refers to Homing Method Object 0x6098

Position of the number indicates the home position

Figure 1�: Homing Method Descriptions

Note that in the homing method descriptions, negative motion is leftward and positive motion is rightward.

9.1.3 Homing Method 1: Homing on the Negative Limit Switch
Using this method, the initial direction of movement is leftward if the negative limit switch is inactive (here
shown as low). The home position is at the first index pulse to the right of the position where the negative limit
switch becomes inactive.

Negative Limit Switch

Index Pulse Locations

Index Pulse

1

Method 1: Homing on the Negative Limit Switch

Figure 14: Homing on the Negative Limit Switch

•

•

65 P94CAN01B

9.1.4 Homing Method 2: Homing on the Positive Limit Switch
Using this method the initial direction of movement is rightward if the positive limit switch is inactive (here
shown as low). The position of home is at the first index pulse to the left of the position where the positive limit
switch becomes inactive.

Positive Limit Switch

Index Pulse

Method 2: Homing on the Positive Limit Switch

2

Figure 15: Homing on the Positive Limit Switch

9.1.5 Homing Method 3 and 4: Homing on the Positive Home Switch and Index Pulse
Using methods � or 4, the initial direction of movement depends on the state of the home switch. The home
position is at the index pulse to either to the left or the right of the point where the home switch changes state. If
the initial position is located so that the direction of movement must reverse during homing, the point at which
the reversal takes place is anywhere after a change of state of the home switch.

Home Switch

Index Pulse

Method 3 & 4: Homing on the Positive Home Switch & Index Pulse

3

3

4

4

Figure 16: Homing on the Positive Home Switch & Index Pulse

66P94CAN01B

9.1.6 Homing Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse
Using methods 5 or 6, the initial direction of movement depends on the state of the home switch. The home
position is at the index pulse to either to the left or the right of the point where the home switch changes state. If
the initial position is located so that the direction of movement must reverse during homing, the point at which
the reversal takes place is anywhere after a change of state of the home switch.

Home Switch

Index Pulse

Method 5 & 6: Homing on the Negative Home Switch & Index Pulse

6

5

5

6

Figure 17: Homing on the Negative Home Switch & Index Pulse

9.1.7 Homing Methods 7-14: Homing on the Home Switch and Index Pulse
These methods use a home switch, which is active over only a portion of the travel. In effect, the switch has a
momentary action as the axis sweeps past the switch.

Using methods 7 to 10, the initial direction of movement is to the right. Using methods 11 to 14 the initial
direction of movement is to the left, unless the home switch is active at the start of the motion. In this case the
initial direction of motion depends on the edge being sought. The home position is at the index pulse on either
side of the rising or falling edges of the home switch, as shown in the following two diagrams. If the initial
direction of movement leads away from the home switch, the drive must reverse on encountering the relevant
limit switch.

Figure 18 illustrates a homing sequence on the home switch and index pulse with a positive initial move.

Home Switch

Index Pulse

Method 7 - 10: Homing on the Home Switch & Index Pulse with a Positive Initial Move

8

97

10

7

8 9

10

Positive Limit Switch

10

9

8

7

Figure 18: Homing on the Home Switch & Index Pulse w/ Positive Initial Move

67 P94CAN01B

Figure 19 illustrates a homing sequence on the home switch and index pulse with a negative initial move.

Home Switch

Index Pulse

Method 11 - 14: Homing on the Home Switch & Index Pulse with a Negative Initial Move

14

11

14

13 12

11

Negative Limit Switch

1113

14

13

12

12

Figure 19: Homing on the Home Switch & Index Pulse w/ Negative Initial Move

9.1.8 Homing Methods 15, 16, 20, 22, 24, 26, 28, and 30: Reserved
Homing methods 15, 16, �0. ��, �4, �6, �8 and �0 are reserved for future use.

9.1.9 Homing Methods 17 and 18: Homing without an Index Pulse
These methods are similar to methods 1-�, except that the home position is not dependent on the index pulse
but only on the relevant limit switch translation. Method 17 uses the negative limit switch, and method 18 uses
the positive limit switch.

9.1.10 Homing Methods 19, 21, 23, 25, 27, and 29: Homing without an Index Pulse
These methods are similar to methods 1 to 14, except that the home position does not depend on the index
pulse. Instead, it depends on the relevant home or limit switch transitions. For example, method 19 is similar
to method � as shown in the following diagram.

Home Switch

Method 19: Homing without Index Pulse

19

19

Figure �0: Homing without an Index Pulse

This means method 19 and �0 (as described in the Profile for Drives and Motion Control) both imply the same
home algorithm and location, because methods � and 4 are only different in which index pulse the locate.
Likewise, ��, �4, �6, �8, and �0 (as described in the Profile for Drives and Motion Control) are redundant. For
this reason, in AC Tech amplifiers, the following redundant home methods are reserved: �0, ��, �4, �6, �8, and
�0. The equivalent home method (one less then each of these values) should be used instead.

68P94CAN01B

9.1.11 Homing Methods 31 and 32: Reserved
Homing methods �1 and �� are reserved for future use.

9.1.12 Homing Methods 33 and 34: Homing on the Index Pulse
Using methods �� or �4 the direction of homing is negative or positive respectively. The home position is at the
index pulse found in the selected direction.

Index Pulse

Method 33 and 34: Homing on the Index Pulse

33

34

Figure �1: Homing on the Index Pulse

9.1.13 Homing Method 35: Homing on the Current Position
In homing method �5, the current position is the homing position.

69 P94CAN01B

9.2 Homing Mode Operation Objects
This section describes the objects that control the operation of the amplifier in homing mode. They include:

HOMING METHOD INDEX 0X6098

HOMING SPEEDS INDEX 0X6099

HOME VELOCITY – FAST INDEX 0X6099 SUB-INDEX 1

HOME VELOCITY – SLOW INDEX 0X6099 SUB-INDEX �

HOMING ACCELERATION INDEX 0X609A

HOME OFFSET INDEX 0X607C

Object Index Sub-Index

HOMING METHOD 0X6098 --

Type Access Units Range Map PDO Memory

Integer 8 RW -- Refer to Description YES RF

Description
Defines the method to find the motor home position in homing mode. Supported methods:

Mode Home position
0 The current position.
1 The location of the first encoder index pulse on the positive side of the negative limit switch.
� The location of the first encoder index pulse on the negative side of the positive limit switch.
� The location of the first index pulse on the negative side of a positive home switch. A positive home switch is one that goes active at

some position, and remains active for all positions greater then that one.
4 The location of the first index pulse on the positive side of a positive home switch.
5 The location of the first index pulse on the positive side of a negative home switch. A negative home switch is one that goes active at

some position, and remains active for all positions less then that one.
6 The location of the first index pulse on the negative side of a negative home switch.
7 The location of the first index pulse on the negative side of the negative edge of an intermittent home switch. An intermittent home

switch is one that is only active for a limited range of travel.
8 The location of the first index pulse on the positive side of the negative edge of an intermittent home switch.
9 The location of the first index pulse on the negative side of the positive edge of an intermittent home switch.
10 The location of the first index pulse on the positive side of the positive edge of an intermittent home switch.
11 The location of the first index pulse on the positive side of the positive edge of an intermittent home switch.
1� The location of the first index pulse on the negative side of the positive edge of an intermittent home switch.
1� The location of the first index pulse on the positive side of the negative edge of an intermittent home switch.
14 The location of the first index pulse on the negative side of the negative edge of an intermittent home switch.
15-16 Reserved for future use.
17 The edge of a negative limit switch.
18 The edge of a positive limit switch.
19 The edge of a positive home switch.
�0 Reserved for future use.
�1 The edge of a negative home switch.
�� Reserved for future use.
�� The negative edge of an intermittent home switch.
�4 Reserved for future use.
�5 Positive edge of an intermittent home switch.
�6 Reserved for future use.
�7 The positive edge of an intermittent home switch.
�8 Reserved for future use.
�9 Negative edge of an intermittent home switch.
�0-�� Reserved for future use.
�� The first index pulse on the negative side of the current position.
�4 The first index pulse on the positive side of the current position.
�5 Set current position to home and move to new zero position (including home offset). This is the same as mode 0 except that mode 0

does not do the final move to the home position.

Note that these homing methods only define the location of the home position. The zero position is always the home position adjusted by the
homing offset. Refer to Homing Methods.

70P94CAN01B

Object Index Sub-Index

HOMING SPEEDS 0X6099 --

Type Access Units Range Map PDO Memory

Array RW -- -- YES --

Description
This array holds the two velocities used when homing. Sub-index 0 contains the number of subelements of this record.

Object Index Sub-Index

HOME VELOCITY – FAST 0X6099 1

Type Access Units Range Map PDO Memory

Integer �� RW 0.1 encoder cnts/sec 0 – 500,000,000 YES RF

Description
This velocity value is used during segments of the homing procedure that may be handled at high speed. Generally, this means move in which the
home sensor is being located, but the edge of the sensor is not being found. Units are 0.1 encoder counts / second.

Object Index Sub-Index

HOME VELOCITY – SLOW 0X6099 2

Type Access Units Range Map PDO Memory

Integer �� RW 0.1 encoder cnts/sec 0 – 500,000,000 YES RF

Description
This velocity value is used for homing segment that require low speed such as cases where the edge of a homing sensor is being sought. Units are
0.1 encoder counts / second.

Object Index Sub-Index

HOMING ACCELERATION 0X609A --

Type Access Units Range Map PDO Memory

Integer �� RW 10 encoder cnts/sec� 0 – �00,000,000 YES RF

Description
This value defines the acceleration used for all homing moves. It is specified in units of 10 encoder counts / second�. The same acceleration value
is used at the beginning and ending of moves (i.e. there is no separate deceleration value).

Object Index Sub-Index

HOME OFFSET 0X607C --

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts -- YES RF

Description
This offset value (in units of encoder counts) is used in homing mode as an offset between the home sensor position and the zero position. Refer to
Home Offset for more information.

71 P94CAN01B

10 Profile Position and Profile Velocity Mode Operation
This chapter describes the operation of an amplifier in profile position and profile velocity modes. Contents
include:

10.1 Profile Position Mode Operation

10.� Profile Velocity Mode Operation

10.1 Profile Position Mode Operation Overview
This section provides an overview of profile position mode operation. Contents of this section include:

10.1.1 Point-to-Point Motion Profiles

10.1.� Handling a Series of Point-to-Point Moves

10.1.� Point-to-Point Move Parameters and Related Data

10.1.4 Point-to-Point Move Sequence Examples

10.1.1 Point-to-Point Motion Profiles
In profile position mode, an amplifier receives set points from the trajectory generator to define a target position
and moves the axis to that position at a specified velocity and acceleration. This is known as a point-to-point
move. For the amplifier to operate in profile position mode, the Mode of Operation object (index 0x6060,
paragraph 6.�, page �5) should be set to 0x0001. AC tech amplifiers also support special multi-segment type
of moves where target position and velocities can be defined as set allowing complicated segment motion
profiles.

Trapezoidal and S-curve Motion Profiles

In a point-to-point move, the rate of change in acceleration is known as jerk. Some applications can tolerate
jerk, whereas in others, high rates of jerk can cause excessive mechanical wear or material damage. To
support systems with varying levels of jerk tolerance, the profile position mode supports two motion profiles:
the trapezoidal profile, which has unlimited jerk, and the jerklimited S-curve profile.

S-Curve

Time Time

Velocity

Trapezoidal

Velocity

Deceleration
Rate

Acceleration
Rate

Target Velocity (Run Speed)

Figure ��:Trapezoidal & S-Curve Motion Profiles

In a trapezoidal profile, jerk is unlimited at the corners of the profile (start of the move, target velocity, start of
deceleration, and end of the move). S-curve profiling limits jerk or “smoothes” the motion. Note that an S-curve
profile move does support an independent deceleration rate. The Motion Profile Type object (index 0x6086)
controls which type of profile is used.

7�P94CAN01B

Relative vs. Absolute Moves

In a relative move, the target position is added to the instantaneous commanded position, and the result is
the destination of the move. In an absolute move, the target position is offset from the home position.The
instantaneous commanded position (called the demand position in the CANopen specification) is the output
of the trajectory generator. During the course of the profile this position changes constantly. It is possible to
update the profile’s target position while the move is in progress. If this update is performed as a relative move,
then the target position value will be added to the instantaneous commanded position at the time the update
is received. This type of update is most useful when the motor needs to be moved a set distance beyond the
point where some asynchronous event occurs.

10.1.2 Handling a Series of Point-to-Point Moves
There are two methods for handling a series of point-to-point moves:

As a series of discrete profiles (supported in both trapezoidal and S-curve profile moves)

As one continuous profile (supported in both trapezoidal and S-curve profile moves)

General descriptions of the two methods follow. Detailed procedures appear later in the chapter.

A Series of Discrete Profiles

The simplest way to handle a series of point-to-point moves is to start a move to a particular position, wait
for the move to finish, and then start the next move. As shown in Figure ��, each move is discrete. The motor
accelerates, runs at target velocity, and then decelerates to zero before the next move begins.

t0 Time

Velocity

t1 t2 t3

v1

v2

Figure ��: Discrete Profiles

The Profile for Drives and Motion Control refers to this method as the “single setpoint” method. AC Tech
CANopen amplifiers allow use of this method with both trapezoidal and S-curve profile moves.

One Continuous Profile (segmented moves)

Alternately, a series of trapezoidal or S-curved profile moves can be treated as a continuous move. AC Tech
amplifiers use special technique called Segmented Moves. Each segment of the complex move consists of
Target position and Target velocity. As shown in Figure �4, the motor does not stop between moves. Instead,
motion profile defined as set of Target Position – Profile Velocity pairs. If this method is used then profile
acceleration and deceleration are not used and calculated automatically by amplifier. Their values are calculated
based on segment start – segment stop velocities and segment length in position units. This method gives user
grater flexibility rather then change point on the fly method since whole profile can be described before motion
is started. At the same time loading the next value of the target position and target velocity could be done on
the fly. This is particularly useful in systems where calculation by the motion master must also be done on the
fly. The motion buffer for the segmented move is �� entries deep.

•

•

7� P94CAN01B

P0 Position

Velocity

P1 P2 P3

v1

v2

P4

Figure �4: One Continuous Profile

The Profile for Drives and Motion Control refers to this method as the “set of setpoints” method. AC Tech
CANopen amplifiers allow use of this method with trapezoidal or S-curve types of moves.

10.1.3 Point-to-Point Move Parameters and Related Data
Move Parameters

Each point-to-point move is controlled by a set of parameters, accessed through the following objects.

Object Name Object ID Description

Target Position 0x607A When running in position profile mode, this object holds the destination position of the
trajectory generator.

Profile Velocity 0x6081 Velocity that the trajectory generator will attempt to achieve when running in position
profile mode.

Profile Acceleration 0x608� Acceleration that the trajectory generator attempts to achieve when running in position
profile mode.

Profile Deceleration 0x6084 Note that an S-curve profile move does not use a deceleration rate. Instead, the
acceleration rate is applied to both the acceleration and deceleration of the move.

Quick Stop Deceleration 0x6085 Deceleration value used when a trajectory needs to be stopped as the result of a quick stop
command. Note that unlike most trajectory configuration values, this value is NOT buffered.
Therefore, if the value of this object is updated during an abort, the new value is used
immediately.

Motion Profile Type 0x6086 Trapezoidal or S-Curve

The Point-to-Point Move Buffer

In profile position mode, the amplifier uses a buffer to store the parameters (listed in the Move Parameters
table) for the next point-to-point move, or for next move segment consisting of the Target position-Profile
velocity pair. The move buffer can be modified at any point before a control sequence copies the “next-move”
parameters to the active move registers.

74P94CAN01B

Move-Related Control Word and Status Word Bit Settings

An amplifier’s Control Word (index 0x6040) and Status Word (index 0x6041) play an important role in the
initiation and control of point-to-point move sequences, as described herein.

Object Name Object ID Bit# Bit Name Description

Control Word 0x6040 4 New Setpoint The transition of bit 4 from 0 to 1 is what causes the amplifier to copy a set of
move parameters from the buffer to the active register, thus starting the next
move.

5 Motion
Suspended

Allows or not start motion on change bit #4. If this bit is set then transition of
bit #4 copies motion parameters to motion buffer but doesn’t start the motion
until this bit is cleared. If there is an entries in motion buffer clearing this bit
will start the motion.

6 Absolute/
Relative

Value = 0: Move is absolute (based on home position). Value = 1: Move is
relative (based on current commanded position).

8 Halt Value = 1: Interrupts the motion of the drive. Wait for release to continue.

Status Word 0x6041 10 Target
Reached

Amplifier sets bit 10 to 1 when target position has been reached. Amplifier
clears bit 10 to zero when new target is received.

1� Setpoint
Acknowledged

Set by the amplifier when Control Word bit 4 goes from 0 to 1. Cleared when
Control Word bit 4 is cleared if there is more room in motion buffer (buffer
depth is �� entry). If there is no room in the buffer (buffer full) bit will stay set
until buffer has at least one vacant entry.

Refer to paragraph 6.�, page �4 for more Control Word (index 0x6040) and Status Word (index 0x6041)
information.

75 P94CAN01B

10.1.4 Point-To-Point Move Sequence Examples
Figures �5 and �6 illustrate how to perform:

A series of moves treated as a Series of Discrete Profiles

A series of trapezoidal or S-curve position multi-segment moves treated as One Continuous Profile

Set More Parameters
Set Profile Type

Clear Control Word bit 5

Control Word bit 4

Status Word bit 12

Set Control Word bit 4
(to 1)

Set to 0

Wait until Cleared

Action done by
CANopen Master

Action done by
Amplifier (Drive)

Amplifier sees bit 4: 0 -> 1 transaction
Copies move parameters to the buffer

Control Word bit 6
Amplifier starts
absolute move

Amplifier starts
relative move

Amplifier sets Status Word
bit 12 to 0

Clear Control Word bit 4

More moves?

Finished

Amplifier clears bit 12 (to 0)
if there is space in the motion buffer.
When target position is reached, the

amplifier sets bit 10 of Status Word (to 1)

Figure �5: A series of moves treated as a Series of Discrete Profiles
Notes:

1. This type of move is supported as a trapezoidal profile or S-curve profile.

�. Control Word bit 4 is “new setpoint.” It needs to be 0 because the move will be triggered by a 0->1 transition.

�. Bit 4, value of 1 indicates that valid data has been sent to amplifier and new move should begin. Bit 5 is “change set immediately.” A value of 1 tells the
amplifier to update the current profile immediately by copying the contents of the move buffer to the active registers (without waiting for move to finish).

4. Amplifier must detect bit 4 0-1 transition to begin move. Bit 5 value 1 allows immediate update.

5. Control word bit 6: value 0 causes absolute move; value 1 causes relative move.

6. Status Word bit 1� is “setpoint acknowledge.” A value of 1 indicates the amplifier has received a setpoint and has started the move.

7. Control Word bit 4 is “new setpoint.” It needs to be 0 to allow the next move will be triggered by a 0->1 transition. Also, the 1->0 transition causes the
amplifier to clear bit 1�.

8. Amplifier detects 0->1 transition of Control Word bit 4 and clears bit 1� in response. When the motor reaches the target position, the amplifier sets Status

Word bit 10 (“target reached”) to 1.

•

•

76P94CAN01B

Set More Parameters
Set Profile Type

Clear Control Word bit 5

Control Word bit 4

Status Word bit 12

Set Control Word bit 4
(to 1)

Set to 0

Wait until Cleared

Action done by
CANopen Master

Action done by
Amplifier (Drive)

Amplifier sees bit 4: 0 -> 1 transaction
Copies move parameters to the buffer

Amplifier sets Status Word
bit 12 (to 1)

Clear Control Word bit 4

More segments?

Finished

Amplifier clears bit 12 (to 0)
if there is space in the motion buffer.
When target position is reached, the

amplifier sets bit 10 of Status Word (to 1)

Control Word bit 5?

Amplifier starts
relative move

Figure �6: A series of trapezoidal or S-curve position multi-segment moves
treated as One Continuous Profile.

10.2 Profile Velocity Mode Operation

10.2.1 Position and Velocity Loops
In profile velocity mode, both the velocity and position loops are used. Profile velocity moves are controlled by
some of the same gains and limits objects used in profile position mode. In addition, a Target Velocity object
(index 0x60FF) provides the target velocity. For the amplifier to operate in profile velocity mode, the Mode of
Operation object (index 0x6060, paragraph 6.�, page �5) should be set to 0x000�.

Controlling motion in Profile Velocity Mode

In profile velocity mode, motion is started by giving a non-zero value to the Target Velocity (index 0x60FF).
Motion is stopped by setting this object to zero. In profile velocity mode, the target velocity is updated as soon
as the Target Velocity object (index 0x60FF) is set. In this mode, Control Word bits 4, 5, and 6 are not used.
To start a move in profile velocity mode, set the profile parameters (profile accel, profile decel, and target
velocity).

77 P94CAN01B

10.3 Profile Position, Profile Velocity Mode Objects.
This section describes the objects that control the operation of the amplifier in profile position mode. They
include:

TARGET POSITION INDEX 0X607A

PROFILE VELOCITY INDEX 0X6081

TARGET VELOCITY INDEX 0X60FF

PROFILE ACCELERATION INDEX 0X608�

PROFILE DECELERATION INDEX 0X6084

QUICK STOP DECELERATION INDEX 0X6085

MOTION PROFILE TYPE INDEX 0X6086

Object Index Sub-Index

TARGET POSITION 0X607A --

Type Access Units Range Map PDO Memory

Integer �� RW encoder counts -- YES RF

Description
When running in position profile mode, this object holds the destination position of the trajectory generator. The units of this object are fixed at
encoder counts.
Note that the target position programmed here is not passed to the internal trajectory generator until the move has been started or updated using
the Control Word. Refer to paragraph 10.1, page 71 “Profile Position Mode Operation Overview” for more information.

Object Index Sub-Index

PROFILE VELOCITY 0X6081 --

Type Access Units Range Map PDO Memory

Integer �� RW 0.1 encoder cnts/sec 0 – 500,000,000 YES RF

Description
Velocity that the trajectory generator attempts to achieve when running in position profile mode.
Note that the value programmed here is not passed to the internal trajectory generator until the move has been started or updated using the Control
Word. Refer to paragraph 10.1, page 71 “Profile Position Mode Operation Overview” for more information.

Object Index Sub-Index

TARGET VELOCITY 0X60FF --

Type Access Units Range Map PDO Memory

Integer �� RW 0.1 encoder cnts/sec -500,000,000 to
+500,000,000

YES R

Description
In profile velocity mode, this object is an input to the amplifier’s internal trajectory generator. Any change to the target velocity triggers an
immediate update to the trajectory generator.
Note that this is different from the way the profile position works. In that mode, changing the trajectory input parameters doesn’t affect the
trajectory generator until bit 4 of the Control Word object (index 0x6040) has been changed from 0 to 1.

78P94CAN01B

Object Index Sub-Index

PROFILE ACCELERATION 0X6083 --

Type Access Units Range Map PDO Memory

Integer �� RW 10 encoder cnts/sec� 0 -�00,000,000 YES RF

Description
In profile position mode, this value (specified in units of 10 encoder counts / second�) is the acceleration that the trajectory generator attempts to
achieve.
Note that the value programmed here is not passed to the internal trajectory generator until the move has been started or updated using the Control
Word. Refer to paragraph 10.1, page 71 “Profile Position Mode Operation Overview” for more information.

Object Index Sub-Index

PROFILE ACCELERATION 0X6083 --

Type Access Units Range Map PDO Memory

Integer �� RW 10 encoder cnts/sec� 0 -�00,000,000 YES RF

Description
In profile position mode, this value (specified in units of 10 encoder counts / second�) is the acceleration that the trajectory generator attempts to
achieve.
Note that the value programmed here is not passed to the internal trajectory generator until the move has been started or updated using the Control
Word. Refer to paragraph 10.1, page 71 “Profile Position Mode Operation Overview” for more information.

Object Index Sub-Index

PROFILE DECELERATION 0X6084 --

Type Access Units Range Map PDO Memory

Integer �� RW 10 encoder cnts/sec� 0 -�00,000,000 YES RF

Description
This value (specified in units of 10 encoder counts / second�) is the deceleration that the trajectory generator attempts to achieve at the end of
a trapezoidal profile when running in position profile mode. Note that this value is only used when running trapezoidal or profile position special
velocity mode profiles. The S-curve profile generator uses the Profile Acceleration object (index 0x608�) as the acceleration target for both the start
and end of moves.
Note that the value programmed here is not passed to the internal trajectory generator until the move has been started or updated using the Control
Word. Refer to paragraph 10.1, page 71 “Profile Position Mode Operation Overview” for more information.

Object Index Sub-Index

QUICK STOP DECELERATION 0X6085 --

Type Access Units Range Map PDO Memory

Integer �� RW 10 encoder cnts/sec� 0 -�00,000,000 YES RF

Description
Deceleration value used when a trajectory needs to be stopped as the result of a quick stop command. When a quick stop command is issued, the
demand velocity is decreased by this value until it reaches zero. This occurs in all position modes (homing, profile position, and interpolated position
modes), and for all trajectory generators (trapezoidal and s-curve).
Note that unlike most trajectory configuration values, this value is NOT buffered. Therefore, if the value of this object is updated during an abort, the
new value is used immediately.

79 P94CAN01B

Object Index Sub-Index

MOTION PROFILE TYPE 0X6086 --

Type Access Units Range Map PDO Memory

Integer 16 RW -- Refer to Description YES RF

Description
Type of trajectory profile to use when running in profile position mode. Supported values are:
Mode Description
0 Trapezoidal profile mode.
� S-curve profile mode.
-1 Trapezoidal multi-segmented move
-� S-curve multi-segmented move

The amplifier will not accept other values. See Profile Position Mode Operation Overview, for more information.

Note that the value programmed here is not passed to the internal trajectory generator until the move has been started or updated using the Control
Word bit #4. Refer to paragraph 10.1, page 71 “Profile Position Mode Operation Overview” for more information.

AC Technology Corporation
www.actech.com

6�0 Douglas Street
Uxbridge, MA 01569

Telephone: (508) �78-9100
Facsimile: (508) �78-787�

P94CAN01B

PositionServo CANopen Communication Module
Communications Interface Reference Guide

This documentation applies to the optional CANopen communications module for the PositionServo drive and
should be used in conjunction with the PositionServo User Manual (Document S94PM01) that shipped with the
drive. These documents should be read in their entirety as they contain important technical data and describe the
installation and operation of the drive.

© 2008 Lenze AC Tech Corporation

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written permission
from Lenze AC Tech Corporation. The information and technical data in this manual are subject to change without
notice. Lenze AC Tech Corporation makes no warranty of any kind with respect to this material, including, but not
limited to, the implied warranties of its merchantability and fitness for a given purpose. Lenze AC Tech Corporation
assumes no responsibility for any errors that may appear in this manual and makes no commitment to update or
to keep current the information in this manual.

CANopen® and CiA® are registered trademarks of the CiA (CAN in Automation e.V.).

PositionServo™ is a registered trademark of Lenze AC Tech Corporation.

About These Instructions

 i P94CAN01C

Contents

1 Safety Information .. 1

1.1 Warnings, Cautions and Notes ...1

1.1.1 General ..1

1.1.2 Application ...1

1.1.3 Installation ..1

1.1.4 Electrical Connection ..2

1.1.5 Operation ...2

2 Introduction.. 3

2.1 Fieldbus Overview ...3

2.2 Module Specification ...3

2.3 Module Identification Label ..3

3 Installation ... 4

3.3 Electrical Installation ...5

3.3.1 Cable Types ..5

3.3.2 Network Limitations..5

3.3.3 Connections and Shielding ...6

3.3.4 Network Termination ..7

3.3.5 Network Schematic ..7

4 Commissioning .. 8

4.1 Overview ...8

4.2 Configuring the Network ..8

4.2.1 Master Support Files...8

4.2.2 CANopen Master Setup Procedure ..8

4.3 Configuring the PositionServo CANopen Module ..9

4.3.1 Connecting ...9

4.3.2 Connect to the Drive with MotionView OnBoard ..9

4.3.3 Communication Module Selection ...10

4.3.4 CANopen Node Settings ..10

4.3.5 Node Address ...11

4.3.6 Baud / Data Rate ..11

4.3.7 CAN Bootup Mode ..12

4.3.8 CAN Bootup Delay ..12

4.3.9 Data Mapping ...13

4.3.10 Re-Initialising ...13

4.3.11 Non-Module Parameter Settings ...13

P94CAN01C ii

Contents

5. CANopen Object Dictionary .. 14

5.1 What is the CANopen Object Dictionary? ..14

5.1.1 Object Format ...14

5.1.2 Object Dictionary Layout ...14

5.1.3 Accessing the Object Dictionary ..15

5.2 Communication Profile Area ..15

5.2.1 Device Type ..16

5.2.2 Error Register ...16

5.2.3 Pre-defined Error Field..16

5.2.4 SYNC COB ID ..17

5.2.5 Manufacture Device Name..17

5.2.6 Manufacture Hardware Version ...17

5.2.7 Manufacture Software Version ..17

5.2.8 Emergency Message COB ID ..17

5.2.9 Inhibit Time EMCY ..18

5.2.10 Producer Heartbeat Time ..18

5.2.11 Identity Object ..18

5.2.12 RxPDO 1 to 8 Communication Parameters ..19

5.2.13 RxPDO Mapping Parameters ...20

5.2.14 TxPDO 1 to 8 Communication Parameters ..20

5.2.15 TxPDO Mapping Parameters ...21

5.3 Manufacture Specific Profile Area ..22

5.3.1 Data Format, Size and Memory Area ...22

5.4 Endian Format ...22

5.5 Object Access ...22

6. Service Data Objects .. 23

6.1 What are Service Data Objects? ..23

6.2 SDO Message Identifiers ...23

6.3 PID Access ..23

6.4 SDO Abort Codes ...23

6.5 SDO Message Frame ...24

6.5.1 Specifier ...25

6.5.2 Multiplexor ...25

6.5.3 Data ...25

6.6 SDO Access Examples ...26

6.6.1 Example 1: Read Velocity Accel Limit ..26

6.6.2 Example 2: Write to Velocity Accel Limit ...26

6.6.3 Example 3: Read User Variable V0 Least Significant Byte (LSB) ...27

6.6.4 Example 4: Write to User Variable V0 Least Significant Byte (LSB) ...27

6.6.5 Example 5: Read APOS ...28

6.6.6 Example 6: Write to APOS ...28

 iii P94CAN01C

Contents

7 Process Data Objects ... 29

7.1 What are Process Data Objects? ..29

7.2 PDO Configuration in MotionView ..29

7.2.1 COB ID and Mode ...29

7.2.2 Transmission Type ...30

7.2.3 Event Time ...31

7.2.4 Inhibit Time ..31

7.3 Mapping PDOs ..32

7.3.1 Amount and Size of PDOs ...32

7.3.2 Receive (Rx) PDOs ..32

7.3.3 Transmit (Tx) PDOs ...33

8 Emergency Objects .. 34

8.1 What is an Emergency Object? ..34

8.2 Emergency Object format ..34

8.2.1 Error Code ..34

8.2.2 Error Register ...35

8.2.3 Manufacture Specific Error Field ...35

8.3 Emergency Object Examples ...36

8.3.1 Example 1: Hardware Disable ...36

8.3.2 Example 2: Limit Switch ...37

8.3.3 Example 3: CAN Receive buffer overrun ..37

9 Drive Control and Status .. 38

9.1 Overview ...38

9.2 Control BITs ..38

9.2.1 Software Enable/Disable ...38

9.2.2 Drive Reset (Cold Boot) ...38

9.2.3 Suspend Motion ...38

9.2.4 Stop Motion ..39

9.3 Status Word ..39

9.3.1 Status Flags Register ..39

9.3.2 Extended Status Bits ..40

10 Advanced Features .. 41

10.1 CAN Baud Rate ..41

10.2 CAN Node Address ..41

10.3 CAN Boot-up Mode ..41

10.4 CAN Boot-up Delay ..42

10.5 Communication Module Selection..42

10.6 PDO Configuration ...43

10.6.1 PDO COB-ID, Activation and Transmission Type ..43

10.6.2 PDO Mapping ...45

10.6.3 TPDO Event Time and Inhibit Time ..45

11 Reference .. 46

11.1 PID List with CANopen Values ..46

 1 P94CAN01C

Safety Information

1 Safety Information
1.1 Warnings, Cautions and Notes
1.1.1 General

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, moving
and rotating. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation
creates the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be
carried out by qualified, skilled personnel (IEC 364 and CENELEC HD 384 or DIN VDE 0100 and IEC report
664 or DIN VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with
the installation, assembly, commissioning, and operation of the product and who have the qualifications
necessary for their occupation.

1.1.2 Application

Drive controllers are components designed for installation in electrical systems or machinery. They are
not to be used as appliances. They are intended exclusively for professional and commercial purposes
according to EN 61000-3-2. The documentation includes information on compliance with EN 61000-3-2.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/37/EC
(Machinery Directive); EN 60204 must be observed.

Commissioning (i.e. starting drive as directed) is only allowed when there is compliance to the EMC Directive
(89/336/EEC).

The drive controllers meet the requirements of the Low Voltage Directive 73/23/EEC. The harmonised
standards of the series EN 50178/DIN VDE 0160 apply to the controllers.

The availability of controllers is restricted according to EN 61800-3. These products can cause
radio interference in residential areas. In the case of radio interference, special measures may be
necessary for drive controllers.

1.1.3 Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not
change any insulation distances during transport or handling. Do not touch any electronic components
and contacts. Controllers contain electrostatically sensitive components, which can easily be damaged by
inappropriate handling. Do not damage or destroy any electrical components since this might endanger
your health! When installing the drive ensure optimal airflow by observing all clearance distances in the
drive's user manual. Do not expose the drive to excessive: vibration, temperature, humidity, sunlight, dust,
pollutants, corrosive chemicals or other hazardous environments.

P94CAN01C 2

Safety Information

1.1.4 Electrical Connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g.
VBG 4) must be observed.

The electrical installation must be carried out in accordance with the appropriate regulations (e.g.
cable cross-sections, fuses, PE connection). Additional information can be obtained from the regulatory
documentation.

The regulatory documentation contains information about installation in compliance with EMC (shielding,
grounding, filters and cables). These notes must also be observed for CE-marked controllers.

The manufacturer of the system or machine is responsible for compliance with the required limit values
demanded by EMC legislation.

1.1.5 Operation

Systems including controllers must be equipped with additional monitoring and protection devices according
to the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.).
You are allowed to adapt the controller to your application as described in the documentation.

DANGER!
• After the controller has been disconnected from the supply voltage, do not touch the live
components and power connection until the capacitors have discharged. Please observe the
corresponding notes on the controller.
• Do not continuously cycle input power to the controller more than once every three minutes.
• Close all protective covers and doors during operation.

WARNING!
Network control permits automatic starting and stopping of the inverter drive. The system design
must incorporate adequate protection to prevent personnel from accessing moving equipment
while power is applied to the drive system.

Table 1: Pictographs used in these instructions

Pictograph Signal word Meaning Consequences if ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent
danger that may result in death
or serious personal injury if the

corresponding measures are not
taken.

WARNING! Impending or possible danger
for persons

Death or injury

STOP! Possible damage to equipment Damage to drive system or its
surroundings

NOTE Useful tip: If observed, it will
make using the drive easier

 3 P94CAN01C

Introduction

2 Introduction
The following information is provided to explain how the PositionServo drive operates on a CANopen network;
it is not intended to explain how CANopen itself works. Therefore, a working knowledge of CANopen is
assumed, as well as familiarity with the operation of the PositionServo drive.

2.1 Fieldbus Overview
The CANopen fieldbus is an internationally accepted communications protocol designed for commercial
and industrial installations of factory automation and motion control applications. High data transfer
rates combined with it’s efficient data formatting, permit the coordination and control of multi-node
applications.

2.2 Module Specification
• Supported baudrates: 1Mbps*, 800kbps*, 500kbps, 250kbps, 125kbps, 50kps, 20kbps, 10kbps.

• Service Data Object (SDOs) supported

• Process Data Objects (PDOs) supported, maximum of 16 (8 x RPDO, 8 x TPDO)

• Synchronous, asynchronous and change of state communication modes (transmission types)
supported

• Heartbeat function supported

• Emergency objects supported

• Master and or master-less node configuration supported.

NOTE: * Baudrates only supported with hardware revision 1B10 or higher.

2.3 Module Identification Label
Figure 1 illustrates the labels on the PositionServo CANopen communications module. The PositionServo
CANopen module is identifiable by:

• One label affixed to the side of the module.

• The TYPE identifier in the center of the label: E94ZACAN1.

• The port (interface) identifier, P21, on the right hand side of label.

TYPE: E94ZACAN1
ID-NO: 123456789

039080825
E94ZACAN1000XX1A10

Made in USA

Communications

CANopen Module

P
2

1

A: Fieldbus Protocol
B: Model Number
C: Lenze Order Number
D: Firmware Revision
E: Hardware RevisionA

B
C

DE

Figure 1: PositionServo CAN Module Label

P94CAN01C 4

Installation

3 Installation

3.1 Mechanical Installation
1. Ensure that for reasons of safety, the AC supply, DC supply and +24VDC backup supply have been

disconnected before opening the option bay cover.

2. Remove the two COMM module screws that secure Option Bay 1. With a flat head screwdriver, lift the
Option Bay 1 cover plate and remove.

3. Fit the 20-pin header into the module before fitting the module into the drive.

4. Install the CAN COMM Module (E94ZACAN1) in Option Bay 1.

5. Replace the two COMM module screws (max torque: 0.3Nm/3lb-in) to secure Option Bay 1 in place.

S921a

Figure 2: Installation of CAN Communications Module

 5 P94CAN01C

Installation

3.2 CANopen Module
Installed in Option Bay 1 as P21, the CANopen module (E94ZACAN1) is optically isolated from the rest of the
drive’s circuitry. The 3-pin CANopen module is for HW/SW 1A10 and the 5-pin CANopen module is for HW/
SW 1B10 or higher. Table 2 lists the pinouts of the PositionServo CAN Module connector. This connector
provides 2-wire plus isolated ground connection to the network.

Table 2 CANopen Interface Pin Assignments

3-pin 5-pin
Pin Name Function Pin Name Function
1 CAN_GND CAN Ground 1 CAN_GND CAN Ground
2 CAN L CAN Bus Low 2 CAN L CAN Bus Low
3 CAN H CAN Bus High 3 Shield

4 CAN H CAN Bus High
5 NC No connection

1
23

CAN H
CAN L

CAN GND

12
3 CAN_GND

CAN L
Shield

CAN H
NC

12
3

4
5

3.3 Electrical Installation
3.3.1 Cable Types

Due to the high data rates used on CANopen networks it is paramount that correctly specified quality cable
is used. The use of low quality cable will result in excess signal attenuation and data loss.

3.3.2 Network Limitations

There are several limiting factors that must be taken into consideration when designing a CANopen network,
however, here is a simple checklist:

• CANopen networks are limited to a maximum of 127 nodes.

• Only 32 nodes may be connected on a single network segment.

• A network may be built up from one or several segments with the use of network repeaters.

• Maximum total network length is governed by the data rate used. Refer to Table 3.

• Minimum of 1 meter of cable between nodes.

• Use fibre optic segments to:

 − Extend networks beyond normal cable limitations.

 − Overcome different ground potential problems.

 − Overcome very high electromagnetic interference.

• Spurs or T connections while sometimes useful reduce the network quality, therefore is strongly advised
not to uses spurs as extreme care must be taken during network design phase so as to avoid problems.

P94CAN01C 6

Installation

Table 3: Network Length Specifications

Baud Rate Maximum Network Length

10kbps 5000 meters

20kbps 2500 meters

50kbps 1000 meters

125kbps 500 meters

250kbps 250 meters

500kbps 100 meters

800kbps 50 meters

1Mbps 25 meters

3.3.3 Connections and Shielding

To ensure good system noise immunity all network cables should be correctly grounded:

• Minimum recommendation of grounding is that the network cable is grounded once in every cubical.

• Ideally the network cable should be grounded on or as near to each drive as possible.

• For wiring of cable to the connector plug the unscreened cable cores should be kept as short as
possible; recommended maximum of 20mm.

NOTE
As per the CiA specification (DRP303-1) it is recommend that the CAN_GND be connected
on all nodes. If this is not possible due to application or cable restrictions then it is
recommend that the CAN_GND terminal be connected to chassis/earth (PE).

20 mm
max

Connect to cubical panel/
earth (PE) as close to drive

as possible

1 2 3 4 5

Figure 3: Connector Wiring Diagram

 7 P94CAN01C

Installation

3.3.4 Network Termination

In high speed fieldbus networks such as CANopen it is essential to install the specified termination resistors,
i.e. one at both ends of a network segment. Failure to do so will result in signals being reflected back along
the cable which will cause data corruption. A 120W ¼W resistor should be fitted to both ends of a network
segment across the CAN_L and CAN_H lines.

120 Ω
¼ W

Connect to cubical panel/
earth (PE) as close to drive

as possible

1 2 3 4 5

Figure 4: Termination Resistor Wiring Diagram

3.3.5 Network Schematic

Figure 5 illustrates an example CANopen network wiring diagram for the PositionServo.

CANopen
Master (NMT)

PositionServo
CANopen Module

PositionServo
CANopen Module

CAN_GND CAN_L CAN_H CAN_GND CAN_GNDCAN_L CAN_LCAN_H CAN_H

120Ω120Ω

CAN NetworkCAN Network

Min 1m Min 1m

Figure 5: Network Wiring Diagram

NOTE
As per the CiA specification (DRP303-1) it is recommend that the CAN_GND be connected
on all nodes. If this is not possible due to application or cable restrictions then it is
recommend that the CAN_GND terminal be connected to chassis/earth (PE).

P94CAN01C 8

Commissioning

4 Commissioning
4.1 Overview

It is assumed that the user has familiarised themselves with how to set parameters using MotionView
software. Refer to the PositionServo Programming Manual (PM94M01) for details on MotionView
software.

The details that follow provide a step-by-step guide to quickly and easily set-up a PositionServo drive
to communicate on a CANopen fieldbus network, in a basic format. There are many more features and
settings available for the CAN option module, for details on these refer to the fuller description in the
sections that follow.

4.2 Configuring the Network
By its very nature CANopen is a very open and flexible protocol and as such there are several methods that
can be used to control a CANopen network, these are typically:

• Master – Slave: The master controls slave devices by utilising Process Data Objects (PDOs) and/or
Service Data Objects (SDOs). In addition to slave node control, the master can and is often used to
configure the slave node.

• Peer – Peer: This is when there is typically no master on the network and devices are preconfigured to
communicate directly with each other by means of matching PDO COB IDs. However, most CANopen
nodes will start in a “pre-operational” state and therefore it is usually the responsibly of one node to act
as a pseudo master and produce a network telegram to enable all other nodes to go to an “operational”
state.

• Combination of both Master-Slave and Peer-Peer.

4.2.1 Master Support Files

Many CANopen master configuration software utilise EDS (Electronic Data Sheet) files to configure
the network profile and communications with the relevant devices. EDS files are text files that contain
information about objects supported by the device. Device icon files are also supplied for use with the
CANopen configuration software.

The PositionServo EDS files are available on the CD ROM that ships with the module and on the Lenze-AC
Tech website.

4.2.2 CANopen Master Setup Procedure

The method for configuring master devices differs greatly between manufacturers. Provided herein is a
very basic, generic guide to setting up a network master.

1. Launch the Master configuration software.

2. Install/Import the required EDS support file(s) using the wizard tool if provided.

3. Setup master CANopen port with required criteria such as node address and baudrate etc.

4. Add or “drag and drop” the required slave devices from the EDS library to the CANopen network
which is typically depicted on screen.

 9 P94CAN01C

Commissioning

5. Configure the slave node address, ensuring that each node has a unique and individual address.

6. Configure each slave’s PDO data mapping relationship to the master interface.

7. If utilising Master based slave configuration refer to section 5, the Object Dictionary, for a list and
description of supported objects.

8. If required configure the master to produce a Sync telegram on a regular time period.

9. If required configure the master to set all slave devices to go to the “Operational State” on network
startup.

10. Save the configuration and download to the master.

4.3 Configuring the PositionServo CANopen Module
4.3.1 Connecting

With the drive power disconnected, install the CANopen module and connect the network cable as instructed
in the preceeding sections. Ensure the drive Run/Enable terminal is disabled then apply the correct voltage
to the drive (refer to drive's user manual for voltage supply details).

4.3.2 Connect to the Drive with MotionView OnBoard

Refer to the PositionServo User Manual, section 6.2 for full details on configuring and connecting a drive
via MotionView OnBoard (MVOB) software. Contained herein is a brief description of launching MVOB and
communicating with the drive.

1. Open the PC’s web browser. Enter the drive’s default IP address [192.168.124.120] in the browser’s
Address window.

2. The authentication screen may be displayed if the PC does not have Java RTE version 1.4 or higher. If
so, to remedy this situation, download the latest Java RTE from http://www.java.com.

3. When MotionView has finished installing, a Java icon entitled [MotionView OnBoard] will appear on
your desktop and the MVOB splash screen is displayed. Click [Run] to enter the MotionView program.

4. Once MotionView has launched, verify motor is safe to operate, click [YES, I have] then select [Connect]
from the Main toolbar (top left). The Connection dialog box will appear.

5. Select [Discover] to find the drive(s) on the network available for connection.

[Discover] may fail to find the drive’s IP address on a computer with both a wireless network card and
a wired network card (or a PC with more than one network connection). If this happens, try one of the
following remedies:

Disable the wireless network card and then use [Discover].
Type in the drive’s IP address manually at the box [IP Address].

Then click [Connect]

6. Highlight the drive (or drives) to be connected and click [Connect] in the dialog box.

P94CAN01C 10

Commissioning

Figure 6: Connection Box with Discovered Drive

In the lower left of the MotionView display, the Message WIndow will contain the connection status message.
The message “Successfully connected to drive B04402200450_192.168.124.120” indicates that the drive
B04402200450 with IP address 192.168.124.120 is connected.

4.3.3 Communication Module Selection

In the left-hand node tree of MotionView OnBoard, click on the [Communications] folder. Using the drop
down menu, select [CANopen Simple] as the requied fieldbus selection. The Important Message box (to
REBOOT) is displayed because the Communication setting has been changed (from None to CANopen
Simple in this example). Click [Ok] to dismiss the dialog box. Reboot the drive.

Figure 7: Fieldbus Selection

4.3.4 CANopen Node Settings

The PositionServo CANopen node settings, can be accessed by clicking on the [CAN] folder and [CANopen]
sub folder icons. To access the PositionServo CAN node settings of Node Address and Baud Rate, click on
the [CAN] folder icon.

NOTE
Making any changes in either the [CAN] or [CANopen] folder will prompt the
“Important Message” box to be displayed to inform of the required reboot.

 11 P94CAN01C

Commissioning

Figure 8: REBOOT Message

4.3.5 Node Address

Figure 9: CAN Node Address and Baud Rate

The default address is 63. The permissible address range is: 0 – 127.

Each node on the network must have an individual address, if two of more nodes have duplicate addresses
this may prevent the network from functioning correctly. The node address is also accessible from the drive
keypad using parameter "CAnA".

4.3.6 Baud / Data Rate

The default baudrate is 125kbps (PID234=4). The permissible baudrate range is: 10kbps to 1Mbps (PID234
range 1-8).

The baud rate is also accessible from the drive keypad using parameter "CAnB".

P94CAN01C 12

Commissioning

4.3.7 CAN Bootup Mode

The PositionServo CANopen Bootup Mode is accessed by clicking on the [CANopen] folder.

Figure 10: CAN Bootup Mode

The default mode is Pre-Operational. The permissible modes are listed in Table 4.

Table 4: PID236 CAN Bootup Mode

Mode Comment

Pre-Operational Drive enters the “PRE_OPERATION” state after bootup

Operational Drive enters the “OPERATIONAL” state after bootup

Pseudo Master
In addition to the drive entering the “OPERATIONAL” state after bootup the drive will also (after the
delay period set by the CAN Bootup Delay parameter) broadcast a command for all other CANopen
nodes to go in to the “OPERATIONAL” state

The Bootup Mode is also accessible from the drive keypad using parameter "CAno".

4.3.8 CAN Bootup Delay

The PositionServo CANopen Bootup Delay is accessed by clicking on the [CANopen] folder.

Figure 11: CAN Bootup Delay

The default delay time is 3 seconds. The permissible delay time is: 0 – 5 (sec). The Bootup Delay is only
functional when the drive is used in pseudo master mode (4.3.7). The Bootup Delay parameter sets the
time delay from when the drive itself boots up and is fully functional to when it broadcasts the NMT
command for all slave devices to go to the operational state.

The CAN Bootup Delay is also accessible from the drive keypad using parameter "CAnE".

 13 P94CAN01C

Commissioning

4.3.9 Data Mapping

• The PositionServo CANopen module can support up to 8 Process Data Objects (PDOs) in each direction.
• PDO Configuration is described in full in section 7, Process Data Objects.
• The default mappings for PositionServo CANopen is 4 RxPDO and 4 TxPDO each with one mapped

object. The configuration is shown in Table 5.

Table 5: Default mapped PDOs

RxPDO Mapped Function
Transmission

Type
Data Format TxPDO Mapped Function

Transmission
Type

Data Format

1 2064 – VAR_V0 255 RAM Integer 1 2036 – VAR_STATUS 255 RAM Integer

2 248B – VAR_IREF 255 RAM FLOAT 2 2053 – VAR_EXSTATUS 1 RAM Integer

3 2042 – VAR_OUTPUS 255 RAM Integer 3 24BC – VAR_PHCUR 1 RAM FLOAT

4 2458 – VAR_AOUT 255 RAM FLOAT 4 24D7 – VAR_APOS 1 RAM FLOAT

4.3.10 Re-Initialising

To activate any changes made the drive has to be re-initialised. Hence the warning within MotionView

Figure 12: REBOOT Message

This can be done by cycling the power to the drive.

4.3.11 Non-Module Parameter Settings

In addition to configuring the CAN option module and depending upon the application there may be several
drive based parameters that will need to be set using MotionView or an Indexer program or via CANopen
Service Data Object (SDOs). Such as:

• PID34 – Drive Mode (VAR_DRIVEMODE)

• PID37 – Reference (VAR_REFERENCE)

• PID29 – Enable switch funtion (VAR_ENABLE_SWITCH_TYPE)

P94CAN01C 14

CANopen Object Dictionary

5. CANopen Object Dictionary
5.1 What is the CANopen Object Dictionary?

• CANopen is an object based protocol and as such everything is orientated around these objects.

• The Object Dictionary is essentially a grouping of objects accessible via the network in an ordered and
pre-defined fashion.

• EDS (Electronic Data Sheets) files are text files that contain a complete list of a nodes supported Object
Dictionary. These are used by some CANopen network configuration software tools to simplify network
setup and commissioning.

5.1.1 Object Format

Each object within the dictionary consists of 6 parts as shown in Table 6.

Table 6: Format of the Object Dictionary

Part Description

Index Denotes the object's position / address within the Object Dictionary

Object Code Denotes the data format, such as ARRAY or VARIABLE

Name Provides a simple textual description of the function of that particular object

Type Denotes the data type such as boolean, Floating point, signed or unsigned integer etc

Attribute Defines the access rights for a particular object

M/O Defines whether the object is Mandatory or Optional according to the CANopen specification

An object may also contain “sub-indexes” if the object in question is a complex object such as an array or
record.

5.1.2 Object Dictionary Layout

The overall layout of the Object Dictionary is shown in Table 7.

Table 7: Object Dictionary Structure

Index (hex) Object

0000 not used

0001 - 001F Static Data Types

0020 - 003F Complex Data Types

0040 - 005F Manufacturer Specific Complex Data Types

0060 - 007F Device Profile Specific Static Data Types

0080 - 009F Device Profile Specific Complex Data Types

00A0 - 0FFF Reserved for future use

1000 - 1FFF Communication Profile Area

2000 - 5FFF Manufacturer Specific Profile Area

6000 - 9FFF Standardised Device Profile Area (not supported)

A000 - BFFF Standardised Interface Profile Area (not supported)

C000 - FFFF Reserved for future use

 15 P94CAN01C

CANopen Object Dictionary

5.1.3 Accessing the Object Dictionary

The Object Dictionary can be accessed primarily in two ways:

• Confirmed access using Service Data Object (SDO) access

• Unconfirmed access using Process Data Object (PDO) access, i.e. no handshake.

Every message sent via CANopen network contains an address to identify the node the message is destined
for. This address is called the CAN Object Identifier (COB ID). Each communication object has a specific
identifier depending upon its type/function. Refer to Table 8 for message types and associated COB IDs.

Table 8: Messages and Associated COB IDs

COB ID Object Description

0x00 NMT Service Network Management Telegram: These are used for network services such as instructing a
node to go to different operational states and are typically produced by a network master

0x80 SYNC Synchronization message: Typically generated by a network master and used to control
actions of slave nodes

0x100 Time Stamp High resolution method for synchronising the internal clocks of network nodes.
NOTE: the PositionServo does not support this function

0x81 – 0xFF Emergency Used to transmit error messages

0x181 – 0x1FF TxPDO 1

Process Data Object: Fast exchange of process data e.g. actual velocity or position values

0x281 – 0x2FF TxPDO 2

0x381 – 0x3FF TxPDO 3

0x481 – 0x4FF TxPDO 4

0x201 – 0x27F RxPDO 1

0x301 – 0x37F RxPDO 2

0x401 – 0x47F RxPDO 3

0x501 – 0x57F RxPDO 4

0x581 – 0x5FF TxSDO Service Data Object: Used for general parameter access, PDO configuration and non time-
critical acyclic data access0x601 – 0x67F RxSDO

0x701 – 0x77F Error Control PositionServo supports the “Heartbeat” protocol, in which the drive produces a basic network
status message on a pre-defined time period

5.2 Communication Profile Area
Table 9 lists the communication objects supported by PositionServo.

Table 9: Communication Profile Objects

Object Name Object Name

0x1000 Device type 0x1014 Emergency message COB ID

0x1001 Error register 0x1015 Inhibit time EMCY

0x1003 Pre-defined error field 0x1017 Producer heartbeat time

0x1005 SYNC COB ID 0x1018 Identity object

0x1008 Manufacture Device Name 0x1400 to 0x1407 RxPDO 1 to 8 parameters

0x1009 Manufacture hardware version 0x1600 to 0x1607 RxPDO 1 to 8 Mapping Parameters

0x100A Manufacture software version 0x1800 to 0x1807 TxPDO 1 to 8 parameters

0x1A00 to 0x1A07 TxPDO 1 to 8 Mapping Parameters

P94CAN01C 16

CANopen Object Dictionary

5.2.1 Device Type

Device Type

Object Index: 0x1000 Sub-index: 00

Default: 00020192 Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: No

This object describes the device type and its functionality. The 32-bit value is composed of two components.

Table10: Device Type format

Byte 3 Byte 2 Byte 1 Byte 0

Additional information Device Profile Supported

0x0002 0x0192

• Bytes 0 and 1: A value 0x0192 (402 decimal) indicates the DS402 device profile.

• Bytes 2 and 3: These give detailed information about the type device the CANopen node is. A value of
0x0002, indicates that the node is a servo drive.

5.2.2 Error Register

Error Register

Object Index: 0x1001 Sub-index: 00

Default: -- Range: --

Access: RO Type: Unsigned 8

Units: -- PDO mappable: Yes

The error register is used to indicate that an error has occurred. If a bit is set to 1, then an error has
occurred. The error register also forms part of the emergency object, refer to section 8 for details.

5.2.3 Pre-defined Error Field

Number of Errors

Object Index: 0x1003 Sub-index: 0x00

Default: 0 Range: 0 – 1

Access: RW Type: Unsigned 8

Units: -- PDO mappable: No

Standard Error Field

Object Index: 0x1003 Sub-index: 0x01

Default: -- Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: No

This object holds the error code that has occurred on the device and has been signaled via the Emergency
Object. In doing so it provides an error history.

• Sub-index 0 contains the number of errors recorded

• Sub-index 1 contains the value of the last record trip code

• Writing a “0” to sub-index 0 deletes the error history

 17 P94CAN01C

CANopen Object Dictionary

5.2.4 SYNC COB ID

SYNC COB ID

Object Index: 0x1005 Sub-index: 00

Default: 0x80 Range: --

Access: RW Type: Unsigned 32

Units: -- PDO mappable: No

This object defines the COB-ID of the Synchronisation Object the drive will use for PDOs that use transmission
types 0-254.

5.2.5 Manufacture Device Name

Manufacture Device Name

Object Index: 0x1008 Sub-index: 00

Default: -- Range: --

Access: RO Type: Visible string

Units: -- PDO mappable: No

This objects contains the manufacturer device name. If read it will return the string “94P”

5.2.6 Manufacture Hardware Version

Manufacture Hardware Version

Object Index: 0x1009 Sub-index: 00

Default: -- Range: --

Access: RO Type: Visible string

Units: -- PDO mappable: No

This objects contains the manufacturer hardware version. If read it will return the value of the drive
hardware version, e.g.”450”

5.2.7 Manufacture Software Version

Manufacture Software Version

Object Index: 0x100A Sub-index: 00

Default: -- Range: --

Access: RO Type: Visible string

Units: -- PDO mappable: No

This objects contains the manufacturer software version. If read it will return the value of the drive firmware
version, e.g.”430”

5.2.8 Emergency Message COB ID

Emergency Message COB ID

Object Index: 0x1014 Sub-index: 00

Default: -- Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: No

This object defines the identifier used for the Emergency object transmitted by the PositionServo during an
error or a trip state. The identifier is set automatically: Emergency message COB ID = 0x80 + node address.

P94CAN01C 18

CANopen Object Dictionary

5.2.9 Inhibit Time EMCY

Inhibit Time EMCY

Object Index: 0x1015 Sub-index: 00

Default: 0 Range: --

Access: RW Type: Unsigned 16

Units: 100ms PDO mappable: No

This object specifies the inhibit time for the Emergency Object transmitted by the PositionServo. If a value
greater than 0 is set then once an Emergency Object has been transmitted all other Emergency Object
transmissions are prohibited until the specified time has elapsed.

5.2.10 Producer Heartbeat Time

Producer heartbeat time

Object Index: 0x1017 Sub-index: 00

Default: -- Range: --

Access: RW Type: Unsigned 16

Units: ms PDO mappable: No

The PositionServo can be enabled to be a “heartbeat producer”, i.e. produce a heartbeat message cyclically.
This message is received by one or more “heartbeat consumer” devices, usually the CANopen master, and
indicates to the master controller that the slave device is communicating without problem. If the heartbeat
message is not received within the defined time period, a “heartbeat event” will be generated in the
master controller, allowing it to take appropriate action to ensure system safety is maintained. Setting the
heartbeat time to 0 disables the heartbeat function.

5.2.11 Identity Object

Number of entries

Object Index: 0x1018 Sub-index: 0x00

Default: -- Range: --

Access: RO Type: Unsigned 8

Units: -- PDO mappable: No

Vendor ID

Object Index: 0x1018 Sub-index: 0x01

Default: -- Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: No

Product code

Object Index: 0x1018 Sub-index: 0x02

Default: -- Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: No

Revision number

Object Index: 0x1018 Sub-index: 0x03

Default: -- Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: N0

 19 P94CAN01C

CANopen Object Dictionary

Serial number

Object Index: 0x1018 Sub-index: 0x04

Default: -- Range: --

Access: RO Type: Unsigned 32

Units: -- PDO mappable: No

This object holds general information about the PositionServo to provide a standard method of differentiating
and identifying different devices on the network.

• Sub-index 0: Lists how many elements there are to the Identity

• Sub-index 1: Vendor ID for Lenze AC Tech which is 0x19C

• Sub-index 2: Lenze AC Tech product code for PositionServo which is 0x3AC (940 decimal)

• Sub-index 3: CANopen module revision number

• Sub-index 4: Serial number for the PositionServo drive

5.2.12 RxPDO 1 to 8 Communication Parameters

Receive PDO Parameter

Object Index: 0x1400 - 7 Sub-index: 0x00

Default: 0 Range: --

Access: RO Type: Unsigned 8

Units: -- PDO mappable: No

COB ID used by PDO

Object Index: 0x1400 - 7 Sub-index: 0x01

Default: -- Range: --

Access: RW Type: Unsigned 32

Units: -- PDO mappable: No

Transmission type

Object Index: 0x1400 - 7 Sub-index: 0x02

Default: -- Range: 0 - 255

Access: RW Type: Unsigned 8

Units: -- PDO mappable: No

These objects are used to configure the RxPDOs. Also refer to section 7 for full details on Process Data
Objects (PDOs).

• Sub-index 0: Specifies how many sub indexes there are to this object

• Sub-index 1: Specifies the Communication Object ID used by the PDO

• Sub-index 2: Specifies the transmission type used be the PDO

Table 11: Supported RxPDO Transmission Types

Transmission Type Scheduling Description

0 – 240 Synchronous The received data is held until the next SYNC message.
When the SYNC message is received the data is applied

254 – 255 Asynchronous, timer trigger The received data is applied to its mapped objects
immediately upon reception

P94CAN01C 20

CANopen Object Dictionary

5.2.13 RxPDO Mapping Parameters

Number of mapped objects in the PDO

Object Index: 0x1600 - 7 Sub-index: 0x00

Default: 0 Range: --

Access: RW Type: Unsigned 8

Units: -- PDO mappable: No

COB ID used by PDO

Object Index: 0x1600 - 7 Sub-index: 0x01 - 8

Default: -- Range: --

Access: RW Type: Unsigned 32

Units: -- PDO mappable: No

These objects are used to map the objects within the RxPDOs. Also see section 7 for full details on Process
Data Objects (PDOs).

• Sub-index 0: Specifies how many objects are mapped in each RxPDO

• Sub-index 1 - 8: Contain the objects number that are mapped

5.2.14 TxPDO 1 to 8 Communication Parameters

Receive PDO Parameter

Object Index: 0x1800 - 7 Sub-index: 0x00

Default: 0 Range: --

Access: RO Type: Unsigned 8

Units: -- PDO mappable: No

COB ID used by PDO

Object Index: 0x1800 - 7 Sub-index: 0x01

Default: -- Range: --

Access: RW Type: Unsigned 32

Units: -- PDO mappable: No

Transmission type

Object Index: 0x1800 - 7 Sub-index: 0x02

Default: -- Range: 0 - 255

Access: RW Type: Unsigned 8

Units: -- PDO mappable: No

Inhibit time

Object Index: 0x1800 - 7 Sub-index: 0x03

Default: 0 Range: --

Access: RW Type: Unsigned 16

Units: 100ms PDO mappable: No

Event timer

Object Index: 0x1800 - 7 Sub-index: 0x05

Default: 0 Range: --

Access: RW Type: Unsigned 16

Units: ms PDO mappable: No

 21 P94CAN01C

CANopen Object Dictionary

These objects are used to configure the TxPDOs. Also refer to section 7 for full details on Process Data
Objects (PDOs).

• Sub-index 0: Specifies how many sub indexes there are to this object

• Sub-index 1: Specifies the Communication Object ID used by the PDO

• Sub-index 2: Specifies the transmission type used be the PDO

Table 12: Supported TxPDO Transmission Types

Transmission Type Scheduling Description

0 Acyclic,
Synchronous

If the source data has changed, the TxPDO is transmitted on
reception of a SYNC object

1 – 240 Cyclic,
synchronous

The PDO is transferred synchronously and cyclically. The
transmission type indicates the number of SYNC objects that are
necessary to trigger TxPDOs.

254/255 Asynchronous,
timer trigger

The PDO is Event driven. Events are created by the following:
• When the value of a mapped object within the PDO changes
• If the Event timer is configured and used to generate periodic

transmissions

• Sub-index 3: Setting a value greater than 0 automatically activates the function so that on a TxPDO
transmission an “inhibit timer” is started and the next transmission will not occur until the timer expires

• Sub-index 4: Is not support by PositionServo

• Sub-index 5: Event Timer can be used to generate TxPDOs. Setting a time greater than 0 enables this
feature and sets the fixed interval for the TxPDO to be transmitted.

5.2.15 TxPDO Mapping Parameters
Number of mapped objects in the PDO

Object Index: 0x1A00 - 7 Sub-index: 0x00

Default: 0 Range: --

Access: RW Type: Unsigned 8

Units: -- PDO mappable: No

COB ID used by PDO

Object Index: 0x1A00 - 7 Sub-index: 0x01 - 8

Default: -- Range: --

Access: RW Type: Unsigned 32

Units: -- PDO mappable: No

These objects are used to map the objects within the RxPDOs. Also see section 7 for full details on Process
Data Objects (PDOs).

• Sub-index 0: Specifies how many objects are mapped in each TxPDO

• Sub-index 1 - 8: Contains the objects number that are mapped.

P94CAN01C 22

CANopen Object Dictionary

5.3 Manufacture Specific Profile Area
Objects in the range 0x2000 to 0x5FFF are free for manufacturers to utilise. In the case of PositionServo,
these objects are used to provide access to drive parameters, user variables and Index program
commands. Details on these functions, variables and parameters are provided in the PositionServo User
and Programming manuals.

Furthermore the PositionServo supports several data areas, types and sizes. To simplify this, the Manufacture
Specific Profile Area is divided and structured in a logical manner.

5.3.1 Data Format, Size and Memory Area

All PositionServo drive parameters are 32-bit in size but can be accessed in two different formats:

• IEEE Floating Point (FLOAT or REAL).

• 32-bit integer (DWORD or DINT). 16-bit access is possible for a limited range of integer format objects
where the 32-bit object is divided into two sub-indexes.

Furthermore, PositionServo parameters exist in each of the two formats in both RAM (volatile) and EPM
(non-volatile) areas. Therefore the memory addresses are divided into four ranges according to their format
and memory type as shown in Table 13.

Table 13: Object Address Ranges

Object Offset 0x2000 0x2400 0x3000 0x3400

Type RAM RAM EPM EPM

Format 32-bit Integer Float 32-bit Integer Float

The CANopen object for a drive parameter can be calculated using:

CANopenObject = PIDNumber + ObjectOffset

where:

PIDNumber = PositionServo Parameter Index Number in hexadecimal.

ObjectOffset = Memory offset per Table 15.

5.4 Endian Format
CANopen uses “little-endian” representation for object data. This means that when a numerical value that
is larger than a single byte is transmitted, the LEAST significant byte (LSB) is sent first, e.g.

• 16-bit integer value 0x1234 = 2 bytes of 0x34 and 0x12

• 32-bit integer value 0x12345678 = 4 bytes of 0x78, 0x56, 0x34 and 0x12

5.5 Object Access
• Care should be taken when accessing drive registers from multiple sources such as multiple clients or

the drive Indexer program as data could be over written or out of sequence.

• Writing to the EPM area of memory simultaneously writes to the RAM area too.

• Writing to the EPM area of memory should be done conservatively as the EEPROM (EPM) has a typical
life expectancy of 1 million writes.

 23 P94CAN01C

SDO Access

6. Service Data Objects
6.1 What are Service Data Objects?

• Service Data Objects (SDOs) is the name given to the method used to provide non-cyclic access to all
objects in the CANopen object dictionary.

• SDO messages are always instigated from a host device such as a CANopen master/client.

• Slave/server devices only have an SDO server, allowing them to respond to SDO messages initiated
from elsewhere.

• Each SDO message allows 1 object to be accessed in the CANopen object dictionary.

• SDO messages can handle up to 4 data bytes, i.e. one 32-bit data value to be handled on each
message.

• SDO communications are supported in PRE-OPERATIONAL and OPERATIONAL states.

6.2 SDO Message Identifiers
Each message format on a CAN based network has a CAN Objects Identifier (COB ID) associated with it.
For SDOs there are two COB IDs:

• Master/client messages use 0x600 + intended slave/server node address

• Slave/server response messages use 0x580 + their node address

6.3 PID Access
• SDO communications provide access to all objects in the CANopen objects dictionary. The dictionary

includes an object range 0x2000 to 0x5FFF for manufacture specific features.

• Every PositionServo parameter (PID) is available as a CANopen object in this range.

• A full list of the manufacture objects is available in section 11.1, PID List with CANopen Values.

• The EDS file also contains a full list all support objects.

6.4 SDO Abort Codes
If an invalid SDO message is received the drive will respond with a SDO Abort Code as per the CANopen
DS301 protocol specification. Table 14 lists the SDO Abort Codes.

Table 14: SDO Abort Codes

Abort Code (Hex) Description

0503 0000 Toggle bit not alternated

0504 0000 SDO protocol timed out

0504 0001 Client/server command specifier not valid or unknown

0504 0002 Invalid block size (block mode only)

0504 0003 Invalid sequence number (block mode only)

0504 0004 CRC error (block mode only)

P94CAN01C 24

SDO Access

Abort Code (Hex) Description

0504 0005 Out of memory

0601 0000 Unsupported access to an object

0601 0001 Attempt to read a write-only object

0601 0002 Attempt to write to a read-only object

0602 0000 Object does not exist in the object dictionary

0604 0041 Object cannot be mapped to the PDO

0604 0042 The number and length of the objects to be mapped would exceed PDO length

0604 0043 General parameter incompatibility

0604 0047 General internal incompatibility in the device

0606 0000 Access failed due to a hardware error

0607 0010 Data type does not match, length of service parameter does not match

0607 0012 Data type does not match, length of service parameter too high

0607 0013 Data type does not match, length of service parameter too low

0609 0011 Sub-index does not exist

0609 0030 Value range of parameter exceeded (only for write-access)

0609 0031 Value of parameter written too high

0609 0032 Value of parameter written too low

0609 0036 Maximum value is less than minimum value

0800 0000 General error

0800 0020 Data cannot be transferred or stored to the application

0800 0021 Data cannot be transferred or stored to the application because of local control

0800 0022 Data cannot be transferred or stored to the application because of the present device state

0800 0023 Object dictionary dynamic generation fails or no object dictionary is present
(e.g. object dictionary is generated from file and generation fails because of a file error)

6.5 SDO Message Frame
For full details of the SDO messaging system and frame construction including CRC, refer to the official
CANopen specification DS301. Here is a simplified overview.

• Every SDO request and response message contains 8 bytes of data.

• SDO messages can be segmented and handled as a block when working with complex object data
values or when data values are larger than 32-bit. However, because all PositionServo objects values
are no greater than 32-bit, segmented and block transfer are not required and a full SDO message is
achieved with 2 messages (request and response). This is known as “Expedited SDO Transfers”.

• The commonly used term “SDO Download” implies a master/client to slave/server write.

• The commonly used term “SDO Upload” implies a master/client to slave/server read.

Byte 0
Specifier

Byte 1 - 3
Multiplexor

Byte 4 - 7
Data

Figure 13: Expedited SDO Message Frame

 25 P94CAN01C

SDO Access

6.5.1 Specifier

Table 15 lists the BIT functions with the Specifier byte.

Table 15: Specifier

Byte Bit Function Description

0

0 S: Size indicator Only used for write requests and read responses
0 – data size not indicated
1 – data size in N field

1 E: Transfer type Only used for write requests and read responses
0 – SDO is segmented
1 – SDO is expedited

2 N: Number of empty bytes Only used for write requests and read responses
N indicates the number of empty data bytes within the Data field (bytes 4-7)

3

4 Reserved Not used, always 0

5 CCS / SCS: identifies the
type of SDO

CCS - Client
0 – download segment request
1 – initiate download request
2 – initiate upload request
3 – upload segment request
4 – abort transfer request
5 – block upload
6 – block download

SCS - Server
0 – upload segment response
1 – download segment response
2 – initiate upload response
3 – initiate download response
4 – abort transfer request
5 – block download
6 – block upload

6

7

6.5.2 Multiplexor

Table 16 lists the functions with the Mulitplexor bytes

Table 16: Mulitplexor

Byte Function Description

1 – 2 Index CAN object number to be accessed

3 Sub-index CAN object sub-index number to be accessed

6.5.3 Data

Four bytes used to hold data during master/client writes and slave/server read responses.

P94CAN01C 26

SDO Access

6.6 SDO Access Examples
6.6.1 Example 1: Read Velocity Accel Limit

• Drive address = 1

• Read Velocity Accel Limit, PID76 / VAR_ACCEL_LIMIT (default value = 1000)

• Uses the SDO Initiate Upload command

• Use object 0x204C sub-index 1 (32-bit integer)

Table 17a: SDO master/client read request

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x601 0x40 0x4C 0x20 0x01 0x00 0x00 0x00 0x00

Client to server #1 CCS = 2 Object
0x204C

Sub-index
0x01

Data
0

Table 17b: SDO slave/server read response

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x581 0x42 0x4C 0x20 0x01 0XE8 0x03 0x00 0x00

Slave #1 to master S = 1
E = 1
N = 0
SCS = 2

Object
0x204C

Sub-index
0x01

Data
0x03E8 (1000dec)

6.6.2 Example 2: Write to Velocity Accel Limit

• Drive address = 1

• Write Velocity Accel Limit, PID76 / VAR_ACCEL_LIMIT with a value of 1500

• Uses the SDO Initiate Download command

• Use object 0x204C sub-index 1 (32-bit integer)

Table 18a: SDO master/client write request

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x601 0x23 0x4C 0x20 0x01 0xDC 0x05 0x00 0x00

Client to server #1 S = 1
E = 1
N = 0
CCS = 1

Object
0x204C

Sub-index
0x01

Data
0x05DC (1500dec)

Table 18b: SDO slave/server write response

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x581 0x60 0x4C 0x20 0x01 0x00 0x00 0x00 0x00

Slave #1 to master SCS = 3 Object
0x204C

Sub-index
0x01

Data
0

 27 P94CAN01C

SDO Access

6.6.3 Example 3: Read User Variable V0 Least Significant Byte (LSB)

• Drive address = 1

• Read User Variable V0 LSB, PID100 / VAR_V0

• Uses the SDO Initiate Upload command

• Use object 0x2066 sub-index 2 (16-bit integer)

Table 19a: SDO master/client read request

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x601 0x40 0x66 0x20 0x02 0x00 0x00 0x00 0x00

Client to server #1 CCS = 2 Object
0x2066

Sub-index
0x02

Data
0

Table 19b: SDO slave/server read response

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x581 0x4B 0x66 0x20 0x02 0XD2 0x04 0x00 0x00

Slave #1 to master S = 1
E = 1
N = 2
SCS = 2

Object
0x2066

Sub-index
0x02

Data
0x04D2 (1234dec)

6.6.4 Example 4: Write to User Variable V0 Least Significant Byte (LSB)

• Drive address = 1

• Write User Variable V0 LSB, PID100 / VAR_V0 with a value of 5678

• Uses the SDO Initiate Download command

• Use object 0x2066 sub-index 2 (16-bit integer)

Table 20a: SDO master/client read request

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x601 0x2B 0x66 0x20 0x02 0x2E 0x16 0x00 0x00

Client to server #1 S = 1
E = 1
N = 2
CCS = 1

Object
0x2066

Sub-index
0x02

Data
0x162E (5678dec)

Table 20b: SDO slave/server read response

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x581 0x60 0x66 0x20 0x02 0x00 0x00 0x00 0x00

Slave #1 to master SCS = 3 Object
0x2066

Sub-index
0x02

Data
0

P94CAN01C 28

SDO Access

6.6.5 Example 5: Read APOS

• Drive address = 1

• Read Variable APOS, PID215 / VAR_APOS

• Uses the SDO Initiate Upload command

• Use object 0x24D7 sub-index 0 (IEEE 32-bit FLOAT)

Table 21a: SDO master/client read request

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x601 0x40 0xD7 0x24 0x00 0x00 0x00 0x00 0x00

Client to server #1 CCS = 2 Object
0x24D7

Sub-index
0x00

Data
0

Table 21b: SDO slave/server read response

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x581 0x43 0xD7 0x24 0x00 0X00 0x27 0x0B 0x40

Slave #1 to master S = 1
E = 1
N = 0
SCS = 2

Object
0x24D7

Sub-index
0x00

Data
0x400B2700
(2.174255dec)

6.6.6 Example 6: Write to APOS

• Drive address = 1

• Write APOS, PID215 / VAR_APOS with a value of 1234.5678

• Uses the SDO Initiate Download command

• Use object 0x24D7 sub-index 0 (IEEE 32-bit FLOAT)

Table 22a: SDO master/client read request

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x601 0x23 0xD7 0x24 0x00 0x2B 0x52 0x9A 0x44

Client to server #1 S = 1
E = 1
N = 0
CCS = 1

Object
0x24D7

Sub-index
0x00

Data
0x449A522B
(1234.5678dec)

Table 22b: SDO slave/server read response

COB ID Byte 0 Bytes 1-2 Byte 3 Bytes 4-7

0x581 0x60 0xD7 0x24 0x00 0x00 0x00 0x00 0x00

Slave #1 to master SCS = 3 Object
0x24D7

Sub-index
0x00

Data
0

 29 P94CAN01C

PDO Access

7 Process Data Objects
7.1 What are Process Data Objects?

• Process Data Objects (PDOs) is the name given to the method used to transfer routine process data
between the network nodes.

• Process Data Objects are usually pre-configured in the CANopen master and downloaded to the
PositionServo during network initialisation. In addition to this the PositionServo supports dynamic PDO
mapping meaning that the PDO configuration can be changed “live” (instantly) without the need to re-
initialise the drive.

• Alternatively, PDOs can be easily configured directly from within the MotionView platform. This is
the recommended method when using a basic CAN master that does not support EDS files or when
creating a peer to peer (masterless) network.

• The terms “RxPDO” (Receive) and “TxPDO” (Transmit) describe the direction of data as seen by the
individual nodes.

NOTE
• Dynamic PDO mapping is only supported when editing the PDO configuration

from an external source, i.e. a CANopen master. Editing PDO mapping through the
MotionView platform requires the drive to be re-initialised by means of a reboot /
power cycle or issuing a node reset command from a CAN NMT capable master.

• PositionServo CANopen settings that are edited by an external source, i.e. a
CANopen master are not saved on power off or drive reboot and will therefore
have to be re-configured by the CAN master.

• PositionServo CANopen settings that are edited from within the MotionView
platform are saved within the drive.

7.2 PDO Configuration in MotionView
7.2.1 COB ID and Mode

PDOs 1 to 4 have default Object Identifiers (COB ID) assigned based on the CANopen DS301 specification.
Refer to Table 23.

PDOs 5 to 8 are disabled by default and do not have any default COB IDs.

Table 23: PDO Default COB IDs

PDO COB ID

RxPDO1 512 + node address

RxPDO2 768 + node address

RxPDO3 1024 + node address

RxPDO4 1280 + node address

TxPDO1 384 + node address

TxPDO2 640 + node address

TxPDO3 896 + node address

TxPDO4 1152 + node address

P94CAN01C 30

PDO Access

To edit the COB ID un-tick the default option to unlock the COB ID number.

The Mode function controls whether PDOs are Enabled of Disabled.

COB ID

Mode

Transmission Type

Enable

575

255

Default

Mode

Transmission Type

COB ID Default447

Enable

255

TxPDO #1

��

RxPDO #1

Figure 14a: COB ID is locked to Default

COB ID

Mode

Transmission Type

Enable

575

255

Default

Mode

Transmission Type

COB ID Default447

Enable

255

TxPDO #1RxPDO #1

Figure 14b: COB ID is unlocked

7.2.2 Transmission Type

The Transmission Type defines the scheduling of a PDO. Furthermore the Transmission Type can be divided
in two categories: Synchronous and Asynchronous. Table 24 lists the supported Transmission Types.

• Synchronous: Messages are processed only after receipt of a specified number of synchronization
(SYNC) object. The Sync object is sent at regular intervals by a designated synchronization device such
as a CANopen master.

• Asynchronous: The receipt of SYNC messages does not govern message processing.

Table 24: Support Transmission Types

Transmission Type Scheduling Description

RxPDO 0 – 240 Synchronous The received data is held until the next SYNC message. When the
SYNC message is received the data is applied

254 – 255 Asynchronous,
timer trigger

The received data is applied to its mapped objects immediately
upon reception

TxPDO 0 Acyclic,
Synchronous

If the source data has changed, the TxPDO is transmitted on
reception of a SYNC object

1 – 240 Cyclic,
synchronous

The PDO is transferred synchronously and cyclically. The
transmission type indicates the number of SYNC objects that are
necessary to trigger TxPDOs.

254/255 Asynchronous,
timer trigger

The PDO is Event driven. Events are created by the following:
• When the value of a mapped object within the PDO changes
• If the Event timer is configured and used to generate periodic

transmissions

 31 P94CAN01C

PDO Access

7.2.3 Event Time

Independent of the Transmission Type, an Event Timer can be used to generate TxPDOs.

• Event Timer value of 0 disables the Event Timer function.

• Event Timer value greater than 0 sets the fixed interval for the TxPDO to be transmitted.

Inhibit Time

Event Time

Mode

Transmission Type

COB ID Default447

Enable

255

TxPDO #1

�

0 ms

(x100us)0

Figure 15: Event Timer

7.2.4 Inhibit Time

The Inhibit Time is used to prohibit the TxPDO being transmitted “back to back”, i.e. Sets the minimum
time between TxPDO transmissions. Such transmission are likely when using a Transmission Type that
utilise Change Of State (COS).

Setting a value greater than 0 automatically activates the function so that on a TxPDO transmission an
“inhibit timer” is started and the next transmission will not occur until the timer expires.

Inhibit Time

Event Time

Mode

Transmission Type

COB ID Default447

Enable

255

TxPDO #1

�

ms

(x100us)

0

0

Figure 16: Inhibit Time

P94CAN01C 32

PDO Access

7.3 Mapping PDOs
7.3.1 Amount and Size of PDOs

The CANopen module supports up to 8 RxPDOs and 8 TxPDOs. Each PDO can map up to 64-bits of data,
in the case of PositionServo, the MotionView interface automatically controls how many object mapping
selectors are available to prevent overmapping / oversizing the PDO.

7.3.2 Receive (Rx) PDOs

The CANopen module can map up to a maximum of 8 RxPDOs.

RxPDO mapping is set via the MVOB [Communications] [CANOpen] folder. Each mapped object selector
lists all the CANopen objects that are available.

Figure 17: CAN RxPDO Mapping - Four 16-bit Objects

Figure 18: CAN RxPDO Mapping - 64bit limit reached

 33 P94CAN01C

PDO Access

7.3.3 Transmit (Tx) PDOs

The CANopen module can map up to a maximum of 8 TxPDOs.

TxPDO mapping is set via the MVOB [Communications] [CANopen] folder. Each mapped object selector lists
all the CANopen objects that are available.

Figure 19: CAN TxPDO Mapping - Four 16-bit Objects

Figure 20: CAN TxPDO Mapping - 64bit limit reached

P94CAN01C 34

Emergency Objects

8 Emergency Objects
8.1 What is an Emergency Object?

• Emergency Objects is the name given to the method used to provide diagnostic information when an
error or trip(s) occurs.

• Emergency Objects are produced by slave devices upon a fault or error condition so that appropriate
action can be taken by the network master.

• Each Emergency Objects has a unique identifier (COB ID) based on the object range (0x80) + the device
producing the objects’ node address.

• When transmitted the Emergency Object message carries the errors codes as defined by the CANopen
DS301 specification and when applicable additional manufacture specific error data.

• An emergency object is transmitted only once per 'error event'. As long as no new errors occur on a
device no further emergency objects will be transmitted.

• When a PositionServo generates an Emergency Object the drives error code will be duplicated in object
0x1003

8.2 Emergency Object format
The Emergency Object consists of 8 bytes and is structured as illustrated in Figure 21.

Bytes 0 - 1
Error Code

Byte 2
Error Register

Bytes 3 - 7
Manufacture Specific Error Field

Figure 21: Structure of an Emergency Object

8.2.1 Error Code

Table 25 lists all the error codes that are support by PositionServo.

Table 25: Emergency Error Codes

Error Code Definitions

0x0000 No error or Error reset

0x1000 Generic Error, will be followed by the PositionServo trip number in the Manufacture Specific Error Field byte 3

0x6080 Device Software error, will be followed additional error codes in the Manufacture Specific Error Field bytes 3
to 4, refer to Table 26

0x8130 Heartbeat Error

0x8210 PDO not processed due to length error

 35 P94CAN01C

Emergency Objects

8.2.2 Error Register

The Error register byte is also available as object 0x1001.

The error register is used to indicate that an error has occurred. If bit 0 is set to 1, then an error has
occurred.

In addition to object 0x1001, object 0x1003 records the last drive trip to occur. Refer to section 5.2.3 for
further details.

8.2.3 Manufacture Specific Error Field

Table 26 lists Manufacture Error Field codes for a Device Software Error Emergency Object (0x6080).

Table 26: Manufacture Error Field codes for 0x6080

Error Code Description

0x0101 Error Register: Object 0x1001 sub 0x00 not found

0x0102 Heartbeat: Object 0x1017 sub 0x00 not found

0x0105 Fail to init CAN interface

0x0106 Fail to set receive filter for NMT master message

0x0107 Fail to set receive filter for SYNC message

0x0108 Fail to set receive filter for SDO requests

0x010A Fail to send Boot-up Message

0x010B Fail to transmit first heartbeat message after it is enabled or time expired

0x010C Fail to reply to node guarding message

0x010D Fail to transmit emergency Error code 0x8130

0x010E Fail to transmit emergency Error code 0x8210 (Emergency signaled by RPDO)

0x0121 SDO Manager related Object 0x1F00 sub 0x00

0x0121 Object 0x1F01 sub 0x00 not found

0x0122 Fail to set filter for dynamic SDO requests

0x0181 Number of Heartbeat Consumer: Object 0x1016 sub 0x01 not found

0x0181 Number of Emergency Consumer: Object 0x1028 sub 0x01 not found

0x0301 Fail to transmit response to SDO abort message

0x0302 Fail to transmit response to SDO response message (Byte)

0x0303 Fail to transmit response to SDO response message

0x0304 Fail to transmit response to SDO expedited write conformation message

0x0305 Fail to transmit response to SDO segmented write conformation message

0x0306 Fail to transmit response to SDO expedited Communication parameter read request

0x0308 Fail to set receive filter for RPDO

0x0309 Fail to transmit response PDO Mapped parameter read request

0x030A Fail to transmit response to Parameter Read request

0x030B Fail to transmit response to SYNC ID read/write request Object 0x1005 sub 0x00

0x030C Fail to transmit response to Node Guarding read request Object 0x100C sub 0x00

0x030D Fail to transmit SDO response message

P94CAN01C 36

Emergency Objects

Error Code Description

0x0336 No TPDO are available (Communication parameters)

0x0337 No RPDO are available (Communication parameters)

0x0338 No TPDO are available (Mapped Parameters)

0x0339 No RPDO are available (Mapped Parameters)

0x0402 Fail to set receive filter for RPDO

0x0403 Fail to transmit PDO

0x0404 In the incoming message length of PDO message is wrong or PDO number is not valid

0x0405 TPDO trigger is wrong

0x0406 TPDO number is wrong

0x0407 TPDO number is wrong

0x0501 Not enough storage space in Non-Volatile memory

0x0701 NMT command is not valid

0x0702 NMT transmit queue overrun

0x2201 Length of Rx message is greater than 8

0xC105 CAN Rx queue overrun

0xF200 Fail to transmit emergency Error code 0x0000 (with no error and error reset)

8.3 Emergency Object Examples
8.3.1 Example 1: Hardware Disable

The drive trips “F036” due to hardware disable while Indexer Code software enable is still active.

Table 27: Emergency Object for trip “F036”

COB ID Bytes 0-1 Byte 2 Bytes 3-7

0x81 0x00 0x10 0x01 0x24 0x00 0x00 0x00

EMCY source Error Code Error Register Manufacture Specific Error Field

Node 1 0x1000 0x01 0x24 (36dec)

 37 P94CAN01C

Emergency Objects

8.3.2 Example 2: Limit Switch

The drive trips “F032” due to positive limit switch.

Table 28: Emergency Object for trip “F032”

COB ID Bytes 0-1 Byte 2 Bytes 3-7

0x81 0x00 0x10 0x01 0x20 0x00 0x00 0x00

EMCY source Error Code Error Register Manufacture Specific Error Field

Node 1 0x1000 0x01 0x20 (32dec)

8.3.3 Example 3: CAN Receive buffer overrun

Drive receive buffer overrun due to excess incoming data.

Table 29: Emergency Object for CAN Rx Buffer Overrun

COB ID Bytes 0-1 Byte 2 Bytes 3-7

0x81 0x80 0x60 0x01 0x05 0xC1 0x00 0x00

EMCY source Error Code Error Register Manufacture Specific Error Field

Node 1 0x6080 0x01 0xC105 (49413 dec)

P94CAN01C 38

Drive Control and Status

9 Drive Control and Status
9.1 Overview

The control and status words provide a means for the digital control and monitoring of the drive using a
single data word. Each control bit has a particular function and provides a method of controlling the output
functions of the drive, such as run and direction. Each bit in the status word provides feedback about the
drive’s state of health and operational condition.

9.2 Control BITs
There are several control bits available within PositionServo that can be written to through PDO or SDO
communications. Some of the most commonly used ones are listed as follows, for a complete list of drive
control functions refer to the PositionServo Programming Manual.

9.2.1 Software Enable/Disable

PID52 - Enable

Default: N/A Range: 0 - 1

Access: WO Type: Integer

This is the VAR_ENABLE function.

0 - disable
1 – enable

This function is the default mapping for TxPDO 1.

9.2.2 Drive Reset (Cold Boot)

PID53 - Reset

Default: N/A Range: 0 - 1

Access: WO Type: Integer

This is the VAR_RESET function.

0 - no action
1 - reset drive

9.2.3 Suspend Motion

PID91 - Suspend Motion

Default: 0 Range: 0 - 1

Access: RW Type: Integer

This is the VAR_SUSPEND_MOTION function.

0 - motion enabled
1 - motion disabled

 39 P94CAN01C

Drive Control and Status

9.2.4 Stop Motion

PID136 - Stop Motion

Default: N/A Range: 0 - 1

Access: WO Type: Integer

This is the VAR_STOP_MOTION function.

0 - no action
1 - stops motion

9.3 Status Word
There are several status words and individual status bits/flags available within PositionServo that can be
read from through PDO or SDO communications.

9.3.1 Status Flags Register

PID54 - DSTATUS

Default: N/A Range:

Access: RO Type: Integer

This is the VAR_DSTATUS function.

Table 30: DSTATUS Register

Bit in register Description

0 Set when drive enabled

1 Set if DSP subsystem at any fault

2 Set if drive has a valid program

3 Set if byte-code or system or DSP at any fault

4 Set if drive has a valid source code

5 Set if motion completed and target position is within specified limits

6 Set when scope is triggered and data collected

7 Set if motion stack is full

8 Set if motion stack is empty

9 Set if byte-code halted

10 Set if byte-code is running

11 Set if byte-code is set to run in step mode

12 Set if byte-code is reached the end of program

13 Set if current limit is reached

14 Set if byte-code at fault

15 Set if no valid motor selected

16 Set if byte-code at arithmetic fault

17 Set if byte-code at user fault

18 Set if DSP initialization completed

19 Set if registration has been triggered

P94CAN01C 40

Drive Control and Status

Bit in register Description

20 Set if registration variable was updated from DSP after last trigger

21 Set if motion module at fault

22 Set if motion suspended

23 Set if program requested to suspend motion

24 Set if system waits completion of motion

25 Set if motion command completed and motion Queue is empty

26 Set if byte-code task requested reset

27 If set interface control is disabled. This flag is set/clear by ICONTROL ON/OFF statement.

28 Set if positive limit switch reached

29 Set if negative limit switch reached

30
Events disabled. All events disabled when this flag is set. After executing EVENTS ON all events
previously enabled by EVENT EventName ON statements become enabled again

9.3.2 Extended Status Bits

PID84 - DEXSTATUS

Default: N/A Range:

Access: RO Type: Integer

This is the VAR_EXSTATUS function

Table 31: Encoding for Extended Status Bits

Bit # Function Comment

0 Reserved

1 Velocity in specified window Velocity in limits as per parameter #59: VAR_VLIMIT_SPEEDWND

2-4 Reserved

5 Velocity at 0 (zero) Velocity 0: Zero defined by parameter #58: VAR_VLIMIT_ZEROSPEED

6,7 Reserved

8 Bus voltage below under-voltage limit Utilized to indicate drive is operating from +24V keep alive and a valid DC bus
voltage level is not present.

9,10 Reserved

11 Regen circuit is on Drive regeneration circuit is active. Drive will be dissipating power through the
braking resistor (if fitted).

12-20 Reserved

21 Set if homing operation in progress Drive executing Pre-defined homing function (refer to section 2.15, PS Programming
Manual, PM94M01).

22 Set if system homed Drive completed Pre-defined homing function (refer to section 2.15, PS
Programming Manual, PM94M01).

23 If set then last fault will remain on the display
until re-enabled.

User can set this bit to retain fault code on the display until re-enabled. It is useful
if there is a fault handler routine. When the fault handler is exited, the fault number
on the display will be replaced by current status (usually DiS if bit #24 is not set).
Setting bit #24 retains diagnostics on the display.

24 Set if EIP IO exclusive owner connection is
established. Cleared if closed.

Checks if drive is controlled by EthernetIP master. Use bit #25 and bit #26 to
process “lost of connection” condition (if needed) in the user’s program

25 Set if EIP IO exclusive owner connection times
out. Cleared if exc. owner conn exsists.

Checks if connection with Ethernet/IP master is lost. Use bit #26 and bit #25 to
process “lost of connection” condition (if needed) in the user’s program

26-30 Reserved

 41 P94CAN01C

Advanced Features

10 Advanced Features
10.1 CAN Baud Rate

PID234 - CAN_BAUD_EPM

Default: 63 Range: 0 - 127

Access: RW Type: Integer

This is VAR_ CAN_OPERMODE_EPM. Its function is the same as the CAN Boot-up Mode from within
MotionView as described in section 4.3.5.

If editing from within MotionView, select the appropriate baud rate from the drop down menu. If editing
PID234 directly, use Table 32 for the correct settings.

Table 32: CAN Baud Rate

PID234 Value Baud Rate

1 10kbps

2 20kbps

3 50kbps

4 125kbps

5 250kbps

6 500kbps

7 800kbps

8 1Mbps

10.2 CAN Node Address
PID235 - CAN_ADD_EPM

Default: 63 Range: 0 - 127

Access: RW Type: Integer

This is VAR_ CAN_OPERMODE_EPM. Its function is the same as the CAN Boot-up Mode from within
MotionView as described in section 4.3.5.

Set PID235 to the required value. The default address is 63. The permissible address range is: 0 – 127.
Each node on the network must have an individual address, if two of more nodes have duplicate addresses
this may prevent the network from functioning correctly.

10.3 CAN Boot-up Mode
PID236 - CAN_OPERMODE_EPM

Default: 0 Range: 0 - 2

Access: RW Type: Integer

This is VAR_ CAN_OPERMODE_EPM. Its function is the same as the CAN Boot-up Mode from within
MotionView as described in section 4.3.7

P94CAN01C 42

Advanced Features

Table 33: PID236 CAN Bootup Mode

PID236 Value Mode Comment

0 Pre-Operational Drive enters the “PRE_OPERATION” state after bootup

1 Operational Drive enters the “OPERATIONAL” state after bootup

2 Pseudo Master
In addition to the drive entering the “OPERATIONAL” state after bootup the drive will also (after the
delay period set by the CAN Bootup Delay parameter) broadcast a command for all other CANopen
nodes to go in to the “OPERATIONAL” state

10.4 CAN Boot-up Delay
PID237 - CAN_OPERDELAY_EPM

Default: 0 Range: 0 - 5

Access: RW Type: Integer

This is VAR_ CAN_OPERDELAY_EPM. Its function is the same as the CAN Boot-up Delay from within
MotionView as described in section 4.3.8

Set PID237 to the required value. The default delay time is 3 seconds. The permissible delay time is: 0 –
5(sec). The Bootup Delay function is only functional when the drive is used in pseudo master mode. The
Bootup Delay parameter sets the time delay from when the drive itself boots up and is fully functional to
when it broadcasts the NMT command for all slave devices to go to the operational state.

10.5 Communication Module Selection
PID238 - CAN_ENABLE_EPM

Default: 0 Range: 0 - 4

Access: RW Type: Integer

This is VAR_ CAN_ENABLE_EPM. Its function is the same as the module section from within MotionView
as described in section 4.3.3.

Table 34: PID238 Serial Fieldbus Selection

PID238 Value Fieldbus Selection

0 None / RS485

1 CANopen Simple

2 Reserved

3 DeviceNet

4 PROFIBUS-DP

The Fieldbus Selection is also accessible from the drive keypad using parameter "CAnF".

 43 P94CAN01C

Advanced Features

10.6 PDO Configuration
The drive's PDOs can be configured in 4 ways:

• With MotionView simple to use drop down menus

• Direct from a CAN NMT master*

• From within the PositionServo Index program

• Via Ethernet communications

NOTE: * - PDO configuration settings from a NMT CAN master is volatile.

Configuring the PDO setting via all other sources actual interfaces with the following parameters

10.6.1 PDO COB-ID, Activation and Transmission Type

PID311 to PID318 - RPDO1 to 8 COM

Default: Various Range: 0 - 0xFFFFFF

Access: RW Type: Integer

PID351 to PID358 - TPDO1 to 8 COM

Default: Various Range: 0 - 0xFFFFFF

Access: RW Type: Integer

The PDO COM Parameter is divided in to the functions listed in Table 35.

P94CAN01C 44

Advanced Features

Table 35: PDO COM Functions

Byte Nibble Bit Function Description

0

0

0

COB-ID
0x000 - Set if default Mode is enabled
0x001 to 0xFFF - COB-ID set for non-default mode

1

2

3

1

4

5

6

7

1

2

8

9

10

11

3

12

Mode
4 - Default
5 - non-defualt / unlocked

13

14

15

2

4 16

Transmission Type

Transmission Type Scheduling Description

RxPDO 0 – 240 Synchronous The received data is held until the next SYNC message. When the SYNC
message is received the data is applied

254 – 255 Asynchronous,
timer trigger

The received data is applied to its mapped objects immediately upon
reception

TxPDO 0 Acyclic,
Synchronous

If the source data has changed, the TxPDO is transmitted on reception of
a SYNC object

1 – 240 Cyclic,
synchronous

The PDO is transferred synchronously and cyclically. The transmission type
indicates the number of SYNC objects that are necessary to trigger TxPDOs.

254/255 Asynchronous,
timer trigger

The PDO is Event driven. Events are created by the following:
• When the value of a mapped object within the PDO changes
• If the Event timer is configured and used to generate periodic

transmissions

17

18

19

5 20

Reserved Not used
21

22

23

 45 P94CAN01C

Advanced Features

10.6.2 PDO Mapping

RxPDO Mapping

Mapping PIDs 319 - 348 are configured internally by the GUI. Users do not set these PIDs directly. Refer
to section 7.3 for proper operation.

TxPDO Mapping

Mapping PIDs 359 - 388 are configured internally by the GUI. Users do not set these PIDs directly. Refer
to section 7.3 for proper operation.

10.6.3 TPDO Event Time and Inhibit Time

PID391 to PID398 - TPDO1-8 Event Times

Default: 0 Range: 0 - 65535
Access: RW Type: Integer

Independent of the Transmission Type, an Event Timer can be used to generate TxPDOs.

• Event Timer value of 0 disables the Event Timer function.

• Event Timer value greater than 0 sets the fixed interval in milliseconds (ms) for the TxPDO to be
transmitted.

PID399 to PID406 - TPDO1-8 Inhibit Times

Default: 0 Range: 0 - 65535
Access: RW Type: Integer

The Inhibit Time is used to prohibit the TxPDO being transmitted “back to back”, i.e. Sets the minimum
time (in multiples of 100 microseconds, ms) between TxPDO transmissions. Such transmission are likely
when using a Transmission Type that utilise Change Of State (COS).

Setting a value greater than 0 automatically activates the function so that on a TxPDO transmission an
“inhibit timer” is started and the next transmission will not occur until the timer expires.

P94CAN01C 46

Parameter Reference

11 Reference
11.1 PID List with CANopen Values

This is a condensed PID List to show the corresponding CANopen Registers for PIDs 1-413. For the complete
variable list refer to the PositionServo Programming Manual (PM94P01 or PM94M01).

These variables can be accessed from the user’s program or any supported communications interface
protocol. From the user program, any variable can be accessed by either its variable name or by its index
value (using the syntax: @<VARINDEX> , where <VARINDEX> is the variable index from the PID List. From
the communications interface any variable can be accessed by its index value.

The column “Type” indicates the type of variable:
mtr Motor: denotes a motor value
mtn Motion: writing to an “mtn” variable could cause the start of motion
vel Velocity: denotes a velocity or velocity scaling value

The column “Format” provides the native format of the variable:
W 32 bit integer
F float (real)

When setting a variable via an external device the value can be addressed as floating or integer. The value
will automatically adjusted to fit it’s given form.

The column “EPM” shows if a variable has a non-volatile storage space in the EPM memory:
Y Variable has non-volatile storage Space in EPM
N Variable does not exist in EPM memory

The user’s program uses a RAM (volatile) ‘copy’ of the variables stored on the EPM. At power up all RAM
copies of the variables are initialized with the EPM values. The EPM’s values are not affected by changing
the variables in the user’s program. When the user’s program reads a variable it always reads from the
RAM (volatile) copy of the variable. Communications Interface functions can change both the volatile and
non-volatile copy of the variable. If the host interface requests a change to the EPM (non-volatile) value, this
change is done both in the user program’s RAM memory as well as in the EPM. Interface functions have the
choice of reading from the RAM (volatile) or from the EPM (non-volatile) copy of the variable.

The column “Access” lists the user’s access rights to a variable:
R read only
W write only
R/W read/write

Writing to an R (read-only) variable or reading from a W (write-only) variable will not work.

The column “Units” shows units of the variable. Units unique to this manual that are used for motion are:
UU user units
EC encoder counts
S seconds
PPS pulses per sample. Sample time is 512ms - servo loop rate
PPSS pulses per sample per sample. Sample time is 512ms - servo loop rate

 47 P94CAN01C

Parameter Reference

Table 36: PID List with CANopen Values

In
de

x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

1 VAR_IDSTRING N R Drive’s identification string 2001 2401 3001 3401

2 VAR_NAME Y R/W Drive’s symbolic name 2002 2402 3002 3402

3 VAR_SERIAL_NUMBER R Drive’s serial number 2003 2403 3003 3403

4 VAR_MEM_INDEX R/W Position in RAM file (0 - 32767) 2004 2404 3004 3404

5 VAR_MEM_VALUE R/W Value to be read or written to the RAM file 2005 2405 3005 3405

6 VAR_MEM_INDEX_
INCREMENT

R/W Holds value the MEM_INDEX will modify once
the R/W operation is complete

2006 2406 3006 3406

7 VAR_VELOCITY_ACTUAL F N R Actual measured motor velocity UU/sec 2007 2407 3007 3407

8 VAR_RSVD_2 2008 2408 3008 3408

9 VAR_DFAULT R Drive Default Settings 2009 2409 3009 3409

10 VAR_M_ID mtr Y R/W* Motor ID 200A 240A 300A 340A

11 VAR_M_MODEL mtr Y R/W* Motor model 200B 240B 300B 340B

12 VAR_M_VENDOR mtr Y R/W* Motor vendor 200C 240C 300C 340C

13 VAR_M_ESET mtr Y R/W* Motor Feedback Resolver: ‘Positive for CW’ 0 - none
1 - Positive
for CW

200D 240D 300D 340D

14 VAR_M_HALLCODE mtr Y R/W* Hallcode index Range: 0 - 5 200E 240E 300E 340E

15 VAR_M_HOFFSET mtr Y R/W* Reserved 200F 240F 300F 340F

16 VAR_M_ZOFFSET mtr Y R/W* Resolver Offset Range: 0 - 360 2010 2410 3010 3410

17 VAR_M_ICTRL mtr Y R/W* Reserved 2011 2411 3011 3411

18 VAR_M_JM mtr Y R/W* Motor moment of inertia Jm Range: 0 - 0.1 Kgm2 2012 2412 3012 3412

19 VAR_M_KE mtr Y R/W* Motor voltage or back EMF constant Ke Range: 1 - 500 V/Krpm 2013 2413 3013 3413

20 VAR_M_KT mtr Y R/W* Motor torque or force constant Kt Range: 0.01
- 10

Nm/A 2014 2414 3014 3414

21 VAR_M_LS mtr Y R/W* Motor phase-to-phase inductance Lm Range: 0.1
- 500

mH 2015 2415 3015 3415

22 VAR_M_RS mtr Y R/W* Motor phase-to-phase resistance Rm Range: 0.01
- 500

[Ohm] 2016 2416 3016 3416

23 VAR_M_MAXCURRENT mtr Y R/W* Motor’s max current(RMS) Range: 0.5 - 50 [A]mp 2017 2417 3017 3417

24 VAR_M_MAXVELOCITY mtr Y R/W* Motor’s max velocity Range: 500 -
20000

RPM 2018 2418 3018 3418

25 VAR_M_NPOLES mtr Y R/W* Motor’s poles number Range: 2 - 200 2019 2419 3019 3419

26 VAR_M_ENCODER mtr Y R/W* Encoder resolution Range: 256 -
65536 * 12/
Npoles

PPR 201A 241A 301A 341A

27 VAR_M_TERMVOLTAGE mtr Y R/W* Nominal Motor’s terminal voltage Range: 50
- 800

[V]olt 201B 241B 301B 341B

28 VAR_M_FEEDBACK mtr Y R/W* Feedback type 1 - Encoder
2 - Resolver

201C 241C 301C 341C

29 VAR_ENABLE_SWITCH_
TYPE

W Y R/W Enable switch function 0 - inhibit only
1 - Run

Bit 201D 241D 301D 341D

30 VAR_CURRENTLIMIT F Y R/W Current limit [A]mp 201E 241E 301E 341E

31 VAR_
PEAKCURRENTLIMIT16

F Y R/W Peak current limit for 16kHz operation [A]mp 201F 241F 301F 341F

32 VAR_PEAKCURRENTLIMIT F Y R/W Peak current limit for 8kHz operation [A]mp 2020 2420 3020 3420

33 VAR_PWMFREQUENCY W Y R/W PWM frequency selection 0 - 16kHz
1 - 8kHz

2021 2421 3021 3421

34 VAR_DRIVEMODE W Y R/W Drive mode 0 - torque
1 - velocity
2 - position

2022 2422 3022 3422

35 VAR_CURRENT_SCALE F Y R/W Analog input #1 current reference scale Range: Model
Dependent

A/V 2023 2423 3023 3423

36 VAR_VELOCITY_SCALE vel F Y R/W Analog input #1 velocity reference scale Range: -10000
to +10000

RPM/V 2024 2424 3024 3424

37 VAR_REFERENCE W Y R/W Reference selection 1 - internal
source
0 - external

2025 2425 3025 3425

38 VAR_STEPINPUTTYPE W Y R/W Selects how position reference inputs
operating

0 - Quadrature
inputs (A/B)
1 - Step &
Direction

2026 2426 3026 3426

P94CAN01C 48

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

39 VAR_
MOTORTHERMALPROTECT

W Y R/W Motor thermal protection function 0 - disabled
1 - enabled

2027 2427 3027 3427

40 VAR_
MOTORPTCRESISTANCE

F Y R/W Motor thermal protection PTC cut-off
resistance

[Ohm] 2028 2428 3028 3428

41 VAR_SECONDENCODER W Y R/W Second encoder 0 - disabled
1 - enabled

2029 2429 3029 3429

42 VAR_REGENDUTY W Y R/W Regen circuit PWM duty cycle in % Range:
1-100%

% 202A 242A 302A 342A

43 VAR_ENCODERREPEATSRC W Y R/W Selects source for repeat buffers 0 - Model
940 - Encoder
Port P4
 Model 941
- 2nd Encoder
Option Bay
1 - Model 940
- 2nd Encoder
Option Bay
 Model
941 - Resolver
Port P4

202B 242B 302B 342B

44 VAR_VP_GAIN vel W Y R/W Velocity loop Proportional gain Range: 0 -
32767

202C 242C 302C 342C

45 VAR_VI_GAIN vel W Y R/W Velocity loop Integral gain Range: 0 -
32767

202D 242D 302D 342D

46 VAR_PP_GAIN W Y R/W Position loop Proportional gain Range: 0 -
32767

202E 242E 302E 342E

47 VAR_PI_GAIN W Y R/W Position loop Integral gain Range: 0 -
16383

202F 242F 302F 342F

48 VAR_PD_GAIN W Y R/W Position loop Differential gain Range: 0 -
32767

2030 2430 3030 3430

49 VAR_PI_LIMIT W Y R/W Position loop integral gain limit Range: 0 -
20000

2031 2431 3031 3431

50 VAR_SEI_GAIN 2032 2432 3032 3432

51 VAR_VREG_WINDOW vel W Y R/W Gains scaling coefficient Range: -16
to +4

2033 2433 3033 3433

52 VAR_ENABLE W N W Software Enable/Disable 0 - disable
1 - enable

2034 2434 3034 3434

53 VAR_RESET W N W Drive’s reset (Disables drive, Stops running
program if any, reset active fault)

0 - no action
1 - reset drive

2035 2435 3035 3435

54 VAR_STATUS W N R Drive’s status register 2036 2436 3036 3436

55 VAR_BCF_SIZE W Y R User’s program Byte-code size Bytes 2037 2437 3037 3437

56 VAR_AUTOBOOT W Y R/W User’s program autostart flag 0 - program
started
manually
(MotionView or
interface)
1 - program
started
automatically
after drive
booted

2038 2438 3038 3438

57 VAR_GROUPID W Y R/W Network group ID Range: 1 -
32767

2039 2439 3039 3439

58 VAR_VLIMIT_ZEROSPEED F Y R/W Zero Speed window Range: 0 - 100 Rpm 203A 243A 303A 343A

59 VAR_VLIMIT_SPEEDWND F Y R/W At Speed window Range: 10 -
10000

Rpm 203B 243B 303B 343B

60 VAR_VLIMIT_ATSPEED F Y R/W Target Velocity for At Speed window Range: -10000
- +10000

Rpm 203C 243C 303C 343C

61 VAR_PLIMIT_POSERROR W Y R/W Position error Range: 1 -
32767

EC 203D 243D 303D 343D

62 VAR_PLIMIT_ERRORTIME F Y R/W Position error time (time which position error
has to remain to set-off position error fault)

Range: 0.25 -
8000

mS 203E 243E 303E 343E

63 VAR_PLIMIT_SEPOSERROR W Y R/W Second encoder Position error Range: 1 -
32767

EC 203F 243F 303F 343F

64 VAR_PLIMIT_
SEERRORTIME

F Y R/W Second encoder Position error time (time
which position error has to remain to set-off
position error fault)

Range: 0.25 -
8000

mS 2040 2440 3040 3440

65 VAR_INPUTS W N R Digital inputs states. A1 occupies Bit 0, A2-
Bit 1 … C4 - bit 11.

2041 2441 3041 3441

 49 P94CAN01C

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

66 VAR_OUTPUT W N R/W Digital outputs states. Writing to this variables
sets/resets digital outputs except outputs
which have been assigned special function.

Output 1 Bit 0
Output 2 Bit 1
Output 3 Bit 2
Output 4 Bit 3

2042 2442 3042 3442

67 VAR_IP_ADDRESS W Y R/W Ethernet IP address. IP address changes at
next boot up. 32 bit value

2043 2443 3043 3443

68 VAR_IP_MASK W Y R/W Ethernet IP NetMask. Mask changes at next
boot up. 32 bit value

2044 2444 3044 3444

69 VAR_IP_GATEWAY W Y R/W Ethernet Gateway IP address. Address
changes at next boot up. 32 bit value

2045 2445 3045 3445

70 VAR_IP_DHCP W Y R/W Use DHCP 0 - manual
1 - use DHCP
service

2046 2446 3046 3446

71 VAR_AIN1 F N R Analog Input AIN1 current value [V]olt 2047 2447 3047 3447

72 VAR_AIN2 F N R Analog Input AIN2 current value [V]olt 2048 2448 3048 3448

73 VAR_BUSVOLTAGE F N R Bus voltage [V]olt 2049 2449 3049 3449

74 VAR_HTEMP F N R Heatsink temperature Returns: 0 - for
temperatures <
40C and actual
heat sink
temperature for
temperatures
>40 C

[c] 204A 244A 304A 344A

75 VAR_ENABLE_ACCELDECEL vel Y R/W Enable Accel/Decel function for velocity mode 0 - disable
1 - enable

204B 244B 304B 344B

76 VAR_ACCEL_LIMIT vel F Y R/W Accel value for velocity mode Range: 0.1 -
5000000

Rpm*Sec 204C 244C 304C 344C

77 VAR_DECEL_LIMIT vel F Y R/W Decel value for velocity mode Range: 0.1 -
5000000

Rpm*Sec 204D 244D 304D 344D

78 VAR_FAULT_RESET W Y R/W Reset fault configuration 0 - on
activation of
Enable/Inhibit
input (A3)
1 - on
deactivation of
Enable/Inhibit
input (A3)

204E 244E 304E 344E

79 VAR_M2SRATIO_MASTER W Y R/W Master to system ratio Master counts
range: -32767
- +32767

204F 244F 304F 344F

80 VAR_M2SRATIO_SYSTEM W Y R/W Master to system ratio System counts
range: 1 -
32767

2050 2450 3050 3450

81 VAR_S2PRATIO_SECOND W Y R/W Secondary encoder to prime encoder ratio Second counts
range: -32767
- +32767

2051 2451 3051 3451

82 VAR_S2PRATIO_PRIME W Y R/W Secondary encoder to prime encoder ratio Prime counts
range: 1 -
32767

2052 2452 3052 3452

83 VAR_EXSTATUS W N R Extended status. Lower word copy of DSP
status flags.

2053 2453 3053 3453

84 VAR_HLS_MODE W Y R/W Hardware limit switches 0 - not used
1 - stop and
fault
2 - fault

2054 2454 3054 3454

85 VAR_AOUT_FUNCTION W Y R/W Analog output function range: 0 - 8 0 - Not
assigned
1 - Phase
Current (RMS)
2 - Phase
Current (Peak
Value)
3 - Motor
Velocity
4 - Phase
Current R
5 - Phase
Current S
6 - Phase
Current T
7 - Iq current
8 - Id current

2055 2455 3055 3455

86 VAR_AOUT_VELSCALE F Y R/W Analog output scale for velocity quantities. Range: 0 - 10 mV/Rpm 2056 2456 3056 3456

P94CAN01C 50

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

87 VAR_AOUT_CURSCALE F Y R/W Analog output scale for current related
quantities.

Range: 0 - 10 V/A 2057 2457 3057 3457

88 VAR_AOUT F N W Analog output value.(Used if VAR #85 is
set to 0)

Range: 0 - 10 V 2058 2458 3058 3458

89 VAR_AIN1_DEADBAND F Y R/W Analog input #1 dead-band. Applied when
used as current or velocity reference.

Range: 0 - 100 mV 2059 2459 3059 3459

90 VAR_AIN1_OFFSET Y R/W Analog input #1 offset. Applied when used as
current/velocity reference

Range: -10,000
to +10,000

mV 205A 245A 305A 345A

91 VAR_SUSPEND_MOTION W N R/W Suspend motion. Suspends motion produced
by trajectory generator. Current move will be
completed before motion is suspended.

0 - motion
suspended
1 - motion
resumed

205B 245B 305B 345B

92 VAR_MOVEP mtn W N W Target position for absolute move. Writing
value executes Move to position as per
MOVEP statement using current values of
acceleration, deceleration and max velocity.

UU 205C 245C 305C 345C

93 VAR_MOVED mtn W N W Incremental position. Writing value
<0> executes Incremental move as per
MOVED statement using current values of
acceleration, deceleration and max velocity

UU 205D 245D 305D 345D

94 VAR_MDV_DISTANCE F N W Distance for MDV move UU 205E 245E 305E 345E

95 VAR_MDV_VELOCITY mtn F N W Velocity for MDV move. Writing to this variable
executes MDV move with Distance value last
written to variable #94

UU 205F 245F 305F 345F

96 VAR_MOVE_PWI1 mtn W N W Writing value executes Move in positive
direction while input true (active). Value
specifies input #

0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1- C4

2060 2460 3060 3460

97 VAR_MOVE_PWI0 mtn W N W Writing value executes Move in positive
direction while input false (not active). Value
specifies input #

0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1- C4

2061 2461 3061 3461

98 VAR_MOVE_NWI1 mtn F N W Writing value executes Move negative
direction while input true (active). Value
specifies input #

0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1- C4

2062 2462 3062 3462

99 VAR_MOVE_NWI0 mtn F N W Writing value executes Move negative
direction while input false (not active). Value
specifies input #

0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1- C4

2063 2463 3063 3463

100 VAR_V0 F Y R/W User variable 2064 2464 3064 3464

101 VAR_V1 F Y R/W User variable 2065 2465 3065 3465

102 VAR_V2 F Y R/W User variable 2066 2466 3066 3466

103 VAR_V3 F Y R/W User variable 2067 2467 3067 3467

104 VAR_V4 F Y R/W User variable 2068 2468 3068 3468

105 VAR_V5 F Y R/W User variable 2069 2469 3069 3469

106 VAR_V6 F Y R/W User variable 206A 246A 306A 346A

107 VAR_V7 F Y R/W User variable 206B 246B 306B 346B

108 VAR_V8 F Y R/W User variable 206C 246C 306C 346C

109 VAR_V9 F Y R/W User variable 206D 246D 306D 346D

110 VAR_V10 F Y R/W User variable 206E 246E 306E 346E

111 VAR_V11 F Y R/W User variable 206F 246F 306F 346F

112 VAR_V12 F Y R/W User variable 2070 2470 3070 3470

113 VAR_V13 F Y R/W User variable 2071 2471 3071 3471

114 VAR_V14 F Y R/W User variable 2072 2472 3072 3472

115 VAR_V15 F Y R/W User variable 2073 2473 3073 3473

116 VAR_V16 F Y R/W User variable 2074 2474 3074 3474

117 VAR_V17 F Y R/W User variable 2075 2475 3075 3475

118 VAR_V18 F Y R/W User variable 2076 2476 3076 3476

119 VAR_V19 F Y R/W User variable 2077 2477 3077 3477

120 VAR_V20 F Y R/W User variable 2078 2478 3078 3478

121 VAR_V21 F Y R/W User variable 2079 2479 3079 3479

122 VAR_V22 F Y R/W User variable 207A 247A 307A 347A

123 VAR_V23 F Y R/W User variable 207B 247B 307B 347B

124 VAR_V24 F Y R/W User variable 207C 247C 307C 347C

125 VAR_V25 F Y R/W User variable 207D 247D 307D 347D

126 VAR_V26 F Y R/W User variable 207E 247E 307E 347E

127 VAR_V27 F Y R/W User variable 207F 247F 307F 347F

 51 P94CAN01C

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

128 VAR_V28 F Y R/W User variable 2080 2480 3080 3480

129 VAR_V29 F Y R/W User variable 2081 2481 3081 3481

130 VAR_V30 F Y R/W User variable 2082 2482 3082 3482

131 VAR_V31 F Y R/W User variable 2083 2483 3083 3483

132 VAR_MOVEDR_DISTANCE F N W Registered move distance. Incremental
motion as
per MOVEDR
statement

UU 2084 2484 3084 3484

133 VAR_MOVEDR_
DISPLACEMENT

mtn F N W Registered move displacement. Writing to this
variable executes the move MOVEDR using
value set by #132

UU 2085 2485 3085 3485

134 VAR_MOVEPR_DISTANCE F N W Registered move distance. Absolute
motion as
per MOVEPR
statement

UU 2086 2486 3086 3486

135 VAR_MOVEPR_
DISPLACEMENT

mtn F N W Registered move displacement. Writing to
this variable makes the move MOVEPR using
value set by #134

UU 2087 2487 3087 3487

136 VAR_STOP_MOTION W N W Stops motion 0 - no action
1 - stops
motion

2088 2488 3088 3488

137 VAR_START_PROGRAM W N W Starts user program 0 - no action
1 - starts
program

2089 2489 3089 3489

138 VAR_VEL_MODE_ON W N W Turns on Profile Velocity for Internal Position
Mode

0 - normal
operation
1 - velocity
mode on

208A 248A 308A 348A

139 VAR_IREF F N W Reference for Internal Torque or Velocity
Mode

0 - Internal
Velocity mode
1 - Internal
Torque mode

"RPS
Amps"

208B 248B 308B 348B

140 VAR_NV0 F N R/W User defined Network variable 208C 248C 308C 348C

141 VAR_NV1 F N R/W User defined Network variable 208D 248D 308D 348D

142 VAR_NV2 F N R/W User defined Network variable 208E 248E 308E 348E

143 VAR_NV3 F N R/W User defined Network variable 208F 248F 308F 348F

144 VAR_NV4 F N R/W User defined Network variable 2090 2490 3090 3490

145 VAR_NV5 F N R/W User defined Network variable 2091 2491 3091 3491

146 VAR_NV6 F N R/W User defined Network variable 2092 2492 3092 3492

147 VAR_NV7 F N R/W User defined Network variable 2093 2493 3093 3493

148 VAR_NV8 F N R/W User defined Network variable 2094 2494 3094 3494

149 VAR_NV9 F N R/W User defined Network variable 2095 2495 3095 3495

150 VAR_NV10 F N R/W User defined Network variable 2096 2496 3096 3496

151 VAR_NV11 F N R/W User defined Network variable 2097 2497 3097 3497

152 VAR_NV12 F N R/W User defined Network variable 2098 2498 3098 3498

153 VAR_NV13 F N R/W User defined Network variable 2099 2499 3099 3499

154 VAR_NV14 F N R/W User defined Network variable 209A 249A 309A 349A

155 VAR_NV15 F N R/W User defined Network variable 209B 249B 309B 349B

156 VAR_NV16 F N R/W User defined Network variable 209C 249C 309C 349C

157 VAR_NV17 F N R/W User defined Network variable 209D 249D 309D 349D

158 VAR_NV18 F N R/W User defined Network variable 209E 249E 309E 349E

159 VAR_NV19 F N R/W User defined Network variable 209F 249F 309F 349F

160 VAR_NV20 F N R/W User defined Network variable 20A0 24A0 30A0 34A0

161 VAR_NV21 F N R/W User defined Network variable 20A1 24A1 30A1 34A1

162 VAR_NV22 F N R/W User defined Network variable 20A2 24A2 30A2 34A2

163 VAR_NV23 F N R/W User defined Network variable 20A3 24A3 30A3 34A3

164 VAR_NV24 F N R/W User defined Network variable 20A4 24A4 30A4 34A4

165 VAR_NV25 F N R/W User defined Network variable 20A5 24A5 30A5 34A5

166 VAR_NV26 F N R/W User defined Network variable 20A6 24A6 30A6 34A6

167 VAR_NV27 F N R/W User defined Network variable 20A7 24A7 30A7 34A7

168 VAR_NV28 F N R/W User defined Network variable 20A8 24A8 30A8 34A8

169 VAR_NV29 F N R/W User defined Network variable 20A9 24A9 30A9 34A9

170 VAR_NV30 F N R/W User defined Network variable 20AA 24AA 30AA 34AA

P94CAN01C 52

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

171 VAR_NV31 F N R/W User defined Network variable 20AB 24AB 30AB 34AB

172 VAR_SERIAL_ADDRESS W Y R/W RS485 drive ID Range: 0 - 254 20AC 24AC 30AC 34AC

173 VAR_MODBUS_BAUDRATE W Y R/W Baud rate for ModBus operations 0 - 2400
1 - 4800
2 - 9600
3 - 19200
4 - 38400
5 - 57600
6 - 115200

20AD 24AD 30AD 34AD

174 VAR_MODBUS_DELAY W Y R/W ModBus reply delay in mS Range: 0 -
1000

mS 20AE 24AE 30AE 34AE

175 VAR_RS485_CONFIG W Y R/W Rs485 configuration 0 - normal IP
over PPP
1 - ModBus1 -
4800

20AF 24AF 30AF 34AF

176 VAR_PPP_BAUDRATE W Y R/W RS232/485 (normal mode) baud rate 1 - 4800
2 - 9600
3 - 19200
4 - 38400
5 - 57600
6 - 115200

20B0 24B0 30B0 34B0

177 VAR_MOVEPS F N W Same as variable #92 but using S-curve
acceleration/deceleration

20B1 24B1 30B1 34B1

178 VAR_MOVEDS F N W Same as variable #93 but using S-curve
acceleration/deceleration

20B2 24B2 30B2 34B2

179 VAR_MDVS_VELOCITY mtn N W Velocity for MDV move using S-curve accel/
deceleration. Writing to this variable executes
MDV move with Distance value last written
to variable #94 (unless motion is suspended
by #91).

UU 20B3 24B3 30B3 34B3

180 VAR_MAXVEL F N R/W Max velocity for motion profile UU/S 20B4 24B4 30B4 34B4

181 VAR_ACCEL F N R/W Accel value for indexing UU/S2 20B5 24B5 30B5 34B5

182 VAR_DECEL F N R/W Decel value for indexing UU/S2 20B6 24B6 30B6 34B6

183 VAR_QDECEL F N R/W Quick decel value UU/S2 20B7 24B7 30B7 34B7

184 VAR_INPOSLIM W N R/W Sets window for “In Position” Limits UU 20B8 24B8 30B8 34B8

185 VAR_VEL F N R/W Velocity reference for “Profiled” velocity UU/S 20B9 24B9 30B9 34B9

186 VAR_UNITS F Y R/W User units 20BA 24BA 30BA 34BA

187 VAR_MECOUNTER W N R/W A/B inputs reference counter value Count 20BB 24BB 30BB 34BB

188 VAR_PHCUR F N R Phase current A 20BC 24BC 30BC 34BC

189 VAR_POS_PULSES W N R/W Target position in encoder pulses EC 20BD 24BD 30BD 34BD

190 VAR_APOS_PULSES W N R/W Actual position in encoder pulses EC 20BE 24BE 30BE 34BE

191 VAR_POSERROR_PULSES W N R Position error in encoder pulses EC 20BF 24BF 30BF 34BF

192 VAR_CURRENT_VEL_PPS F N R Set-point (target) velocity in PPS PPS 20C0 24C0 30C0 34C0

193 VAR_CURRENT_ACCEL_
PPSS

F N R Set-point (target) acceleration (demanded
value)

PPSS 20C1 24C1 30C1 34C1

194 VAR_IN0_DEBOUNCE W Y R/W Input A1 de-bounce time in mS Range: 0 -
1000

mS 20C2 24C2 30C2 34C2

195 VAR_IN1_DEBOUNCE W Y R/W Input A2 de-bounce time in mS Range: 0 -
1000

mS 20C3 24C3 30C3 34C3

196 VAR_IN2_DEBOUNCE W Y R/W Input A3 de-bounce time in mS Range: 0 -
1000

mS 20C4 24C4 30C4 34C4

197 VAR_IN3_DEBOUNCE W Y R/W Input A4 de-bounce time in mS Range: 0 -
1000

mS 20C5 24C5 30C5 34C5

198 VAR_IN4_DEBOUNCE W Y R/W Input B1 de-bounce time in mS Range: 0 -
1000

mS 20C6 24C6 30C6 34C6

199 VAR_IN5_DEBOUNCE W Y R/W Input B2 de-bounce time in mS Range: 0 -
1000

mS 20C7 24C7 30C7 34C7

200 VAR_IN6_DEBOUNCE W Y R/W Input B3 de-bounce time in mS Range: 0 -
1000

mS 20C8 24C8 30C8 34C8

201 VAR_IN7_DEBOUNCE W Y R/W Input B4 de-bounce time in mS Range: 0 -
1000

mS 20C9 24C9 30C9 34C9

202 VAR_IN8_DEBOUNCE W Y R/W Input C1 de-bounce time in mS Range: 0 -
1000

mS 20CA 24CA 30CA 34CA

203 VAR_IN9_DEBOUNCE W Y R/W Input C2 de-bounce time in mS Range: 0 -
1000

mS 20CB 24CB 30CB 34CB

204 VAR_IN10_DEBOUNCE W Y R/W Input C3 de-bounce time in mS Range: 0 -
1000

mS 20CC 24CC 30CC 34CC

 53 P94CAN01C

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

205 VAR_IN11_DEBOUNCE W Y R/W Input C4 de-bounce time in mS Range: 0 -
1000

mS 20CD 24CD 30CD 34CD

206 VAR_OUT1_FUNCTION W Y R/W Programmable Output function 0 - Not
Assigned
1 - Zero Speed
2 - In Speed
Window
3 - Current
Limit
4 - Run time
fault
5 - Ready
6 - Brake
7 - In position

20CE 24CE 30CE 34CE

207 VAR_OUT2_FUNCTION W Y R/W Programmable Output Function 20CF 24CF 30CF 34CF

208 VAR_OUT3_FUNCTION W Y R/W Programmable Output Function 20D0 24D0 30D0 34D0

209 VAR_OUT4_FUNCTION W Y R/W Programmable Output Function 20D1 24D1 30D1 34D1

210 VAR_HALLCODE W N R Current hall code Bit 0 - Hall 1
Bit 1 - Hall 2
Bit 2 - Hall 3

20D2 24D2 30D2 34D2

211 VAR_ENCODER W N R Primary encoder current value EC 20D3 24D3 30D3 34D3

212 VAR_RPOS_PULSES W N R Registration position EC 20D4 24D4 30D4 34D4

213 VAR_RPOS F N R Registration position UU 20D5 24D5 30D5 34D5

214 VAR_POS F N R/W Target position UU 20D6 24D6 30D6 34D6

215 VAR_APOS F N R/W Actual position UU 20D7 24D7 30D7 34D7

216 VAR_POSERROR W N R Position error EC 20D8 24D8 30D8 34D8

217 VAR_CURRENT_VEL F N R Set-point (target) velocity (demanded value) UU/S 20D9 24D9 30D9 34D9

218 VAR_CURRENT_ACCEL F N R Set-point (target) acceleration (demanded
value)

UU/S2 20DA 24DA 30DA 34DA

219 VAR_TPOS_ADVANCE W N W Target position advance. Every write to this
variable adds value to the Target position
summing point. Value gets added once per
write. This variable useful when loop is driven
by Master encoder signals and trying to
correct phase. Value is in encoder counts

EC 20DB 24DB 30DB 34DB

220 VAR_IOINDEX W N R/W Same as INDEX variable in user’s program. 20DC 24DC 30DC 34DC

221 VAR_PSLIMIT_PULSES W Y R/W Positive Software limit switch value in
Encoder counts

EC 20DD 24DD 30DD 34DD

222 VAR_NSLIMIT_PULSES W Y R/W Negative Software limit switch value in
Encoder counts

EC 20DE 24DE 30DE 34DE

223 VAR_ SLS_MODE W Y R/W Soft limit switch action code: 0 - no action
1- Fault
2- Stop and
fault (When
loop is driven
by trajectory
generator only.
With all other
sources same
action as 1)

20DF 24DF 30DF 34DF

224 VAR_PSLIMIT F Y R/W Same as var 221 but value in User Units UU 20E0 24E0 30E0 34E0

225 VAR_NSLIMIT F Y R/W Same as var 222 but value in User Units UU 20E1 24E1 30E1 34E1

226 VAR_SE_APOS_PULSES W N R 2nd encoder actual position in encoder counts EC 20E2 24E2 30E2 34E2

227 VAR_SE_POSERROR_
PULSES

W N R 2nd encoder position error in encoder counts EC 20E3 24E3 30E3 34E3

228 VAR_MODBUS_PARITY W Y R/W Parity for Modbus Control: 0 - No Parity
1 - Odd Parity
2 - Even Parity

20E4 24E4 30E4 34E4

229 VAR_MODBUS_STOPBITS W Y R/W Number of Stopbits for Modbus Control 0 - 1.0
1 - 1.5
2 - 2.0

20E5 24E5 30E5 34E5

230 VAR_M_NOMINALVEL F Y R/W Induction Motor Nominal Velocity Range: 500 -
20000 RPM

RPM 20E6 24E6 30E6 34E6

231 VAR_M_COSPHI F Y R/W Induction Motor Cosine Phi Range: 0 - 1.0 20E7 24E7 30E7 34E7

232 VAR_M_BASEFREQUENCY F Y R/W Induction Motor Base Frequency Range: 0 -
400Hz

Hz 20E8 24E8 30E8 34E8

233 VAR_M_SERIES Induction Motor Series 20E9 24E9 30E9 34E9

P94CAN01C 54

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

234 VAR_CAN_BAUD_EPM W Y R/W CAN Bus Parameter: Baud Rate: 1 - 8 1 - 10k
2 - 20k
3 - 50k
4 - 125k
5 - 250k
6 - 500k
7 - 800k
8 - 1000k

20EA 24EA 30EA 34EA

235 VAR_CAN_ADDR_EPM W Y R/W CAN Bus Parameter: Address Range: 1-127 20EB 24EB 30EB 34EB

236 VAR_CAN_OPERMODE_
EPM

W Y R/W CAN Bus Parameter: Boot-up Mode
(Operational State Control)

0 - enters into
pre-operational
state
1 - enters into
operational
state
2 - pseudo
NMT:
sends NMT
Start Node
command after
delay (set by
variable 237)

20EC 24EC 30EC 34EC

237 VAR_CAN_OPERDELAY_
EPM

W Y R/W CAN Bus Parameter: pseudo NMT mode delay
time in seconds

Refer to
variable 236

sec 20ED 24ED 30ED 34ED

238 VAR_CAN_ENABLE_EPM W Y R/W CAN Bus Parameter: Mode Control 0 - Disable
CAN interface
1 - Enable CAN
interface in
DS301 mode
2 - Enable CAN
interface in
DS402 mode
3 - Enable
DeviceNet
4 - Enable
PROFIBUS DP

20EE 24EE 30EE 34EE

239 VAR_HOME_ACCEL F Y Homing Mode: ACCEL rate Range: 0 -
10000000.0

UU/sec2 20EF 24EF 30EF 34EF

240 VAR_HOME_OFFSET F Y R/W Homing Mode: Home Position Offset Range: -32767
to +32767

UU 20F0 24F0 30F0 34F0

241 VAR_HOME_OFFSET_
PULSES

W Y R/W Homing Mode: Home Position Offset in
encoder counts

Range: +/-
2147418112

EC 20F1 24F1 30F1 34F1

242 VAR_HOME_FAST_VEL F Y R/W Homing Mode: Fast Velocity Range: -10000
to +10000

UU/sec 20F2 24F2 30F2 34F2

243 VAR_HOME_SLOW_VEL F Y R/W Homing Mode: Slow Velocity Range: -10000
to +10000

UU/sec 20F3 24F3 30F3 34F3

244 VAR_HOME_METHOD W Y R/W Homing Mode: Homing Method Range: 1 - 35 20F4 24F4 30F4 34F4

245 VAR_START_HOMING W N W Homing Mode: Start Homing 0 - No action
1 - Start
Homing

20F5 24F5 30F5 34F5

246 VAR_HOME_SWITCH_
INPUT

W Y R/W Homing Mode: Switch Input Assignment: Range: 0-11
0-3: A1-A4
4-7: B1-B4
8-11: C1-C4

20F6 24F6 30F6 34F6

247 VAR_M_VALIDATE_MOTOR W N W Makes Drive accept Motor’s parameters 0 - No action
1 - Validate
Motor Data

20F7 24F7 30F7 34F7

248 VAR_M_I2T F Y R/W Motor 20F8 24F8 30F8 34F8

249 VAR_M_EABSOLUTE F Y R/W Motor 20F9 24F9 30F9 34F9

250 VAR_M_ABSWAP F Y R/W Motor Encoder Feedback: B leads A 0 - No Action
1 - B leads A
for forward
checked
(active)

20FA 24FA 30FA 34FA

251 VAR_M_HALLS_INVERTED F Y R/W Motor Encoder Feedback: Halls 0 - No Action
1 - Inverted
Halls Box
checked
(active)

20FB 24FB 30FB 34FB

252 RESERVED Do NOT use 20FC 24FC 30FC 34FC

253 RESERVED Do NOT use 20FD 24FD 30FD 34FD

254 RESERVED Do NOT use 20FE 24FE 30FE 34FE

255 RESERVED Do NOT use 20FF 24FF 30FF 34FF

 55 P94CAN01C

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

256 RESERVED Do NOT use 2100 2500 3100 3500

257 RESERVED Do NOT use 2101 2501 3101 3501

258 RESERVED Do NOT use 2102 2502 3102 3502

259 RESOLVER_EMU_TRK W Y R/W Resolver Emulation Track Number Range: 0 - 15
0 - 1024
1 - 256
2 - 360
3 - 400
4 - 500
5 - 512
6 - 720
7 - 800
8 - 1000
9 - 1024
10 - 2000
11 - 2048
12 - 2500
13 - 2880
14 - 250
15 - 4096

2103 2503 3103 3503

260 RESERVED Do NOT use 2104 2504 3104 3504

261 VAR_CIP_LINK_A_IN_CTRL W Y R/W Datalink “A” for input assembly 2105 2505 3105 3505

262 VAR_CIP_LINK_B_IN_CTRL W Y R/W Datalink “B” for input assembly 2106 2506 3106 3506

263 VAR_CIP_LINK_C_IN_CTRL W Y R/W Datalink “C” for input assembly 2107 2507 3107 3507

264 VAR_CIP_LINK_D_IN_CTRL W Y R/W Datalink “D” for input assembly 2108 2508 3108 3508

265 VAR_CIP_LINK_A_OUT_
CTRL

W Y R/W Datalink “A” for output assembly 2109 2509 3109 3509

266 VAR_CIP_LINK_B_OUT_
CTRL

W Y R/W Datalink “B” for output assembly 210A 250A 310A 350A

267 VAR_CIP_LINK_C_OUT_
CTRL

W Y R/W Datalink “C” for output assembly 210B 250B 310B 350B

268 VAR_CIP_LINK_D_OUT_
CTRL

W Y R/W Datalink “D” for output assembly 210C 250C 310C 350C

269 VAR_CIP_DAT_REG_CTRL W Y R/W Data format control for Ethernet/IP assemblies 210D 250D 310D 350D

270 VAR_CIP_CTRL_REG W Y R/W Control register for control via Ethernet/IP 210E 250E 310E 350E

271 VAR_CIP_STATUS_REG W N R Status register 2 (Fromat for Ethernet/IP) 210F 250F 310F 350F

272 VAR_CIP_HEART_BEAT W Y R/W CIP Heart beat timer (Ethernet/IP) 2110 2510 3110 3510

273 VAR_EIP_MCACT_TTL W Y R/W Ethernet/IP multicast “time to leave”
parameter

2111 2511 3111 3511

274 VAR_EIP_MCAST_CTRL W Y R/W Multicast enable/disable control register 2112 2512 3112 3512

275 EIP_MCAST_ADDRESS W Y R/W Multicast address Default =
239.192.15.32

2113 2513 3113 3513

276 DNET_SCALE_POLL_IO W Y R/W DeviceNet polled IO data scale factor 2114 2514 3114 3514

277 TCP_REPLY_DELAY W Y R/W TCP reply delay value 2115 2515 3115 3515

278 RESERVED Do NOT use 2116 2516 3116 3516

279 RESERVED Do NOT use 2117 2517 3117 3517

280 RESERVED Do NOT use 2118 2518 3118 3518

281 RESERVED Do NOT use 2119 2519 3119 3519

282 RESERVED Do NOT use 211A 251A 311A 351A

283 PBUS_ADDR W Y R/W Profibus address 211B 251B 311B 351B

284 PBUS_DOUT_SIZE W Y R/W Number of Profibus Data Out channels Range: 0 - 12 211C 251C 311C 351C

285 PBUS_DIN_SIZE W Y R/W Number of Profibus Data In channels Range: 0 - 12 211D 251D 311D 351D

286 PBUS_OUT_LINK1 W Y R/W Profibus Data Out, Channel link 1 PID map 211E 251E 311E 351E

287 PBUS_OUT_LINK2 W Y R/W Profibus Data Out, Channel link 2 PID map 211F 251F 311F 351F

288 PBUS_OUT_LINK3 W Y R/W Profibus Data Out, Channel link 3 PID map 2120 2520 3120 3520

289 PBUS_OUT_LINK4 W Y R/W Profibus Data Out, Channel link 4 PID map 2121 2521 3121 3521

290 PBUS_OUT_LINK5 W Y R/W Profibus Data Out, Channel link 5 PID map 2122 2522 3122 3522

291 PBUS_OUT_LINK6 W Y R/W Profibus Data Out, Channel link 6 PID map 2123 2523 3123 3523

292 PBUS_OUT_LINK7 W Y R/W Profibus Data Out, Channel link 7 PID map 2124 2524 3124 3524

293 PBUS_OUT_LINK8 W Y R/W Profibus Data Out, Channel link 8 PID map 2125 2525 3125 3525

294 PBUS_OUT_LINK9 W Y R/W Profibus Data Out, Channel link 9 PID map 2126 2526 3126 3526

295 PBUS_OUT_LINK10 W Y R/W Profibus Data Out, Channel link 10 PID map 2127 2527 3127 3527

296 PBUS_OUT_LINK11 W Y R/W Profibus Data Out, Channel link 11 PID map 2128 2528 3128 3528

297 PBUS_OUT_LINK12 W Y R/W Profibus Data Out, Channel link 12 PID map 2129 2529 3129 3529

P94CAN01C 56

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

298 PBUS_IN_LINK1 W Y R/W Profibus Data In, Channel link 1 PID map 212A 252A 312A 352A

299 PBUS_IN_LINK2 W Y R/W Profibus Data In, Channel link 2 PID map 212B 252B 312B 352B

300 PBUS_IN_LINK3 W Y R/W Profibus Data In, Channel link 3 PID map 212C 252C 312C 352C

301 PBUS_IN_LINK4 W Y R/W Profibus Data In, Channel link 4 PID map 212D 252D 312D 352D

302 PBUS_IN_LINK5 W Y R/W Profibus Data In, Channel link 5 PID map 212E 252E 312E 352E

303 PBUS_IN_LINK6 W Y R/W Profibus Data In, Channel link 6 PID map 212F 252F 312F 352F

304 PBUS_IN_LINK7 W Y R/W Profibus Data In, Channel link 7 PID map 2130 2530 3130 3530

305 PBUS_IN_LINK8 W Y R/W Profibus Data In, Channel link 8 PID map 2131 2531 3131 3531

306 PBUS_IN_LINK9 W Y R/W Profibus Data In, Channel link 9 PID map 2132 2532 3132 3532

307 PBUS_IN_LINK10 W Y R/W Profibus Data In, Channel link 10 PID map 2133 2533 3133 3533

308 PBUS_IN_LINK11 W Y R/W Profibus Data In, Channel link 11 PID map 2134 2534 3134 3534

309 PBUS_IN_LINK12 W Y R/W Profibus Data In, Channel link 12 PID map 2135 2535 3135 3535

310 PBUS_ACYC_MODE W Y R/W Profibus Acyclic Mode Type 2136 2536 3136 3536

311 VAR_RPDO_1_COM W N R RPDO1 2137 2537 3137 3537

312 VAR_RPDO_2_COM W N R RPDO2 2138 2538 3138 3538

313 VAR_RPDO_3_COM W N R RPDO3 2139 2539 3139 3539

314 VAR_RPDO_4_COM W N R RPDO4 213A 253A 313A 353A

315 VAR_RPDO_5_COM W N R RPDO5 213B 253B 313B 353B

316 VAR_RPDO_6_COM W N R RPDO6 213C 253C 313C 353C

317 VAR_RPDO_7_COM W N R RPDO7 213D 253D 313D 353D

318 VAR_RPDO_8_COM W N R RPDO8 213E 253E 313E 353E

319 VAR_RPDO_1_MAP1 W N R RPDO1 Mapped Object 1 High Byte 213F 253F 313F 353F

320 VAR_RPDO_1_MAP2 W N R RPDO1 Mapped Object 2 Low Byte 2140 2540 3140 3540

321 VAR_RPDO_1_MAP3 W N R RPDO1 Mapped Object 3 High Byte 2141 2541 3141 3541

322 VAR_RPDO_1_MAP4 W N R RPDO1 Mapped Object 4 Low Byte 2142 2542 3142 3542

323 VAR_RPDO_2_MAP1 W N R RPDO2 Mapped Object 1 High Byte 2143 2543 3143 3543

324 VAR_RPDO_2_MAP2 W N R RPDO2 Mapped Object 2 Low Byte 2144 2544 3144 3544

325 VAR_RPDO_2_MAP3 W N R RPDO2 Mapped Object 3 High Byte 2145 2545 3145 3545

326 VAR_RPDO_2_MAP4 W N R RPDO2 Mapped Object 4 Low Byte 2146 2546 3146 3546

327 VAR_RPDO_3_MAP1 W N R RPDO3 Mapped Object 1 High Byte 2147 2547 3147 3547

328 VAR_RPDO_3_MAP2 W N R RPDO3 Mapped Object 2 Low Byte 2148 2548 3148 3548

329 VAR_RPDO_3_MAP3 W N R RPDO3 Mapped Object 3 High Byte 2149 2549 3149 3549

330 VAR_RPDO_3_MAP4 W N R RPDO3 Mapped Object 4 Low Byte 214A 254A 314A 354A

331 VAR_RPDO_4_MAP1 W N R RPDO4 Mapped Object 1 High Byte 214B 254B 314B 354B

332 VAR_RPDO_4_MAP2 W N R RPDO4 Mapped Object 2 Low Byte 214C 254C 314C 354C

333 VAR_RPDO_4_MAP3 W N R RPDO4 Mapped Object 3 High Byte 214D 254D 314D 354D

334 VAR_RPDO_4_MAP4 W N R RPDO4 Mapped Object 4 Low Byte 214E 254E 314E 354E

335 VAR_RPDO_5_MAP1 W N R RPDO5 Mapped Object 1 High Byte 214F 254F 314F 354F

336 VAR_RPDO_5_MAP2 W N R RPDO5 Mapped Object 2 Low Byte 2150 2550 3150 3550

337 VAR_RPDO_5_MAP3 W N R RPDO5 Mapped Object 3 High Byte 2151 2551 3151 3551

338 VAR_RPDO_5_MAP4 W N R RPDO5 Mapped Object 4 Low Byte 2152 2552 3152 3552

339 VAR_RPDO_6_MAP1 W N R RPDO6 Mapped Object 1 High Byte 2153 2553 3153 3553

340 VAR_RPDO_6_MAP2 W N R RPDO6 Mapped Object 2 Low Byte 2154 2554 3154 3554

341 VAR_RPDO_6_MAP3 W N R RPDO6 Mapped Object 3 High Byte 2155 2555 3155 3555

342 VAR_RPDO_6_MAP4 W N R RPDO6 Mapped Object 4 Low Byte 2156 2556 3156 3556

343 VAR_RPDO_7_MAP1 W N R RPDO7 Mapped Object 1 High Byte 2157 2557 3157 3557

344 VAR_RPDO_7_MAP2 W N R RPDO7 Mapped Object 2 Low Byte 2158 2558 3158 3558

345 VAR_RPDO_7_MAP3 W N R RPDO7 Mapped Object 3 High Byte 2159 2559 3159 3559

346 VAR_RPDO_7_MAP4 W N R RPDO7 Mapped Object 4 Low Byte 215A 255A 315A 355A

347 VAR_RPDO_8_MAP1 W N R RPDO8 Mapped Object 1 High Byte 215B 255B 315B 355B

348 VAR_RPDO_8_MAP2 W N R RPDO8 Mapped Object 2 Low Byte 215C 255C 315C 355C

349 VAR_RPDO_8_MAP3 W N R RPDO8 Mapped Object 3 High Byte 215D 255D 315D 355D

350 VAR_RPDO_8_MAP4 W N R RPDO8 Mapped Object 4 Low Byte 215E 255E 315E 355E

351 VAR_TPDO_1_COM W N R TPDO1 215F 255F 315F 355F

352 VAR_TPDO_2_COM W N R TPDO2 2160 2560 3160 3560

353 VAR_TPDO_3_COM W N R TPDO3 2161 2561 3161 3561

354 VAR_TPDO_4_COM W N R TPDO4 2162 2562 3162 3562

 57 P94CAN01C

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

355 VAR_TPDO_5_COM W N R TPDO5 2163 2563 3163 3563

356 VAR_TPDO_6_COM W N R TPDO6 2164 2564 3164 3564

357 VAR_TPDO_7_COM W N R TPDO7 2165 2565 3165 3565

358 VAR_TPDO_8_COM W N R TPDO8 2166 2566 3166 3566

359 VAR_TPDO_1_MAP1 W N R TPDO1 Mapped Object 1 High Byte 2167 2567 3167 3567

360 VAR_TPDO_1_MAP2 W N R TPDO1 Mapped Object 2 Low Byte 2168 2568 3168 3568

361 VAR_TPDO_1_MAP3 W N R TPDO1 Mapped Object 3 High Byte 2169 2569 3169 3569

362 VAR_TPDO_1_MAP4 W N R TPDO1 Mapped Object 4 Low Byte 216A 256A 316A 356A

363 VAR_TPDO_2_MAP1 W N R TPDO2 Mapped Object 1 High Byte 216B 256B 316B 356B

364 VAR_TPDO_2_MAP2 W N R TPDO2 Mapped Object 2 Low Byte 216C 256C 316C 356C

365 VAR_TPDO_2_MAP3 W N R TPDO2 Mapped Object 3 High Byte 216D 256D 316D 356D

366 VAR_TPDO_2_MAP4 W N R TPDO2 Mapped Object 4 Low Byte 216E 256E 316E 356E

367 VAR_TPDO_3_MAP1 W N R TPDO3 Mapped Object 1 High Byte 216F 256F 316F 356F

368 VAR_TPDO_3_MAP2 W N R TPDO3 Mapped Object 2 Low Byte 2170 2570 3170 3570

369 VAR_TPDO_3_MAP3 W N R TPDO3 Mapped Object 3 High Byte 2171 2571 3171 3571

370 VAR_TPDO_3_MAP4 W N R TPDO3 Mapped Object 4 Low Byte 2172 2572 3172 3572

371 VAR_TPDO_4_MAP1 W N R TPDO4 Mapped Object 1 High Byte 2173 2573 3173 3573

372 VAR_TPDO_4_MAP2 W N R TPDO4 Mapped Object 2 Low Byte 2174 2574 3174 3574

373 VAR_TPDO_4_MAP3 W N R TPDO4 Mapped Object 3 High Byte 2175 2575 3175 3575

374 VAR_TPDO_4_MAP4 W N R TPDO4 Mapped Object 4 Low Byte 2176 2576 3176 3576

375 VAR_TPDO_5_MAP1 W N R TPDO5 Mapped Object 1 High Byte 2177 2577 3177 3577

376 VAR_TPDO_5_MAP2 W N R TPDO5 Mapped Object 2 Low Byte 2178 2578 3178 3578

377 VAR_TPDO_5_MAP3 W N R TPDO5 Mapped Object 3 High Byte 2179 2579 3179 3579

378 VAR_TPDO_5_MAP4 W N R TPDO5 Mapped Object 4 Low Byte 217A 257A 317A 357A

379 VAR_TPDO_6_MAP1 W N R TPDO6 Mapped Object 1 High Byte 217B 257B 317B 357B

380 VAR_TPDO_6_MAP2 W N R TPDO6 Mapped Object 2 Low Byte 217C 257C 317C 357C

381 VAR_TPDO_6_MAP3 W N R TPDO6 Mapped Object 3 High Byte 217D 257D 317D 357D

382 VAR_TPDO_6_MAP4 W N R TPDO6 Mapped Object 4 Low Byte 217E 257E 317E 357E

383 VAR_TPDO_7_MAP1 W N R TPDO7 Mapped Object 1 High Byte 217F 257F 317F 357F

384 VAR_TPDO_7_MAP2 W N R TPDO7 Mapped Object 2 Low Byte 2180 2580 3180 3580

385 VAR_TPDO_7_MAP3 W N R TPDO7 Mapped Object 3 High Byte 2181 2581 3181 3581

386 VAR_TPDO_7_MAP4 W N R TPDO7 Mapped Object 4 Low Byte 2182 2582 3182 3582

387 VAR_TPDO_8_MAP1 W N R TPDO8 Mapped Object 1 High Byte 2183 2583 3183 3583

388 VAR_TPDO_8_MAP2 W N R TPDO8 Mapped Object 2 Low Byte 2184 2584 3184 3584

389 VAR_TPDO_8_MAP3 W N R TPDO8 Mapped Object 3 High Byte 2185 2585 3185 3585

390 VAR_TPDO_8_MAP4 W N R TPDO8 Mapped Object 4 Low Byte 2186 2586 3186 3586

391 VAR_TPDO_1_COM_ET 2187 2587 3187 3587

392 VAR_TPDO_2_COM_ET 2188 2588 3188 3588

393 VAR_TPDO_3_COM_ET 2189 2589 3189 3589

394 VAR_TPDO_4_COM_ET 218A 258A 318A 358A

395 VAR_TPDO_5_COM_ET 218B 258B 318B 358B

396 VAR_TPDO_6_COM_ET 218C 258C 318C 358C

397 VAR_TPDO_7_COM_ET 218D 258D 318D 358D

398 VAR_TPDO_8_COM_ET 218E 258E 318E 358E

399 VAR_TPDO_1_COM_IT 218F 258F 318F 358F

400 VAR_TPDO_2_COM_IT 2190 2590 3190 3590

401 VAR_TPDO_3_COM_IT 2191 2591 3191 3591

402 VAR_TPDO_4_COM_IT 2192 2592 3192 3592

403 VAR_TPDO_5_COM_IT 2193 2593 3193 3593

404 VAR_TPDO_6_COM_IT 2194 2594 3194 3594

405 VAR_TPDO_7_COM_IT 2195 2595 3195 3595

406 VAR_TPDO_8_COM_IT 2196 2596 3196 3596

407 VAR_CAN_HEARTBEAT R/W CAN Heartbeat rate (0x1017) Range:
0 - 65335
milliseconds

2197 2597 3197 3597

408 VAR_PBUS_STATUS R PROFIBUS Status 2198 2598 3198 3598

409 VAR_PBUS_MASTER_
TIMEOUT_VAL

R/W Timeout Value for PROFIBUS master 2199 2599 3199 3599

P94CAN01C 58

Parameter Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Units RAM
Register

32bit Integer
Access
Address
0x2000

RAM
Register

32bit Float
Access
Address
0x2400

EPM
Reg Copy

32bit Integer
Access
Address
0x3000

EPM
Reg Copy
32bit Float

Access
Address
0x3400

410 VAR_PBUS_DATA_
EXCHANGE_TIMEOUT

R/W PROFIBUS Data Exchange Timeout Range:
0 - 327680
milliseconds

219A 259A 319A 359A

411 VAR_PTC_RX R PTC Resistance in ohms 219B 259B 319B 359B

412 VAR_PBUS_FIRMWARE_
REV

PROFIBUS Firmware Revision as a hex
number

first word
major, least
word minor,
0x00010001
means rev 1.1

219C 259C 319C 359C

413 VAR_PBUS_TIMEOUT_
ACTION_CFG

EPM PROFIBUS Timeout Action Data Exchange
Timeout:
Bit0=1 fault,
=0 no action;
Master Monitor
Timeout:
Bit1=1 Fault,
=0 no action;
Module timeout
(card not
present) Bit2=1
fault, =0 no
action

219D 259D 319D 359D

Lenze AC Tech Corporation
630 Douglas Street, Uxbridge MA 01569

Sales: 800-217-9100 • Service: 508-278-9100
www.lenze-actech.com

P94CAN01C

PositionServo DeviceNet Communications Module
Communications Interface Reference Guide

Copyright ©2008 by AC Technology Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written
permission from AC Technology Corporation. The information and technical data in this manual are subject to
change without notice. AC Tech makes no warranty of any kind with respect to this material, including, but not
limited to, the implied warranties of its merchantability and fitness for a given purpose. AC Tech assumes no
responsibility for any errors that may appear in this manual and makes no commitment to update or to keep
current the information in this manual.

MotionView®, PositionServo®, and all related indicia are either registered trademarks or trademarks of Lenze
AG in the United States and other countries.

DeviceNet™ , EtherNet/IP™, CIP™ and all related indicia are either registered trademarks or trademarks of
the ODVA (Open DeviceNet Vendors Association).

About These Instructions
This documentation applies to DeviceNet communications for the PositionServo drive and should be used
in conjunction with the PositionServo User Manual (S94PM01) and the PositionServo Programming Manual
(PM94M01). These documents should be read in their entirety as they contain important technical data and
describe the installation and operation of the drive.

� P94DVN01A

Contents
1. Safety Information ...1

1.1 Warnings, Cautions & Notes ... 1

1.1.1 General ... 1

1.1.2 Application .. 1

1.1.3 Installation .. 1

1.1.4 Electrical Connection ... 2

1.1.5 Operation .. 2

2. Introduction ...3
2.1 Fieldbus Overview ... 3

2.2 Module Specification ... 3

2.3 Module Identification Label .. 3

3. Installation ..4
3.1 Mechanical Installation .. 4

3.2 DeviceNet Terminal Block .. 4

3.3 Electrical Installation .. 5

3.3.1 Cable Types .. 5

3.3.2 Network Limitations .. 5

3.3.3 Connections and Shielding .. 6

3.3.4 Network Termination ... 6

4. Configuring Drive for DeviceNet Communication ...8
4.1 Connect to the Drive with MotionView OnBoard .. 8

4.2 Set up the CAN network ... 9

4.2.1 Enable DeviceNet Communication .. 10

4.2.2 Set CAN Parameters ... 10

4.2.3 Set CANOpen Parameters ... 11

4.2.4 Set DeviceNet Parameters .. 12

4.3 Configuration Parameters ... 12

4.4 Drive-Specific Error Codes .. 13

5. Polled I/O ...14
5.1 Command Output Assembly .. 14

5.1.1 Byte 0 – Control Word .. 15

5.1.2 Byte 2 - Command Type ... 15

5.1.3 Byte 3 - Response Type ... 16

5.1.4 Bytes 4 through 7 - Data .. 16

��P94DVN01A

Contents
5.2 Response Input Assembly ... 16

5.2.1 Byte 0 - Status Byte 1 .. 17

5.2.2 Byte 1 - Data Scale Factor .. 17

5.2.3 Byte 2 - Status Byte 2 .. 17

5.2.4 Byte 3 - Response Type ... 18

5.2.5 Bytes 4 through 7 - Data .. 18

6 Explicit Messaging ...19
6.1 Objects 64h and 65h .. 19

6.2 Example Explicit Message ... 19

7. Reference ..20
7.1 Reference Documents... 20

7.2 Common Terms .. 20

7.3 Parameter Quick Reference .. 21

1 P94DVN01A

Safety Information
1.	 Safety	Information
1.1	 Warnings,	Cautions	&	Notes
1.1.1	 General

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, with the
potential to cause attached motors to move or rotate. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation creates
the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be carried
out by qualified, skilled personnel (IEC 364 and CENELEC HD 384 or DIN VDE 0100 and IEC report 664 or DIN
VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with the
installation, assembly, commissioning, and operation of the product and who have the qualifications necessary
for their occupation.

1.1.2	 Application

Drive controllers are components that are designed for installation in electrical systems or machinery. They
are not to be used as appliances. They are intended exclusively for professional and commercial purposes
according to EN 61000-3-2. The documentation includes information on compliance with the EN 61000-3-2.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/37/EC
(Machinery Directive); EN 60204 must be observed.

Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the EMC
Directive (89/336/EEC).

The drive controllers meet the requirements of the Low Voltage Directive 73/23/EEC. The harmonised standards
of the series EN 50178/DIN VDE 0160 apply to the controllers.

The	availability	of	controllers	is	restricted	according	to	EN	61800-3.		These	products	can	cause	radio	
interference	in	residential	areas.

1.1.3	 Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not
change any insulation distances during transport or handling. Do not touch any electronic components and
contacts.

Controllers contain electrostatically sensitive components, that can easily be damaged by inappropriate
handling. Do not damage or destroy any electrical components since this might endanger your health!

When installing the drive ensure optimal airflow by observing all clearance distances in the drive's user manual.
Do not expose the drive to excessive: vibration, temperature, humidity, sunlight, dust, pollutants, corrosive
chemicals or other hazardous environments.

�P94DVN01A

Safety Information
1.1.4	 Electrical	Connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g. VBG
4) must be observed. The electrical installation must be carried out according to the appropriate regulations
(e.g. cable cross-sections, fuses, PE connection).

Additional information can be obtained from the national regulatory documentation. In the United States,
electrical installation is regulated by the National Electric Code (nec) and NFPA 70 along with state and local
regulations.

The documentation contains information about installation in compliance with EMC (shielding, grounding, filters
and cables). These notes must also be observed for CE-marked controllers. The manufacturer of the system or
machine is responsible for compliance with the required limit values demanded by EMC legislation.

1.1.5	 Operation

Systems including controllers must be equipped with additional monitoring and protection devices according to
the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). The user
is allowed to adapt the controller to his application as described in the documentation.

DANGER!

After the controller has been disconnected from the supply voltage, do not touch the
live components and power connection, since capacitors could still be charged. Wait
at least 60 seconds before servicing the drive Please observe the corresponding
notes on the controller.

Do not continuously cycle input power to the controller more than once every three
minutes.

Please close all protective covers and doors during operation.

WARNING!

Network control permits automatic operation of the drive. The system design must
incorporate adequate protection to prevent personnel from accessing moving
equipment while power is applied to the drive system.

Table 1: Pictographs used in these instructions:

Pictograph Signal	Word Meaning Consequence	if	Ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent danger that
may result in death or serious personal
injury if the corresponding measures
are not taken.

WARNING! Impending or possible danger to
personnel

Death or injury

STOP! Possible damage to equipment Damage to drive system or its
surroundings

NOTE Useful tip: If note is observed, it will
make using the drive easier

NOTE:

The complete list of variables can be found in the PositionServo Programming Manual
(PM94M01).

� P94DVN01A

Introduction
2.	 Introduction

The following information is provided to explain how the PositionServo drive operates on a DeviceNet network;
it is not intended to explain how DeviceNet itself works. Therefore, a working knowledge of DeviceNet is
assumed, as well as familiarity with the operation of the PositionServo drive.

2.1	 Fieldbus	Overview
The DeviceNet Fieldbus is an internationally accepted communications protocol designed for commercial and
industrial installations of factory automation and motion control applications. High data transfer rates combined
with it’s efficient data formatting, permit the coordination and control of multi-node applications.

2.2	 Module	Specification
Group 2 Server Device

Supported baudrates: 125kbps, 250kbps, 500kbps

Supported input/output polled data words: Polled, Bit Strobe, COS, Cyclic

Explicit communication for parameter access

2.3	 Module	Identification	Label
Figure 1 illustrates the labelson the DeviceNet communications module. The PositionServo DeviceNet module
is identifiable by:

One label affixed to the side of the module.

The TYPE identifier in the center of the label: E94ZADVN1.

P23 Connector Designation

TYPE: E94ZADVN1
ID-NO: 13127865

SN: 13127865012345678
E94ZADVN1000XX1B11

Made in USA

940/941 DeviceNet

Communication

Option

P
2

3

Figure 1: PositionServo DeviceNet Module Label

•

•

•

•

•

•

•

4P94DVN01A

Installation
3.	 Installation
3.1	 Mechanical	Installation

1. Ensure that for reasons of safety, the AC supply and +24V DC backup supply have been disconnected
before opening the bay cover plate.

2. Remove the two COMM module screws that secure Option Bay 1 and with the aid of a flat head screw
driver, gently pry up the Option Bay 1 cover plate and remove.

3. Install the DeviceNet Module and replace screws as illustrated in Figure 2.

S921a

Figure 2: Installation of DeviceNet Communications Module

3.2	 DeviceNet	Terminal	Block
Table 2 and Figure 3 illustrate the pinout of the PositionServo DeviceNet Module connector. This connector
provides 5-wire connection to the network.

Table 2: DeviceNet Interface Pin Assignments

Terminal Name Wire	Color Description

1 V- Black 0V

2 CAN L Blue CAN Bus Low (Negative data line)

3 Shield Bare

4 CAN H White CAN Bus High (Positive data line)

5 V+ Red 11-25VDC power supply; current consumption 100mA @ 11VDC max

1 2 3 45

Figure 3: DeviceNet Interface Pinout

� P94DVN01A

Installation
3.3	 Electrical	Installation
3.3.1	 Cable	Types

Due to the high data rates used on DeviceNet networks, it is paramount that correctly specified cable is used.
The use of low quality cable will result in excess signal attenuation and data loss. Several types of cable are
available for DeviceNet networks: flat cable, thicknet, mid cable and thinnet. Installation is typically done
with thicknet for trunk cable and thinnet for drop cable. Thicknet has a 3” minimum bend radius. Thinnet is
more flexible, with a 2” minimum bend radius, and as such is easier to install. Thinnet can be used for the
entire installation. The type of cable used, the lengths of the overall network and the drop cables all affect the
maximum baud rate.

Cable specifications and approved manufacturers are available from the official DeviceNet website at: http://
www.ovda.org.

3.3.2	 Network	Limitations

There are several factors that must be taken into consideration when designing a DeviceNet network. For full
details refer to the official “DeviceNet Planning and Installation Manual” available on the http://www.ovda.org
website. However, here is an abbreviated checklist:

DeviceNet networks are limited to a maximum of 64 nodes. Devices default to node 63 so leave node 63
open to avoid duplicate node addresses when adding devices.

Maximum total network length is governed by the data rate and cable type used. Refer to Table 3.

Table 3: Network Length, Drop Cable Length and Baud Rate

Data	Rate MAXIMUM	Network	Length Sum	of	all	Drop	Cable	Lengths

Flat Cable Thicknet Mid Cable Thinnet

125 kbps 420m 500m 300m 100m 156m

250 kbps 200m 250m 250m 100m 78m

500 kbps 75m 100m 100m 100m 39m

Cumulative drop line does not exceed the network specified limit.

Network drops/spurs must not exceed 6 meters (19’ 8.2”).

Use fiber optic segments to:

Extend networks beyond normal cable limitations

Overcome different ground potential problems

Overcome very high electromagnetic interference

Ground at only one location, prferably in the center of the network.

•

•

•

•

•

•

•

•

•

�P94DVN01A

Installation
3.3.3	 Connections	and	Shielding

ODVA specifies to ground the DeviceNet network at one location only.
The ground location should be done on the node that is closest to the physical center of the network to
maximize the performance and minimize the effect of outside noise.
The grounding connection method with regards to the network “V-” connections depends upon the cable
type used (see cable data sheet or OVDA “DeviceNet Planning and Installation Manual” for further details.

1 2 3 4 5 1 2 3 4 5

Connect to
cubical panel/earth
as close to the drive
as possible

Figure 4a: Network Daisy Chain Connection Figure 4b: Ground Connection of Network Center Node

3.3.4	 Network	Termination

In high speed fieldbus networks such as DeviceNet it is essential to install the specified termination resistors,
i.e. one at both ends of a network segment. Failure to do so will result in signals being reflected back along
the cable which will cause data corruption. The method of termination varies with the type of network cable
available. If terminating using an open-style resistor on the drive connection, use a 120W 1/4W 1% resistor
and fit as illustrated in Figure 5.

1 2 3 4 5

Figure 5: Network Termination on Drive Connector

•
•

•

� P94DVN01A

Installation

DeviceNet
Master

PositionServo
DeviceNet

Slave

PositionServo
DeviceNet

Slave

+ H L

120Ω120Ω

DeviceNet
Network

DeviceNet
Network

- + H L - + H L -

+ -

Power
Supply

Figure 6: DeviceNet Network Wiring

�P94DVN01A

Commissioning
4.	 Configuring	Drive	for	DeviceNet	Communication
4.1	 Connect	to	the	Drive	with	MotionView	OnBoard

With the drive power disconnected, install the DeviceNet module and connect the network cable as instructed
in the preceeding sections. Ensure the drive Run/Enable terminal is disabled then apply the correct voltage to
the drive (refer to drive's user manual for voltage supply details).

Refer to the PositionServo User Manual, section 6.2 for full detail on configuring & connecting a drive via
MotionView OnBoard (MVOB) software. Contained herein is a brief description of launching MVOB and
communicating with the drive.

Open your PC’s web browser. Enter the drive’s default IP address [192.168.124.120] in the browser’s
Address window.

The authentication screen may be displayed if the PC does not have Java RTE version 1.4 or higher. If so,
to remedy this situation, download the latest Java RTE from http://www.java.com.

When MotionView has finished installing, a Java icon entitled [MotionView OnBoard] will appear on your
desktop and the MVOB splash screen is displayed. Click [Run] to enter the MotionView program.

Once MotionView has launched, verify motor is safe to operate, click [YES, I have] then select [Connect]
from the Main toolbar (top left). The Connection dialog box will appear.

Select [Discover] to find the drive(s) on the network available for connection.

[Discover] may fail to find the drive’s IP address on a computer with both a wireless network card and a
wired network card. If this happens, try one of the following remedies:

Disable the wireless network card and then use [Discover].
Type in the drive’s IP address manually at the box [IP Address].

Then click [Connect]

Highlight the drive (or drives) to be connected and click [Connect] in the dialog box.

Figure 7 Connection Box with Discovered Drive

In the lower left of the MotionView display, the Message WIndow will contain the connection status message.
The message “Successfully connected to drive B04402200450_192.168.124.120” indicates that the drive
B04402200450 with IP address 192.168.124.120 is connected.

A connection needs to be setup only once per session or any time the communication settings are changed. If
the work is saved to a project file then the connection does not need to be setup unless different communication
settings are used.

1.

2.

3.

4.

5.

6.

9 P94DVN01A

Commissioning

Figure 8: Successfully Connected

4.2	 Set	up	the	CAN	network
To configure the PositionServo drive for DeviceNet communication, the drive must first be configured for a CAN
network. Several parameters need to be set to enable the PositionServo to operate on a CAN network. These
parameters are listed under the [Communication], [CAN] and [DeviceNet] folders in the MotionView OnBoard
software. Alternatively these parameters can be reached from the drive’s front display and keypad. CAN related
parameters are explained herein:

CAN Control Enabled/Disabled: Use this parameter to enable or disable CAN followed by reboot.
This parameter takes effect after the drive has been re-booted (power cycled).

CAN baud rate 10k- 1000k: Parameter takes effect after drive has been re-booted (power cycled).
Note: DeviceNet baud rate: 125k, 250k or 500k bps only.

CAN address 1-127: sets drive’s CAN ID. This parameter takes effect after the drive has been re-
booted (power cycled). Note: DeviceNet valid addresses = 0-63.

CAN Boot Up Mode Pre-Operational, Operational or Pseudo Master modes are available after power up.

Pre-Operational default mode for CAN Open slave. Drive will await message from master to enter
Operational mode

Operational drive will enter Operational mode immediately after power up without receiving
activation message from master. This feature is useful in a master-less network.

Pseudo Master in this mode drive will send activation message (with specified delay, see below) for
all CAN slaves waiting in Pre-Operational mode. This mode is useful when emulating
master functionality and activating passive slaves. Only one drive can be configured
as the pseudo master and only when there is no other master device.

CAN Boot up delay If drive is configured for Pseudo Master mode it will send activation message with
delay specified in this parameter. Delay is used to allow specified slaves to boot up
and configure their hardware to listen to the Master messages.

•

•

•

•

•

•

•

•

10P94DVN01A

Commissioning
4.2.1	 Enable	DeviceNet	Communication

Click on the [Communications] folder in the Node Tree and click on the down arrow next [q] to [Fieldbus
Selection]. Select [DeviceNet] from the pull down menu.

Figure 9: Enable DeviceNet Fieldbus Protocol

To activate any changes made the drive has to be reinitialized. Hence the warning within MotionView

Figure 10: REBOOT Message

This can be done by cycling the power to the drive.

4.2.2	 Set	CAN	Parameters

The [CAN] folder contains the configuration parameters for the CAN interface. To change a CAN parameter,
use the pull-down menu to select a pre-defined value or click in the box adjacent to the parameter and enter a
numeric value that is within the parameter’s specified range. Table 4 lists the range and default value for each
CAN parameter.

Table 4: CAN Parameters

Parameter Range Default	Value

CAN Baud Rate 10k, 25k, 50k, 125k, 250k, 500k, 800k, 1000k 125k

CAN Address 1 - 127 63

11 P94DVN01A

Commissioning

Figure 11: Set CAN Baud Rate & Address

4.2.3	 Set	CANOpen	Parameters

The [CANOpen] folder contains the configuration parameters for the CANOpen Industrial Protocol. To change a
CANOpen parameter, use the pull-down menu to select a pre-defined value or click in the box adjacent to the
parameter and enter a numeric value that is within the parameter’s specified range. Table 5 lists the range and
default value for each CANOpen parameter.

Table 5: CANOpen Parameters

Parameter Range Default	Value

CAN Bootup Mode Pre-operational, Operational, Pseudo master mode Operational

CAN Bootup Delay 0 - 5 seconds 5 sec

CAN Heart Beat Time (0x1017) 0 - 65535 milliseconds 2000 msec

Figure 12: Set CANOpen Parameters

1�P94DVN01A

Commissioning
4.2.4	 Set	DeviceNet	Parameters

The [DeviceNet (CIP)] folder contains the configuration parameters for the DeviceNet Industrial Protocol. To
change a DeviceNet parameter, use the pull-down menu to select a pre-defined value or click in the box
adjacent to the parameter and enter a numeric value that is within the parameter’s specified range. Table 6
lists the range and default value for each DeviceNet parameter.

Table 6: DeviceNet (CIP) Parameters

Parameter Range Default	Value

DeviceNet Poll I/O Scaling** 100, 101, 102, 103, 104 101 = 10

Figure 13: Set DeviceNet I/OScaling

4.3	 Configuration	Parameters
All standard CAN parameters are reused by DeviceNet.

To enable DeviceNet functionality, set variable 238 (VAR_CAN_ENABLE_EPM) = 3.

Variable 276 (DNET_SCALE_POLL_IO) is a new parameter that determines the scale factor for the data of the
Polled I/O messages. (Refer to section 5). Variable 276 can be set from 0-4 and the default value is 1. Variable
276 is accessible through the MotionView program.

All Polled I/O messages have Integer 32 bit data values that are scaled by the value of the 10^DNET_SCALE_
POLL_IO.

Example:

For DNET_SCALE_POLL_IO = 1.

A. If the value of 14.7 needs to be sent, then it must send the integer value of 14.7 * (10^DNET_SCALE_POLL_
IO) = 147

B. If the received value is 156, then it must be divided by (10^DNET_SCALE_POLL_IO) to find the real value.
Actual Value = 156 / (10^DNET_SCALE_POLL_IO) = 15.6

1� P94DVN01A

Commissioning
4.4	 Drive-Specific	Error	Codes

The description of the standard PositionServo Fault Codes can be found in the drive’s user manual (S94PM01).
The DFAULT parameter (PID 9) indicates the last drive fault. In addition, a new error code (43) is introduced to
indicate a problem in the DeviceNet Polled I/O message format.

Refer to section 5.2.4. The polled I/O response type 0x14 is used for error response.

14P94DVN01A

Cyclic Data Access
5.	 Polled	I/O

“OUT data and “IN data” describe the direction of data transfer as seen by the DeviceNet master controller.
For polled I/O messaging, there are two assemblies: the Command (Output) Assembly - Instance 1, and the
Response (Input) Assembly - Instance 2.

The poll operation works as follows:

The DeviceNet Master (PLC) sends an I/O Command Poll Assembly initialized with the desired command
and the desired response types.

The DeviceNet Slave (PositionServo drive) receives the Command I/O Poll Assembly.

The PositionServo Drive executes the command specified in the Command assembly.

The PositionServo Drive replies by sending the requested Response Assembly.

NOTE:

All Polled I/O messages have Integer 32 bit data values scaled by the value of the 10^DNET_
SCALE_POLL_IO.

NOTE:

The Enable bit takes precedence over the rest of the command bits and the command type.
If the drive is disabled (Enable bit = 0) no motion command can be executed and the move
command will be ignored. The response assembly will be issued as requested.

5.1	 Command	Output	Assembly
Table 7 lists the bit assignments of the Polled I/O Command also known as the Output Assembly. Byte 0 is the
Control Byte, Byte 1 is not used, Byte 2 is the Command Type, Byte 3 is the Response Type and Bytes 4 through
7 contain the actual command data.

Table 7: Output Assembly

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 Enable Reg Arm Hard Stop Smooth Stop NA Relative NA Start Motion

1 NA

2 Command Axis = 001 Command Assembly Type

3 Response Axis = 001 Response Assembly Type

4 Data Low Byte

5 Data Low Middle Byte

6 Data High Middle Byte

7 Data High Byte

1.

2.

3.

4.

1� P94DVN01A

Cyclic Data Access
5.1.1	 Byte	0	–	Control	Word

Table 8: Ouput Assembly - Control Word

Bit Name Description Note

7 Enable 0 – disable drive

1 – enable drive

This bit controls PID 52

The Enable bit takes precedence over the
rest of the command bits and the command
type. If the drive is disabled (Enable bit =
0) no motion command can be executed
and the move command will be ignored.
The response assembly will be issued as
requested.

6 Reg Arm The change from 0 to 1 arms the registration input C1 It is equivalent to the REGISTRATION ON
language statement. (Internally this is the
RegistrationOn function).

5 Hard Stop 1 – The drive stops the motion quickly

using the QDECEL and QACCEL values.

This bit controls PID 136 and sets it to 2

4 Smooth Stop 1 – The drive stops motion

using the normal DECEL and ACCEL values.

This bit controls PID 136 and sets it to 1

3 NA 0 – default setting (bit not used)

2 Relative 1 – Relative motion will be executed.

0 – Absolute motion will be executed

1 NA (0) 0 – default setting (bit not used)

0 Start Motion Change from 0 to 1 starts a motion command equivalent to the
MOVED or MOVEP language commands

This bit in combination with the Relative bit
controls PID’s 92 and 93.

5.1.2	 Byte	2	-	Command	Type

Command Axis (bits 7 to 5)

The values of these bits should always be 001 since the PositionServo has only 1 axis per drive.

Command Assembly Type

The Command Assembly Type ranges from 0x0 to 0x9 as listed in Table 9.

Table 9: Command Assembly Type

Type Command Description Note

0x0 NOP

0x1 Start Trapezoidal Move Initiates trapezoidal motion Should be used together with the Start Motion
and Relative control bits

0x2 Set Target Reference Sets the target reference PID 139 (IREF) Target reference in RPS for velocity mode and
in phase Amps (RMS) for current mode.

0x3 Set Acceleration Sets the acceleration PID 181 (ACCEL)

0x4 Set Deceleration Sets the deceleration PID 182 (DECEL)

0x5 Set Maximum Velocity Sets the maximum profile velocity PID 180 (MAXVEL)

0x6 Set Quick Deceleration Sets the quick deceleration PID 183 (QDECEL)

0x7 Set Velocity Profile Sets the velocity for profiled velocity mode PID 185 (VEL) Profiled velocity is the special operation of
Position mode. To set profiled velocity mode
set PID 138 to 1. To return back to normal
positioning mode set PID 138 to 0.

0x8 Start S-curved Move Initiates S-curve motion Should be used together with the Start Motion
and Relative control bits

0x9 Set User Variable V0 Sets PID 100 (V0)

1�P94DVN01A

Cyclic Data Access
5.1.3	 Byte	3	-	Response	Type

Response Axis (bits 7 to 5)

The values of these bits should always be 001 since the PositionServo has only 1 axis per drive.

Response Assembly Type (bits 4 to 0)

This field specifies the type of the response assembly that this command requests. For list of all available
response assembly types refer to section 5.2.

5.1.4	 Bytes	4	through	7	-	Data

These 4 bytes contain the actual command data in little endian format. For the receiving node to reconstruct
the 32-bit data value as it was originally transmitted, parameters are transmitted in four 8-bit bytes in the order
of the lowest byte first and the highest byte last. Said another way, in little endian format, the least significant
byte is stored at the lowest address.

Endian	Format 16-bit	Value 32-bit	Value

Byte	Order Word	Order Byte	Order

Little Low byte first
High byte second

Low word first
High word second

Low byte first
Mid low byte second
Mid high byte third

High byte fourth

5.2	 Response	Input	Assembly
Table 10 lists the Polled I/O Response also known as the Input Assembly.

Table 10: Input Assembly

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 Enable State Reg Level Home Level NA (0) General Fault In Position NA (0) In Motion

1 Data Scale Factor

2 NA (1) NA (0) NA (0) NA (0) NA (0) Negative

HW Limit

Positive

HW Limit

NA (0)

3 Response Axis = 001 Response Assembly Type

4 Data Low Byte

5 Data Low Middle Byte

6 Data High Middle Byte

7 Data High Byte

1� P94DVN01A

Cyclic Data Access
5.2.1	 Byte	0	-	Status	Byte	1

Table 11: Status Word 1

Bit Name Description Note

7 Enable State 0 – drive disabled

1 – drive enabled

Bit 0 of the drive status PID 54

6 Reg Level 1 – registration event has occurred Bit 19 of the drive status PID 54

5 Home Level 1 – drive is homed Bit 23 of the drive extended status PID 83

4 NA (0) 0 – default setting (bit not used)

3 General Fault 0 – no fault

1 – fault has occurred

This bit is set when bit 3 of the drive status
PID 54 is set or when a malformed DeviceNet
Polled I/O command message is detected.

2 In Position 1 – motion complete and target position is within specified limits Bit 5 of the drive status PID 54

1 NA (0) 0 – default setting (bit not used)

0 In Motion 1 – If velocity is not 0 or the motion stack is not empty This is the negated Bit 25 of the drive status
PID 54.

5.2.2	 Byte	1	-	Data	Scale	Factor

The current value of the DNET_SCALE_POLL_IO (PID 276) parameter is returned in this byte. Refer to section
4.2 for further explanation about the role of this parameter.

5.2.3	 Byte	2	-	Status	Byte	2

Negative HW Limit

1 – If negative limit switch condition engaged.
Bit 29 of the drive status PID 54

Positive HW Limit

1 – If positive limit switch condition engaged.
Bit 28 of the drive status PID 54

1�P94DVN01A

Cyclic Data Access
5.2.4	 Byte	3	-	Response	Type

Response Axis (bits 7 to 5)

The values of these bits should be always 001 since the PositionServo has only 1 axis per drive.

Response Assembly Type (bits 4 to 0)

The Response Assembly Type ranges from 0x0 to 0x14 as listed in Table 12.

Table 12: Response Assembly Type

Type Response Description Note

0x0 NOP

0x1 Actual Position Returns the Actual Position PID 215 (APOS)

0x2 Commanded Position Returns the Target Position PID 214 (TPOS)

0x3 Actual Velocity Returns the Actual Velocity PID 260 (VELOCITY_ACTUAL)

0x4 Torque Returns the Torque calculated as

Torque = PID 188 (PHCUR) * PID 20 (M_KT)

0x5 940 Status Returns the 940 status PID 54 (STATUS)

0x6 940 Extended Status Returns the 940 status PID 83 (EXSTATUS)

0x7 940 Position Error Returns the 940 PID 216 (POSERROR)

0x8 940 User Variable V1 Returns the 940 PID 101 (V1)

0x14 Command/Response Error This response is returned if any fault occurs or the last
sent command is unsupported

In this case byte 6 of the response assembly
has copy of the command message byte 2
and byte 7 of the response assembly has
copy of the command message byte 3

Bytes 4 and 5 of the response assembly
contain the 940 Fault Code.

Fault Code (43) is returned when a malformed
DeviceNet Polled I/O message is detected.

5.2.5	 Bytes	4	through	7	-	Data

These 4 bytes contain the actual response data in little endian format. For the receiving node to reconstruct the
32-bit data value as it was originally transmitted, parameters are transmitted in four 8-bit bytes in the order
of the lowest byte first and the highest byte last. Said another way, in little endian format, the least significant
byte is stored at the lowest address.

Endian	Format 16-bit	Value 32-bit	Value

Byte	Order Word	Order Byte	Order

Little Low byte first
High byte second

Low word first
High word second

Low byte first
Mid low byte second
Mid high byte third

High byte fourth

19 P94DVN01A

Explicit Messaging
6	 Explicit	Messaging
6.1	 Objects	64h	and	65h

The PositionServo system objects 64h and 65h encapsulate all valid PositionServo variables (Property IDs or
PIDs). Object 64h covers PIDs in range 1-255. Object 65h covers PIDs in range 256 and up. Each PositionServo
PID is represented by an instance of a System940 object. For object 64h the instance number matches the
PID’s index. For object 65h instance calculated as:

Object 65h Instance = PID – 255 , for PIDs with ID 256 and up

6.2	 Example	Explicit	Message
NOTE:

The complete list of variables (PIDs) can be found in the PositionServo Programming Manual
(PM94M01).

Example of how to access PID # 275:

Since PID 275 > 255, it falls under Object 0x65 and the Instance ID is (275 – 255) = 20 (0x14 in hex).

All aspects of control and parameterization in the PositionServo drive are accomplished through the system
variables. Some of the variables are parameters such as Current Limit or Target Position. Some of the variables
are action properties, i.e. writing values to these variables will execute a particular process. As an example,
writing to variable VAR_ENABLE (ID=52), a non-0 value will enable the drive. Writing the same variable with a
0 (zero) value will disable the drive. Another example could be writing the variable VAR_MOVED with a value of
10, which would execute relative motion for 10 user units.

Every variable in the PositionServo can be read/written as a 32-bit INTEGER or 32-bit REAL(float) value.

Conversion is done automatically. In addition each variable can be read from its RAM (current) copy or from
non-volatile (EPM) storage. The value is initialized at the time of power up. To accommodate different access
(RAM or EPM) and format (integer or float) types, attributes are implemented. For example to reach variable
VAR_CURRENTLIMIT (ID=30) as FLOAT in RAM (run-time value) you would use InstanceID = 30 with attribute
2. For the same variable accessed in EPM (non-volatile copy) you would use attribute 3. Refer to Table 13.

Table	13:	Objects	64(Hex)	and	65(Hex)

Instance Attributes

 Integer, RAM 0

 Integer, EPM 1

 Float, RAM 2

 Float, EPM 3

 String, RAM 4

 String, EPM 5

Instance Services

 Get_Attribute_All

 Get_Attribute_Single

Instance

 Instance = variable ID.

 Refer to PositionServo Programming Manual (PM94M01) for variable ID list.

 For example: Instance of VAR_CURRENTLIMIT is 30 since its ID=30.

�0P94DVN01A

Reference
7.	 Reference
7.1	 Reference	Documents

• DeviceNet Information: http://www.odva.org

• PositionServo Programming Manual (PM94M01): http://www.lenze-actech.com

• PositionServo User Manual (S94PM01): http://www.lenze-actech.com

 PositionServo CANOpen Communications Reference (P94CAN01): http://www.lenze-actech.com

NOTE:

The complete list of variables can be found in the PositionServo Programming Manual
(PM94P01).

7.2	 Common	Terms
CAN Controller Area Network

CIPTM Common Industrial Protocol

COS Change of State. Device produces data whenever its state changes or at a base heartbeat
rate.

Cyclic Device will produce data at a defined interval.

EDS Electronic Data Sheet

Explicit Message Contains module vendor information; sent via a high CAN identifier (600-7BF Hex)

I/O Message Contains real time I/O information of a module; sent via a low CAN identifier (000 - 3FF
Hex)

PIT Production Inhibit Time

PID Parameter Index Number; Parameter ID; Property ID (The identifier number for the
PositionServo variable as listed in the PS Programming Manual PM94M01)

Polled Device receives data from Master in a sequential order according to the number of
nodes.

PMSCS Predefined Master/Slave Connection Set

UCMM UnConnected Message Manager: Device can exchange data in peer-to-peer mode

•

�1 P94DVN01A

Reference
7.3	 Parameter	Quick	Reference

Table 14 lists each parameter number and provides its function, default value and access rights.

Table 14: Parameter Quick Reference

Parameter Function Default	Value Access	Rights Cross	Reference

PIDxxx Network Protocol Ethernet 4.2.1 Enable DeviceNet Communication

PID234 CAN Baud Rate 125k R/W 4.2.2 Set CAN Parameters

PID235 CAN Address 63 R/W 4.2.2 Set CAN Parameters

PID236 CAN Bootup Mode Operational R/W 4.2.3 Set CANOpen Parameters

PID237 CAN Bootup Delay 5 s R/W 4.2.3 Set CANOpen Parameters

PID238 CAN Enable 3 (for DeviceNet) R/W 4.3 Configuration Parameters

PID276 DeviceNet Poll I/O Scaling 101 = 10 R/W 4.2.4 Set DeviceNet Parameters

PID407 CAN Heart Beat Time (0x1017) 2000 ms R/W 4.2.3 Set CANOpen Parameters

PID311-318 CAN Receive PDO

NOTE: PIDs 311 - 406 are for REFERENCE
ONLY. These variables are set through
MotionView. Do NOT	use directly.

These variables are used by MotionView for
non-volatile settings of CAN TPDO/RPDO.

PID319-350 CAN RPDO Mapping

PID351-358 CAN Transmit PDO

PID359-390 CAN TPDO Mapping

PID391-398 CAN TPDO COM ET

PID399-406 CAN TPDO COM IT

AC	Technology	Corporation
630 Douglas Street Uxbridge, MA 01569

Telephone: (508) 278-9100 Facsimile: (508) 278-7873
www.lenze-actech.com

P94DVN01A

PositionServo ETHERNET/IP
Communications Protocol Reference Guide

Copyright ©2008 by Lenze AC Tech Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written
permission from Lenze AC Tech Corporation. The information and technical data in this manual are subject to
change without notice. Lenze AC Tech makes no warranty of any kind with respect to this material, including,
but not limited to, the implied warranties of its merchantability and fitness for a given purpose. Lenze AC Tech
assumes no responsibility for any errors that may appear in this manual and makes no commitment to update
or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are trademarks of Lenze AG in the United States and
other countries.

CompoNet™, DeviceNet™, CIP™, CIP Safety™, CIP Sync™, CIP Motion™, DeviceNet Safety™ and EtherNet/
IP Safety™ and all related indicia are trademarks of the ODVA (Open DeviceNet Vendors Association). EtherNet/
IP™ is a trademark used under license by ODVA.

RSLogix™, RSLogix™ 5000, CompactLogix, CompactLogix 5000, ControlLogix®, MicroLogix™, SoftLogix,
Allen Bradley® and all related indicia are trademarks of Rockwell Automation® Corporation.

About These Instructions

This documentation applies to EtherNet/IP communications for the PositionServo drive and should be used
in conjunction with the PositionServo User Manual (S94H201) that shipped with the drive. These documents
should be read in their entirety as they contain important technical data and describe the installation and
operation of the drive.

i P94ETH01D

Contents

1. Safety Information ...1
1.1 Warnings, Cautions & Notes ... 1

1.2 Reference Documents.. 2

2. Introduction ...3
2.1 EtherNet/IP Overview ... 3

2.2 Ethernet TCP/IP Configuration .. 3

3. Installation ..5
3.1 Mechanical Installation .. 5

3.2 Electrical Installation .. 5

3.3 Grounding .. 5

3.4 Cabling .. 5

3.5 Maximum Network Length ... 5

3.6 Minimum Node to Node Cable Length .. 6

3.7 Network Topology .. 6

3.8 Example Networks ... 7

4 Configuring EtherNet/IP ...9
4.1 Connect to the Drive with MotionView OnBoard .. 9

4.2 Configuring a Scanner or Bridge ... 13

4.3 Adding a Bridge or Scanner to the I/O Configuration .. 13

4.4 Adding the Adapter and Drive to the I/O Configuration ... 16

4.5 Saving the Configuration ... 19

5 I/O Messaging ..20
5.1 Overview of I/O Messaging ... 20

5.2 I/O Assemblies .. 20

5.3 Using Assemblies for Control and Status/Data Monitoring ... 21

5.4 Using DataLinks .. 21

5.5 Assembly Object ... 22

5.6 Example Ladder Logic Program .. 24

6 Explicit Messages ..27
6.1 Formatting Explicit Messages ... 27

6.2 Performing Explicit Messages ... 29

6.3 Explicit Message Example ... 30

iiP94ETH01D

Contents

7 Ethernet/IP Objects ..34
7.1 Identity Object .. 34

7.2 PositionServo System Object... 35

7.3 Assembly Object ... 36

7.4 TCP/IP Interface Object ... 36

7.5 Ethernet Link Object ... 37

8 Applications ...38
8.1 Application Example 1 - Velocity Control ... 38

8.2 Application Example 2 - Indexing .. 41

8.3 Application Example 3 - Configuration Using Explicit Messages 47

8.4 Application Note - Detection of EtherNet/IP Exclusive Ownership Loss 54

1 P94ETH01D

Safety Information

1. Safety Information
1.1 Warnings, Cautions & Notes

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, with the
potential to cause attached motors to move or rotate. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation creates
the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be carried
out by qualified, skilled personnel (IEC 364 and CENELEC HD 384 or DIN VDE 0100 and IEC report 664 or DIN
VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with the
installation, assembly, commissioning, and operation of the product and who have the qualifications necessary
for their occupation.

Application

Drive controllers are components that are designed for installation in electrical systems or machinery. They
are not to be used as appliances. They are intended exclusively for professional and commercial purposes
according to EN 61000-3-2. The documentation includes information on compliance with the EN 61000-3-2.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/37/EC
(Machinery Directive); EN 60204 must be observed.

Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the EMC
Directive (2004/108/EC).

The drive controllers meet the requirements of the Low Voltage Directive 2006/95/EC. The harmonised
standards of the series EN 50178/DIN VDE 0160 apply to the controllers.

The availability of controllers is restricted according to EN 61800-3. These products can cause radio
interference in residential areas.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not change
any insulation distances during transport or handling. Do not touch any electronic components and contacts.
Controllers contain electrostatically sensitive components, that can easily be damaged by inappropriate
handling. Do not damage or destroy any electrical components since this might endanger your health!

When installing the drive ensure optimal airflow by observing all clearance distances in the drive's user manual.
Do not expose the drive to excessive: vibration, temperature, humidity, sunlight, dust, pollutants, corrosive
chemicals or other hazardous environments.

Electrical Connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g. VBG
4) must be observed. The electrical installation must be carried out according to the appropriate regulations
(e.g. cable cross-sections, fuses, PE connection).

2P94ETH01D

Safety Information

Additional information can be obtained from the national regulation documentation. In the United States,
electrical installation is regulated by the National Electric Code (nec) and NFPA 70 along with state and local
regulations.

The documentation contains information about installation in compliance with EMC (shielding, grounding, filters
and cables). These notes must also be observed for CE-marked controllers. The manufacturer of the system or
machine is responsible for compliance with the required limit values demanded by EMC legislation.

Operation

Systems including controllers must be equipped with additional monitoring and protection devices according to
the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). You are
allowed to adapt the controller to your application as described in the documentation.

DANGER!

After the controller has been disconnected from the supply voltage, do not touch the live components and
power connection, since capacitors could still be charged. Wait at least 60 seconds before servicing the drive
Please observe the corresponding notes on the controller.

Do not continuously cycle input power to the controller more than once every three minutes.

Please close all protective covers and doors during operation.

WARNING!

Network control permits automatic operation of the drive. The system design must incorporate adequate
protection to prevent personnel from accessing moving equipment while power is applied to the drive system.

Table 1: Pictographs used in these instructions

Pictograph Signal Word Meaning Consequence if Ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent danger that
may result in death or serious personal
injury if the corresponding measures
are not taken.

WARNING! Impending or possible danger to
personnel

Death or injury

STOP! Possible damage to equipment Damage to drive system or its
surroundings

NOTE Useful tip: If note is observed, it will
make using the drive easier

1.2 Reference Documents
•	 EtherNet/IP	Information:	http://www.odva.org

•	 PositionServo	Programming	Manual	(PM94H201):	http://www.lenzeamericas.com

•	 PositionServo	User	Manual	(S94H201):	http://www.lenzeamericas.com

NOTE:

The complete list of variables can be found in the PositionServo Programming Manual (PM94H201).

3 P94ETH01D

Introduction

2. Introduction
EtherNet/IP just like its close siblings DeviceNet and ControlNet, uses CIP (Common Industrial Protocol
a.k.a. Control and Information Protocol) to exchange data between devices on an Ethernet network. AC Tech
implementation of CIP follows the standard supported by the ODVA (governing organization) and supports the
two main types of EtherNet/IP communication: Explicit Messaging and I/O Messaging.

The purpose of this document is to describe the EtherNet/IP implementation specifics for the PositionServo
drive as well as provide the necessary information and examples for users and network programmers. This
document assumes the reader is familiar with the general concept of CIP and has a basic knowledge of
Ethernet TCP/IP communication principles.

2.1 EtherNet/IP Overview
EtherNet/IP implements network protocol using the seven layer Open Systems Interconnection (OSI) model as
illustrated in Figure 1. Ethernet has an active infrastructure and as such EtherNet/IP can support an almost
unlimited number of point-to-point nodes. The EtherNet/IP system requires just one connection for configuration
and control. An EtherNet/IP system uses peer-to-peer communication and can be setup to operate in a master/
slave or distributed control configuration.

Layer

Application

Presentation

Session

Transport

Network

Data Link

Physical

IP

TCP UDP

Encapsulation

Ethernet
CSMA/CD

ControlNet
CTDMA

CAN
CSMA/NBA

DeviceNet
Physical Layer

ControlNet
Physical Layer

Ethernet
Physical Layer

DeviceNet
Transport

ControlNet
Transport

CIP: Connection Management - Message Routing

CIP: Data Management - Explicit Messages, I/O Messages

CIP: Application Layer - Object Library

1

2

4

5

6

7

3

Figure 1: OSI Model

2.2 Ethernet TCP/IP Configuration
Typically, an EtherNet/IP network is made up of segments containing point-to-point connections in a star
configuration as illustrated in Figure 2. At the center of this star topology is a bank of Ethernet 2 & 3 switches
that can support a great number of point-to-point nodes.

Network

Message Router
Object

TCP/IP Ethernet

Assembly
Object

TCP/IP Interface
Object

Parameter
Object

Explicit
Messages

I/O
Messages

Connection Manager
Object

Ethernet Interface
Object

Application-Specific
Object

Identity
Object

UCMM

Figure 2: EtherNet/IP Star Configuration

4P94ETH01D

Introduction

2.2.1 MultiCast Configuration

By default the PositionServo drive automatically generates the multicast address used for I/O messaging. The
default multicast TTL (time to leave) value is 1 which means that the multicast I/O packets will be propagated
over the local subnet only.

The user is allowed to explicitly set the drive’s multicast address and TTL values but this feature should be used
carefully. In the Communication folder of the MotionView program there is a menu for Ethernet IP settings. The
TTL and Mcast Config attributes in the TCP/IP object are also implemented. Note that the Num Mcast value in
the Mcast Config attribute must always be 1.

The user configurable PositionServo system variables for multicast are:

Variable ID Meaning

273 TTL

275 Multicast address (default 239.192.15.32)

2.2.2 IGMP Implementation

The IGMP v2 version of the IGMP (Internet Group Management Protocol) is used.

Type Checksum

Group Address

Max Response Time

0 7 8 15 16 31

Message Type
0x11
0x12
0x16
0x17
0x22

General Query
v1 Report
v2 Report
v2 Leave
v3 Report

Max Response Time
Maximum time the Querier
waits for report in response

to a membership query

Checksum
The 1’s complement

of the entire IGMP message

Group Address
In a general query it is the multicast group address

In other cases it is a specific multicast address

23 24

Figure 3: IGMP v2 Message Format

2.2.3 TCP/IP Sockets

The PositionServo supports up to 3 TCP/IP socket connections.

2.2.4 CIP Connections

The PositionServo supports up to 10 CIP connections.

5 P94ETH01D

Installation

3. Installation
Ethernet/IP communication is not supported by the RS232-based PositionServo drive even if the RS232-based
drive has the Ethernet option module E94ZAETH1 installed. Ethernet/IP is also not supported by the MVCD
PositionServo drives (part number ending in “X”). Ethernet/IP is supported by the MVOB equipped PositionServo
drives (part number ending in “M” or “S”).

3.1 Mechanical Installation
No mechanical installation is necessary. The Ethernet Module is the standard interface on the PositionServo
drive.

3.2 Electrical Installation
Table 2 and Figure 4 illustrate the pinout of the PositionServo Ethernet interface. The 8-pin connector provides
a standard RJ45 UTP/STP (Unscreened/Screened Twisted Pair) connection to a 10Mbs or 100Mbs Ethernet
system.

Table 2: Ethernet Interface Pin Designation
Terminal Name Description

1 TxB (+) Transmit B (+)

2 TxA (-) Transmit A (-)

3 RxB (+) Receive B (+)

4 -- Not Used

5 -- Not Used

6 RxA(-) Receive A (-)

7 -- Not Used

8 -- Not Used

18
7
6

2
3

45

Figure 4: Ethernet Interface Pin Designation

3.3 Grounding
The PositionServo Ethernet interface is supplied with a grounding tag on the module that should be connected
to the closest possible grounding point using the minimum length of cable. This will greatly improve the noise
immunity of the module. If standard Ethernet UTP or STP cables are used, supplementary grounding is not
required when connecting to the PositionServo Ethernet interface.

3.4 Cabling
To ensure long-term reliability it is recommended that any cables used to connect a system together are tested
using a suitable Ethernet cable tester, this is of particular importance when cables are made up on site. It is
recommended that a minimum specification of CAT5e is installed on new installations, as this gives a good
cost performance ratio. If you are using existing cabling this may limit the maximum data rate depending on
the cable ratings. In noisy environments the use of STP or fiber optic cable will offer additional noise immunity.

3.5 Maximum Network Length
The main restriction imposed on Ethernet cabling is the length of a single section of cable as detailed in Table
3. If distances greater than this are required it may be possible to extend the network with additional switches
or by using a fiber optic converter. Cabling issues are the single biggest cause of network downtime. Ensure
cabling is correctly routed, wiring is correct, connectors are properly fitted and any switches or routers used
are rated for industrial use. Office grade Ethernet equipment does not offer the same degree of noise immunity
as equipment intended for industrial use.

6P94ETH01D

Installation

Table 3: Maximum Network Length

Type of Cable Data Rate (bits/sec) Maximum Trunk Length (m)

Copper - UTP/STP CAT 5 10M 100

Copper - UTP/STP CAT 5 100M 100

Fiber Optic - Multi-mode 10M 2000

Fiber Optic - Multi-mode 100M 3000

Fiber Optic - Single-mode 10M no standard

Fiber Optic - Single-mode 100M up to 100000

NOTE:

The distances specified are absolute recommended maximums for reliable transmission of data. The distances for the fiber
optic sections will be dependent on the equipment used on the network. The use of wireless networking products is not
recommended for control systems, as performance may be affected by many external influences.

3.6 Minimum Node to Node Cable Length
There is no minimum length of cable recommended in the Ethernet standards for UTP or STP. For consistency
across fieldbus modules, a minimum network device-to-device distance equal to 1 meter of cable is
recommended. This minimum length helps to ensure good bend radii on cables and avoids unnecessary strain
on connectors.

3.7 Network Topology
Given its universal connectivity, an ethernet network may contain varied connection devices including hubs,
switches and routers. Mixing commercial and industrial ethernet networks is possible but care should be taken
to ensure clean data transmission. A large, high performance industrial Ethernet network is best served by
managed switches that permit data control and monitoring capability.

3.7.1 Hubs

A hub provides a basic connection between network devices. Each device is connected to one port on the hub.
Any data sent by a device is then sent to all ports (floods) on the hub. The use of hubs is not recommended for
use within control systems due to the increased possibility of collisions. Collisions can cause delays in data
transmission and are best avoided, in severe cases a single node can prevent other nodes on the same hub
(or collision domain) from accessing the network. If using hubs or repeaters you must ensure that the path
variability value and propagation equivalent values are checked. This is beyond the scope of this manual.

3.7.2 Switches

Switches offer a better solution to hubs because after initially learning the addresses of connected devices the
switch will only send data to the port that has the addressed device connected to it. This prevents excessive
traffic. Some managed switches allow the switching of data to be controlled and monitored which may
be of particular importance on large or high performance systems. The word “switch” is sometimes used
interchangeably with the terms scanner, matrix and bridge.

3.7.3 Routers

A router is used to communicate between two physical networks (or subnets) and provides some degree of
security by allowing only defined connections between the two networks. A typical use would be connecting
the office and manufacturing networks or connecting a network to an I.S.P (Internet Service Provider). A router
is sometimes known as a gateway as it provides a “gateway” between two networks.

7 P94ETH01D

Installation

3.7.4 Firewalls

A firewall allows separate networks to be connected together similar to a router, however the firewall offers
more security features and control. Typical features include address translation, port filtering, protocol filtering,
URL filtering, port mapping, service attack prevention, monitoring and virus scanning. A firewall is the preferred
method of allowing traffic from a manufacturing network to the business network.

3.7.5 VPN (Virtual Private Network)

A VPN is a method of using a non-secure or public network that allows devices to be connected together
as if they were connected on a private network. A typical example would be the connection of two remote
offices such as London and New York. Each office would require a high speed Internet connection and a
Firewall (or VPN device). In order to configure the VPN, encryption keys are exchanged so that both offices can
communicate. The data is then sent across the Internet (or shared network) in an encrypted form, giving the
illusion of a single connected network (speed limitations may apply).

3.8 Example Networks
3.8.1 Single PC to Single PositionServo Drive

Figure 5: PC to PositionServo Drive

3.8.2 Single PC to Multiple PositionServo Drives and Single Switch

PC/Laptop

PositionServo Drives

Switch

Non crossover cable
Non crossover cable

(PC to Switch)

(Drives to Switch)

Figure 6: PC to Multiple PositionServo Drives

8P94ETH01D

Installation

3.8.3 Single PC to Multiple PositionServo Drives and Multiple Switches

PC/Laptop

PositionServo Drives

Switch 1

Non crossover cable
Non crossover cable

(PC to Switch)

(Drives to Switch)

PositionServo Drives

Switch 2

Non crossover cable

(Drives to Switch)

Non crossover or crossover cable depends on switch
(Switch to Switch)

Figure 7: PC to Multiple PositionServo Drives and Multiple Switches

9 P94ETH01D

Commissioning

4 Configuring EtherNet/IP
To setup an Ethernet/IP network, the ethernet port on each device that will be part of the network must be
configured. For the example illustrated in sections 4 through 6 of this manual, the devices on the network
include an Allen-Bradley 1769-L32E CompactLogix controller, a PC and a PositionServo drive.

4.1 Connect to the Drive with MotionView OnBoard
Ensure the drive Run/Enable terminal is disabled then apply the correct voltage to the drive (refer to drive's user
manual for voltage supply details).

Refer to the PositionServo User Manual, section 6.2 for full detail on configuring & connecting a drive via
MotionView OnBoard (MVOB) software. Contained herein is a brief description of launching MVOB and
communicating with the drive.

1. Open your PC’s web browser. Enter the drive’s default IP address [192.168.124.120] in the browser’s
Address window.

2. The authentication screen may be displayed if the PC does not have Java RTE version 1.4 or higher. If so,
to remedy this situation, download the latest Java RTE from http://www.java.com.

3. When MotionView has finished installing, a Java icon entitled [MotionView OnBoard] will appear on your
desktop and the MVOB splash screen is displayed. Click [Run] to enter the MotionView program.

4. Once MotionView has launched, verify motor is safe to operate, click [YES, I have] then select [Connect]
from the Main toolbar (top left). The Connection dialog box will appear.

5. Select [Discover] to find the drive(s) on the network available for connection.

[Discover] may fail to find the drive’s IP address on a computer with both a wireless network card and a
wired network card. If this happens, try one of the following remedies:

Disable the wireless network card and then use [Discover].
Type in the drive’s IP address manually at the box [IP Address].

Then click [Connect]

6. Highlight the drive (or drives) to be connected and click [Connect] in the dialog box.

Figure 8 Connection Box with Discovered Drive

In the lower left of the MotionView display, the Message WIndow will contain the connection status message.
The message “Successfully connected to drive B04402200450_192.168.124.120” indicates that the drive
B04402200450 with IP address 192.168.124.120 is connected.

10P94ETH01D

Commissioning

A connection needs to be setup only once per session or any time the communication settings are changed. If
the work is saved to a project file then the connection does not need to be setup unless different communication
settings are used.

Figure 9: Successfully Connected

Click on the [Communications] folder in the Node Tree. If the [Fieldbus Selection] is other than [None], click the
down arrow [q] next to [Fieldbus Selection] and select [None]. To activate any changes made the drive has to
be reinitialized. Hence the warning within MotionView. This can be done by cycling the power to the drive.

Figure 10: Communications Folder

11 P94ETH01D

Commissioning

Figure 11: REBOOT Message

Ethernet Hardware Settings

The Ethernet folder displays the IP Address, Subnet Mask and Default Gateway for the drive selected in the
Node Tree. The TCP Reply Delay can be set in 1 millisecond increments from 0 to 15ms. To obtain the IP
address via DHCP, check the box adjacent to [Obtain IP address using DHCP].

Table 4: Ethernet Hardware Setup

Parameter Range Default Value

Obtain IP Address using DHCP Yes or No No

IP Address ###.###.###.### Automatically Generated 192.168.124.120

Subnet Mask ###.###.###.### 255.255.255.0

Default Gateway ###.###.###.### 192.168.124.1

TCP Reply Delay 0 - 15 milliseconds 2 ms

Figure 12: Ethernet

NOTE:
Every time the IP address is reconfigured, the drive must be rebooted so that the change can take effect.

12P94ETH01D

Commissioning

EtherNet/IP Parameters

Defined by the Ethernet hardware settings, the EtherNet/IP folder contains the configuration parameters for
the EtherNet/IP (Industrial Protocol). To change an EtherNet/IP parameter, use the pull-down menu to select
a pre-defined value or click in the box adjacent to the parameter and enter a numeric value that is within
the parameter’s specified range. Table 5 lists the range and default value for each EtherNet/IP parameter. In
general, there is no need to change parameters for multicast operations. Consult your IT administrator for these
settings as their configuration is very network-specific.

Table 5: EtherNet/IP Parameters

Parameter Range Default Value

Multicast Control Automatically Generated; Explicitly Set Automatically Generated

Multicast TTL 0 - 255 1

Multicast Address ###.###.###.### 239.192.15.32

Input Assembly Links A-D -- --

Enable Enable/Disable Enable

Parameter ID Number Index number of the assigned User Variable V0-V31 In Link A = 100, In Link B = 101,
In Link C = 102, In Link D = 103

Units RAM Float (4 Bytes); RAM Integer (4 Bytes) RAM Float (4 Bytes)

Output Assembly Links A-D -- --

Enable Enable/Disable Enable

Parameter ID Number Index number of the assigned User Variable V0-V31 Out Link A = 104, Out Link B = 105,
Out Link C = 106, Out Link D = 107

Units RAM Float (4 Bytes); RAM Integer (4 Bytes) RAM Float (4 Bytes)

Figure 13: EtherNet/IP Parameters

13 P94ETH01D

Commissioning

4.2 Configuring a Scanner or Bridge
To configure a simple network like the network illustrated in Figure 14, follow the steps in paragraphs 4.3
through 4.5. This example uses an Allen-Bradley 1769-L32E CompactLogix controller to communicate with
PositionServo drives using implicit I/O messaging over an ethernet network. The controller has a scanner
(bridge) that needs to be configured. The I/O assembly object instances will be used for status, input and output
data and to map them in the controller memory. Section 5.6 illustrates how to write a simple Ladder program
to use the I/O messaging for control and status information.

Logic Controller

Network

Laptop

Switch

Figure 14: Example Network

4.3 Adding a Bridge or Scanner to the I/O Configuration
To establish communications over an EtherNet/IP network, add the controller and its scanner or bridge to the
I/O configuration.

1. Start RSLogix 5000
The RSLogix 5000 window opens as illustrated in Figure 15. For the CompactLogix L32E controller, the
I/O configuration already includes a local Ethernet port.

If a SoftLogic controller or ControlLogix controller is used then an Ethernet port scanner needs to be
added as illustrated in Figure 15.

14P94ETH01D

Commissioning

Figure 15: RSLogix 5000 Window (CompactLogix L32E)

Figure 16: RSLogix 5000 Window (SoftLogix 5800)

15 P94ETH01D

Commissioning

2. For CompactLogix and SoftLogix only:

Right click on [Backplane, 1789-A17/A Virtual Chassis] to choose the Ethernet adapter.

Select [New module] and the “Select Module” dialog box will open.

Under the “By Category” tab, click the [+] icon to expand the [Communications] folder

Select the EtherNet/IP scanner or bridge used by your controller. (This example uses the SoftLogix5800
EtherNet/IP)

Then select the major revision of your controller’s firmware in the Major Revision box.

Figure 17: Ethernet Adapter selection (SoftLogix 5800)

3. Click [OK].

The Module Properties dialog box opens. For the CompactLogix controller, right click on [1769-L32E
EthernetPort LocalENB] in I/O folder and then select “Properties”.

Figure 18: Ethernet Scanner Properties Setup (SoftLogix 5800)

16P94ETH01D

Commissioning

4. Set the “New Module” properties using the information in Table 6

Table 6: “New Module” Fields

Box Type

Name A name to identify the scanner or bridge.

Slot The slot # of the EtherNet/IP scanner or bridge in the rack.

Revision The minor revision of the firmware in the scanner. (You have already set the major
revision in the Select Module Type dialog box)

IP Address The IP address of the EtherNet/IP scanner or bridge.

Electronic Keying Compatible Module. This setting for Electronic Keying ensures the physical module
is consistent with the software configuration before the controller and scanner or
bridge make a connection. Therefore, ensure that you have set the correct revision
in this dialog box. Refer to the online Help if the controller and scanner have
problems making a connection and you want to change this setting.

5. Click [OK] to finish.

The scanner (or bridge) is now configured for the EtherNet/IP network. Its name is now listed in the I/O
Configuration folder.

4.4 Adding the Adapter and Drive to the I/O Configuration
To transmit data between the scanner (or bridge) and the adapter, the PositionServo drive must be added as a
slave device of the scanner.

1. In the Control Organizer pane, right-click on the scanner or bridge and select [New Module]. For this
example, right-click on the [1769-L32E Ethernet Port LocalENB for CompactLogix]. If using the SoftLogix
controller right-click on [1789-L60 SoftLogix_With_SimpleServo].

2. The “Select Module” dialog box will open as illustrated in Figure 19.

Figure 19: Select Module Dialog Box

17 P94ETH01D

Commissioning

3. Select [ETHERNET-MODULE] to configure, and then click [OK]. The Module Properties dialog box will open
as shown in Figure 20.

Figure 20: Module Properties Dialog Box

4. In the General tab, edit the adapter information as specified in Table 7.

Table 7: Adapter Properties

Box Type

Name A name to identify the adapter and drive.

Comm. Format Data – REAL – With Status

This will treat data as real (float) numbers and send status information that is
packed as 32 bit words

IP Address The IP address of the drive controller you intend to connect to

5. Click on the [Connection] tab and edit the connection parameters as specified in Table 8.

Table 8: Connection Parameters

Box Assembly Instance Size

Input 105 (This value is required) 9 (This value is the exact size of the assembly)

Output 106

108

2 (If using 106)

up to 6 (This value is the exact size of the assembly)

Configuration 103 (This value is required) 0

Status Input 104 (This value is required) 2 (This value is required)

Status Output 109 (This value is required)

18P94ETH01D

Commissioning

6. Click [Next >] to display the next page.

7. In the Requested Packet Interval (RPI) box, set the value to 5.0 milliseconds or greater. This value determines
the maximum interval that a controller should use to move data to or from the adapter. To conserve
bandwidth, use higher values for communicating with low priority devices.

8. Click [Finish].

The new node (“SimpleServo” in this example) now appears under the scanner or bridge (“1769-L32E…” in
this example) in the I/O Configuration folder as shown in Figure 21. To view the module-defined data types and
tags that have been automatically created, double-click on the [Data Types] folder and then double-click on the
[Module-Defined] folder. After the configuration is saved and downloaded, these tags allow the user to access
the Input and Output data of the adapter via the controller’s ladder logic.

Figure 21: Module-Defined Tags

19 P94ETH01D

Commissioning

4.5 Saving the Configuration
After adding the scanner (or bridge) and the adapter to the I/O configuration, the configuration must be
downloaded to the controller. The configuration should also be saved to a file on your computer.

1. On the top toolbar, click [Communications] then select [Download] from the pull down menu. The Download
dialog box will open.

NOTE:

If a message box reports that RSLogix is unable to go online, then select ‘Communications Who Active’ to try and find your
controller in the ‘Who Active’ dialog box. If the controller is not shown, then the Ethernet/IP driver needs to be added or
configured in RSLinx. Refer to the RSLinx online help.

2. Click [Download] to download the configuration to the controller. When the download is successfully
completed, RSLogix enters online mode and the I/O OK box in the upper-left part of the screen is green.

3. On the top toolbar, click [File] then select [Save] from the pull down menu. If this is the first time the project
is saved, then the [Save As] dialog box will open. Navigate to a folder, type a file name and then click [Save]
to save the configuration to a file on your computer.

20P94ETH01D

Cyclic Data Access

5 I/O Messaging
5.1 Overview of I/O Messaging

Typically I/O messaging is used for the data exchange between a scanner and an adapter device in a cyclic
manner. Therefore it is used for data that needs to be updated periodically. A good example is the reference set
point value for velocity or torque. Imagine a PLC that calculates the needed speed based on a specific condition
of the system (conveyor for example) and periodically sends the new demanded speed over the interface to
the drive.

Other examples include fetching data from the drive for monitoring purposes or perhaps controlling functions
like current velocity, current and acceleration. In this case data flows from the drive to the PLC. Since these
quantities are variables that change over time, they need to be updated (received) periodically.

Table 9: PositionServo implementation of Slave I/O Messaging

Feature Implement Slave Message?

Bit strobe N

Cyclic Y

Change of State N

Polling (released as Application trigger) Y

Input only connection Y

Exclusive owner Y

Listen only connection Y

5.2 I/O Assemblies
5.2.1 General Information

PositionServo Ethernet/IP implementation supports the I/O assembly object class 0x04. PositionServo assemblies
are static. There are several Input and Output pre-defined assemblies (assembly object instances) that can be
used for data exchange. The terms Input and Output refer to the point of view of the scanner. Output data is
produced by the scanner and consumed by the adapter. Input data is produced by the adapter and consumed
by the scanner. The PositionServo is always an adapter device. An example of a scanner is a PLC or CLC
(Continuous Loop Controller).

Depending on the assembly number the memory map of the data can have a different size and meaning. Please
refer to the detailed assembly contents later in this chapter.

5.2.2 Important Note for Input Assemblies

Input assemblies (adapter to scanner) are mapped to the adapter memory from byte 0. There is no preceding 4
byte header like that found in most Allen-Bradley equipment. The PositionServo does not use preceding header
functionality for real time status. So the start address in the assembly memory map is the actual start of the
1st assembly data item. The user should supply the actual assembly length when mapping the input assembly
to the controller memory.

5.2.3 Important Note for Output Assemblies

Output assemblies (scanner to adapter) are assumed to have the preceding 4 byte header. When mapping the
assembly this header will automatically be added to the data stream by most AB PLC/CLC equipment. If you use
equipment other than AB for the scanner, configure it to send the 4 byte header preceding the actual assembly
data. The data in the header should be set to 0.

21 P94ETH01D

Cyclic Data Access

5.3 Using Assemblies for Control and Status/Data Monitoring
Output assemblies are commonly used for controlling the enable/disable state of the drive and for supplying
the velocity or torque reference.

Input assemblies are commonly used to monitor the drive status and run-time quantities such as current
velocity, current, actual position and position error.

The recommended configurations for I/O assemblies are:

Output assembly - instance #106

Input assembly - instance #104 and #105 (used for status read)

5.4 Using DataLinks
A DataLink is a mechanism used by the PositionServo drive to transfer data to and from the PLC controller.

DataLinks are the data pointers used in some of the input and output assemblies. There are 4 input DataLinks
and 4 output DataLinks. DataLinks are configured through their corresponding control variable. The lower
word (LSW) of the control variable contains any valid system variable ID. The high word (MSW) contains the
control and information bits (as shown in Table 12). When the DataLink is used in an assembly, the value
of the parameter with the ID whose ID is in DataLink’s LSW will be transferred by the assembly. Since any
PositionServo variable can be accessed as a Real or 32-bit integer, there is a control bit in the Datalink’s control
word to configure the presentation format of the variable’s value.

Datalink’s control word is a regular system variable and can be accessed by an explicit message or from the
user’s program. Tables 10 and 11 provide the variable ID’s for the input and output datalinks.

Table 10: Input DataLinks (for IN assembly)

Link Variable ID

LinkA_in 261

LinkB_in 262

LinkC_in 263

LinkD_in 264

Table 11: Output DataLinks (for OUT assembly)

Link Variable ID

LinkA_out 265

LinkB_out 266

LinkC_out 267

LinkD_out 268

Table 12: DataLink’s Control Word

MSW (bits 16-31) LSW (bits 0-15)

Bit 31 Bit 30 Bits 29-16 Bits 15-0

Enable Format Reserved (Set to 0) ID

22P94ETH01D

Cyclic Data Access

Enable: Enable the transfer data

Format: Data presentation format
 0 = U32 (32 bit integer)
 1 = F32 (Real)

ID: variable ID, link uses data from/for

Example:

A DataLink needs to be configured to the transfer data of the Phase Current in REAL format. The ID of VAR_
PHCUR (Phase current) is 188 (dec). The VAR ID List is published in the PositionServo Programming Manual
(PM94H201). As shown in Table 13, the control word structure for this example DataLink is C00000BC (hex) or
322125660 (decimal).

Table 13: Example Control Word Structure

MSW (bits 31-16) LSW (bits 15-0)

Bit 31 Bit 30 Bits 29-16 Bits 15-0

1 1 0 ... 0 BC (h), 188 (d)

5.5 Assembly Object
An Assembly Object is the “assembly” or mapping of data from different instances of various classes into a
single attribute. With assembly mapping, the I/O data is produced in one block. An assembly object can be used
to configure a device using one block of data instead of setting the individual device parameters.

In a device (PositionServo drive) an input assembly collects data from the device and puts it on the network
for the master (controlling) device to consume. An output assembly consumes data sent out by the controlling
device from the network and writes that data to the output application (driving a motor).

Table 14: Assembly Object Instances:

Assembly Object Instances

Assembly # Name

103 Dummy Assembly required for implicit configuration. Contains no data.

IN 104 PositionServo Status and IO Assembly

IN 105 PositionServo universal monitor

OUT 106 PositionServo basic control

OUT 108 PositionServo extended control

OUT 109 PositionServo “keep alive”

Table 15: Assembly #104 PositionServo Status and I/O Assembly

32-bit WORD Variable ID Type Name

0 -- U32 STATUS2 WORD (refer to Table 18)

1 65 U32 INPUTS

Table 16: Assembly #109 PositionServo “keep alive”

32-bit WORD Variable ID Type Name

0 272 U32 CIP heartbeat

Assembly #109 is used for indication of the communication activity. It can also be used with AB PLC controllers
as Status Assembly when setup as the data scanner.

23 P94ETH01D

Cyclic Data Access

NOTE:

The Variable ID is the PositionServo variable’s index number. Refer to the PositionServo Programming Manual (PM94H201)

STATUS2 WORD format

The STATUS2 WORD includes bits from the PositionServo STATUS (#53) and EXSTATUS (#54) system variables
as shown in Table 17.

Table 17: STATUS2 Word

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 Motion
Suspended

Registration
Captured

I Limit Motion Q
Empty

Motion Q
Full

In Position Fault Enable

1 Homed Homing Active Negative LS
Engaged

Positive LS
Engaged

Interface
Control
Disabled

Motion
Completed

Reserved

2 0

3 0

Table 18: Mapping STATUS2 bits to STATUS (PID 54) and EXSTATUS (PID 83)

STATUS2 bits Function STATUS / EXSTATUS bits

0 Drive Enabled STATUS.0

1 Drive Fault STATUS.3

2 Motion completed and position within specified limits STATUS.5

3 Motion stack full STATUS.7

4 Motion stack empty STATUS.8

5 Current limit reached STATUS.13

6 Registration position obtained STATUS.19

7 Motion suspended STATUS.22

8 Reserved STATUS.24

9 Motion completed (velocity =0 and stack empty) STATUS.25

10 Interface control is disabled STATUS.27

11 Positive limit switch engaged STATUS.28

12 Negative limit switch engaged STATUS.29

13 Homing in progress EXSTATUS.21

14 Homed EXSTATUS.22

Table 19: Assembly #105: PositionServo Universal Monitor

32-bit Word Variable ID Type Name

0 260 F32 Actual Velocity

1 215 F32 Actual Position

2 216 F32 Position error

3 188 F32 Phase current

4 213 F32 Registered position

5 mapped F32 DataLink_A_in

6 mapped F32 DataLink_B_in

7 mapped F32 DataLink_C_in

8 mapped F32 DataLink_D_in

NOTE:

See section 5.4, Using DataLinks, for details on DataLinks A-D

24P94ETH01D

Cyclic Data Access

Table 20: Assembly #106 PositionServo Basic Control

32-bit Word Variable ID Type Name

0 52 F32 DRIVE ENABLE: Non 0 = enabled, 0 = disabled

1 139 F32 REFERENCE: Velocity mode = velocity in RPS;
Current mode = current in phase A(rms)

Table 21: Assembly #108: PositionServo Extended Control.

32-bit Word Variable ID Type Name

0 52 F32 DRIVE ENABLE: Non 0 = enabled, 0 = disabled

1 139 F32 REFERENCE: Velocity mode = velocity in RPS;
Current mode = current in phase A(rms)

2 mapped F32 DataLink_A_out

3 mapped F32 DataLink_B_out

4 mapped F32 DataLink_C_out

5 mapped F32 DataLink_D_out

NOTE:

The Variable ID is the PositionServo variable’s index number. Refer to the PositionServo Programming Manual (PM94H201)

NOTE:

Refer to section 5.4, Using DataLinks, for details on DataLinks A-D

5.6 Example Ladder Logic Program
The example Ladder Logic program illustrated in this section works with the CompactLogix controller and
PositionServo drives.

5.6.1 Function of Example Program

This example program allows the user to:

1. Obtain status information from the drive.
2. Use the Logic Command to control the drive (for example enable/disable).
3. Send a Reference to the drive and receive Feedback from the drive.

5.6.2 RSLogix 5000 Configuration

Controller Tags

When the adapter and drive are added to the I/O configuration (Section 4.4 Fig. 21), the RSLogix 5000 controller
automatically creates the controller tags for these devices. This example program uses the controller tags
shown in Figure 22.

+ - SimpleServo:I {. . .} {. . .} AB:ETHERNET_MODULE_REAL_36Bytes:I:0

+ - SimpleServo:O {. . .} {. . .} AB:ETHERNET_MODULE_REAL_8Bytes:O:0

+ - SimpleServo:S {. . .} {. . .} AB:ETHERNET_MODULE_DINT_8Bytes:S:0

Figure 22: Controller Tags

25 P94ETH01D

Cyclic Data Access

Click on the [+] icon next to the tag name to expand the tags and reveal the output and input configuration. The
output tag for this example program requires two REAL data words as shown in Figure 22. The input tag for this
example requires nine REAL data words (Figure 23) and input status tag requires two 32-bit words

- SimpleServo:I {. . .} {. . .} AB:ETHERNET_MODULE_REAL_36Bytes:I:0

- SimpleServo:I.Data {. . .} {. . .} Float REAL[9]

SimpleServo:I.Data[0] 0.0 Float REAL

SimpleServo:I.Data[1] 0.0 Float REAL

SimpleServo:I.Data[2] 0.0 Float REAL

SimpleServo:I.Data[3] 0.0 Float REAL

SimpleServo:I.Data[4] 0.0 Float REAL

SimpleServo:I.Data[5] 0.0 Float REAL

SimpleServo:I.Data[6] 0.0 Float REAL

SimpleServo:I.Data[7] 0.0 Float REAL

SimpleServo:I.Data[8] 0.0 Float REAL

- SimpleServo:O {. . .} {. . .} AB:ETHERNET_MODULE_REAL_8Bytes:O:0

- SimpleServo:O.Data {. . .} {. . .} Float REAL[2]

SimpleServo:O.Data[0] 0.0 Float REAL

SimpleServo:O.Data[1] 0.0 Float REAL

- SimpleServo:S {. . .} {. . .} AB:ETHERNET_MODULE_DINT_8Bytes:S:0

u - SimpleServo:S.Data] {. . .} {. . .} Decimal DINT[2]

+ SimpleServo:S.Data[0] 0 Decimal DINT

+ SimpleServo:S.Data[1] 0 Decimal DINT

Figure 23: Input, Output and Status Tags for Ladder Logic Program

Program Tags

In addition to the controller tags that are automatically created, the following program tags must be created for
this example program.

Name Value Force Mask Style Data Type Description

CMD_DriveEnable Decimal BOOL Enable command

+ Simple Servo:C {. . .} {. . .} AB:ETHERNET_MODULE:C:0

+ SimpleServo:I {. . .} {. . .} AB:ETHERNET_MODULE_REAL_36Bytes:I:0

+ SimpleServo:O {. . .} {. . .} AB:ETHERNET_MODULE_REAL_8Bytes:O:0

+ SimpleServo:S {. . .} {. . .} AB:ETHERNET_MODULE_DINT_8Bytes:S:0

VelocityReferenceRPS 0.0 Float REAL Drive velocity reference

StatusFlag_DriveEnabled 0 Decimal BOOL

StatusFlag_DriveFaut 0 Decimal BOOL

ActualVelocity 0.0 Float REAL Feedback velocity from the...

CMD_ReferenceVelocity 0.0 Float REAL Velocity set point reference

DriveEnable 0.0 Float REAL Drive enable control variable...

u PLCOUT_DriveEnabled 0 Decimal BOOL

PLCOUT_DriveFault 0 Decimal BOOL

Figure 24: Program Tags for Example Program

ffr

26P94ETH01D

Cyclic Data Access

This example uses the I/O assemblies mapped as shown previously Figures 20 and 21.

NOP0

1

2

3

4

5

(End)

This is a simple example of IO messaging with the SimpleServo drive. The program can control the Enable/Disable of the drive,
set the velocity reference and monitor drive status such as Enable and Fault

Main Routine - Ladder Diagram
CompactLogix1: Main Task: Main Program
Total number of rungs in routine: 6

Page 1
mm/dd/yyyy hh:mm:ss PM

CompactLogix1.ACD

Enable command
CMD_DriveEnable

Enable command
CMD_DriveEnable

Status Flag DriveEnabled
<SimpleServo: S.Data[0].0>

Status Flag DriveFaut
<SimpleServo: S.Data[0].1>

PLCOUT DriveFault
<Local: 3:O.Data.1>

PLCOUT DriveEnabled
<Local: 3:O.Data.0>

Drive velocity reference (Word 1 in assembly)

Drive enable control variable in output assembly.
Set to 0 to disable, to 1 to enable

Drive enable control variable in output assembly.
Set to 0 to disable, to 1 to enable

CPT
Compute
Dest DriveEnable

<SimpleServo:O.Data[0]>
0.0

1Expression

CPT
Compute
Dest DriveEnable

<SimpleServo:O.Data[0]>
0.0

0Expression

COT
Copy File
Source CMD_ReferenceVelocity

<SimpleServo:O.Data[1]>

1Length

Dest VelocityReferenceRPS

RSLogix 5000

Figure 25: Example Ladder Logic Program

27 P94ETH01D

Acyclic Data Access

6 Explicit Messages
Explicit Messaging is used to transfer data that does not require continuous updates. With Explicit Messaging,
you can configure and monitor a slave device’s parameters on the EtherNet/IP network. This section provides
information and examples that explain how to use Explicit Messaging to monitor and configure a PositionServo
drive.

STOP!

Risk of injury to personnel and/or damage to equipment exists. The examples in this publication are intended solely for
purposes of example. Lenze AC Tech Corporation does not assume responsibility or liability (to include intellectual property
liability) for actual use of the examples shown in this publication.

STOP!

Risk of equipment damage exists. If Explicit Messages are programmed to frequently write parameter data to Non-Volatile
Storage (NVS), the NVS will quickly exceed its life cycle and cause the drive to malfunction. Do not create a program that
frequently uses Explicit Messages to write parameter data to NVS. DataLinks do not write to NVS and should be used for
frequently changed parameters.

6.1 Formatting Explicit Messages
Explicit Messages for the ControlLogix Controller:

CompactLogix accommodates both downloading Explicit Message Requests and uploading Explicit Message
Responses. The controller can accommodate one request or response for each transaction block. Each
transaction block must be formatted as shown in the Figure 26.

Figure 26: Explicit Message Configuration Dialog Box

28P94ETH01D

Acyclic Data Access

NOTE:
To display the Message Configuration dialog box in RSLogix 5000, add a message instruction (MSG), create a new tag
for the message (properties: Base tag type, MESSAGE data type, controller scope), and click the Configure button.

Table 22: Configuration Dialog Fields for Explicit Message in RSLogix 5000

Box Description

Message Type The message type is usually CIP Generic.

Service Type The service type indicates the service (for example, Get Attribute Single or Set
Attribute Single) to be performed. Available services depend on the class and
instance in use.

Service Code The service code is the code for the requested EtherNet/IP service. This value
changes based on the Service Type that has been selected. In most cases, this
is a read-only box. If you select “Custom” in the Service Type box, then you need
to specify a service code in this box (for example, E(h) for a Get Attributes Single
service or 10(h) for a Set Attributes Single service)

Class The class is an EtherNet/IP class. Refer to Section 7, EtherNet/IP Objects, for
available classes. The most frequently used classes for the PositionServo are: 4
(Assembly object) and 64(h) PositionServo System variables class.

Instance The instance is an instance (or object) of an EtherNet/IP class. Refer to Section 7,
EtherNet/IP Objects, for available instances for each class.

Attribute The attribute is a class or instance attribute. Refer to Section 7, EtherNet/IP
Objects, for available attributes for each class or instance.

Source Element This box contains the name of the tag for any service data to be sent from the PLC
to the drive.

Source Length This box contains the number of bytes of service data to be sent in the message.

Destination This box contains the name of the tag that will receive service response data from
the adapter and drive.

Path The path is the route that the message will follow. Tip: Click Browse to find the
path or type in the name of an adapter that you previously mapped.

Name The name for the message.

29 P94ETH01D

Acyclic Data Access

6.2 Performing Explicit Messages
There are five basic events in the Explicit Messaging process as defined herein and illustrated in Figure 27. The
details of each step will vary depending on the controller (ControlLogix, PLC, or SLC). Refer to the documentation
for your controller.

NOTE:

There must be a request message and a response message for all Explicit Messages, whether you are reading or writing data.

Logic Controller

PositionServo Drive

1

2 3

4

5 Complete
Explicit Message

Retrieve
Explicit Message
Response

Setup and Send
Explicit Message
Request

Figure 27: Explicit Messaging Process

Event in Explicit Messaging Process:

1. Format the required data and setup the ladder logic program to send an Explicit Message request to the
scanner or bridge module (This is a download).

2. The scanner (or bridge) module transmits the Explicit Message Request to the slave device over the
EtherNet/IP network.

3. The slave device transmits the Explicit Message Response back to the scanner. The data is stored in the
scanner buffer.

4. The controller retrieves the Explicit Message Response from the scanner’s buffer (This is an upload).

5. The Explicit Message is complete.

The scanner module may be integrated with the controller as it is in the CompactLogix controller.

30P94ETH01D

Acyclic Data Access

6.3 Explicit Message Example
To format and execute a [Get Attribute Single] or [Set Attribute Single] Explicit Message using a CompactLogix
controller, use this example program.

Message Formats

When formatting an example message, refer to Formatting Explicit Messages in this chapter for an explanation
of the content of each box. Also, to format and execute these example messages use the Controller tags
displayed in Figure 28.

Scope CompactLogix1 Show... STRING, ALARM, AXIS_CONSUMED, AXIS_GENERIC, AXIS_GENERIC_DRIVE, AXIS_SERVO, AXIS_SEF

Name Alias For Base Tag Data Type Style Description

u + Simple Servo:C AB:ETHERNET_MOD...

+ SimpleServo:S AB:ETHERNET_MOD...

+ SimpleServo:I AB:ETHERNET_MOD...

+ SimpleServo:O AB:ETHERNET_MOD...

CMD_GetValue BOOL Decimal

CMD_SetValue BOOL Decimal

+ GetAttribute_Message MESSAGE

+ SetAttribute_Message MESSAGE

Value_Get REAL Float Value received from...

Value_Set REAL Float Value to send to drive.

Figure 28: Controller Tags for Explicit Message Example

Ladder Logic Rungs

The ladder logic rungs for the examples in this chapter can be appended after rung 5 in the ladder logic
program illustrated in Figure 25 or the program can be constructed as a stand alone program.

q

31 P94ETH01D

Acyclic Data Access

6.3.1 Example of Get Attribute Single Message (Rung 1 of Figure 31)

Figure 29 illustrates the configuration of the message to read the value from the drive to the PLC controller
memory. In this example, the PLC reads instance #100 (User Variable V0) from the PositionServo system
variables class 64(h) and stores it in the controller tag Value_Get.

In the [Message Configuration] menu set the parameters for this example as listed in Table 23 and illustrated
in Figure 29.

Table 23: Message Configuration Parameters for Get Attribute Single
Step 1 Step 2 Step 3

Click on the [Tag] tab and set: Click on the [Communication] tab and set: Click on the [Configuration] tab and set:

Tag Name: GetAttribute_Message Path: SimpleServo Message Type: CIP Generic

Description: leave blank Communication Method: CIP Service Type: Get Attribute Single

Type: Base Connected: Put a check in this box Service Code: e

Alias For: leave blank Instance: 100

Data Type: MESSAGE Class: 64

Scope: CompactLogix1 Attribute: 2

Style: leave blank Source Element: leave blank

Source Length: 0

Destination: Value_Get

Figure 29: Get Attribute Single

32P94ETH01D

Acyclic Data Access

6.3.2 Example of Set Attribute Single Message (Rung 2 of Figure 31)

Figure 30 illustrates the configuration of the message to write the value from the PLC controller memory to the
drive. In this example, the PLC writes instance #100 (User Variable V0) from the controller tag Value_Set.

Table 24: Message Configuration Parameters for Set Attribute Single

Step 1 Step 2 Step 3

Click on the [Tag] tab and set: Click on the [Communication] tab and set: Click on the [Configuration] tab and set:

Tag Name: SetAttribute_Message Path: SimpleServo Message Type: CIP Generic

Description: leave blank Communication Method: CIP Service Type: Set Attribute Single

Type: Base Connected: Put a check in this box Service Code: 10

Alias For: leave blank Instance: 100

Data Type: MESSAGE Class: 64

Scope: CompactLogix1 Attribute: 2

Style: leave blank Source Element: Value_Set

Source Length: 4

Destination: leave blank

Figure 30: SetAttribute_Single

33 P94ETH01D

Acyclic Data Access

NOP0

1

2

(End)

EN

DN

This is a simple example that allows the user to send and receive data by executing Explicit Messages.
It uses the Get Attribute Single and Set Attribute Single methods to read/write data.

Main Routine - Ladder Diagram
CompactLogix1: Main Task: Main Program
Total number of rungs in routine: 3

Page 1
mm/dd/yyyy hh:mm:ss PM

CompactLogixExplicitMessaging.ACD

CMD_GetValue

CMD_SetValue

MSG
Type - CIP Generic

Message Control GetAttribute_Message

MSG

RSLogix 5000

ER

 . . .

Type - CIP Generic

Message Control SetAttribute_Message . . .
EN

DN

ER

Figure 31: Example Ladder Logic Explicit Message Program

34P94ETH01D

Acyclic Data Access

7 Ethernet/IP Objects
Section 7 contains information about the Ethernet/IP objects that can be accessed using Explicit Messages. For
information on the format of Explicit Messages and example ladder logic programs, refer to section 6.

Table 25: Ethernet/IP Objects

Object Class Code

Hex Dec

Identity 0x01 1

Assembly 0x04 4

System940 0x64 100

TCP/IP Interface Object 0xF5 245

Ethernet Link Object 0xF6 246

The CIP family of protocols has a library of commonly defined objects currently divided into 46 object classes.
Class 1 = DeviceNet, Class 2 = EtherNet/IP and Class 3 = ControlNet. Refer to the EtherNet/IP specification for
more information about Ethernet/IP objects. Information about the EtherNet/IP specification is available on the
ODVA web site (http://www.odva.org).

7.1 Identity Object
The Identity Object defines the device. A device typically does not change its identity so all attributes are
normally read only. The identity object’s data can be queried from a target node without knowing what that
device is before a message is sent. From this data, the EDS file of the device can be identified.

Class Code 0x01

Class Attributes:

Revision 1

Max Instance 1

Number Instance

Max ID# class attribute

Max ID# instance attribute

Class Services:

Get_Attribute_Single()

Instance 1

Instance Attributes

Vendor ID

Device Type

Product Code

Revision

Major

Minor

Product Name EnetIP 940

Instance Services

Get_Attribute_All

Get_Attribute_Single

Reset

35 P94ETH01D

Acyclic Data Access

7.2 PositionServo System Object
The PositionServo system object encapsulates all valid PositionServo variables. Each PositionServo variable is
represented by an instance of a System940 object. The instance number therefore matches the variable’s index.
A complete list of PositionServo variables with their corresponding indices is in the PositionServo Programming
Manual (PM94H201).

All aspects of control and parameterization in the PositionServo drive are accomplished through the system
variables. Some of the variables are parameters such as Current Limit or Target Position. Some of the variables
are action properties, i.e. writing values to these variables will execute a particular process. As an example,
writing to variable VAR_ENABLE (ID=52), a non-0 value will enable the drive. Writing the same variable with a
0 value will disable the drive. Another example could be writing the variable VAR_MOVED with a value of 10,
which would execute relative motion for 10 user units.

Every variable in the PositionServo can be read/written as a 32-bit INTEGER or 32-bit REAL(float) value.
Conversion is done automatically. In addition each variable can be read from its RAM (current) copy or from
non-volatile (EPM) storage. The value is initialized at the time of power up.

To accomodate different access (RAM or EPM) and format (integer or float) types, attributes are implemented.
For example to reach variable VAR_CURRENTLIMIT (ID=30) as FLOAT in RAM (run-time value) you would use
InstanceID = 30 with attrubute 2. For the same variable accessed in EPM (non-volatile copy) you would use
attribute 3.

Class Code 0x64

Class Attributes:

Class Services:

Instance Attributes

Integer, RAM 0

Integer, EPM 1

Float, RAM 2

Float, EPM 3

String, RAM 4

String, EPM 5

Instance Services

Get_Attribute_All

Get_Attribute_Single

Instance Instance = variable ID.

Refer to PositionServo
Programming Manual
(PM94H201) for variable ID list.

For example: Instance of
VAR_CURRENTLIMIT is 30 since
its ID=30

NOTE:
For Attributes 4 and 5, the PositionServo uses a 4 byte header in the data to denote the number of bytes in the ASCII
string AFTER the 4 byte header. When performing an explicit write to either Attributes 4 or 5 the user must set the
length of the message equal to the number of ASCII bytes for the data +4.

NOTE:
Attributes 1, 3 and 5 are WRITE ONLY to the EPM. Attempts to read attributes 1, 3 or 5 result in the data pulled from
attributes 0, 2 and 4 respectively.

36P94ETH01D

Acyclic Data Access

7.3 Assembly Object
An Assembly Object is the “assembly” or mapping of data from different instances of various classes into a
single attribute. With assembly mapping, the I/O data is produced in one block. An assembly object can be used
to configure a device using one block of data instead of setting the individual device parameters.

Class Code 0x04

Class Attributes:

Revision 2

Max Instance

Class Services:

Get_Attribute_Single()

Instances:

Refer to Table 14

Instance Attributes

3

Instance Services

Get_Attribute_All

Get_Attribute_Single

7.4 TCP/IP Interface Object
The TCP/IP Interface object is the connection object that allows for I/O and Explicit messages to be sent from
the device on the network to the other devices.

Class Code 0xF5

Class Attributes:

Revision 1

Max Instance

Number Instance

Class Services:

Get_Attribute_All

Get_Attribute_Single

Instance Attributes

Status

Configuration Capability 6

Configuration Control

Physical Link -> Path 0x20 0xF6 0x24 0x01

Interface Configuration

Host Name

TTL

Mcast Config

Instance Services

Get_Attribute_Single

Set_Attribute_Single

37 P94ETH01D

Acyclic Data Access

7.5 Ethernet Link Object
The Ethernet Link object is the network link object that defines the CIP as Ethernet, DeviceNet or ControlNet.

Class Code 0xF6

Class Attributes:

Revision 1

Max Instance 1

Number Instance

Class Services:

Get_Attribute_All()

Get_Attribute_Single()

Instance Attributes

Interface Speed 10

Interface Flags

Physical Address

Instance Services

Get_Attribute_Single

Get_Attribute_All

Set_Attribute_Single

Instance Specific Service

Get_and_Clear()

Instance

none

38P94ETH01D

Applications

8 Applications
8.1 Application Example 1 - Velocity Control

This application illustrates how to control velocity using an Allen-Bradley PLC and an AC Tech PositionServo
drive.

Objective:

This example shows how to use I/O messaging (I/O scan) to control the PositionServo drive in velocity mode
using Ethernet/IP communication protocol.

Equipment:

1. PositionServo drive (firmware revision 3.4 or later)

2. Allen-Bradley PLC SoftLogix (CompactLogix, ControlLogix can be used with modifications to the I/O mapping
specific to these models)

3. Ethernet hub or switch.

Description:

This example implements 4 simple presets of velocity drive with the velocity window comparator driven by the
actual velocity read from the drive over the Ethernet/IP interface.

PositionServo drives support I/O messaging. I/O messaging is convenient when data must be updated cyclically
i.e. within a certain update time interval (rate) like a speed or torque reference. The PositionServo drive has
an Assembly Object (class 0x04) with several instances for Input and Output. Refer to Section 7.2, Assembly
Object, for details on the implemetation of assembly objects with the PositionServo. This example uses:

•	 Assembly #104,105 (input) and #106 (output)

•	 Location 0 of #106 is used to control the drive’s ENABLE/DISABLE state

•	 Location 1 of #106 is used to set the velocity reference (IREF)

•	 Location 0 of #105 is used to monitor the actual shaft velocity

39 P94ETH01D

Applications

Requirements:

A PositionServo drive must be configured before this example can be executed. The PositionServo drive can
be configured in 2 ways: by using MotionView software or by running a short user’s program. Note that setup
can also be performed using Explicit messages (refer to section 8.3). The configuration file (for use with
MotionView) and the user’s program are both provided on the same CD this example resides.

Table 26: PositionServo Drive Setup

MotionView User’s Program Statement

Parameter Value

1 Units 1 VAR_UNITS=1

2 Drive mode Velocity VAR_DRIVEMODE=1

3 Enable Accel/Decel limits Enable VAR_ENABLEACCELDECEL=1

4 Accel 100 VAR_ACCEL_LIMIT=100

5 Decel 100 VAR_DECEL_LIMIT=100

6 Reference Internal VAR_REFERENCE=1

7 Enable switch function Inhibit VAR_ENABLE_SWITCH_TYPE=0

Running the example:

1. Configure PositionServo drive as shown in Table 26.

2. Make sure the A3_IN input of the PositionServo drive is energized so the drive is not hardware-inhibited
to run.

3. Open the project file “SoftLogixVelocityControl.ACD”.

4. Add the 1789-SIM software module to your chassis.

5. Edit the I/O module 1789-MODULE SIM_IO32 properties to change the controller slot number to match your
chassis.

6. Edit the Ethernet/IP adapter address to match your computer IP address.

7. Edit the Ethernet adapter Drive125 to match your PositionServo IP address.

8. Load the project to your controller and set the PLC to RUN.

9. Operate using the Simulated module I/O to enable the drive and then set the different presets using the
SIM-IO32 Soft IO simulator.

40P94ETH01D

Applications

CMD_Enable

0

1

2

3

4

5

7

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 9

Page 1
mm/dd/yyyy hh:mm:ss AM

SoftLogixVelocityControl.ACD

CMD_Enable

PresetInput0
<Local:4:I.Data[1].8> PresetVelocityIndex.0

ATTENTION: Set up the drive as follows:
Operating mode = Velocity
Input Reference = Internal

Use the setup user’s code program

CPT
Compute

Dest Drive125:O.Data[0]

0.0
1Expression

MOV
Move

PresetVelocitiesinRPS[PresetVelocityIndex]
0.0

Source

RSLogix 5000

SIM_IO_Enable
<Local:4:I.Data[1].0>

CMD_Enable

CPT
Compute

Dest Drive125:O.Data[0]

0.0
0Expression

Preset speed control. There are 2 preset inputs on the 1789 simulation I/O.
You can replace them with your real I/O or register bits by redefining the alias tags PresetInput0 and Preset Input1.

These two presets give you the choice of 4 preset speeds.

PresetInput1
<Local:4:I.Data[1].9> PresetVelocityIndex.1

VelocityReferenceInRPSDest
<Drive125:O.Data[1]>

0.0

NOP

Rungs below show velocity alarm implemetation. VelocityActualRPS is an alias for cyclic I/O assembly and is mapped to the
drive’s velocity. The value is in RPS but is multiplied by 60 to get it in RPM then compared with Low or High limits.

CMP

VelocityActualinRPS*60 < 200

Compare

Expression

VelocityLowLimitAlarm
<Local:4:O.Data[0].0>

6

Figure 32: Velocity Control Ladder Program

41 P94ETH01D

Applications

8.2 Application Example 2 - Indexing
This application illustrates how to index using an Allen-Bradley PLC and an AC Tech PositionServo drive.

Objective:

This example shows how to use explicit messages to configure indexing parameters and issue indexing
commands. I/O messaging (I/O scan) is used to monitor real time data such as status, velocity target and
actual position etc.

Equipment:

1. PositionServo drive (firmware revision 3.4 or later)

2. Allen-Bradley PLC SoftLogix (CompactLogix and ControlLogix can be used with modifications to the I/O
mapping specific to these models)

3. Ethernet hub or switch

Description:

This example implements a simple indexer. Two inputs of the PLC are used to select the current index and one
input is used to start the indexing. All parameters are setup for the desired index using explicit messages. The
Start command also uses an explicit message.

PositionServo drives support both explicit and I/O messaging features. In this example, explicit messages are
used for configuring and starting the indexing and I/O messaging is used for monitoring the drive status and
changing other data like velocity or position.

The PositionServo drive has an Assembly Object (class 0x04) with several instances for Input and Output. Refer
to Section 7.2, Assembly Object, for details on the implemetation of assembly objects with the PositionServo.
This example uses:

•	 Assembly #104,105 (input) and #106 (output) are used in this example

•	 Location 0 of #106 is used to control the drive’s ENABLE/DISABLE state

•	 Location 1 of #106 is used to set the velocity reference (IREF)

•	 Location 0 of #105 is used to monitor the actual shaft velocity

42P94ETH01D

Applications

Requirements:

A PositionServo drive must be configured before this example can be executed. The PositionServo drive can
be configured in 2 ways: by using MotionView software or by running a short user’s program. Note that setup
can also be performed using Explicit messages (refer to section 8.3). The configuration file (for use with
MotionView) and the user’s program are both provided on the same CD this example resides.

Table 27: PositionServo Drive Setup

MotionView User’s Program Statement

Parameter Value

1 Units 1 VAR_UNITS=1

2 Drive mode Position VAR_DRIVEMODE=2

3 Reference Internal VAR_REFERENCE=1

7 Enable switch function Inhibit VAR_ENABLE_SWITCH_TYPE=0

Running the example:

1. Configure the PositionServo drive as shown in Table 27.

2. Make sure the A3_IN input of the PositionServo drive is energized so the drive is not hardware-inhibited
to run.

3. Open the project file “SoftLogixVelocityControl.ACD”

4. Add the 1789-SIM software module to your chassis.

5. Edit the I/O module 1789-MODULE SIM_IO32 properties to change controller slot number to match your
chassis.

6. Edit the Ethernet/IP adapter address to match your computer IP address

7. Edit the Ethernet adapter Drive125 to match your PositionServo IP address

8. Load the project to your controller and set the PLC to RUN.

9. Operate using the Simulated module I/O to enable the drive and then set the different presets using the
SIM-IO32 Soft IO simulator.

43 P94ETH01D

Applications

Example Details:

1. The simulated software I/O module 1789-SIM is used to control the application. You can substitute your
I/O with one from your taget PLC or create BOOL type tags and use them instead of the I/O to control the
application.

2. The I/O are assigned per Table 28.

Table 28: I/O Assignments

I/O # Assignment

0 Drive enable/disable

1 Set motion profile (set accel,decel, max velocity)

2 Executes index

8 Index input 0

9 Index input 1

3. To execute the index, (upon I/O2 engaged) the PLC sends the value of the motion distance from the internal
tag to the PositionServo system variable #93 (MOVED) using an explicit message. Writing the value to the
variable causes the drive to start to index (relative motion).

4. Before the first move can be executed, I/O1must be activated to set the move parameters such as accel,
decel and profile max. velocity. The logic is written in such a way (rung 7) so that the MOVE command will
be ignored until all messages for setting up the parameters are executed. This will prevent situations where
the index command is issued while setup is in progress.

5. The value of the index is taken from the PLC tag pointed to by I/O8 and 9. The PLC tag allows 4 different
indexes.

Feel free to modify this example for the number of indexes needed. The index pointer is in the MotionIndex
Selector tag. It holds the index number that will index the motion values array tag, MotionIndexes[]. You can
modify the dimension of this array to hold required number of indexes.

Finally variable #93 can be changed to variable #92 and this will execute Absolute position motion. The indexes
stored in MotionIndexes[] will then represent the actual position value. Also, variables #177 and #178 can be
used instead of variables #93 and #92 (respectively) to create S-curved motion.

44P94ETH01D

Applications

0

1

2

3

4

5

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 11

Page 1
mm/dd/yyyy hh:mm:ss AM

SoftLogixIndexing.ACD

CMD_Enable

Motion index select
input

SIM IO Index0
<Local:4:I.Data[1].8> MotionIndexSelector.0

MOV

MotionIndexes[MotionIndexSelector]
Move

RSLogix 5000

Drive enable
SIM_IO_Enable

<Local:4:I.Data[1].0>

Execute Index
SIM IO MoveD

<Local:4:I.Data[1].2>

Executes MOVED (move
incremental)

CMD_ExecuteMOVED

DATA_MotionProfile.TargetPosition
10.0

NOP

This program shows simple indexing. Move indexes. Index0 and Index1 of simulated I/O (inputs 8 and 9 of 1789 soft module)
provide a choice of 4 indexes. Indexing starts on positive edge of input 2 (IndexStart). Input 0 is used for the enable and input 1

is used to set the motion profile. The simulated I/O module can be replaced with your hardware by changing the tag’s alias

Set Accel, Decel and
profile velocity
command input

SIM_IO_SetMoveProfile
<Local:4:I.Data[1].1>

Sends new values for
move profile to 94P

CNTRL_ChangeAccel

MotionIndexSelector.1

Motion index select
input

SIM IO Index1
<Local:4:I.Data[1].9>

Data for 94P index
move Target position

to move to

Source

100.0
Dest

Figure 33a: Indexing Ladder Diagram

45 P94ETH01D

Applications

Sends new values for
move profile to 94P

CNTRL_ChangeAccel

6

7

8

EN

DN

This rung sets the necessary profile ACCEL, DECEL and VELOCITY.

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 11

Page 2
mm/dd/yyyy hh:mm:ss AM

SoftLogixIndexing.ACD

Executes MOVED (move
incremental)

CMD_ExecuteMOVED

MSG
Type - CIP Generic

Message Control Message_SetAcce

MSG

RSLogix 5000

ER
 . . .

Type - CIP Generic

Message Control Message_SetDecel . . .

EN

DN

ER

MSG
Type - CIP Generic

Message Control MSG_SetProfileVelocity . . .

EN

DN

ER

ONS

ONS

ONS

This rung sends the message to start motion. Notice if the previous rung was executed to change index motion parameters
like accel, decel, etc., then this rung will not be executed until all messages are cleared.

ONS

MSG
Type - CIP Generic

Message Control MSG_MOVED . . .

EN

DN

ER

Sends new values for
move profile to 94P

CNTRL_ChangeAccel

CPT
Compute

Drive125:O.Data[0]

0.0
1Expression

Dest

CMD_Enable

Drive125:S.Data[0].0

MSG_SetProfileVelocity.DNMSG_SetDecel.DNMSG_SetAccel.DN

StorageBits register
for ONS instructions

StorageBits.3

StorageBits register
for ONS instructions

StorageBits.0

StorageBits register
for ONS instructions

StorageBits.1

StorageBits register
for ONS instructions

StorageBits.2

Figure 33b: Indexing Ladder Diagram, Page 2

46P94ETH01D

Applications

Drive’s Status flag
Set when motion is

completed
Motion Completed

<Drive 125:S.Data[0].24>

9

10

(End)

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 11

Page 3
mm/dd/yyyy hh:mm:ss AM

SoftLogixIndexing.ACD

CPT
Compute

Drive125:O.Data[0]

0.0
0Expression

Dest

CMD_Enable

Local:4:O.Data[0].1

RSLogix 5000

Figure 33c: Indexing Ladder Diagram, Page 3

47 P94ETH01D

Applications

8.3 Application Example 3 - Configuration Using Explicit Messages
This application illustrates how to configure a PositionServo drive using explicit messages.

Objective:

This example shows how to configure a PositionServo drive by sending a list of explicit messages.

Equipment:

1. PositionServo drive (firmware revision 3.4 or later)

2. Allen-Bradley PLC SoftLogix (CompactLogix and ControlLogix can be used with modifications to the I/O
mapping specific to these models)

3. Ethernet hub or switch

Description:

This example implements a state machine which sends a list of predefined messages to the PositionServo drive.
Since the sending a message process inside the PLC takes few steps, the message is sent successfully when
the MSG instruction returns the status. The operation of the rest of the logic in PLC program usually depends
upon result of the MSG operation. In a situation where multiple messages need to be sent, redundant status
handling logic multiplies and complicates the overall PLC program. This example illustrates a practical example
of the usage of multiple configuration messages. The velocity control program from Application Example 1
(section 8.1) will be used.

Recall that the PositionServo drive needs to be configured ahead of time to be used in Example 1. The drive’s
mode, accel, decel and other parameters need to be configured by using MotionView software or by writing
a short user’s program. We will modify the PLC program in such a way that the configuration is performed
directly from the PLC.

To do this create a MSG instruction and configure it with the PositionServo drive address, Class 0x64
(PositionServo variables class) and the CIP table operation SetAttributeSingle. Create two arrays – one holding
instances of the class (i.e system variables IDs) and the other array will hold VALUES that the drive’s variables
will be set to.

Then execute the MSG instruction as many times as there are number of variables to set, each time setting the
MSG instruction INSTANCE with the value from the list. The ‘value to send’ (actual data) will be copied from the
second array to the designated tag that the MSG instruction Source Data field is pointed too.

RSLogix 5000 File:

For this Application Example open the project file “SoftLogixConfigurationMessages.ACD” (on CD).

48P94ETH01D

Applications

The simulate I/O module is used to provide inputs as follows:
0 - enable/disable
2 - configure drive
4 - drive fault reset

8 - PresetInput0
9 - PresetInput1

0

1

This example shows how to control the 94P drive in velocity mode using I/O messaging. It also shows an example
of how to use an explicit message to configure the drive prior to using it. Explicit messages are grouped to the list

and sent sequentially. Refer to ExecuteMSGlist for details. Any list of messages can be constructed using this routine.

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 17

Page 1
mm/dd/yyyy hh:mm:ss PM

SoftLogixConfigurationMessages.ACD

Configure
<Local:4:I.Data[1].2>

RSLogix 5000

NOP
This rung initialises the message list in the memory

JSR
Jump To Subroutine

ExecuteMSGlist

1Input Par

Routine Name

CMD_Enable

S:SF

CPT
Compute

Drive125:O.Data[0]

0.0
1Expression

Dest

2

3

4

5

Activating StartConfiguration sends the list of explicit messages configured by the previous rung.
Messages list

control structure
Config_list.List_Start

JSR
Jump To Subroutine

ExecuteMSGlist

Input Par

Routine Name

This subroutine implements the state machine which sends the messages to the 94P.

0

6

ConfigOK_LED
<Local:4:O.Data[0].8>

Messages list
control structure

Config_list.ListDone

Enables the drive. If configuration was issued, the drive cannot be enabled until the list of configuration messages is completed.

SIM IO Enable
<Local:4:I.Data[1].0>

Messages list
control structure

Config_list.ListDone

Implements Enable/Disable by changing the value in the output assembly. A non-0 value (true) will enable the drive.
A 0 value (false) will disable the drive.

CMD_Enable

Figure 34a: Explicit Messages Ladder Diagram Page 1

49 P94ETH01D

Applications

7

8

9

10

11

12

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 17

Page 2
mm/dd/yyyy hh:mm:ss AM

SoftLogixConfigurationMessages.ACD

PresetInput0
<Local:4:I.Data[1].8> PresetVelocityIndex.0

MOV

PresetVelocitiesInRPS[PresetVelocityIndex]
Move

RSLogix 5000

StorageBits register
for ONS instructions

StorageBits.31

VelocityReferenceInRPS
0.0

Preset speed control. There are two preset inputs on the 1789 simulation I/O. You can replace them
with your real I/O or register bits by redefining the alias tags PresetInput0 and PresetInput1.

These two presets give you the choice of 4 preset speeds.

The rungs below show the velocity alarm implementation. VelocityActualRPS is an alias for cyclic I/O assembly and is mapped
to the drive’s velocity. The value is in RPS but is multiplied by 60 to get it in RPM then compared with the Low or High limits.

Source

Dest

PresetInput1
<Local:4:I.Data[1].9> PresetVelocityIndex.1

CPT
Compute

Drive125:O.Data[0]

0.0
0Expression

Dest

0.0
<Drive125:O.Data[1]>

NOP

VelocityLowLimitAlarm
<Local:4:O.Data[0].0>CMP

VelocityActualinRPS*60 < 200

Compare

Expression

CMP

VelocityActualinRPS*60 > 300

Compare

Expression

VelocityHighLimitAlarm
<Local:4:O.Data[0].1>

This rung always has “FALSE” as the rung-in condition. It is used as a convenience to setup the
static fields of the MSG structure such as address, class, data mapping and attribute. The rest of the fields are

dynamically set by the ExecuteMSGlist instruction.

13

14
MSG

Type - CIP Generic

Message Control MSG_Set940PID . . .

EN

DN

ER

StorageBits register
for ONS instructions

StorageBits.31

CMD_Enable

Generic message to
set explicit parameter

Figure 34b: Explicit Messages Ladder Diagram Page 2

50P94ETH01D

Applications

15

16

(End)

Main Routine - Ladder Diagram
SoftLogixMSGgen: Main Task: Main Program
Total number of rungs in routine: 17

Page 3
mm/dd/yyyy hh:mm:ss AM

SoftLogixConfigurationMessages.ACD

CMD FaultReset
<Local:4:I.Data[1].4>

RSLogix 5000

Status_DriveFault
<Drive125:S.Data[0].1>

CPT
Compute

TrueValue

0
1Expression

Dest

MSG
Type - CIP Generic

Message Control MSG_940ResetFault . . .

EN

DN

ER

Drive_Fault_LED
<Local:4:O.Data[0].16>

Figure 34c: Explicit Messages Ladder Diagram Page 3

51 P94ETH01D

Applications

ListLength

Size: 184 byte(s)

SoftLogixMSGgen - User Defined Data Type
SoftLogixMSGgen (Controller)

Page 1
mm/dd/yyyy hh:mm:ss AM

SoftLogixConfigurationMessages.ACD

Description:

RSLogix 5000

Data type Name: Msg_List_Control

Messages list control structure

Name Data Type Style Description

MsgIndex

ListDone

ListErr

List_instance

List_Value

List_CurrentValue

List_latch

List_Start

DINT

DINT

DINT

DINT[20]

State

BOOL

BOOL

BOOL

REAL[20]

REAL

BOOL

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Decimal

Float

Float

Figure 35: User’s Defined Type for Meassage List Control

Rung 1

At the first scanner call to subroutine, ExecuteMSGlist with argument = 1 initialises the list of explicit messages.
Refer to the routine in this section. The list of messages is kept in tag Config_List of the user’s defined type
(Figure 34a). The tag has 2 arrays inside: List_instance[] and List_value[]. These arrays will hold pairs of
instances-value when the MSG instruction fields are configured for the next send.

Rung 2,3

When I/O2 is triggered, ExecuteMSGlist gets called with argument = 0. This starts the state machine (if
transmission is not already in progress) and transmits messages from the list one by one. Calling the subroutine
does not stop the scanning but merely starts the transmission of the next message from the list if the previous
one has already been sent until the list is not over. Transmission of the message happens in the background
without waiting until message TX is completed.

52P94ETH01D

Applications

Rung 4

Indicates on the I/O that the full configuration list is done. This status interlocks rung 5 to prevent the ENABLE
command before configuration is completed.

Rung 5-13,15

Same as in original example.

Rung 14

This rung is a “Convenience” entry. This rung never becomes true. It is needed to configure the MSG instruction
field with constants (drive address, message type etc.). The instance field is changed by the ExecuteMSGlist
routine according to the value in the list.

User’s defined type for messages list control:

ExecuteMSGlist routine source code
//This is sub program sends sequence of messages
//This routine is useful for configuration sequences.
SBR(InitList);

IF InitList THEN
//Initialisation state. List of messages initialized

//0 Drive mode - velocity
 Config_list.List_instance[0] :=34;
 Config_list.List_Value[0] :=1;
//1 Reference source - internal
 Config_list.List_instance[1] :=37;
 Config_list.List_Value[1] :=1;
//2 Enable switch type - Inhibit only
 Config_list.List_instance[2] :=29;
 Config_list.List_Value[2] :=0;
//3 Enable Accel/Decel
 Config_list.List_instance[3] :=75;
 Config_list.List_Value[3] :=1;
//4 Set accel limit for velocity mode
 Config_list.List_instance[4] :=76;
 Config_list.List_Value[4] :=1000;
//5 Set decel limit for velocity mode
 Config_list.List_instance[5] :=77;
 Config_list.List_Value[5] :=1000;

//--Total number of messages = 6
 Config_list.ListLength:=6;

//reset state to IDLE (==0)
 Config_list.State:=0;

ELSE

53 P94ETH01D

Applications

CASE Config_list.State of

 0: //it is idle state , just return
 If Config_list.List_Start AND NOT Config_list.List_latch then
 Config_list.State:=1;
 END_IF;
 Config_list.List_latch:=Config_list.List_Start;

 1: //State Start
 Config_list.MsgIndex :=0; //reset index
 Config_list.ListDone:=0; //reset DONE flag
 Config_list.ListErr:=0; //reset error flag
 MSG_Set940PID.Instance:=Config_list.List_instance[Config_list.MsgIndex];
 //this is normally should be done in state2
 Config_list.List_CurrentValue:=Config_list.List_Value[Config_list.MsgIndex];
//but redundant here so we don’t have to wait for next loop
 MSG(MSG_Set940PID); //send first message
 Config_list.State:=2; //advance current state to TX

 2: //State TX
 if MSG_Set940PID.DN Then //message sent so advance index and check if it is not over yet
 Config_list.MsgIndex:=Config_list.MsgIndex+1; //advance index in the list
 if Config_list.MsgIndex <= (Config_list.ListLength-1) then
 MSG_Set940PID.Instance:=Config_list.List_instance[Config_list.MsgIndex];
 Config_list.List_CurrentValue:=Config_list.List_Value[Config_list.MsgIndex];
 MSG(MSG_Set940PID);
 else
 Config_list.ListDone:=1;
 Config_list.State:=0;
 end_if;

 elsif MSG_Set940PID.ER then
 Config_list.State:=0;
 Config_list.ListErr:=1;
 END_IF;
END_CASE;

END_IF;

54P94ETH01D

Applications

8.4 Application Note - Detection of EtherNet/IP Exclusive Ownership Loss
The PositionServo provides bits in the extended status register to detect a loss of exclusive ownership over
EtherNet/IP. The user can use these bits in a logical program to detect this condition and take action as
necessary for their application, such as to prevent a runaway condition in velocity or torque mode. Here is an
example of PositionServo indexer logic to perform this:

PROGRAM_START:

IF (!(VAR_EXSTATUS & (0x1000000))) ; checks if Exclusive ownership is lost

DISABLE ; in case of EIP exclusive ownership loss, disable drive

ENDIF

GOTO PROGRAM_START

END

Lenze AC Tech Corporation
630	Douglas	Street	•	Uxbridge,	MA	01569	•	USA
Sales:	800	217-9100	•	Service:	508	278-9100

www.lenzeamericas.com

P94ETH01D

PositionServo PROFIBUS-DP Communication Module
Communications Interface Reference Guide

This documentation applies to the optional PROFIBUS DP communications module for the PositionServo drive and
should be used in conjunction with the PositionServo User Manual (Document S94PM01) that shipped with the
drive. These documents should be read in their entirety as they contain important technical data and describe the
installation and operation of the drive.

© 2008 AC Technology Corporation

No part of this documentation may be copied or made available to third parties without the explicit written approval
of AC Technology Corporation. All information given in this documentation has been carefully selected and tested
for compliance with the hardware and software described. Nevertheless, discrepancies cannot be ruled out. AC
Tech does not accept any responsibility nor liability for damages that may occur. Any necessary corrections will be
implemented in subsequent editions.

About These Instructions

 i P94PFB01A

Contents
1 Safety Information ..1

1.1 Warnings, Cautions and Notes ...1

1.1.1 General ...1

1.1.2 Application ..1

1.1.3 Installation ..1

1.1.4 Electrical Connection ..2

1.1.5 Operation ..2

2 Introduction ..3

2.1 Fieldbus Overview ...3

2.2 Module Specification ...3

2.3 Module Identification Label ..3

3 Installation ..4

3.1 Mechanical Installation ..4

3.2 PROFIBUS DP Connector ..5

3.3 Electrical Installation ..6

3.3.1 Cable Types ..6

3.3.2 Network Limitations ..6

3.3.3 Connections and Shielding ..7

3.3.4 Network Termination ..7

4 Commissioning ...8

4.1 Overview ...8

4.2 Configuring the Network Master ..8

4.2.1 Master Support Files ...8

4.2.2 PROFIBUS-DP Master Setup Procedure ...8

4.3 Configuring the PositionServo PROFIBUS DP Module ..9

4.3.1 Connecting ...9

4.3.2 Connect to the Drive with MotionView OnBoard ...9

4.3.3 Setting the Network Protocol...10

4.3.4 PROFIBUS-DP Node Settings ...11

4.3.5 Node Address ...12

4.3.6 Baud / Data Rate ..12

4.3.7 Data Mapping ...12

4.3.8 Re-Initialising ..13

4.3.9 Non-Module Parameter Settings ...13

5. Cyclic Data Access ...14

5.1 What is Cyclic Data? ..14

5.2 Channel Data Sizes ..14

5.3 Mapping Cyclic Data ..15

5.3.1 Data IN (Din) Channels ..15

5.3.2 Data OUT (Dout) Channels ...16

P94PFB01A ii

Contents

6. Acyclic Parameter Access ...17

6.1 What is Acyclic Data? ..17

6.2 Setting the Acyclic Mode...17

6.2.1 Acyclic Modes ..17

6.2.2 Acyclic Mode 1 ...18

6.2.3 Acyclic Mode 2 ...18

6.3 Modes 1 & 2 – 8BAD Format ...18

6.3.1 8BAD - Function Code (Byte 0) ..19

6.3.2 8BAD – Access Control and Status (Byte 1) ...19

6.3.3 8BAD – PID Index (Bytes 2 and 3) ...20

6.3.4 8BAD – Data (Bytes 4 to 7) ...20

6.4 Acyclic Parameter Access Examples ..20

6.4.1 Example 1: Read Velocity Accel Limit ..20

6.4.2 Example 2: Write to Velocity Accel Limit ..21

7 Drive Control and Status ...22

7.1 Overview ...22

7.2 Control BITs ...22

7.2.1 Software Enable/Disable ...22

7.2.2 Drive Reset (Cold Boot) ...22

7.2.3 Suspend Motion ..22

7.2.4 Stop Motion ...23

7.3 Status Word ...23

7.3.1 Status Flags Register ..23

7.3.2 Extened Status Bits ..24

8 Advanced Features ...25

8.1 Module Firmware ...25

8.2 Node Address Lock ..25

8.3 PROFIBUS Status ...25

8.4 PROFIBUS DP Timeout Action ...26

8.4.1 Module Timeout Action ...26

8.4.2 Master Monitor Timeout Action ...27

8.4.3 Data Exchange Timeout Action ...27

8.5 Sync and Freeze ..28

8.5.1 Sync and Freeze Overview ..28

8.5.2 Sync and Freeze Status ..28

9 Diagnostics ...29

9.1 Faults ..29

9.2 Troubleshooting ...29

10 Parameter Quick Reference ..30

 1 P94PFB01A

Safety Information

1	 Safety	Information
1.1	 Warnings,	Cautions	and	Notes
1.1.1	 General

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, moving
and rotating. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation
creates the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be
carried out by qualified, skilled personnel (IEC 364 and CENELEC HD 384 or DIN VDE 0100 and IEC report
664 or DIN VDE0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with
the installation, assembly, commissioning, and operation of the product and who have the qualifications
necessary for their occupation.

1.1.2	 Application

Drive controllers are components designed for installation in electrical systems or machinery. They are
not to be used as appliances. They are intended exclusively for professional and commercial purposes
according to EN 61000-3-2. The documentation includes information on compliance with EN 61000-3-2.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/37/EC
(Machinery Directive); EN 60204 must be observed.

Commissioning (i.e. starting drive as directed) is only allowed when there is compliance to the EMC Directive
(89/336/EEC).

The drive controllers meet the requirements of the Low Voltage Directive 73/23/EEC. The harmonised
standards of the series EN 50178/DIN VDE 0160 apply to the controllers.

The	 availability	 of	 controllers	 is	 restricted	 according	 to	 EN	 61800-3.	 These	 products	 can	 cause	
radio	interference	in	residential	areas.	In	the	case	of	radio	interference,	special	measures	may	be	
necessary	for	drive	controllers.

1.1.3	 Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not
change any insulation distances during transport or handling. Do not touch any electronic components
and contacts. Controllers contain electrostatically sensitive components, which can easily be damaged by
inappropriate handling. Do not damage or destroy any electrical components since this might endanger
your health! When installing the drive ensure optimal airflow by observing all clearance distances in the
drive's user manual. Do not expose the drive to excessive: vibration, temperature, humidity, sunlight, dust,
pollutants, corrosive chemicals or other hazardous environments.

P94PFB01A 2

Safety Information

1.1.4	 Electrical	Connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g.
VBG 4) must be observed.

The electrical installation must be carried out in accordance with the appropriate regulations (e.g.
cable cross-sections, fuses, PE connection). Additional information can be obtained from the regulatory
documentation.

The regulatory documentation contains information about installation in compliance with EMC (shielding,
grounding, filters and cables). These notes must also be observed for CE-marked controllers.

The manufacturer of the system or machine is responsible for compliance with the required limit values
demanded by EMC legislation.

1.1.5	 Operation

Systems including controllers must be equipped with additional monitoring and protection devices according
to the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.).
You are allowed to adapt the controller to your application as described in the documentation.

DANGER!
• After the controller has been disconnected from the supply voltage, do not touch the live
components and power connection until the capacitors have discharged. Please observe the
corresponding notes on the controller.
• Do not continuously cycle input power to the controller more than once every three minutes.
• Close all protective covers and doors during operation.

WARNING!
Network control permits automatic starting and stopping of the inverter drive. The system design
must incorporate adequate protection to prevent personnel from accessing moving equipment
while power is applied to the drive system.

Table 1: Pictographs used in these instructions

Pictograph Signal	word Meaning Consequences	if	ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent
danger that may result in death
or serious personal injury if the

corresponding measures are not
taken.

WARNING! Impending or possible danger
for persons

Death or injury

STOP! Possible damage to equipment Damage to drive system or its
surroundings

NOTE Useful tip: If observed, it will
make using the drive easier

 3 P94PFB01A

Introduction

2	 Introduction
The following information is provided to explain how the PositionServo drive operates on a PROFIBUS
network; it is not intended to explain how PROFIBUS itself works. Therefore, a working knowledge of
PROFIBUS is assumed, as well as familiarity with the operation of the PositionServo drive.

2.1	 Fieldbus	Overview
The PROFIBUS DP fieldbus is an internationally accepted communications protocol designed for commercial
and industrial installations of factory automation and motion control applications. High data transfer
rates combined with it’s efficient data formatting, permit the coordination and control of multi-node
applications.

2.2	 Module	Specification
Auto detection of data rates

Supported baudrates: 12Mbps, 6Mbps, 3Mbps, 1.5Mbps, 500kbps, 187.5kbps, 93.75kbps, 45.45kbps,
19.2kbps, 9.6kbps.

Scalable amount of input and output process data channels (maximum of 12 in either direction).

Parameter access data channel

2.3	 Module	Identification	Label
Figure 1 illustrates the labels on the PositionServo PROFIBUS DP communications module. The PositionServo
PROFIBUS DP module is identifiable by:

One label affixed to the side of the module.

The TYPE identifier in the center of the label: E94ZAPFB1.

The port (interface) identifier, P24, on the right hand side of label.

TYPE: E94ZAPFB1
ID-NO: 13251083

039080825
E94ZAPFB1000XX1A10

Made in USA

Communications

PROFIBUS DP Module

P
2

4

A: Fieldbus Protocol
B: Model Number
C: Lenze Order Number
D: Firmware Revision
E: Hardware RevisionA

B
C

DE

Figure 1: PositionServo PROFIBUS DP Module Label

•

•

•

•

•

•

•

P94PFB01A 4

Installation

3	 Installation
3.1	 Mechanical	Installation

Ensure that for reasons of safety, the AC supply, DC supply and +24V DC backup supply have been
disconnected before opening the bay cover plate.

Remove the two COMM module screws that secure Option Bay 1. With the aid of a flat head screw
driver, gently pry up the Option Bay 1 cover plate and remove.

Fit the 6 way pin header into the module before fitting the module into the drive.

Install the PROFIBUS DP Module into the drive.

Replace the two COMM module screws that secure Option Bay 1. Using a phillips-head screwdriver,
replace the GROUND screw as illustrated in Figure 2.

Figure 2: Installing the PROFIBUS-DP Communications Module

1.

2.

3.

4.

5.

 5 P94PFB01A

Installation

3.2	 PROFIBUS	DP	Connector
Table 2 identifies the terminals and describes the function of each. Figure 3 illustrates the PROFIBUS DP
DB-9 connector.

Table 2: PROFIBUS DP D-Type Connections

Pin	Number Function Description

1 Shield Cable Shield Connection

2 N/C No Connection

3 RxD / TxD-P Data Line B (Red)

4 N/C No Connection

5 DGND Data Ground

6 +5V 5V Output Supply

7 N/C No Connection

8 RxD / TxD-N Data Line A (Green)

9 N/C No Connection

5 4 3 2 1

9 8 7 6

Figure 3: PROFIBUS DP Connector

NOTE
The PositionServo PROFIBUS DP module is equipped with a D sub-type connector.
Always ensure that any connectors used on the network are fully approved for use
with PROFIBUS DP. Some available connector types have built in termination that
allows the network to be isolated, which can be very useful when fault finding. For
data rates above 1.5Mbs, use a connector fitted with integrated inductors.

P94PFB01A 6

Installation

3.3	 Electrical	Installation
3.3.1	 Cable	Types

Due to the high data rates used on PROFIBUS DP networks it is paramount that correctly specified quality
cable is used. The use of low quality cable will result in excess signal attenuation and data loss. Cable
specifications and approved manufacturers are available from the official PROFIBUS website at: http://
www.profibus.com

3.3.2	 Network	Limitations

There are several limiting factors that must be taken into consideration when designing a PROFIBUS DP
network, for full details refer to the official “Installation Guidelines for PROFIBUS DP/FMS” which is available
from http://www.profibus.com. However, here is a simple checklist:

PROFIBUS DP networks are limited to a maximum of 125 nodes.

Only 32 nodes may be connected on a single network segment.

A network may be built up from one or several segments with the use of network repeaters.

Maximum total network length is governed by the data rate used. Refer to Table 3.

Minimum of 1 meter of cable between nodes.

Use fiber optic segments to:

Extend networks beyond normal cable limitations.

Overcome different ground potential problems.

Overcome very high electromagnetic interference.

Spurs or T connections are only acceptable by the PROFIBUS DP specification when operating at data
rates of 1.5Mbps or less, however it is strongly advised not to use spurs as extreme care must be taken
during the network design phase to avoid problems.

Table 3: Standard “Type A” Cable Network Length Specifications

Baud	Rate Maximum	Segment	Length Recommended	Maximum	Total	Network	Length

9.6kbps 1200 meters 6000 meters

19.2kbps 1200 meters 6000 meters

45.45kbps 1200 meters 6000 meters

93.75kbps 1000 meters 5000 meters

187.5kbps 1000 meters 5000 meters

500kbps 400 meters 2000 meters

1.5Mbps 200 meters 1000 meters

3Mbps 100 meters 500 meters

6Mbps 100 meters 500 meters

12Mbps 100 meters 500 meters

NOTE
The recommended maximum network length is achievable with the use of repeaters.
Due to signal propagation delay within the repeaters it is recommended that no
more than 4 repeaters be used between any two network nodes

•

•

•

•

•

•

•

•

•

•

 7 P94PFB01A

Installation

3.3.3	 Connections	and	Shielding

The PositionServo PROFIBUS DP module is equipped with a D sub-type connector.

Always ensure that any connectors used on the network are fully approved for use with PROFIBUS DP.
Some available connector types have built in termination that allows the network to be isolated, which
can be very useful when fault finding. For data rates above 1.5Mbs, use a connector fitted with integrated
inductors.

3.3.4	 Network	Termination

In high speed fieldbus networks such as PROFIBUS DP it is essential to install the specified termination
resistors, i.e. one at both ends of a network segment. Failure to do so will result in signals being reflected
back along the cable which will cause data corruption.

PROFIBUS-DP uses active (powered) termination. Therefore it is strongly recommended that "stand alone"
active termination units are used to maintain the integrity of the network. If the PositionServo is used to
provide network termination, in the event of a power loss to the drive, network termination will also be
lost.

P R O FIB U S D P
netw ork

P R O FIB U S D P
M aster

+ Term ination

A B

P ositionS ervo
P R O FIB U S D P
O ption M odule

B IN A O U TA IN B O U T

M in 1m

P R O FIB U S D P
netw ork

M in 1m

D Type
C onnector

P ositionS ervo
P R O FIB U S D P
O ption M odule

B INA IN

Term inating
D Type

C onnector

Figure 4a: Network without Active Termination

P R O FIB U S D P
netw ork

P R O FIB U S D P
M aster

+ Term ination

A B

M in 1m

A ctive
Term ination

M odule

A B

P R O FIB U S D P
netw ork

M in 1m

P ositionS ervo
P R O FIB U S D P
O ption M odule

B IN A O U TA IN B O U T

P R O FIB U S D P
netw ork

M in 1m

D Type
C onnector

P ositionS ervo
P R O FIB U S D P
O ption M odule

B INA IN

D Type
C onnector

A O U T B O U T

Figure 4b: Network with Active Termination

P94PFB01A 8

Commissioning

4	 Commissioning
4.1	 Overview

It is assumed that the user has familiarised themselves with how to set parameters using MotionView
software. Refer to the PositionServo with MVOB User Manual (S94PM01) for more details.

The details that follow provide a step-by-step guide to quickly and easily set-up a PositionServo drive to
communicate on a PROFIBUS DP fieldbus network, in a basic format. There are many more features and
settings available for the PROFIBUS DP option module, for details on these refer to the fuller description in
the sections that follow.

4.2	 Configuring	the	Network	Master
4.2.1	 Master	Support	Files

Most PROFIBUS-DP master configuration software utilises GSD files to configure the network profile and
communications with the relevant devices. GSD files are text files that contain information about the device
timings, features supported and available data formats for the PROFIBUS-DP device. Device icon files are
also supplied for use with the PROFIBUS-DP configuration software.

NOTE
Many manufacturers offer language-specific GSD files for their PROFIBUS-DP devices. In this case the
term and file suffix “GSD” is used for their primary/default language choice and additional files may
be available for alternative languages and will be named differently. For example, for manufacturers
where English is not the primary language it may be possible to obtain GSD and GSE files where the
GSD file is written in the native/home language and the GSE file will is written in English etc.

The PositionServo GSD files are available on the CD ROM that ships with the drive and on the Lenze-AC
Tech website.

4.2.2	 PROFIBUS-DP	Master	Setup	Procedure

The method for configuring master devices differs greatly between manufacturers. Provided herein is a
very basic, generic guide to setting up a network master.

Launch the Master configuration software.

Install/Import the required GSD support file(s) using the wizard tool if provided.

Setup master PROFIBUS DP port with required cirteria such as node address and baudrate etc.

Add or “drag and drop” the required slave devices from the GSD library to the PROFIBUS DP network
which is typically depicted on screen.

Configure the slave node address, ensuring that each node has a unique and individual address.

Configure each slave's I/O data size. (This is typically done by dragging and dropping the required
amount of modules from the GSD file library or picking the modules from a list).

NOTE: Although there are only 4 modules listed in the GSD file, these can be used several times to create
the required amount of data.

1.

2.

3.

4.

5.

6.

 9 P94PFB01A

Commissioning

Additional Field Devices

General

Drives
Lenze PositionServo

PROFIBUS DP

Lenze SMVector

Switching Devices

I/O

Gateway

Compatible PROFIBUS DP Slaves

+

+
+

+
+

+
+

CiR Object

Figure 5: PROFIBUS DP Master Setup

Save the configuration and download to the master.

4.3	 Configuring	the	PositionServo	PROFIBUS	DP	Module
4.3.1	 Connecting

With the drive power disconnected, install the PROFIBUS DP module and connect the network cable as
instructed in the preceeding sections. Ensure the drive Run/Enable terminal is disabled then apply the
correct voltage to the drive (refer to drive's user manual for voltage supply details).

4.3.2	 Connect	to	the	Drive	with	MotionView	OnBoard

Refer to the PositionServo User Manual, section 6.2 for full details on configuring and connecting a drive
via MotionView OnBoard (MVOB) software. Contained herein is a brief description of launching MVOB and
communicating with the drive.

Open the PC’s web browser. Enter the drive’s default IP address [192.168.124.120] in the browser’s
Address window.

The authentication screen may be displayed if the PC does not have Java RTE version 1.4 or higher. If
so, to remedy this situation, download the latest Java RTE from http://www.java.com.

When MotionView has finished installing, a Java icon entitled [MotionView OnBoard] will appear on
your desktop and the MVOB splash screen is displayed. Click [Run] to enter the MotionView program.

Once MotionView has launched, verify motor is safe to operate, click [YES, I have] then select [Connect]
from the Main toolbar (top left). The Connection dialog box will appear.

Select [Discover] to find the drive(s) on the network available for connection.

[Discover] may fail to find the drive’s IP address on a computer with both a wireless network card and
a wired network card (or a PC with more than one network connection). If this happens, try one of the
following remedies:

Disable the wireless network card and then use [Discover].
Type in the drive’s IP address manually at the box [IP Address].

Then click [Connect]

7.

1.

2.

3.

4.

5.

P94PFB01A 10

Commissioning

Highlight the drive (or drives) to be connected and click [Connect] in the dialog box.

Figure 6: Connection Box with Discovered Drive

In the lower left of the MotionView display, the Message WIndow will contain the connection status message.
The message “Successfully connected to drive B04402200450_192.168.124.120” indicates that the drive
B04402200450 with IP address 192.168.124.120 is connected.

4.3.3	 Setting	the	Network	Protocol

In the left-hand node tree of MotionView OnBoard, click on the [Communications] folder. Using the drop
down menu, select [PROFIBUS-DP] as the requied fieldbus selection.

Figure 7: Fieldbus Selection

The Important Message box (to REBOOT) is displayed because the Communication setting has been changed
(from None to PROFIBUS DP in this example). Click [Ok] to dismiss the dialog box. Reboot the drive.

6.

 11 P94PFB01A

Commissioning

Figure 8: REBOOT Message

4.3.4	 PROFIBUS-DP	Node	Settings

To access the PositionServo PROFIBUS-DP node settings, click on the [PROFIBUS-DP] folder icon.

Figure 9: PROFIBUS DP Settings

P94PFB01A 12

Commissioning

4.3.5	 Node	Address

Figure 10: PROFIBUS DP Node Address

PID283 - Node Address

Default: 126 Range: 0 - 126

Access: RW Type: Integer

Set PID283 to the required value. The default address is 126. The permissible address range is: 0 – 125.

Each node on the network must have an individual address, if two of more nodes have duplicate addresses
this may prevent the network from functioning correctly. Node 126 is a special node address intended for
“New” nodes only where by node configuration is performed via a network master device.

4.3.6	 Baud	/	Data	Rate

The PositionServo PROFIBUS-DP module automatically detects and synchronises to the data rate of the
network to which it has been connected.

4.3.7	 Data	Mapping

The PositionServo PROFIBUS-DP module has support for up to 12 cyclic data channels in both
directions.

Cyclic data configuration is described in full in section 5.

The default mapping for PositionServo PROFIBUS-DP is 4 Data IN links and 2 Data OUT links, the
configuration is shown in Table 4.

Table 4: Default Mapped Cyclic Data

Data	OUT	Link Mapped	Function Data	Format Data	IN	Link Mapped	Function Data	Format

1 52 – VAR_ENABLE RAM Integer 1 54 – VAR_STATUS RAM Integrer

2 139 – VAR_IREF RAM Float 2 215 – VAR_APOS RAM Float

3 7 –VAR_VELOCITY_ACTUAL RAM Float

4 188 – VAR_PHCUR RAM Float

NOTE
The data size of each IN and OUT Link / Channel is 4 Bytes per link.
The terms “OUT data” and “IN data” describe the direction of data transfer as seen by the PROFIBUS-
DP network master controller.

•

•

•

•
•

 13 P94PFB01A

Commissioning

4.3.8	 Re-Initialising

To activate any changes made the drive has to be reinitialized. Hence the warning within MotionView

Figure 11: REBOOT Message

This can be done by cycling the power to the drive.

4.3.9	 Non-Module	Parameter	Settings

In addition to configuring the PROFIBUS-DP option module and depending upon the application there may
be several drive based parameters that will need to be set using MotionView or an Indexer program or via
the PROFIBUS parameter access channel. Such as:

PID34 – Drive Mode (VAR_DRIVEMODE)

PID37 – Reference (VAR_REFERENCE)

PID29 – Enable switch funtion (VAR_ENABLE_SWITCH_TYPE)

•

•

•

P94PFB01A 14

Cyclic Data Access

5.	 Cyclic	Data	Access
5.1	 What	is	Cyclic	Data?

Cyclic / Process / Polled data is the name given to the method used to transfer routine process data
between the network master and slave nodes.

Cyclic data transfer must be configured during network setup.

The terms “OUT data” and “IN data” describe the direction of data transfer as seen by the PROFIBUS
DP network master controller.

The cyclic data source and destinations are configured and controlled by the PositionServo PROFIBUS
DP module's mapping capabilities.

5.2	 Channel	Data	Sizes
During network setup, it is necessary to program the network master with the amount of IN and OUT
cyclic data used for each slave device that it is associated with. This process is simplified with the use
of GSD support files (refer to paragraph 4.2.2, PROFIBUS-DP Master Setup Procedure, for details).

The amount of cyclic data configured in each PositionServo PROFIBUS-DP module must be equal to
the amount configured in the network master. Failure to do this may result in lost data and/or network
master configuration errors.

Figure 12: Set Channel Data Size

Each cyclic channels utilises 4 Bytes of data.

The IN and OUT data sizes can also be set by using PID285 and PID284 respectively.

PID285 - IN Data Size

Default: 4 Range: 0 - 12

Access: RW Type: Integer

PID284 - OUT Data Size

Default: 2 Range: 0 - 12

Access: RW Type: Integer

•

•

•

•

•

•

•

•

 15 P94PFB01A

Cyclic Data Access

5.3	 Mapping	Cyclic	Data
5.3.1	 Data	IN	(Din)	Channels

The PROFIBUS-DP module has 12 cyclic IN channels each of which utilises 4 Bytes of data.

The amount of IN channels activated and mappable is set by PID285.

IN data mapping can be set via the MVOB [Communications] [PROFIBUS DP] folder:

Figure 13: PROFIBUS DP Communications folder

Or PIDs 298 - 309 can be used to directly edit the IN mapping details.

PID298 to PID309 - Din Mapping Channels

Default: Various Range: 0 - 999

Access: RW Type: Integer

Table 5 lists the default mapping source data for IN data being sent from the drive to the network master.

Table 5 – IN Data (Din) Mappings

PID Din	Channel Default Format Function

PID298 Channel 1 mapping 54 Integer VAR_STATUS

PID299 Channel 2 mapping 215 Float VAR_APOS

PID300 Channel 3 mapping 7 Float VAR_VELOCITY_ACTUAL

PID301 Channel 4 mapping 188 Float VAR_PHCUR

PID302 Channel 5 mapping 116 Integer VAR_V16

PID303 Channel 6 mapping 117 Float VAR_V17

PID304 Channel 7 mapping 118 Integer VAR_V18

PID305 Channel 8 mapping 119 Float VAR_V19

PID306 Channel 9 mapping 120 Integer VAR_V20

PID307 Channel 10 mapping 121 Float VAR_V21

PID308 Channel 11 mapping 122 Integer VAR_V22

PID309 Channel 12 mapping 123 Float VAR_V23

•

•

•

•

P94PFB01A 16

Cyclic Data Access

5.3.2	 Data	OUT	(Dout)	Channels

The PROFIBUS-DP module has 12 cyclic OUT channels each of which utilises 4 Bytes of data.

The amount of OUT channels activated and mappable is set by PID284.

OUT data mapping can be set via the MVOB [Communications] [PROFIBUS DP] folder:

Figure 14: PROFIBUS DP Communications folder

Or PIDs 286 - 297 can be used to directly edit the OUT mapping details.

PID286 to PID297 - Dout Mapping Channels

Default: Various Range: 0 - 999

Access: RW Type: Integer

Table 6 lists the default mapping destinations for OUT going data being sent from the network
master.

Table 6 – OUT Data (Dout) Mappings

PID Dout	Channel Default Format Function

PID286 Channel 1 mapping 52 Integer VAR_ENABLE

PID287 Channel 2 mapping 139 Float VAR_IREF

PID288 Channel 3 mapping 102 Integer VAR_V2

PID289 Channel 4 mapping 103 Float VAR_V3

PID290 Channel 5 mapping 104 Integer VAR_V4

PID291 Channel 6 mapping 105 Float VAR_V5

PID292 Channel 7 mapping 106 Integer VAR_V6

PID293 Channel 8 mapping 107 Float VAR_V7

PID294 Channel 9 mapping 108 Integer VAR_V8

PID295 Channel 10 mapping 109 Float VAR_V9

PID296 Channel 11 mapping 110 Integer VAR_V10

PID297 Channel 12 mapping 111 Float VAR_V11

•

•

•

•

•

 17 P94PFB01A

Acyclic Parameter Access

6.	 Acyclic	Parameter	Access
6.1	 What	is	Acyclic	Data?

Acyclic / non-cyclic / Service access provides a method for the network master to access any drive or
module parameter.

This kind of parameter access is typically used for monitoring or low priority non-scheduled parameter
access.

The PositionServo PROFIBUS-DP module supports several different methods of doing this.

6.2	 	Setting	the	Acyclic	Mode
6.2.1	 Acyclic	Modes

The Acyclic mode can be set in the MVOB [Communications] [PROFIBUS DP] folder by clicking on the down
arrow [t] next to [PROFIBUS DP Acyclic Mode] and selecting the mode from the pull-down menu.

Figure 15: Select PROFIBUS Acyclic Mode

Or PID310 can be used to select the required Acyclic mode. Refer to section 6.3 for details on type of
acyclic mode. The acronym “8BAD” indicates “8 Byte Acyclic Data”.

PID310 - Acyclic Mode

Default: 0 Range: 0 - 2

Access: RW Type: Integer

Table 7: Acyclic Modes

PID310 Acyclic	Mode Description

0 Disabled No acyclic parameter access

1 8BAD-F 8 Byte Acyclic Data at Front

2 8BAD-E 8 Byte Acyclic Data at End

•

•

•

P94PFB01A 18

Acyclic Parameter Access

6.2.2	 Acyclic	Mode	1

PID310 = 1 (Mode 1 – 8BAD-F)

Setting this mode configures the PROFIBUS-DP module to expect 8 additional cyclic bytes at the FRONT of
all normal process cyclic data.

6.2.3	 Acyclic	Mode	2

PID310 = 2 (Mode 2 – 8BAD-E)

Setting this mode configures the PROFIBUS-DP module to expect 8 additional cyclic bytes at the END of all
normal process cyclic data.

NOTE
Enabling an 8BAD mode adds to the total amount of IN and OUT cyclic data and is reflected in the total
channel data size. Care should also be taken in selecting the correct module from the GSD file when
configuring the network master. Changes made to PID310 will only take effect after re-initialising the
drive.

6.3	 Modes	1	&	2	–	8BAD	Format
The 8BAD format of acyclic parameter data access is a simple method that utilises 8 bytes of cyclic data
which can be placed either before the regular cyclic data or after depending on the user's preference or
application requirements. 8BAD is comprised of 8 bytes of data.

Table 8: 8BAD Format

Byte Description

0 Function Code

1 Access Control & Status

2 MSB
PID Index

3 LSB

4 MSB

Data
5

6

7 LSB

 19 P94PFB01A

Acyclic Parameter Access

6.3.1	 8BAD	-	Function	Code	(Byte	0)

Table 9 lists the Function Code, Byte 0, of the 8BAD format.

Table 9: Function Code

Byte Bit Description

0

0 0 – Idle
1 – Read RAM integer
2 – Read RAM float
3 – Read EPM integer
4 – Read EPM float
5 – Write RAM integer
6 – Write RAM float
7 – Write EPM integer
8 – Write EPM float.

1

2

3

4

5

6

7 0 - No Fault
1 - Fault, Access Failure. Refer to Access & Control Status

6.3.2	 8BAD	–	Access	Control	and	Status	(Byte	1)

The purpose of the Access Control and Status Byte is to provide transfer control and diagnostic information.
The Status bits provide diagnostics on the message currently being processed.

Table 10: Access Control & Status

Byte Bit Description

1

0 0 = No fault, Write ACK
1 = Invalid function
2 = Parameter does not exist
3 = Read only parameter
4 = Value not in range
5 = Access failure
6 = Write operation failure
15 = ACT unknown exception

1

2

3

4 1 = Valid response to the request message - bit set by module to indicate the data in message is valid or
acknowledgment for write access.

0 = if bit 7 of Byte 0 is set and the exception number is higher than 0

5 1 = Module is processing the master’s request. Any data being sent to the master at this time is invalid
0 = valid reply

6 reserved

7 Toggle bit. (Handshake) Master toggles this bit to indicate a new message. The old command (if not
finished) is cancelled.

NOTE
Bits 0 to 6 are set by the module. Bit 7 is set by the master, it is initialized to be zero. The module
matches the state of bit 7 in its response message.
Bit 7 of the Access Control & Status byte will cause the message to be executed when it changes
its state. Each time this bit changes state it indicates a new request is being made. This bit must
be set by the Master/PLC once all other bytes have been set in the acyclic data portion of the
message. Otherwise a partially assembled message will be processed by the drive causing an
unexpected result.
The drive will copy the state of Bit 7 from the message sent by the master to Bit 7 in the
response.

1.

2.

3.

P94PFB01A 20

Acyclic Parameter Access

6.3.3	 8BAD	–	PID	Index	(Bytes	2	and	3)

This is the drive parameter index number to be Read or Written to from the master. For the reply message
from the drive this will contain the drive parameter index number that message corresponds to.

6.3.4	 8BAD	–	Data	(Bytes	4	to	7)

The actual PID data is present in these 4 bytes. (DWORD)

On read command bit 5 of the Access Control & Status byte indicates whether the data is valid or not.

On write command bit 5 of the Access Control & Status byte indicates whether the write operation is
completed or not.

6.4	 Acyclic	Parameter	Access	Examples
Only the acyclic parameter information is configured for the these examples.

6.4.1	 Example	1:	Read	Velocity	Accel	Limit

Example 1: Read Velocity Accel Limit, PID76 / VAR_ACCEL_LIMIT(= 1000, default value). This first example
provides a valid send/receive transmission and an invalid send/receive transmission for a read operation
from PID76.

Valid Transmission:

SEND: message consisting of:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01
0x00

or
0x80

0x00 0x4C 0x00 0x00 0x00 0x00

Read Toggle PID 76 Data

RECEIVE: response consisting of:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01
0x10

or
0x90

0x00 0x4C 0x00 0x00 0x03 0xE8

Read Valid response PID 76 Data = 1000

Invalid Transmission:

SEND: message consisting of non-existing PID:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01
0x00

or
0x80

0x03 0x08 0x00 0x00 0x00 0x00

Read Toggle PID 776 Data

RECEIVE: response consisting of:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01
0x12

or
0x92

0x00 0x4C 0x00 0x00 0x00 0x00

Read
Valid response,

PID does not exist
PID 776 Data = 0

•

•

 21 P94PFB01A

Acyclic Parameter Access

6.4.2	 Example	2:	Write	to	Velocity	Accel	Limit

Example 2: Write to Velocity Accel Limit, PID76 / VAR_ACCEL_LIMIT with a value of 1500. This second
example provides a valid send/receive transmission and an invalid send/receive transmission for a write
operation to PID76.

Valid Transmission:

SEND: message consisting of:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x05
0x00

or
0x80

0x00 0x4C 0x00 0x00 0x00 0x00

Write Toggle PID 76 Data = 1500

RECEIVE: response consisting of:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x05
0x10

or
0x90

0x00 0x4C 0x00 0x00 0x05 0xDC

Write Valid response PID 76 Data = 1500

Invalid Transmission:

SEND: message trying to write to a read-only PID:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01
0x00

or
0x80

0x03 0x4A 0x00 0x00 0x05 0xDC

Write Toggle PID 74 Data

RECEIVE: response consisting of:

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

0x01
0x14

or
0x94

0x00 0x4A 0x00 0x00 0x05 0xDC

Write
Valid response,

Read-only
parameter

PID 74 Data = 1500

P94PFB01A 22

Drive Control and Status

7	 Drive	Control	and	Status
7.1	 Overview

The control and status words provide a means for the digital control and monitoring of the drive using a
single data word. Each control bit has a particular function and provides a method of controlling the output
functions of the drive, such as run and direction. Each bit in the status word provides feedback about the
drive’s state of health and operational condition.

7.2	 Control	BITs
There are several control bit available within PositionServo that can be written to through cyclic or acyclic
communications. Some of the most commonly used ones are listed as follows, for a complete list of drive
control functions see the Programming Manual:-

7.2.1	 Software	Enable/Disable

PID52 - Enable

Default: N/A Range: 0 - 1

Access: WO Type: Integer

This is the VAR_ENABLE function.

0 - disable

1 – enable

This function is the default mapping for cyclic Data Out Channel 1.

7.2.2	 Drive	Reset	(Cold	Boot)

PID53 - Reset

Default: N/A Range: 0 - 1

Access: WO Type: Integer

This is the VAR_RESET function.

0 - no action

1 - reset drive

7.2.3	 Suspend	Motion

PID91 - Suspend Motion

Default: 0 Range: 0 - 1

Access: RW Type: Integer

This is the VAR_SUSPEND_MOTION function.

0 - motion enabled

1 - motion disabled

 23 P94PFB01A

Drive Control and Status

7.2.4	 Stop	Motion	

PID136 - Stop Motion

Default: N/A Range: 0 - 1

Access: WO Type: Integer

This is the VAR_STOP_MOTION function.

0 - no action

1 - stops motion

7.3	 Status	Word
There are several status words and individual staus bits / flags available within PositionServo that can be
read from through cyclic or acyclic communications

7.3.1	 Status	Flags	Register

PID54 - DSTATUS

Default: N/A Range:

Access: RO Type: Integer

This is the VAR_DSTATUS function.

Table 11: DSTATUS Register

Bit	in	register Description

0 Set when drive enabled

1 Set if DSP subsystem at any fault

2 Set if drive has a valid program

3 Set if byte-code or system or DSP at any fault

4 Set if drive has a valid source code

5 Set if motion completed and target position is within specified limits

6 Set when scope is triggered and data collected

7 Set if motion stack is full

8 Set if motion stack is empty

9 Set if byte-code halted

10 Set if byte-code is running

11 Set if byte-code is set to run in step mode

12 Set if byte-code is reached the end of program

13 Set if current limit is reached

14 Set if byte-code at fault

15 Set if no valid motor selected

16 Set if byte-code at arithmetic fault

17 Set if byte-code at user fault

18 Set if DSP initialization completed

19 Set if registration has been triggered

20 Set if registration variable was updated from DSP after last trigger

21 Set if motion module at fault

22 Set if motion suspended

23 Set if program requested to suspend motion

P94PFB01A 24

Drive Control and Status

Bit	in	register Description

24 Set if system waits completion of motion

25 Set if motion command completed and motion Queue is empty

26 Set if byte-code task requested reset

27 If set interface control is disabled. This flag is set/clear by ICONTROL ON/OFF statement.

28 Set if positive limit switch reached

29 Set if negative limit switch reached

30
Events disabled. All events disabled when this flag is set. After executing EVENTS ON all events previously enabled by EVENT
EventName ON statements become enabled again

7.3.2	 Extened	Status	Bits	

PID84 - DEXSTATUS

Default: N/A Range:

Access: RO Type: Integer

This is the VAR_EXSTATUS function

Table 12: Encoding for Extended Status Bits

Bit	# Function Comment

0 Reserved

1 Velocity in specified window Velocity in limits as per parameter #59: VAR_VLIMIT_SPEEDWND

2-4 Reserved

5 Velocity at 0 (zero) Velocity 0: Zero defined by parameter #58: VAR_VLIMIT_ZEROSPEED

6,7 Reserved

8 Bus voltage below under-voltage limit Utilized to indicate drive is operating from +24V keep alive and a valid DC bus voltage
level is not present.

9,10 Reserved

11 Regen circuit is on Drive regeneration circuit is active. Drive will be dissipating power through the braking
resistor (if fitted).

12-20 Reserved

21 Set if homing operation in progress Drive executing Pre-defined homing function (refer to section 2.15, PS Programming
Manual, PM94M01).

22 Set if system homed Drive completed Pre-defined homing function (refer to section 2.15, PS Programming
Manual, PM94M01).

23 If set then last fault will remain on the display until
re-enabled.

User can set this bit to retain fault code on the display until re-enabled. It is useful if
there is a fault handler routine. When the fault handler is exited, the fault number on the
display will be replaced by current status (usually DiS if bit #24 is not set). Setting bit
#24 retains diagnostics on the display.

24 Set if EIP IO exclusive owner connection is
established. Cleared if closed.

Checks if drive is controlled by EthernetIP master. Use bit #25 and bit #26 to process
“lost of connection” condition (if needed) in the user’s program

25 Set if EIP IO exclusive owner connection times out.
Cleared if exc. owner conn exsists.

Checks if connection with Ethernet/IP master is lost. Use bit #26 and bit #25 to process
“lost of connection” condition (if needed) in the user’s program

26-30 Reserved

 25 P94PFB01A

Advanced Features

8	 Advanced	Features
8.1	 Module	Firmware

PID412 - Module Firmware

Default: N/A Range: 0 - 0xFFFFFF

Access: RO Type: Integer

Displays the module firmware revision as a hexidecimal number that is divided into two bytes. Example:
0x104 = 0x01, 0x04 = version 1.04

8.2	 Node	Address	Lock
Some PROFIBUS-DP masters have the capability to set the node address remotely. While this can be a
useful feature during commissioning and or network fault recovery, it is not always desirable.

Enabling the Node Address Lock will prevent the accidental changing of the node address by preventing
the master from writing to it.

Figure 16: Node Address Lock

8.3	 PROFIBUS	Status
PID408 - Node Status Word

Default: N/A Range: 0 - 10

Access: RO Type: Integer

This is the VAR_PBUS_STATUS function.

Table 13: Node Status Word

Bit Function Description

0 Module Present 0 - Module not detected
1 - Module detected

1 Master Monitor Timeout 0 - No timeout
1 - Timeout occurred

2 Data Exchange Timeout 0 - No timeout
1 - Timeout occurred

3 Reserved

4 Reserved

5 Reserved

6 Reserved

7 Reserved

P94PFB01A 26

Advanced Features

Bit Function Description

8 Reserved

9 Clear Out Data

Sync and Freeze Status
Refer to section 8.5 dor details.

10 Unfreeze

11 Freeze

12 Unsync

13 Sync

14 Reserved

15 Reserved

16 - 31 Reserved

8.4	 PROFIBUS	DP	Timeout	Action
The Module Timeout, Master Monitor Timeout and Data Exchange Timeout settings are used to configure
the drive's response when a network or module error occurs. All 3 timeout functions can be set from
one single parameter, alternatively they can be set individually and easily from within the MotionView
PROFIBUS configuration folder.

PID413 - Timeout Actions

Default: N/A Range: 0 - 0xFFFFFF

Access: RO Type: Integer

This is the VAR_TIMEOUT_ACTION_CFG function.

Table 14: Timeout Configuration

BITs Function Description

0 Module Timeout Used to activate the module – drive timeout action

1 Reserved

2 Master Monitor Timeout Used to activate the master monitoring timeout action

3 Reserved

4 Data Exchange Timeout Used to activate the data exchange timeout action

5-31 Reserved

8.4.1	 Module	Timeout	Action

This parameter controls the action to be taken in the event of a Module-to-Drive time out. If enabled and a
timeout occurs the drive will trip with fault “F_46”.

PROFIBUS DP Timeout Action

Module Timeout Action No Action t

Master Monitor Timeout Action No Action

Data Exchange Timeout Action Fault

 27 P94PFB01A

Advanced Features

8.4.2	 Master	Monitor	Timeout	Action

PROFIBUS DP Timeout Action

Module Timeout Action No Action t

Master Monitor Timeout Action No Action t

Data Exchange Timeout Action No Action

Fault

This parameter controls the action to be taken in the event of a Master Monitoring Timeout. The timeout
period is set by the network master during the parameterization phase. If enabled and a timeout occurs the
drive will trip with fault “F_47”.

PID409 - Master Timeout Value

Default: N/A Range: 0 - 65535

Access: RO Type: Integer

This is the VAR_PBUS_MASTER_TIMEOUT_VAL function.

This parameter displays the Monitoring / Watchdog Time (in seconds) set by the network master during the
parameterization phase.

8.4.3	 Data	Exchange	Timeout	Action

Data Exchange Timeout 200

PROFIBUS DP Timeout Action

Module Timeout Action No Action t

Master Monitor Timeout Action No Action t

Data Exchange Timeout Action No Action t

No Action

Fault

Data Exchange Time-out provides an independent method for the module to ensure that communication
with the master is still present. This parameter sets the time out limit so if no data is received for the time
period set, the module will react as per the timeout action selection.

If enabled and a timeout occurs the drive will trip with fault “F_48”

P94PFB01A 28

Advanced Features

8.5	 Sync	and	Freeze
8.5.1	 Sync	and	Freeze	Overview

The network master can put cyclic data into groups which allows multiple cyclic channels to be suspended
and updated using the SYNC and FREEZE commands.

The SYNC Command:

Controls data to the drive. (Dout)

The SYNC command will cause a single transfer of the previously grouped data and stop any more data
from being received by the drive.

The SYNC command may be repeated while in this state to allow another single transfer of data to the
drive.

Issuing an UNSYNC command will revert the drive to a continuous cyclic update of the received data.

The FREEZE Command:

Controls data from the drive. (Din)

The FREEZE command will cause a single update of the previously grouped Din data. In the next data
cycle, the drive transfers “frozen” data to the master.

The Din data will not be updated until the next FREEZE command is received (next “snapshot” taken)
or the FREEZE mode is cancelled by an UNFREEZE command.

Issuing an UNFREEZE command will revert the drive to a continuous cyclic update of the transmitted
data.

8.5.2	 Sync	and	Freeze	Status

All devices that support SYNC and FREEZE provide an 8-bit status word. The SYNC and FREEZE status word
is available as part of the PROFIBUS status word. The function of the 8-BITS is described in Table 15.

Table 15: SYNC and FREEZE Status

PID408	Value Description

Bit 8 Reserved

Bit 9 Clear Out Data

Bit 10 Unfreeze

Bit 11 Freeze

Bit 12 Unsync

Bit 13 Sync

Bit 14 Reserved

Bit 15 Reserved

•

•

•

•

•

•

•

•

 29 P94PFB01A

Diagnostics

9	 Diagnostics
9.1	 Faults

In addition to the normal drive fault codes, the additional codes listed in Table 16 may be generated by the
option module during a fault condition

Table 16: Fault Codes

Fault	Code Definition Remedy

F046 Module timout Module to drive communications time out.

Check the connection between drive and option module

Refer to section 8.4.1 Module Timeout Action

F047 Master Monitoring timeout Check network connection, cabling and termination.

Refer to section 8.4.2 Master Monitor for details

F048 Data Exchange Timeout Check network connection, cabling and termination.

Refer to section 8.4.3 Data Exchange for details

9.2	 Troubleshooting
Table 17: Troubleshooting

Symptom Possible	Cause Remedy

No communications from the
option module

Module is not initialised Check the drive to module connection.
Check PID408 Status Word BIT-0.

Incorrect PROFIBUS-DP settings Check the configuration using MotionView

Improper wiring Check wiring between the PROFIBUS-DP network
and communication module.

Ensure that the terminal block is properly seated.

Check connection between module and drive.

Drive stops for no obvious reason One of the PROFIBUS-DP monitoring
messages timed out and its time-out
reaction is set to FAULT.

Identify the time-out message and modify
appropriate time-out time or reaction to the time-
out settings.

Module does not enter the Data
Exchange State

Data size configuration mismatch
between the Master and the Drive

Check the configuration sizes for Dout and Din
Data.
Refer to Parameters PID284 and PID285.

P94PFB01A 30

Parameter Reference

10	 Parameter	Quick	Reference
Table 18 lists each parameter number and provides its function, default value and access rights.

Table 18: Parameter Quick Reference

Parameter Function Default	Value Access	Rights Cross	Reference

PID283 Node Address 126 RW 4.3.5 Node Address

PID284 OUT Data Size 2 RW 5.2 Channel Data Sizes

PID285 IN Data Size 4 RW 5.2 Channel Data Sizes

PID298-309 Data IN Mapping RW 5.3.1 Data IN (Din) Channels

PID286-297 Data OUT Mapping RW 5.3.2 Data OUT (Dout) Channels

PID310 Acyclic Mode 0 RW 6.2.1 Acyclic Modes

PID408 Node Status Word N/A RO 8.3 PROFIBUS Status

PID409 Master Monitor Timeout N/A RO 8.4.2 Master Monitor Timeout Action

PID413 Timeout Actions RW 8.4 PROFIBUS DP Timeout Actions

AC	Technology	Corporation
630 Douglas Street, Uxbridge MA 01569

Sales: 800-217-9100 * Service: 508-278-9100
www.lenze-actech.com

P94PFB01A

Modbus RTU & Modbus TCP/IP Communication
Communications Interface Reference Guide

2P94MOD01C

Copyright ©2005 by Lenze AC Tech Corporation.

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written
permission from Lenze AC Tech Corporation. The information and technical data in this manual are subject to
change without notice. Lenze AC Tech Corporation makes no warranty of any kind with respect to this material,
including, but not limited to, the implied warranties of its merchantability and fitness for a given purpose. Lenze
AC Tech Corporation assumes no responsibility for any errors that may appear in this manual and makes no
commitment to update or to keep current the information in this manual.

MotionView®, PositionServo®, and all related indicia are trademarks of Lenze AG.

Modbus® is a registered trademark of ‘Schneider Automation’.

This documentation applies to Modbus RTU and Modbus TCP/IP communications for the PositionServo drive
and should be used in conjunction with the PositionServo User Manual (S94P01, S94PM01) that shipped with
the drive. These documents should be read in their entirety as they contain important technical data and
describe the installation and operation of the drive and the applicable option module.

About These Instructions

3 P94MOD01C

Contents

1 Safety Information ... 5

1.1 Warnings, Cautions & Notes .. 5

1.2 Reference Documents... 6

2 Introduction ... 7

2.1 Fieldbus Overview .. 7

2.2 EIA-485 Module .. 7

2.2.1 Specification .. 7

2.2.2 Module Identification Label ... 7

2.3 Ethernet Port .. 8

3 Installation .. 9

3.1 Mechanical Installation ... 9

3.2 Connectors ... 10

3.2.1 EIA-485 Module ... 10

3.2.2 Ethernet Port .. 10

3.3 Electrical Installation ... 11

3.3.1 Cable Types ... 11

3.3.2 Network Limitations: EIA-485 ... 11

3.3.3 Network Limitations: Ethernet .. 11

3.3.4 Connections and Shielding: EIA-485 ... 12

3.3.5 Connections and Shielding: Ethernet .. 13

3.3.6 Network Termination: EIA-485 ... 13

3.3.7 Network Termination: Ethernet ... 13

3.3.8 Network Schematic: EIA-485 .. 14

3.3.9 Network Schematic: Ethernet ... 14

4 Commissioning ... 15

4.1 Overview .. 15

4.2 Configuring the Network Master/Client .. 15

4.3 Configuring the PositionServo Slave/Server ... 17

4.3.1 Connecting ... 17

4.3.2 Connect to the Drive with MotionView OnBoard .. 17

4.3.3 Modbus RTU Slave Node Settings ... 18

4.3.4 Modbus TCP/IP Server Node Settings ... 19

4.3.5 Re-Initializing ... 21

4.3.6 Non-Communication Based Parameter Settings ... 21

4.4 Drive Monitoring ... 22

4P94MOD01C

Contents

4.5 Controlling the Drive ... 22

4.6 Changing Drive Parameters .. 22

4.7 EIA-485 (RS485) Parameters .. 22

4.8 Ethernet Parameters ... 23

4.9 Negative Number Transmission .. 23

5 Modbus Implementation .. 24

5.1 Supported Function Codes .. 24

5.2 Data Format, Size and Memory Area ... 24

5.3 Register Numbering .. 25

5.4 Endian Format .. 26

5.5 Registers Access .. 26

5.5.1 Register Reading .. 26

5.5.2 Register Writing.. 26

5.6 No Response Conditions ... 26

5.7 Exception Responses .. 27

5.8 Modbus Message Frame ... 27

5.8.1 PDU Function Code ... 27

5.8.2 PDU Data ... 27

5.8.3 ADU for Modbus RTU .. 28

5.8.4 ADU for Modbus TCP .. 28

6 Reference ... 29

6.1 PID List with Modbus Values ... 29

5 P94MOD01C

Safety Information

1 Safety Information

1.1 Warnings, Cautions & Notes
General

Some parts of Lenze controllers (frequency inverters, servo inverters, DC controllers) can be live, with the
potential to cause attached motors to move or rotate. Some surfaces can be hot.

Non-authorized removal of the required cover, inappropriate use, and incorrect installation or operation creates
the risk of severe injury to personnel or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be carried
out by qualified, skilled personnel (IEC 364 and CENELEC HD 384 or DIN VDE 0100 and IEC report 664 or DIN
VDE 0110 and national regulations for the prevention of accidents must be observed).

According to this basic safety information, qualified skilled personnel are persons who are familiar with the
installation, assembly, commissioning, and operation of the product and who have the qualifications necessary
for their occupation.

Application as directed

Drive controllers are components which are designed for installation in electrical systems or machinery. They
are not to be used as appliances. They are intended exclusively for professional and commercial purposes
according to EN 61000-3-2. The documentation includes information on compliance with the EN 61000-3-2.

When installing the drive controllers in machines, commissioning (i.e. the starting of operation as directed)
is prohibited until it is proven that the machine complies with the regulations of the EC Directive 98/37/EC
(Machinery Directive); EN 60204 must be observed.

Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the EMC
Directive (2004/108/EC).

The drive controllers meet the requirements of the Low Voltage Directive 2006/95/EC. The harmonised
standards of the series EN 50178/DIN VDE 0160 apply to the controllers.

The availability of controllers is restricted according to EN 61800-3. These products can cause radio
interference in residential areas.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not
change any insulation distances during transport or handling. Do not touch any electronic components and
contacts.

Controllers contain electrostatically sensitive components, which can easily be damaged by inappropriate
handling. Do not damage or destroy any electrical components since this might endanger your health!

Electrical connection

When working on live drive controllers, applicable national regulations for the prevention of accidents (e.g. VBG
4) must be observed.

The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections,
fuses, PE connection). Additional information can be obtained from the national regulation documentation. In
the United States, electrical installation is regulated by the National Electric Code (nec) and NFPA 70 along with
state and local regulations.

6P94MOD01C

Safety Information

The documentation contains information about installation in compliance with EMC (shielding, grounding, filters
and cables). These notes must also be observed for CE-marked controllers.

The manufacturer of the system or machine is responsible for compliance with the required limit values
demanded by EMC legislation.

Operation
Systems including controllers must be equipped with additional monitoring and protection devices according to
the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). You are
allowed to adapt the controller to your application as described in the documentation.

DANGER!

•	 After the controller has been disconnected from the supply voltage, live components and power
connection must not be touched immediately, since capacitors could be charged. Wait at least 60
seconds before servicing the drive Observe all corresponding notes on the controller.

•	 Do not continuously cycle input power to the controller more than once every three minutes.

•	 Please close all protective covers and doors during operation.

WARNING!
Network control permits automatic operation of the inverter drive. The system design must incorporate
adequate protection to prevent personnel from accessing moving equipment while power is applied to
the drive system.

Table 1: Pictographs used in These Instructions:

Pictograph Signal Word Meaning Consequence if Ignored

DANGER! Warning of Hazardous Electrical
Voltage.

Reference to an imminent danger that may
result in death or serious personal injury if the
corresponding measures are not taken.

WARNING! Impending or possible danger to
personnel

Death or injury

STOP! Possible damage to equipment Damage to drive system or its surroundings

NOTE Useful tip: If note is observed, it
will make using the drive easier

1.2 Reference Documents
•	 Modbus Application Protocol Specification V1.1
 Refer to: http://www.modbus.org/tech.php

•	 Modbus Over Serial Line Specification & Implementation Guide V1.0.
 Refer to: http://www.modbus.org

•	 PositionServo Programming Manual: PM94P01, PM94M01(MVOB)
 Refer to: http://www.lenze-actech.com

NOTE:
The complete list of variables can be found in the PositionServo Programming Manual (PM94P01, PM94M01).

7 P94MOD01C

Introduction

2 Introduction
The following information is provided to explain how the PositionServo drive operates on a Modbus network; it
is not intended to explain how Modbus itself works. Therefore, a working knowledge of Modbus is assumed,
as well as familiarity with the operation of the PositionServo drive.

2.1 Fieldbus Overview
Modbus is an internationally accepted asynchronous serial protocol designed for commercial and industrial
automation applications.

The Modbus RTU architecture is based upon a Master-Slave orientation in which the PositionServo drive is
always a slave node. While the Modbus RTU protocol does not specify the physical layer, the most commonly
used is 2-wire EIA-485 (RS485). The PositionServo requires the use of an EIA-485 option module (E94ZARS41)
to be able to connect to such a network and communicate via Modbus RTU.

Modbus TCP/IP uses an Ethernet physical layer and as such peer-to-peer and client-server communication
techniques are possible. However, the PositionServo drive is always a server (slave node).

2.2 EIA-485 Module

2.2.1 Specification
•	 Supported baudrates: 115200bps, 57600bps, 38400bps,19200bps, 9600bps

•	 Parity modes supported: Even, Odd, None

•	 Stop bits supported: 2, 1.5, 1

•	 EIA-485, 2-wire (half duplex)

•	 Network impedance loading of 1 unit (EIA-485 specification stipulates max of 32 units per network segment)

2.2.2 Module Identification Label
Figure 1 illustrates the labels on the PositionServo EIA-485 (RS485) option module. The PositionServo EIA-485
module is identifiable by:

•	 One label affixed to the side of the module.

•	 The TYPE identifier in the center of the label: E94ZARS41

•	 The port (interface) identifier, P21, on the right hand side of the label.

TYPE: E94ZARS41BT
ID-NO: 123456789

039080825
E94ZARS41BT000XX1A10

Made in USA

Communications

RS485 Module

P
2

1

A: Fieldbus Protocol
B: Model Number
C: Lenze Order Number
D: Firmware Revision
E: Hardware RevisionA

B
C

DE

Figure 1: PositionServo EIA-485 (RS485) Module Label

8P94MOD01C

Introduction

2.3 Ethernet Port
•	 Supported baudrates: 100Mbps and 10Mbps

•	 Supports two simultaneous Modbus TCP/IP connections on port 502

•	 Complies with IEEE 802.3

•	 Standard screened RJ45 connector with integrated status LEDs

•	 On open connections with no activity for more then 75 seconds, the PositionServo Drive sends a TCP keep-
alive message every 75 seconds to check the connection status.

NOTE:
The PositionServo does not support auto negotiation/cross over. Therefore, unless the connecting
device supports auto negotiation/cross over, a crossover cable will be required for one-to-one
connection.

9 P94MOD01C

Installation

3 Installation
Section 3.1 is only applicable to Modbus RTU communication with the EIA-485 (RS485) option module,
E94ZARS41. Modbus TCP/IP communication uses the P2 Ethernet port on the front of the PositionServo.

3.1 Mechanical Installation
1. Ensure that for reasons of safety, the AC supply, DC supply and +24VDC backup supply have been

disconnected before opening the option bay cover.

2. Remove the two COMM module screws that secure Option Bay 1. With a flat head screwdriver, lift the
Option Bay 1 cover plate and remove.

3. Fit the 20-pin header into the module before fitting the module into the drive.

4. Install the EIA-485 (RS485) COMM Module (E94ZARS41) in Option Bay 1.

5. Replace the two COMM module screws (max torque: 0.3Nm/3lb-in) to secure Option Bay 1 in place.

S921

Figure 2: Installation of EIA-485 (RS485) Communications Module

10P94MOD01C

Installation

3.2 Connectors

3.2.1 EIA-485 Module
Table 2 and Figure 3 illustrate the pinout of the PositionServo EIA-485 (RS485) Option Module E94ZARS41. The
3-pin connector provides 2-wire plus isolated ground connection to the network.

Table 2: EIA-485 (RS485) Interface Pin Designation

Terminal Name Description Connector

1 ICOM Isolated Common

1
23

TXA
TXB

ICOM

1
2

3

2 TxB (+) Transmit B (+)

3 TxA (-) Transmit A (-)

Figure 3: EIA-485 (RS485) Interface Pin Designation

3.2.2 Ethernet Port
Port P2 on the front of the PositionServo is an RJ45 Standard Ethernet connector that is used to communicate
with a host via Ethernet TCP/IP.

Table 3: P2 Pin Assignments (Communications)

Pin Name Function RJ45 Connector

1 + TX Transmit Port (+) Data Terminal

ET
H

ER
N

ET

1

8

P2
2 - TX Transmit Port (-) Data Terminal

3 + RX Receive Port (+) Data Terminal

4 N.C.

5 N.C.

6 - RX Receive Port (-) Data Terminal

7 N.C.

8 N.C.

The status LEDs integrated in the RJ45 connector indicate link activity and baudrate. The green LED indicates
baudrate and blinks steadily when the drive is running at the network speed (10/100Mbps). The yellow LED
indicates link activity and flashes when the drive is communicating (transmitting/receiving) with the network.

11 P94MOD01C

Installation

3.3 Electrical Installation

3.3.1 Cable Types
Due to the high data rates used on Modbus networks it is paramount that correctly specified quality cable is
used. The use of low quality cable will result in excess signal attenuation and data loss.

For EIA-485 it is recommended to use a good quality shielded twisted pair cable with characteristic impedance
of 120W.

For Ethernet it is recommended that a minimum specification of CAT5e UTP cable (unscreened) is used.
However, for environments that high levels of electrical noise STP (screened) cable is recommended.

3.3.2 Network Limitations: EIA-485
There are several limiting factors that must be taken into consideration when designing a Modbus RTU network,
however, here is a simple checklist:

•	 Modbus RTU networks are limited to a maximum of 247 nodes.

•	 Only 32 nodes (based on each node having a load impedance of 1 unit) may be connected on a single
network segment. Certain Modbus EIA-485 masters may only be able to support a fewer number of nodes
(i.e., 8, 16). Refer to the documentation for the Modbus master in use.

•	 A network may be built up from one or more segments with the use of network repeaters.

•	 Maximum network segment length is 1200 meters for baudrates up to and including 19200bps. Certain
Modbus masters may be limited to shorter runs. Refer to the documentation for the Modbus master in use.

•	 Minimum of 1 meter of cable between nodes.

•	 Use fiber optic segments to:

•	 Extend networks beyond normal cable limitations.
•	 Overcome different ground potential problems.
•	 Overcome very high electromagnetic interference.

•	 EIA-485 is a linear daisy chain topology. Both ends of the network segment must be terminated by a 120W
±1% resistor.

3.3.3 Network Limitations: Ethernet
There are several limiting factors that must be taken into consideration when designing a Modbus TCP/IP
network, however, here is a simple checklist:

•	 Modbus TCP/IP networks are limited to a maximum of 255 nodes per subnet (based on a Class C addressing
system).

•	 Hubs are not recommended for general use as they contribute in creating network data collisions (ports on
a hub do not route data direct to other ports but instead all ports are open to receive data from every port)
and as such will cause additional delays in transmissions while the re-attempts are carried out.

•	 Switches are the recommended solution for connecting a multi-node network as they route network data
direct from port to port (collisions may occur during network start-up or when a device is connected and
the correct port routing is established) and therefore reduce the possibility of collisions.

•	 “Office grade” Ethernet equipment does not generally offer the same level of noise immunity or robustness
as “industrial grade” Ethernet equipment.

12P94MOD01C

Installation

•	 Maximum cable length for UTP/STP CAT5e cable is typically 100m. For other categories consult the cable
data sheet.

•	 Use fiber optic segments to:

•	 Extend networks beyond normal cable limitations.
•	 Overcome different ground potential problems.
•	 Overcome very high electromagnetic interference.

•	 Spurs or T connections are not permitted on an Ethernet cable. To create additional connections an Ethernet
switch must be used.

•	 The use of wireless networking products for industrial applications is becoming more acceptable, but
extreme care must be taken during the design phase and consultation with an industrial wireless provider
is strongly recommended.

3.3.4 Connections and Shielding: EIA-485
To ensure good system noise immunity all network cables should be correctly grounded:

•	 Minimum recommendation of grounding is that the network cable is grounded once in every cubical.

•	 Ideally the network cable should be grounded on or as near to each drive as possible.

•	 For wiring of cable to the connector plug the unscreened cable cores should be kept as short as possible;
recommended maximum of 20mm.

20 mm
max

Connect to
cubical panel/
earth (PE) as
close to drive
as possible

Figure 4: EIA-485 Connection

13 P94MOD01C

Installation

3.3.5 Connections and Shielding: Ethernet
The use of pre-fabricated cables is recommended as this reduces the chances of connections mistakes and
poor quality connections.

If cable connections are assembled on site then it is strongly recommended that these cables are tested with
a suitable Ethernet cable tester

STP cables are the preferred solution as they provide a screen/shield surrounding the inner cores and have an
integrated screened surround on the RJ45 connector for quick and easy connection.

Figure 5: CAT5e STP Cable

Images ©2000-2009 Belkin International, Inc

3.3.6 Network Termination: EIA-485
In high speed (EIA-485) networks (typically 19.2kbps or higher) it is essential to install the specified termination
resistors, i.e. one at both ends of a network segment. Failure to do so will result in signals being reflected back
along the cable which will cause data corruption. A 120W 1% ¼W resistor should be fitted to both ends of a
network segment across the TxA and TxB lines.

120 Ω
¼ W

Connect to
cubical panel/
earth (PE) as
close to drive
as possible

Figure 6: EIA-485 (RS485) Network Termination

3.3.7 Network Termination: Ethernet
Ethernet network cable termination is not required as it is integrated into the circuitry of each device’s RJ45
port.

14P94MOD01C

Installation

3.3.8 Network Schematic: EIA-485
Figure 7 illustrates the connection of the cables for a PositionServo drive in a Modbus master/slave network.

PLC/PC
Modbus Master

PositionServo
RS-485 Module

PositionServo
RS-485 Module

TxB TxA ICOM ICOMTxB TxBTxA TxA

120Ω120Ω

Modbus NetworkModbus Network

Min 1m Min 1m

Figure 7: 120W (1%) Termination in EIA-485 (RS485) Network

3.3.9 Network Schematic: Ethernet
Figure 8 illustrates a one-to-one ethernet connection. Figure 9 illustrates a multi node ethernet connection.

Cross over patch cable

P2

PLC/PC
Modbus Client

PositionServo
Modbus Server

Figure 8: One-to-One Connection

Ethernet Switch

P2

PLC/PC
Modbus Client

PositionServo
Modbus Server

P2

PositionServo
Modbus Server

P2

PositionServo
Modbus Server

Figure 9: Multi Node Connection

15 P94MOD01C

Commissioning

4 Commissioning

4.1 Overview
It is assumed that the user has familiarised themselves with how to set parameters using MotionView software.
Refer to the PositionServo with MVOB User Manual (S94PM01) for more details. The details that follow provide
a step-by-step guide to quickly and easily set-up a PositionServo drive to communicate on a Modbus network

4.2 Configuring the Network Master/Client
The method for configuring master/client devices differs greatly between manufacturers. Provided herein is
a very basic, generic guide to setting up a network master/client. Consult the master/client manufacturer for
configuration assistance if required.

1. Launch the Master/client configuration software.

2. Setup the Master/client Modbus port as required. Refer to Table 4.

Table 4: Modbus RTU and Modbus TCP/IP Settings

Modbus RTU Master settings Modbus TCP Client settings
Node address IP Address or DHCP enabled
Baud rate Subnet mask set as required, i.e. 255.255.255.0
Data bits = 8 (for Modbus RTU) Gateway set as required
Parity Service port = 502
Stop bits Baud rate set as required, i.e. 100Mbps
Flow control

3. Add generic Modbus slave/server node to the master/client

4. Set the slave/server node address.

5. Assign the Modbus slave/service registers as required.

NOTE:
In true Modbus, 3X and 4X Registers are numbered starting at 1. This is known as ‘one based’
addressing. However, when transmitted to a slave over the serial link, the actual address transmitted
is one less.

Some Modbus masters will allow for the first register number to be 0. This is known as ‘zero based’
addressing. If this is the case, the Modbus register numbers listed in this manual must be offset by
-1 to properly program a master using ‘zero-based’ addressing.

Refer to Section 6 for a list of the PositionServo Modbus registers.

16P94MOD01C

Commissioning

Figure 10: Example Modbus Register Assignment

6. Repeat steps 3 to 5 for each required slave/server node

Figure 11: Example Modbus Master/Client Configuration

7. Save the configuration and download to the master/client

17 P94MOD01C

Commissioning

4.3 Configuring the PositionServo Slave/Server

4.3.1 Connecting
With the drive power disconnected, install the EIA-485 (RS485) module and connect the network cable as
instructed in the preceeding sections. Ensure the drive Run/Enable terminal is disabled then apply the correct
voltage to the drive (refer to drive’s user manual for voltage supply details).

4.3.2 Connect to the Drive with MotionView OnBoard
Refer to the PositionServo User Manual, section 6.2 for full details on configuring and connecting a drive
via MotionView OnBoard (MVOB) software. Contained herein is a brief description of launching MVOB and
communicating with the drive.

1. Open the PC’s web browser. Enter the drive’s default IP address [192.168.124.120] in the browser’s
Address window.

2. The authentication screen may be displayed if the PC does not have Java RTE version 1.4 or higher. If so,
to remedy this situation, download the latest Java RTE from http://www.java.com.

3. When MotionView has finished installing, a Java icon entitled [MotionView OnBoard] will appear on your
desktop and the MVOB splash screen is displayed. Click [Run] to enter the MotionView program.

4. Once MotionView has launched, verify motor is safe to operate, click [YES, I have] then select [Connect]
from the Main toolbar (top left). The Connection dialog box will appear.

5. Select [Discover] to find the drive(s) on the network available for connection.

[Discover] may fail to find the drive’s IP address on a computer with both a wireless network card and
a wired network card (or a PC with more than one network connection). If this happens, try one of the
following remedies:

Disable the wireless network card and then use [Discover].
Type in the drive’s IP address manually at the box [IP Address].

Then click [Connect]

6. Highlight the drive (or drives) to be connected and click [Connect] in the dialog box.

Figure 12: Connection Box with Discovered Drive

In the lower left of the MotionView display, the Message WIndow will contain the connection status message.
The message “Successfully connected to drive B04402200450_192.168.124.120” indicates that the drive
B04402200450 with IP address 192.168.124.120 is connected.

18P94MOD01C

Commissioning

4.3.3 Modbus RTU Slave Node Settings
If using the EIA-485 (RS485) module, open MotionView and click on the [Communication] folder. Then select the
[RS485] folder to set/change the RS485 parameters: Configuration, Baud Rate, Parity, Stop Bits and Address.

Figure 14: RS-485 Folder

Configuration: ‘Modbus slave’ = the modbus slave protocol is enabled on the RS485 port.
 UPPP = the RS485 uses UPPP (Point-to-Point Protocol).

Baud Rate: 115200bps, 57600bps, 38400bps, 19200bps, 9600bps

Parity: Even, Odd, None

Stop Bits: 2, 1.5, 1

Address: 1-247

Each slave device in the Modbus network must have its own unique network address. The ‘Addr’ submenu on
the drive display and the front panel buttons can be used to set the Modbus network address.

The RS485 default configuration is: UPPP, 19200bps, No Parity, 2 Stop Bits and Address = 1.

TIP - Avoid using address 1. Most Modbus devices ship with a default address of 1. As duplicate addressing
on a Modbus network is not allowed, this can lead to conflicts when replacing and commissioning nodes. To
avoid this it is recommended that you do not set the slave address to 1.

Modbus RTU Folder - Modbus Reply Delay

Modbus Reply Delay is the delay introduced after receiving a Modbus request and before sending a reply. Note
that this delay will always be >= 3.5 characters as required by the Modbus specification. Some Modbus master
devices are slower to respond than others and an increase of the ‘Modbus reply delay’ value may be required
to successfully work with these devices.

19 P94MOD01C

Commissioning

Figure 15: Modbus RTU Folder

4.3.4 Modbus TCP/IP Server Node Settings
The IP address of the PositionServo drive is composed of four sub-octets that are separated by three dots.
Each sub-octet can be configured with a number between 1 and 254. As shipped from the factory the default
IP address of a drive is:

192.168.124.120.

There are two methods of changing the current IP address. An address can be assigned to the drive automatically
(dynamic IP address) when the drive is connected to a DHCP (Dynamic Host Configuration Protocol) enabled
server, or the drive can have an IP address assigned to it manually be the user (static IP address).

4.3.4.1 Obtaining the PositionServo’s Current Ethernet Settings

The current Ethernet setting and IP address of the PositionServo drive can be obtained from the drive display
and keypad. Press the recessed ‘mode’ button () on the display and use the “UP” and “DOWN” buttons (p
q) to access parameters IP_1, IP_2, IP_3 and IP_4. Each of these parameters contain one sub-octet of the full
IP address, for example in the case of the drive default (factory set) address parameters:

IP_1 = 192

IP_2 = 168

IP_3 = 124

IP_4 = 120

By accessing these four parameters the full IP address on the drive can be obtained.

If parameters IP_1, IP_2, IP_3 and IP_4 all contain ‘----‘ rather than a numerical values it means that the drive
has DHCP enabled and the DHCP server is yet to assign the drive its dynamic IP address. As soon as an IP
address is assigned by the server the address assigned will be display by the drive in the above parameters.
See section on obtaining IP addresses through DHCP.

20P94MOD01C

Commissioning

4.3.4.2 Configuring the IP Address Manually (Static Address)

When connecting directly from PositionServo drive to the PC without a DHCP server or when connecting to a
private network (where all devices have static IP addresses) the IP address of the PositionServo drive will need
to be assigned manually.

To assign the address manually, the drive must have its DHCP mode disabled. This can be done using the
drive keypad and display. Press the recessed ‘mode’ button () on the display and use the “UP” and “DOWN”
buttons (p q) to access parameter ‘DHCP’. Check this parameter is set to a value of ‘0’. If the DHCP parameter
is set to ‘1’ then use the ‘mode’ () and down (q) arrows to set to ‘0’ and then cycle power to the drive in
order for this change to take effect. When DHCP is disabled and power cycled to the drive, it will revert back to
its previous static IP address.

It is most common for the PositionServo drive IP address to be left at its default value (192.168.124.120) and
to configure the PC Ethernet port to communicate on this subnet. If more than one drive needs to be connected
to the PC at any one time then the IP_4 parameter can be accessed via the keypad and changed to provide a
unique IP address on the network for each drive. Note that IP_4 is the only octet that can be changed (IP_1, IP2,
and IP_3 are read-only) and that power must be cycled to the drive for any changes to take effect.

If the PositionServo drive(s) needs to be configured for a specific subnet with different values to default (for
IP_1, IP_2, and IP_3, and IP_4) then this needs to be performed with the MotionView configuration tool.
First establish communications using the default drive address or with an address that was established by
changing IP_4 parameters via the drive keypad. Follow the rest of these instructions in order to establish
communications and launch MotionView using this address. Once within the MotionView software a full IP
address can be assigned.

From the Node tree within MotionView select the [Communications] folder and then the [Ethernet] sub-folder as
shown in Figure 16. The settings reflect those that will appear in the software parameter view window.

Figure 16: Ethernet Folder

The IP address, subnet mask, and default gateway address can all be edited in this screen. If the text in any of
these boxes turns red once it has been entered then this means that the values or format used is invalid and
the values will not be applied.

To enable DHCP, click the box adjacent to [Obtain IP Address using DHCP] to place a check mark in this box R.

21 P94MOD01C

Commissioning

To disable DHCP, click the box again. Power must be cycled for any changes to [Configure IP Address] to take
effect. On changing any ethernet parameter value, the dialog box in Figure 17 will appear. Click [Ok] and cycle
power for changes to take effect.

4.3.4.3 Configuring the IP Address Automatically (Dynamic Address)

When connecting a PositionServo drive onto a network domain with a DHCP enabled server (where all devices
have dynamic IP addresses assigned by the server) the IP address of the PositionServo drive can also be
assigned automatically by the server.

To have the address assigned automatically the drive must have its DHCP mode enabled. This can be done
by using the drive keypad and display. Press the ‘mode’ button on the display and use the “UP” and “DOWN”
buttons to access parameter ‘DHCP’. Check this parameter is set to a value of ‘1’. If the DHCP parameter is set
to ‘0’ then use the ‘mode’ and up arrow to set to ‘1’ and then cycle power to the drive in order for this change
to take effect.

When the PositionServo drive is waiting for an IP address to be assigned to it by the server it will display ‘----‘
in each of the four octet parameters (IP_1, IP_2, IP_3, and IP_4) on its display. Once the address is assigned by
the server it will appear in these parameters. If this parameters continue to display ‘----‘ then it is likely that a
connection between the drive and server has not been established, or the server is not DHCP enabled.

DHCP can be enabled through the MotionView software for convenience should the operator wish to configure the
drive using a manual (static) IP address and switch over to an automatic (dynamic) address once configuration
is complete.

4.3.5 Re-Initializing
To activate any changes made the drive has to be reinitialized. Hence the warning within MotionView

Figure 17: REBOOT Message

This can be done by cycling the power to the drive.

4.3.6 Non-Communication Based Parameter Settings
In addition to configuring the Modbus settings and depending upon the application there may be several
drive based parameters that will need to be set using MotionView or an Indexer program or via the Modbus
parameter access channel. Such as:

•	 PID34 – Drive Mode (VAR_DRIVEMODE)

•	 PID37 – Reference (VAR_REFERENCE)

•	 PID29 – Enable switch funtion (VAR_ENABLE_SWITCH_TYPE)

22P94MOD01C

Commissioning

4.4 Drive Monitoring
The master/client can read the drive parameters as long as Modbus communications are enabled.

NOTE:
The complete list of variables can be found in the PositionServo Programming Manual (PM94P01, PM94M01).

4.5 Controlling the Drive
Controlling the drive over Modbus is essentially identical to controlling the drive from the User’s program. The
list of variables and their functionality is identical for both User’s program and Modbus control. Refer to the
variable list in the PositionServo Programming Manual for the functionality of the drive’s variables.

4.6 Changing Drive Parameters
To change drive parameters, simply write to the appropriate register as listed in the PositionServo Programming
Manual (PM94P01 or PM94M01).

4.7 EIA-485 (RS485) Parameters
Drive variables #172-176 are EIA-485 (RS485) communication programming parameters specifically for
configuration of the EIA-485 interface.

Table 5: EIA-485 (RS485) Variables - Excerpted from PS Variable List

PID Variable Name Type Format EPM Access Description Units

172 VAR_SERIAL_ADDRESS W Y R/W RS485 drive ID. Range: 0 - 254

173 VAR_MODBUS_BAUDRATE W Y R/W

Baud rate for Modbus operations:

2 - 9600
3 - 19200
4 - 38400

5 - 57600
6 - 115200

174 VAR_MODBUS_DELAY W Y R/W
Modbus reply delay in mS
Range: 0 - 1000

mS

175 VAR_RS485_CONFIG W Y R/W
RS485 configuration:
0 - normal IP over PPP
1 - ModBus

176

VAR_PPP_BAUDRATE

NOTE: Does NOT apply
to MVOB.

W Y R/W

RS232/485 (normal mode) baud rate:

2 - 9600
3 - 19200
4 - 38400

5 - 57600
6 - 115200

23 P94MOD01C

Commissioning

4.8 Ethernet Parameters
Drive variables #67-70 are Ethernet communication programming parameters specifically for configuration of
the ethernet interface.

Table 6: Ethernet Variables - Excerpted from PS Variable List

PID Variable Name Type Format EPM Access Description Units

67 VAR_IP_ADDRESS W Y R/W
Ethernet IP address. IP address changes at
next boot up. 32 bit value

68 VAR_IP_MASK W Y R/W
Ethernet IP NetMask. Mask changes at next
boot up. 32 bit value

69 VAR_IP_GATEWAY W Y R/W
Ethernet Gateway IP address. Address
changes at next boot up. 32 bit value

70 VAR_IP_DHCP W Y R/W Use DHCP: 0, 1
0 - manual;
1 - use DHCP service

4.9 Negative Number Transmission
Drive variables 51, 60, 79, 81 and 90 are signed integer values and could be negative. These registers are sent
over the modbus communications in signed internal units.

Table 7: Signed Integer Variables - Excerpted from PS Variable List

PID Variable Name Type Format EPM Access Description Units

51 VAR_VREG_WINDOW vel W Y R/W
Gains scaling coefficient
Range: -16 to +4

60 VAR_VLIMIT_ATSPEED F Y R/W
Target Velocity for At Speed window
Range: -10000 - +10000

Rpm

79 VAR_M2SRATIO_MASTER W Y R/W

Master to system ratio.
Master counts range: -32767 - +32767
Value will be applied upon write to PID #80.
Write to this PID followed by writing to
PID#80 to apply new ratio pair

81 VAR_S2PRATIO_SECOND W Y R/W

Secondary encoder to prime encoder ratio.
Second counts range: -32767 - +32767
Value will be applied upon write to PID #82.
Write to this PID followed by writing to
PID#82 to apply new ratio pair

90 VAR_AIN1_OFFSET Y R/W
Analog input #1 offset. Applied when used
as current/velocity reference
Range: -10,000 to +10,000

mV

24P94MOD01C

Protocol Implementation

5 Modbus Implementation

5.1 Supported Function Codes
The Modbus function codes supported by the PositionServo drive are:

03 – Read Holding Register
16 – Preset (write) Multiple Registers

5.2 Data Format, Size and Memory Area
Modbus registers are limited by protocol definition to a length of 16-bits per register. The user must use two
consecutive 16-bit registers to read/write one 32-bit register.

All PositionServo drive parameters are 32-bit in size but can be accessed in 3 different formats:

•	 IEEE Floating Point (FLOAT or REAL)

•	 32-bit integer (DWORD or DINT)

•	 16-bit integer (WORD or INT) where by the true 32-bit value consumes two consecutive 16-bit registers

Furthermore, PositionServo parameters exist in each of the 3 formats in both RAM (volatile) and EPM (non-
volatile) areas. Therefore the memory addresses are divided into six ranges according to their format and
memory type as shown in Table 8.

Table 8: Memory Address Ranges

Memory Area Offset 0 512 1024 1556 2068 2304

Type RAM RAM EPM EPM RAM EPM

Format 32-bit INT Float 32-bit INT Float 16-bit INT 16-bit INT

The Modbus register address of a drive parameter can be calculated as follows:

ModbusRegister = (2 x PIDNumber) + MemoryOffset + ModbusOffset

Where:

PIDNumber = PositionServo Parameter Index Number. Refer to section xxxx for a full list.

MemoryOffset = Memory offset as per table 4 above

ModbusOffset = 0 for zero based addressing
 1 for traditional Modbus addressing

NOTE: All values in decimal notation

To access the <variable index> as a RAM-integer, use the following formula to calculate this register address
(maximum address allowed is 511):

<register address> = 0 + 2 * <variable index> + 1;

To access the <variable index> as a RAM-float, use the following formula to calculate this register address
(maximum address allowed is 1023):

<register address> = 512 + 2 * <variable index> + 1;

To access the<variable index> as a EPM-integer, use the following formula to calculate this register address
(maximum address allowed is 1535):

<register address> = 1024 + 2 * <variable index> + 1;

25 P94MOD01C

Protocol Implementation

To access the <variable index> as EPM-float, use the following formula to calculate this register address
(maximum address allowed is 2047):

<register address> = 1536 + 2 * <variable index> + 1;

Two special methods are created for those terminals that can ony handle 16-bit registers:

To access the <variable index> as a RAM- 16 bit integer register (the RAM copy of a variable that is represented
as a 16 bit integer) use the following formula to calculate this register address (maximum address allowed is
2303):

<register address> = 2048 + <variable index> + 1;

For these terminals the values are represented only as integers. The variable index is not multiplied by 2
because one variable is mapped to one register only. If the variable, which is represented as a 32 bit value
internally, is out of range (lower than minimum or higher than maximum value for 16 bit integers), then the
return value is truncated to the closest value supported by the 16 bit signed number. The access to a variable
using this register address range will only read/write the RAM copy of a variable.

To access the <variable index> as an EPM -16 bit signed integer register (the EPM copy of a variable that is
represented as a 16 bit integer) use the following formula to calculate this register address (maximum address
allowed is 2560):

<register address> = 2304 + <variable index> + 1;

For these terminals the values are represented only as integers. The variable index is not multiplied by 2
because one variable is mapped to one register only. If the variable, which is represented as a 32 bit value
internally, is out of range (lower than minimum or higher than maximum value for 16 bit integers), then the
return value is truncated to the closest value supported by the 16 bit register. The access to a variable using
this register address range will read only the RAM copy of a variable and write both the RAM and EPM copies
of a variable.

Refer to section 6 for a complete list of Modbus registers for each variable.

5.3 Register Numbering
Modbus registers start at 1 which historically coincided with many older slave devices that often have parameters
starting at address 1. However, the true data addressed within a Modbus telegram starts at address 0. This
means that registers are offset by 1 compared to the true data address transmitted on the network, e.g.

Holding register 40001 is actually accessed as 0000 in the message telegram address field

The conversion from Modbus register number to the Modbus data address field is performed automatically by
the Modbus Master/Client. The PositionServo adheres to the Modbus Standard in that its registers start at 1.

NOTE:
Some Modbus masters will allow for the first register number to be 0. This is known as ‘zero based’
addressing. If this is the case, the Modbus register numbers listed in this manual must be offset by -1 to
properly program a master using ‘zero-based’ addressing.

•	 Using a master that supports traditional register addressing to access PositionServo
parameter 100 (user variable VAR_V0) as a 16-bit value would use Modbus register 42405

•	 Using a master that has zero based addressing enabled would use Modbus register 42404

26P94MOD01C

Protocol Implementation

5.4 Endian Format
Modbus uses “big-endian” representation of the register data. This means that when a numerical value that is
larger than a single byte is transmitted, the MOST significant byte (MSB) is sent first, e.g.

•	 16-bit integer value 0x1234 = 2 bytes of 0x12 and 0x34

•	 32-bit integer value 0x12345678 = 4 bytes of 0x12, 0x34, 0x56 and 0x78

5.5 Registers Access
•	 Care should be taken when accessing registers from multiple sources such as multiple clients or the drive

Indexer program as data could be over written or out of sequence

•	 Writing to the EPM area of memory simultaneously writes to the RAM area too

•	 Writing to the EPM area of memory should be done conservatively as the EEPROM (EPM) has a typical life
expectancy of 1 million writes

5.5.1 Register Reading
Use the function code “03 (0x03) Read 4X Holding Registers” to read an adjoining block of holding registers in
a remote device.

NOTE:
Do NOT attempt to read any write-only variables. Attempting to read a write-only variable can result
in erroneous data.

5.5.2 Register Writing
No discrete coil access (function code 1) is provided for PositionServo Drive. Use the “16 (0x10) Write Multiple
Registers” function to write binary values. This requires the user programming to pack bits into user registers.

The function code “16 (0x10) Write Multiple Registers” is used to write a block of adjoining registers (1-123,
Master device dependent) in a remote device.

NOTE:
Do NOT attempt to write to any read-only variables. Attempting to write to a read-only variable can
result in drive fault (F41).

5.6 No Response Conditions
The PositionServo Drive will not respond to any message that:

•	 contains	one	or	more	parity	errors	

•	 has	an	invalid	CRC	value	

•	 was	not	directed	to	the	drive’s	network	address	

•	 is	not	at	least	8	bytes	long	(minimum	required	for	the	supported	functions)	

•	 is	more	than	18	bytes	long	(maximum	allowed	before	input	buffer	overflow	occurs)	

27 P94MOD01C

Protocol Implementation

5.7 Exception Responses
If an invalid message is received, the drive will respond with a Modbus Exception as per the “Modbus application
Protocol specification V1.1”, i.e. the exception function code = the request function code + 0x80 (an exception
code is provided to indicate the reason of the error).

Table 9: Exception Codes

Code V1.1 Specification Description

0x01 Illegal Function function not supported by PositionServo

0x02 Illegal data address requested address is not a valid register address

0x03 Illegal Data Value set value not valid for specific variable

5.8 Modbus Message Frame
The Modbus protocol defines a simple protocol data unit (PDU) independent of the underlying communication
layers. There are additional application data unit (ADU) fields introduced by the network layer.

ADU for Modbus RTU

PDU

Address Function Code Data Error

Figure 18: Modbus RTU Frame EIA-485

ADU for Modbus TCP/IP

PDU

Length Unit Identifier Function Code DataTransaction Protocol Identifier

MBAP

Figure 19: Modbus TCP/IP Request/Response

5.8.1 PDU Function Code
•	 Size = 1 byte

•	 The function code indicates what kind of action to perform.

•	 The function code (depending upon the function) is normally followed by a data field that contains request
and response parameters.

5.8.2 PDU Data
The data field of messages sent from a master/client to slave/server device contains additional information that
the slave/server uses to take the action defined by the function code. This can include items like discrete and
register addresses, the quantity of the items to be handled, and the count of the actual data bytes in the field.

The data field may be nonexistent (of zero length) in certain kinds of requests. In this case the slave/server does
not require any additional information. The function code alone specifies the action.

28P94MOD01C

Protocol Implementation

If no error occurs related to the Modbus function requested in a properly received Modbus ADU, the data field
of a response from a slave/server to a master/client contains the data requested. If an error related to the
Modbus function requested occurs, the field contains an exception code that the server application can use to
determine the next action to be taken.

5.8.3 ADU for Modbus RTU
The ADU for Modbus RTU consists of the Address field, Error Check and the common Modbus PDU.

Address Field

As described in the previous section the valid slave nodes addresses are in the range of 0 – 247 decimal. The
individual slave devices are assigned addresses in the range of 1 to 247. A master addresses a slave by placing
the slave address in the address field of the message. When the slave returns its response, it places its own
address in the response address field to let the master know which slave is responding.

Error Check Field

Error checking field is the result of a Cyclical Redundancy Checking (CRC) calculation that is performed on the
message contents.

The CRC field checks the contents of the entire message. It is applied regardless of any parity checking method
used for the individual characters of the message.

The CRC field contains a 16–bit value implemented as two 8–bit bytes.

The CRC field is appended to the message as the last field in the message. When this is done, the low–order
byte of the field is appended first, followed by the high–order byte. The CRC high–order byte is the last byte to
be sent in the message.

The CRC value is calculated by the sending device, which appends the CRC to the message. The receiving
device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value
it received in the CRC field. If the two values are not equal then it results in an error.

5.8.4 ADU for Modbus TCP
The ADU for Modbus TCP consists of the MBAP Header and the common Modbus PDU.

The MBAP header is 7 bytes long.

The actual IP addressing and message error checking are performed by the Ethernet physical layer, refer to the
ISO 7-layer model and the Modbus-IDA website for further details.

Table 10: MBAP Header

Field Length (Bytes) Description Client Server

Transaction Identifier 2 Identification of a Modbus
Request/Response
transaction

Initialized by the client Recopied by server from
received request

Protocol Identifier 2 0 = Modbus protocol Initialized by the client Recopied by server from
received request

Length 2 Number of following bytes Initialized by the client
(request)

Initialized by the server
(response)

Unit Identifier 1 Identification of a remote
slave connected on a serial
line or on other buses.

Initialized by the client Recopied by server from
received request

Table Copyright © 2005-2009 Modbus-IDA from the official Modbus Messaging Implementation Guide V1.0b

29 P94MOD01C

Reference

6 Reference

6.1 PID List with Modbus Values
This is a condensed PID List to show the corresponding Modbus 4X Registers for PIDs 1-256. Modbus RTU
can not access beyond PID256. For the complete variable list refer to the PositionServo Programming Manual
(PM94P01 or PM94M01).

These variables can be accessed from the user’s program or any supported communications interface protocol.
From the user program, any variable can be accessed by either its variable name or by its index value (using the
syntax: @<VARINDEX> , where <VARINDEX> is the variable index from the PID List. From the communications
interface any variable can be accessed by its index value.

The column “Type” indicates the type of variable:

mtr Motor: denotes a motor value
mtn Motion: writing to an “mtn” variable could cause the start of motion
vel Velocity: denotes a velocity or velocity scaling value

The column “Format” provides the native format of the variable:

W 32 bit integer
F float (real)

When setting a variable via an external device the value can be addressed as floating or integer. The value will
automatically adjusted to fit it’s given form.

The column “EPM” shows if a variable has a non-volatile storage space in the EPM memory:

Y Variable has non-volatile storage Space in EPM
N Variable does not exist in EPM memory

The user’s program uses a RAM (volatile) ‘copy’ of the variables stored on the EPM. At power up all RAM copies
of the variables are initialized with the EPM values. The EPM’s values are not affected by changing the variables
in the user’s program. When the user’s program reads a variable it always reads from the RAM (volatile) copy
of the variable. Communications Interface functions can change both the volatile and non-volatile copy of the
variable. If the host interface requests a change to the EPM (non-volatile) value, this change is done both in the
user program’s RAM memory as well as in the EPM. Interface functions have the choice of reading from the
RAM (volatile) or from the EPM (non-volatile) copy of the variable.

The column “Access” lists the user’s access rights to a variable:

R read only
W write only
R/W read/write

Writing to an R (read-only) variable or reading from a W (write-only) variable will not work.

The column “Units” shows units of the variable. Units unique to this manual that are used for motion are:
UU user units
EC encoder counts
S seconds
PPS pulses per sample. Sample time is 512ms - servo loop rate
PPSS pulses per sample per sample. Sample time is 512ms - servo loop rate

30P94MOD01C

Reference

NOTE:
In true Modbus, 3X and 4X Registers are numbered starting at 1. This is known as ‘one based’ addressing.
However, when transmitted to a slave over the serial link, the actual address transmitted is one less.

Some Modbus masters will allow for the first register number to be 0. This is known as ‘zero based’
addressing. If this is the case, the Modbus register numbers listed in this manual must be offset by -1 to
properly program a master using ‘zero-based’ addressing.

In
de

x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

1 VAR_IDSTRING N R Drive’s identification string 3 515 1027 1539 2050 2306

2 VAR_NAME Y R/W Drive’s symbolic name 5 517 1029 1541 2051 2307

3 VAR_SERIAL_NUMBER R Drive’s serial number 7 519 1031 1543 2052 2308

4 VAR_MEM_INDEX R/W Position in RAM file (0 - 32767) 9 521 1033 1545 2053 2309

5 VAR_MEM_VALUE R/W Value to be read or written to the RAM file 11 523 1035 1547 2054 2310

6 VAR_MEM_INDEX_
INCREMENT

R/W Holds value the MEM_INDEX will modify once
the R/W operation is complete

13 525 1037 1549 2055 2311

7 VAR_VELOCITY_ACTUAL R Actual measured motor velocity
NOTE: Only applicable to MVOB drives with
Firmware 4.00 and higher.

15 527 1039 1551 2056 2312

8 VAR_RSVD_2 17 529 1041 1553 2057 2313

9 VAR_DFAULT R Drive Default Settings 19 531 1043 1555 2058 2314

10 VAR_M_ID mtr Y R/W* Motor ID 21 533 1045 1557 2059 2315

11 VAR_M_MODEL mtr Y R/W* Motor model 23 535 1047 1559 2060 2316

12 VAR_M_VENDOR mtr Y R/W* Motor vendor 25 537 1049 1561 2061 2317

13 VAR_M_ESET mtr Y R/W* Motor Feedback Resolver: ‘Positive for CW’
0 - none
1 - Positive for CW

0 - 1 27 539 1051 1563 2062 2318

14 VAR_M_HALLCODE mtr Y R/W* Hallcode index 0 - 5 29 541 1053 1565 2063 2319

15 VAR_M_HOFFSET mtr Y R/W* Reserved 31 543 1055 1567 2064 2320

16 VAR_M_ZOFFSET mtr Y R/W* Resolver Offset 0 - 360 33 545 1057 1569 2065 2321

17 VAR_M_ICTRL mtr Y R/W* Reserved 35 547 1059 1571 2066 2322

18 VAR_M_JM mtr Y R/W* Motor moment of inertia Jm 0 - 0.1 Kgm2 37 549 1061 1573 2067 2323

19 VAR_M_KE mtr Y R/W* Motor voltage or back EMF constant Ke 1 - 500 V/Krpm 39 551 1063 1575 2068 2324

20 VAR_M_KT mtr Y R/W* Motor torque or force constant Kt 0.01 - 10 Nm/A 41 553 1065 1577 2069 2325

21 VAR_M_LS mtr Y R/W* Motor phase-to-phase inductance Lm 0.1 - 500 mH 43 555 1067 1579 2070 2326

22 VAR_M_RS mtr Y R/W* Motor phase-to-phase resistance Rm 0.01 - 500 [Ohm] 45 557 1069 1581 2071 2327

23 VAR_M_MAXCURRENT mtr Y R/W* Motor’s max current(RMS) 0.5 - 50 [A]mp 47 559 1071 1583 2072 2328

24 VAR_M_MAXVELOCITY mtr Y R/W* Motor’s max velocity 500 - 20000 RPM 49 561 1073 1585 2073 2329

25 VAR_M_NPOLES mtr Y R/W* Motor’s poles number 2 - 200 51 563 1075 1587 2074 2330

26 VAR_M_ENCODER mtr Y R/W* Encoder resolution 256 - 65536
* 12/Npoles

PPR 53 565 1077 1589 2075 2331

27 VAR_M_TERMVOLTAGE mtr Y R/W* Nominal Motor’s terminal voltage 50 - 800 [V]olt 55 567 1079 1591 2076 2332

28 VAR_M_FEEDBACK mtr Y R/W* Feedback type
1 - Encoder; 2 - Resolver

1 - 2 57 569 1081 1593 2077 2333

29 VAR_ENABLE_SWITCH_
TYPE

W Y R/W Enable switch function
0 - inhibit only; 1 - Run

0 - 1 Bit 59 571 1083 1595 2078 2334

30 VAR_CURRENTLIMIT F Y R/W Current limit [A]mp 61 573 1085 1597 2079 2335

31 VAR_
PEAKCURRENTLIMIT16

F Y R/W Peak current limit for 16kHz operation [A]mp 63 575 1087 1599 2080 2336

32 VAR_PEAKCURRENTLIMIT F Y R/W Peak current limit for 8kHz operation [A]mp 65 577 1089 1601 2081 2337

33 VAR_PWMFREQUENCY W Y R/W PWM frequency selection
0 - 16kHz; 1 - 8kHz

0 - 1 67 579 1091 1603 2082 2338

* These are all R/W variables but they only become active after variable 247 is set.

31 P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

34 VAR_DRIVEMODE W Y R/W Drive mode
0 - torque; 1 - velocity ; 2 - position

0 - 2 69 581 1093 1605 2083 2339

35 VAR_CURRENT_SCALE F Y R/W Analog input #1 current reference scale Model
Dependent

A/V 71 583 1095 1607 2084 2340

36 VAR_VELOCITY_SCALE vel F Y R/W Analog input #1 velocity reference scale -10000 to
+10000

RPM/V 73 585 1097 1609 2085 2341

37 VAR_REFERENCE W Y R/W Reference selection
1 - internal source; 0 - external

1 - 0 75 587 1099 1611 2086 2342

38 VAR_STEPINPUTTYPE W Y R/W Selects how position reference inputs
operating
0 - Quadrature inputs (A/B)
1 - Step & Direction

0 - 1 77 589 1101 1613 2087 2343

39 VAR_
MOTORTHERMALPROTECT

W Y R/W Motor thermal protection function
0 - disabled; 1 - enabled

0 - 1 79 591 1103 1615 2088 2344

40 VAR_
MOTORPTCRESISTANCE

F Y R/W Motor thermal protection PTC cut-off
resistance

[Ohm] 81 593 1105 1617 2089 2345

41 VAR_SECONDENCODER W Y R/W Second encoder
0 - disabled; 1 - enabled

0 - 1 83 595 1107 1619 2090 2346

42 VAR_REGENDUTY W Y R/W Regen circuit PWM duty cycle in % 1-100% % 85 597 1109 1621 2091 2347

43 VAR_ENCODERREPEATSRC W Y R/W Selects source for repeat buffers
0 - Model 940 - Encoder Port P4
 Model 941 - 2nd Encoder Option Bay
1 - Model 940 - 2nd Encoder Option Bay
 Model 941 - Resolver Port P4

0 - 1 87 599 1111 1623 2092 2348

44 VAR_VP_GAIN vel W Y R/W Velocity loop Proportional gain 0 - 32767 89 601 1113 1625 2093 2349

45 VAR_VI_GAIN vel W Y R/W Velocity loop Integral gain 0 - 32767 91 603 1115 1627 2094 2350

46 VAR_PP_GAIN W Y R/W Position loop Proportional gain 0 - 32767 93 605 1117 1629 2095 2351

47 VAR_PI_GAIN W Y R/W Position loop Integral gain 0 - 16383 95 607 1119 1631 2096 2352

48 VAR_PD_GAIN W Y R/W Position loop Differential gain 0 - 32767 97 609 1121 1633 2097 2353

49 VAR_PI_LIMIT W Y R/W Position loop integral gain limit 0 - 20000 99 611 1123 1635 2098 2354

50 VAR_SEI_GAIN Not Used 101 613 1125 1637 2099 2355

51 VAR_VREG_WINDOW vel W Y R/W Gains scaling coefficient -16 to +4 103 615 1127 1639 2100 2356

52 VAR_ENABLE W N W Software Enable/Disable
0 - disable; 1 - enable

0 - 1 105 617 1129 1641 2101 2357

53 VAR_RESET W N W Drive’s reset (Disables drive, Stops running
program if any, reset active fault)
0 - no action; 1 - reset drive

0 - 1 107 619 1131 1643 2102 2358

54 VAR_STATUS W N R Drive’s status register 109 621 1133 1645 2103 2359

55 VAR_BCF_SIZE W Y R User’s program Byte-code size Bytes 111 623 1135 1647 2104 2360

56 VAR_AUTOBOOT W Y R/W User’s program autostart flag
0 - program started manually (MV or
interface); 1 - program started automatically
after drive booted

0 - 1 113 625 1137 1649 2105 2361

57 VAR_GROUPID W Y R/W Network group ID 1 - 32767 115 627 1139 1651 2106 2362

58 VAR_VLIMIT_ZEROSPEED F Y R/W Zero Speed window 0 - 100 Rpm 117 629 1141 1653 2107 2363

59 VAR_VLIMIT_SPEEDWND F Y R/W At Speed window 10 - 10000 Rpm 119 631 1143 1655 2108 2364

60 VAR_VLIMIT_ATSPEED F Y R/W Target Velocity for At Speed window -10000 -
+10000

Rpm 121 633 1145 1657 2109 2365

61 VAR_PLIMIT_POSERROR W Y R/W Position error 1 - 32767 EC 123 635 1147 1659 2110 2366

62 VAR_PLIMIT_ERRORTIME F Y R/W Position error time (time which position error
has to remain to set-off position error fault)

0.25 - 8000 mS 125 637 1149 1661 2111 2367

63 VAR_PLIMIT_SEPOSERROR W Y R/W Second encoder Position error 1 - 32767 EC 127 639 1151 1663 2112 2368

64 VAR_PLIMIT_
SEERRORTIME

F Y R/W Second encoder Position error time (time
which position error has to remain to set-off
position error fault)

0.25 - 8000 mS 129 641 1153 1665 2113 2369

65 VAR_INPUTS W N R Digital inputs states. A1 occupies Bit 0, A2-
Bit 1 … C4 - bit 11.

131 643 1155 1667 2114 2370

32P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

66 VAR_OUTPUT W N R/W Digital outputs states. Writing to this
variables sets/resets digital outputs except
outputs which have been assigned special
function.
Output 1 Bit 0
Output 2 Bit 1
Output 3 Bit 2
Output 4 Bit 3

Output 1 -
Output 4

133 645 1157 1669 2115 2371

67 VAR_IP_ADDRESS W Y R/W Ethernet IP address. IP address changes at
next boot up. 32 bit value

135 647 1159 1671 2116 2372

68 VAR_IP_MASK W Y R/W Ethernet IP NetMask. Mask changes at next
boot up. 32 bit value

137 649 1161 1673 2117 2373

69 VAR_IP_GATEWAY W Y R/W Ethernet Gateway IP address. Address
changes at next boot up. 32 bit value

139 651 1163 1675 2118 2374

70 VAR_IP_DHCP W Y R/W Use DHCP
0 - manual; 1 - use DHCP service

0 - 1 141 653 1165 1677 2119 2375

71 VAR_AIN1 F N R Analog Input AIN1 current value [V]olt 143 655 1167 1679 2120 2376

72 VAR_AIN2 F N R Analog Input AIN2 current value [V]olt 145 657 1169 1681 2121 2377

73 VAR_BUSVOLTAGE F N R Bus voltage [V]olt 147 659 1171 1683 2122 2378

74 VAR_HTEMP F N R Heatsink temperature
0 - for temperatures < 40C and actual heat
sink temperature for temperatures >40 C

0 - actual
heat sink
temperature

[c] 149 661 1173 1685 2123 2379

75 VAR_ENABLE_
ACCELDECEL

vel Y R/W Enable Accel/Decel function for velocity
mode
0 - disable; 1 - enable

0 - 1 151 663 1175 1687 2124 2380

76 VAR_ACCEL_LIMIT vel F Y R/W Accel value for velocity mode 0.1 -
5000000

Rpm*Sec 153 665 1177 1689 2125 2381

77 VAR_DECEL_LIMIT vel F Y R/W Decel value for velocity mode 0.1 -
5000000

Rpm*Sec 155 667 1179 1691 2126 2382

78 VAR_FAULT_RESET W Y R/W Reset fault configuration
0 - on activation of Enable/Inhibit input (A3)
1 - on deactivation of Enable/Inhibit input
(A3)

0 - 1 157 669 1181 1693 2127 2383

79 VAR_M2SRATIO_MASTER W Y R/W Master to system ratio
Master counts range: -32767 - +32767

-32767 -
+32767

159 671 1183 1695 2128 2384

80 VAR_M2SRATIO_SYSTEM W Y R/W Master to system ratio
System counts range: 1 - 32767

1 - 32767 161 673 1185 1697 2129 2385

81 VAR_S2PRATIO_SECOND W Y R/W Secondary encoder to prime encoder ratio
Second counts range: -32767 - +32767

-32767 -
+32767

163 675 1187 1699 2130 2386

82 VAR_S2PRATIO_PRIME W Y R/W Secondary encoder to prime encoder ratio
Prime counts range: 1 - 32767

1 - 32767 165 677 1189 1701 2131 2387

83 VAR_EXSTATUS W N R Extended status. Lower word copy of DSP
status flags.

167 679 1191 1703 2132 2388

84 VAR_HLS_MODE W Y R/W Hardware limit switches
0 - not used; 1 - stop and fault; 2 - fault

0 - 2 169 681 1193 1705 2133 2389

85 VAR_AOUT_FUNCTION W Y R/W Analog output function range: 0 - 8
0 - Not assigned
1 - Phase Current (RMS)
2 - Phase Current (Peak Value)
3 - Motor Velocity
4 - Phase Current R
5 - Phase Current S
6 - Phase Current T
7 - Iq current
8 - Id current

0 - 8 171 683 1195 1707 2134 2390

86 VAR_AOUT_VELSCALE F Y R/W Analog output scale for velocity quantities. 0 - 10 mV/Rpm 173 685 1197 1709 2135 2391

87 VAR_AOUT_CURSCALE F Y R/W Analog output scale for current related
quantities.

0 - 10 V/A 175 687 1199 1711 2136 2392

88 VAR_AOUT F N W Analog output value.(Used if VAR #85 is
set to 0)

0 - 10 V 177 689 1201 1713 2137 2393

89 VAR_AIN1_DEADBAND F Y R/W Analog input #1 dead-band. Applied when
used as current or velocity reference.

0 - 100 mV 179 691 1203 1715 2138 2394

90 VAR_AIN1_OFFSET Y R/W Analog input #1 offset. Applied when used as
current/velocity reference

-10,000 to
+10,000

mV 181 693 1205 1717 2139 2395

33 P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

91 VAR_SUSPEND_MOTION W N R/W Suspend motion. Suspends motion produced
by trajectory generator. Current move will be
completed before motion is suspended.
0 - motion suspended; 1 - motion resumed

0 - 1 183 695 1207 1719 2140 2396

92 VAR_MOVEP

mtn

W N W Target position for absolute move. Writing
value executes Move to position as per
MOVEP statement using current values of
acceleration, deceleration and max velocity.

185 697 1209 1721 2141 2397

93 VAR_MOVED

mtn

W N W Incremental position. Writing value
<0> executes Incremental move as per
MOVED statement using current values of
acceleration, deceleration and max velocity

187 699 1211 1723 2142 2398

94 VAR_MDV_DISTANCE F N W Distance for MDV move 189 701 1213 1725 2143 2399

95 VAR_MDV_VELOCITY

mtn

F N W Velocity for MDV move. Writing to this
variable executes MDV move with Distance
value last written to variable #94

191 703 1215 1727 2144 2400

96 VAR_MOVE_PWI1

mtn

W N W Writing value executes Move in positive
direction while input true (active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

0 - 11 193 705 1217 1729 2145 2401

97 VAR_MOVE_PWI0

mtn

W N W Writing value executes Move in positive
direction while input false (not active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

0 - 11 195 707 1219 1731 2146 2402

98 VAR_MOVE_NWI1

mtn

F N W Writing value executes Move negative
direction while input true (active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

0 - 11 197 709 1221 1733 2147 2403

99 VAR_MOVE_NWI0

mtn

F N W Writing value executes Move negative
direction while input false (not active). Value
specifies input #
0 - 3 : A1 -A4
4 - 7 : B1 - B4
8 - 11 : C1 - C4

0 - 11 199 711 1223 1735 2148 2404

100 VAR_V0 F Y R/W User variable 201 713 1225 1737 2149 2405

101 VAR_V1 F Y R/W User variable 203 715 1227 1739 2150 2406

102 VAR_V2 F Y R/W User variable 205 717 1229 1741 2151 2407

103 VAR_V3 F Y R/W User variable 207 719 1231 1743 2152 2408

104 VAR_V4 F Y R/W User variable 209 721 1233 1745 2153 2409

105 VAR_V5 F Y R/W User variable 211 723 1235 1747 2154 2410

106 VAR_V6 F Y R/W User variable 213 725 1237 1749 2155 2411

107 VAR_V7 F Y R/W User variable 215 727 1239 1751 2156 2412

108 VAR_V8 F Y R/W User variable 217 729 1241 1753 2157 2413

109 VAR_V9 F Y R/W User variable 219 731 1243 1755 2158 2414

110 VAR_V10 F Y R/W User variable 221 733 1245 1757 2159 2415

111 VAR_V11 F Y R/W User variable 223 735 1247 1759 2160 2416

112 VAR_V12 F Y R/W User variable 225 737 1249 1761 2161 2417

113 VAR_V13 F Y R/W User variable 227 739 1251 1763 2162 2418

114 VAR_V14 F Y R/W User variable 229 741 1253 1765 2163 2419

115 VAR_V15 F Y R/W User variable 231 743 1255 1767 2164 2420

116 VAR_V16 F Y R/W User variable 233 745 1257 1769 2165 2421

117 VAR_V17 F Y R/W User variable 235 747 1259 1771 2166 2422

118 VAR_V18 F Y R/W User variable 237 749 1261 1773 2167 2423

119 VAR_V19 F Y R/W User variable 239 751 1263 1775 2168 2424

120 VAR_V20 F Y R/W User variable 241 753 1265 1777 2169 2425

34P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

121 VAR_V21 F Y R/W User variable 243 755 1267 1779 2170 2426

122 VAR_V22 F Y R/W User variable 245 757 1269 1781 2171 2427

123 VAR_V23 F Y R/W User variable 247 759 1271 1783 2172 2428

124 VAR_V24 F Y R/W User variable 249 761 1273 1785 2173 2429

125 VAR_V25 F Y R/W User variable 251 763 1275 1787 2174 2430

126 VAR_V26 F Y R/W User variable 253 765 1277 1789 2175 2431

127 VAR_V27 F Y R/W User variable 255 767 1279 1791 2176 2432

128 VAR_V28 F Y R/W User variable 257 769 1281 1793 2177 2433

129 VAR_V29 F Y R/W User variable 259 771 1283 1795 2178 2434

130 VAR_V30 F Y R/W User variable 261 773 1285 1797 2179 2435

131 VAR_V31 F Y R/W User variable 263 775 1287 1799 2180 2436

132 VAR_MOVEDR_DISTANCE F N W Registered move distance.
Incremental motion as per MOVEDR
statement

UU 265 777 1289 1801 2181 2437

133 VAR_MOVEDR_
DISPLACEMENT

mtn

F N W Registered move displacement. Writing to
this variable executes the move MOVEDR
using value set by #132

UU 267 779 1291 1803 2182 2438

134 VAR_MOVEPR_DISTANCE F N W Registered move distance.
Absolute motion as per MOVEPR statement

UU 269 781 1293 1805 2183 2439

135 VAR_MOVEPR_
DISPLACEMENT

mtn

F N W Registered move displacement. Writing to
this variable makes the move MOVEPR using
value set by #134

UU 271 783 1295 1807 2184 2440

136 VAR_STOP_MOTION W N W Stops motion
0 - no action; 1 - stops motion

0 - 1 273 785 1297 1809 2185 2441

137 VAR_START_PROGRAM W N W Starts user program
0 - no action; 1 - starts program

0 - 1 275 787 1299 1811 2186 2442

138 VAR_VEL_MODE_ON W N W Turns on Profile Velocity for Internal Position
Mode
0 - normal operation; 1 - velocity mode on

0 - 1 277 789 1301 1813 2187 2443

139 VAR_IREF F N W Reference: Internal Torque or Velocity Mode RPS
Amps

279 791 1303 1815 2188 2444

140 VAR_NV0 F N R/W User defined Network variable 281 793 1305 1817 2189 2445

141 VAR_NV1 F N R/W User defined Network variable 283 795 1307 1819 2190 2446

142 VAR_NV2 F N R/W User defined Network variable 285 797 1309 1821 2191 2447

143 VAR_NV3 F N R/W User defined Network variable 287 799 1311 1823 2192 2448

144 VAR_NV4 F N R/W User defined Network variable 289 801 1313 1825 2193 2449

145 VAR_NV5 F N R/W User defined Network variable 291 803 1315 1827 2194 2450

146 VAR_NV6 F N R/W User defined Network variable 293 805 1317 1829 2195 2451

147 VAR_NV7 F N R/W User defined Network variable 295 807 1319 1831 2196 2452

148 VAR_NV8 F N R/W User defined Network variable 297 809 1321 1833 2197 2453

149 VAR_NV9 F N R/W User defined Network variable 299 811 1323 1835 2198 2454

150 VAR_NV10 F N R/W User defined Network variable 301 813 1325 1837 2199 2455

151 VAR_NV11 F N R/W User defined Network variable 303 815 1327 1839 2200 2456

152 VAR_NV12 F N R/W User defined Network variable 305 817 1329 1841 2201 2457

153 VAR_NV13 F N R/W User defined Network variable 307 819 1331 1843 2202 2458

154 VAR_NV14 F N R/W User defined Network variable 309 821 1333 1845 2203 2459

155 VAR_NV15 F N R/W User defined Network variable 311 823 1335 1847 2204 2460

156 VAR_NV16 F N R/W User defined Network variable 313 825 1337 1849 2205 2461

157 VAR_NV17 F N R/W User defined Network variable 315 827 1339 1851 2206 2462

158 VAR_NV18 F N R/W User defined Network variable 317 829 1341 1853 2207 2463

159 VAR_NV19 F N R/W User defined Network variable 319 831 1343 1855 2208 2464

160 VAR_NV20 F N R/W User defined Network variable 321 833 1345 1857 2209 2465

161 VAR_NV21 F N R/W User defined Network variable 323 835 1347 1859 2210 2466

35 P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

162 VAR_NV22 F N R/W User defined Network variable 325 837 1349 1861 2211 2467

163 VAR_NV23 F N R/W User defined Network variable 327 839 1351 1863 2212 2468

164 VAR_NV24 F N R/W User defined Network variable 329 841 1353 1865 2213 2469

165 VAR_NV25 F N R/W User defined Network variable 331 843 1355 1867 2214 2470

166 VAR_NV26 F N R/W User defined Network variable 333 845 1357 1869 2215 2471

167 VAR_NV27 F N R/W User defined Network variable 335 847 1359 1871 2216 2472

168 VAR_NV28 F N R/W User defined Network variable 337 849 1361 1873 2217 2473

169 VAR_NV29 F N R/W User defined Network variable 339 851 1363 1875 2218 2474

170 VAR_NV30 F N R/W User defined Network variable 341 853 1365 1877 2219 2475

171 VAR_NV31 F N R/W User defined Network variable 343 855 1367 1879 2220 2476

172 VAR_SERIAL_ADDRESS W Y R/W RS485 drive ID 0 - 254 345 857 1369 1881 2221 2477

173 VAR_MODBUS_BAUDRATE W Y R/W Baud rate for ModBus operations
2 - 9600; 3 - 19200
4 - 38400; 5 - 57600; 6 - 115200

2 - 6 347 859 1371 1883 2222 2478

174 VAR_MODBUS_DELAY W Y R/W ModBus reply delay in mS 0 - 1000 349 861 1373 1885 2223 2479

175 VAR_RS485_CONFIG W Y R/W Rs485 configuration
0 - normal IP over PPP; 1 - ModBus1 19200

0 - 1 351 863 1375 1887 2224 2480

176 VAR_PPP_BAUDRATE W Y R/W RS232/485 (normal mode) baud rate
2 - 9600; 3 - 19200
4 - 38400; 5 - 57600; 6 - 115200

2 - 6 353 865 1377 1889 2225 2481

177 VAR_MOVEPS F N W Same as variable #92 but using S-curve
acceleration/deceleration

355 867 1379 1891 2226 2482

178 VAR_MOVEDS F N W Same as variable #93 but using S-curve
acceleration/deceleration

357 869 1381 1893 2227 2483

179 VAR_MDVS_VELOCITY

mtn

N W Velocity for MDV move using S-curve
accel/deceleration. Writing to this variable
executes MDV move with Distance value
last written to variable #94 (unless motion is
suspended by #91).

359 871 1383 1895 2228 2484

180 VAR_MAXVEL F N R/W Max velocity for motion profile 361 873 1385 1897 2229 2485

181 VAR_ACCEL F N R/W Accel value for indexing UU/S2 363 875 1387 1899 2230 2486

182 VAR_DECEL F N R/W Decel value for indexing UU/S2 365 877 1389 1901 2231 2487

183 VAR_QDECEL F N R/W Quick decel value UU/S2 367 879 1391 1903 2232 2488

184 VAR_INPOSLIM W N R/W Sets window for “In Position” Limits UU 369 881 1393 1905 2233 2489

185 VAR_VEL F N R/W Velocity reference for “Profiled” velocity UU/S 371 883 1395 1907 2234 2490

186 VAR_UNITS F Y R/W User units 373 885 1397 1909 2235 2491

187 VAR_MECOUNTER W N R/W A/B inputs reference counter value Count 375 887 1399 1911 2236 2492

188 VAR_PHCUR F N R Phase current A 377 889 1401 1913 2237 2493

189 VAR_POS_PULSES W N R/W Target position in encoder pulses EC 379 891 1403 1915 2238 2494

190 VAR_APOS_PULSES W N R/W Actual position in encoder pulses EC 381 893 1405 1917 2239 2495

191 VAR_POSERROR_PULSES W N R Position error in encoder pulses EC 383 895 1407 1919 2240 2496

192 VAR_CURRENT_VEL_PPS F N R Set-point (target) velocity in PPS PPS 385 897 1409 1921 2241 2497

193 VAR_CURRENT_ACCEL_
PPSS

F N R Set-point (target) acceleration (demanded
value)

PPSS 387 899 1411 1923 2242 2498

194 VAR_IN0_DEBOUNCE W Y R/W Input A1 de-bounce time in mS 0 - 1000 mS 389 901 1413 1925 2243 2499

195 VAR_IN1_DEBOUNCE W Y R/W Input A2 de-bounce time in mS 0 - 1000 mS 391 903 1415 1927 2244 2500

196 VAR_IN2_DEBOUNCE W Y R/W Input A3 de-bounce time in mS 0 - 1000 mS 393 905 1417 1929 2245 2501

197 VAR_IN3_DEBOUNCE W Y R/W Input A4 de-bounce time in mS 0 - 1000 mS 395 907 1419 1931 2246 2502

198 VAR_IN4_DEBOUNCE W Y R/W Input B1 de-bounce time in mS 0 - 1000 mS 397 909 1421 1933 2247 2503

199 VAR_IN5_DEBOUNCE W Y R/W Input B2 de-bounce time in mS 0 - 1000 mS 399 911 1423 1935 2248 2504

200 VAR_IN6_DEBOUNCE W Y R/W Input B3 de-bounce time in mS 0 - 1000 mS 401 913 1425 1937 2249 2505

201 VAR_IN7_DEBOUNCE W Y R/W Input B4 de-bounce time in mS 0 - 1000 mS 403 915 1427 1939 2250 2506

202 VAR_IN8_DEBOUNCE W Y R/W Input C1 de-bounce time in mS 0 - 1000 mS 405 917 1429 1941 2251 2507

36P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

203 VAR_IN9_DEBOUNCE W Y R/W Input C2 de-bounce time in mS 0 - 1000 mS 407 919 1431 1943 2252 2508

204 VAR_IN10_DEBOUNCE W Y R/W Input C3 de-bounce time in mS 0 - 1000 mS 409 921 1433 1945 2253 2509

205 VAR_IN11_DEBOUNCE W Y R/W Input C4 de-bounce time in mS 0 - 1000 mS 411 923 1435 1947 2254 2510

206 VAR_OUT1_FUNCTION W Y R/W Programmable Output 1 Function
0 - Not Assigned
1 - Zero Speed
2 - In Speed Window
3 - Current Limit
4 - Run time fault
5 - Ready
6 - Brake
7 - In position

0 - 7 413 925 1437 1949 2255 2511

207 VAR_OUT2_FUNCTION W Y R/W Programmable Output 2 Function 0 - 7 415 927 1439 1951 2256 2512

208 VAR_OUT3_FUNCTION W Y R/W Programmable Output 3 Function 0 - 7 417 929 1441 1953 2257 2513

209 VAR_OUT4_FUNCTION W Y R/W Programmable Output 4 Function 0 - 7 419 931 1443 1955 2258 2514

210 VAR_HALLCODE W N R Current hall code
Bit 0 - Hall 1
Bit 1 - Hall 2
Bit 2 - Hall 3

421 933 1445 1957 2259 2515

211 VAR_ENCODER W N R Primary encoder current value EC 423 935 1447 1959 2260 2516

212 VAR_RPOS_PULSES W N R Registration position EC 425 937 1449 1961 2261 2517

213 VAR_RPOS F N R Registration position UU 427 939 1451 1963 2262 2518

214 VAR_POS F N R/W Target position UU 429 941 1453 1965 2263 2519

215 VAR_APOS F N R/W Actual position UU 431 943 1455 1967 2264 2520

216 VAR_POSERROR W N R Position error EC 433 945 1457 1969 2265 2521

217 VAR_CURRENT_VEL F N R Set-point (target) velocity (demanded value) UU/S 435 947 1459 1971 2266 2522

218 VAR_CURRENT_ACCEL F N R Set-point (target) acceleration (demanded
value)

UU/S2 437 949 1461 1973 2267 2523

219 VAR_TPOS_ADVANCE W N W Target position advance. Every write to this
variable adds value to the Target position
summing point. Value gets added once per
write. This variable useful when loop is
driven by Master encoder signals and trying
to correct phase. Value is in encoder counts

EC 439 951 1463 1975 2268 2524

220 VAR_IOINDEX W N R/W Same as INDEX variable in user’s program. 441 953 1465 1977 2269 2525

221 VAR_PSLIMIT_PULSES W Y R/W Positive Software limit switch value in
Encoder counts

EC 443 955 1467 1979 2270 2526

222 VAR_NSLIMIT_PULSES W Y R/W Negative Software limit switch value in
Encoder counts

EC 445 957 1469 1981 2271 2527

223 VAR_ SLS_MODE W Y R/W Soft limit switch action code:
0 - no action
1- Fault
2- Stop and fault (When loop is driven by
trajectory generator only. With all other
sources same action as 1)”

0 - 2 447 959 1471 1983 2272 2528

224 VAR_PSLIMIT F Y R/W Same as var 221 but value in User Units UU 449 961 1473 1985 2273 2529

225 VAR_NSLIMIT F Y R/W Same as var 222 but value in User Units UU 451 963 1475 1987 2274 2530

226 VAR_SE_APOS_PULSES W N R 2nd encoder actual position in encoder
counts

EC 453 965 1477 1989 2275 2531

227 VAR_SE_POSERROR_
PULSES

W N R 2nd encoder position error in encoder counts EC 455 967 1479 1991 2276 2532

228 VAR_MODBUS_PARITY W Y R/W Parity for Modbus Control:
0 - No Parity; 1 - Odd Parity; 2 - Even Parity

0 - 2 457 969 1481 1993 2277 2533

229 VAR_MODBUS_STOPBITS W Y R/W Number of Stopbits for Modbus Control
0 - 1.0; 1 - 1.5; 2 - 2.0

0 - 2 459 971 1483 1995 2278 2534

230 VAR_M_NOMINALVEL F Y R/W Induction Motor Nominal Velocity 500 - 20000 RPM 461 973 1485 1997 2279 2535

231 VAR_M_COSPHI F Y R/W Induction Motor Cosine Phi 0 - 1.0 463 975 1487 1999 2280 2536

232 VAR_M_BASEFREQUENCY F Y R/W Induction Motor Base Frequency 0 - 400Hz Hz 465 977 1489 2001 2281 2537

233 VAR_M_SERIES Induction Motor Series 467 979 1491 2003 2282 2538

37 P94MOD01C

Reference
In

de
x

Name

Ty
pe

Fo
rm

at

EP
M

Ac
ce

ss

Description Range Unit RAM
Registers

32bit
Integer
Access

4X
Register #

RAM
Register

32bit
Float

Access
4X

Register #

EPM
Reg Copy

32bit
Integer
Access

4X
Register #

EPM
Reg Copy

32bit
Float

Access
4X

Register #

RAM
Register

16bit
Signed
Integer

4X
Register #

EPM

INT16

4X
Register #

234 VAR_CAN_BAUD_EPM W Y R/W CAN Bus Parameter: Baud Rate: 1 - 8
1 - 10k; 2 - 20k; 3 - 50k; 4 - 125k
5 - 250k; 6 - 500k; 7 - 800k; 8 - 1000k

1 - 8 469 981 1493 2005 2283 2539

235 VAR_CAN_ADDR_EPM W Y R/W CAN Bus Parameter: Address 1-127 471 983 1495 2007 2284 2540

236 VAR_CAN_OPERMODE_
EPM

W Y R/W CAN Bus Parameter: Boot-up Mode
(Operational State Control)
0 - enters into pre-operational state
1 - enters into operational state
2 - pseudo NMT: sends NMT Start Node
command after delay (set by variable 237)

0 - 2 473 985 1497 2009 2285 2541

237 VAR_CAN_OPERDELAY_
EPM

W Y R/W CAN Bus Parameter: pseudo NMT mode
delay time in seconds

Refer to
variable 236

sec 475 987 1499 2011 2286 2542

238 VAR_CAN_ENABLE_EPM W Y R/W CAN Bus Parameter: Mode Control
0 - Disable CAN interface
1 - Enable CAN interface in DS301 mode
2 - Enable CAN interface in DS402 mode
3 - Enable DeviceNet
4 - Enable PROFIBUS DP

0 - 4 477 989 1501 2013 2287 2543

239 VAR_HOME_ACCEL F Y R/W Homing Mode: ACCEL rate 0 -
10000000.0

UU/sec2 479 991 1503 2015 2288 2544

240 VAR_HOME_OFFSET F Y R/W Homing Mode: Home Position Offset -32767 to
+32767

UU 481 993 1505 2017 2289 2545

241 VAR_HOME_OFFSET_
PULSES

W Y R/W Homing Mode: Home Position Offset in
encoder counts

+/-
2147418112

EC 483 995 1507 2019 2290 2546

242 VAR_HOME_FAST_VEL F Y R/W Homing Mode: Fast Velocity -10000 to
+10000

UU/sec 485 997 1509 2021 2291 2547

243 VAR_HOME_SLOW_VEL F Y R/W Homing Mode: Slow Velocity -10000 to
+10000

UU/sec 487 999 1511 2023 2292 2548

244 VAR_HOME_METHOD W Y R/W Homing Mode: Homing Method 1 - 35 489 1001 1513 2025 2293 2549

245 VAR_START_HOMING W N W Homing Mode: Start Homing
0 - No action; 1 - Start Homing

0 - 1 491 1003 1515 2027 2294 2550

246 VAR_HOME_SWITCH_
INPUT

W Y R/W Homing Mode: Switch Input Assignment:
0-3: A1-A4
4-7: B1-B4
8-11: C1-C4

0-11 493 1005 1517 2029 2295 2551

247 VAR_M_VALIDATE_
MOTOR

W N W Makes Drive accept Motor’s parameters
0 - No action
1 - Validate Motor Data

0 -1 495 1007 1519 2031 2296 2552

248 VAR_M_I2T F Y R/W Motor 497 1009 1521 2033 2297 2553

249 VAR_M_EABSOLUTE F Y R/W Motor 499 1011 1523 2035 2298 2554

250 VAR_M_ABSWAP F Y R/W Motor Encoder Feedback: B leads A
0 - No Action
1 - B leads A for forward checked (active)

0 - 1 501 1013 1525 2037 2299 2555

251 VAR_M_HALLS_INVERTED F Y R/W Motor Encoder Feedback: Halls
0 - No Action
1 - Inverted Halls Box checked (active)

0 - 1 503 1015 1527 2039 2300 2556

252 RESERVED Do NOT use 505 1017 1529 2041 2301 2557

253 RESERVED Do NOT use 507 1019 1531 2043 2302 2558

254 RESERVED Do NOT use 509 1021 1533 2045 2303 2559

255 RESERVED Do NOT use 511 1023 1535 2047 2304 2560

256 RESERVED Do NOT use 513 1025 1537 2049 2305 2561

This is a condensed PID List to show the corresponding Modbus 4X Registers for PIDs 1-256. Modbus RTU
can not access beyond PID256. For the complete variable list refer to the PositionServo Programming Manual
(PM94P01 or PM94M01).

Lenze AC Tech Corporation

630	Douglas	Street	•	Uxbridge,	MA	01569	•	USA
Sales:	800	217	9100	•	Service:	508	278-9100

www.lenze-actech.com

P94MOD01D

RS-485 module
Modbus

S94MOD01A

L

S921

Table of Contents

1 Preface and General Information . 1

2 Safety Information . 2

3 Technical data . 3

3.1 Related documents . 3

3.2 General Modbus protocol description . 3

3.3 Configuration . 4

3.4 Supported Modbus features. . 4

4 Parameter setting. . 5

4.1 Register Memory . 5

4.1.1 Read Only or Input Registers . 5

4.1.2 Read/Write or Holding Registers . 5

4.2 Discrete Memory . 8

4.2.1 Discrete Inputs (Read Only Bits) . 8

4.2.2 Coils (Read/Write Bits) . 8

1ENGLISH

Preface & General Info

1 Preface and General Information
1.1 How to use these Operating Instructions
 • These Operating Instructions are intended for safety-relevent opertion on and with the

module. They contain safety information which must be observed.

 • All personnel working on and with the module must have these Operating Instructions
available and observe the information and notes relevent for them.

 • These instructions are only valid in combination with the Operating Instructions of the
corresponding controller. They must always be compete and in a perfectly readable
state.

2ENGLISH

Safety Info

2 Safety Information
2.1 Persons responsible for safety
Operator

• An operator is any natural or legal person who uses the drive system or on behalf of whom the
drive system is used.

• The operator or his safety personnel is obliged to ensure

 - the compliance with all relevant regulations, instructions, and legislation.

 - that only skilled personnel works on and with the drive system.

 - that the personnel has the Operating Instructions available for all corresponding works.

 - that all unqualified personnel are prohibited from working on and with the drive system.

Qualified personnel

Qualified personnel are persons who - because of their education, experience, instructions, and
knowledge about corresponding standards and regulations, rules for the prevention of accidents, and
operating conditions - are authorized by the person responsible for the safety of the plant to perform
the required actions and who are able to recognize potential hazards.

(Definition for qualified personnel to VDE 105 or IEC 364)

2.2 General safety information
• These safety notes do claim to be complete. In case of questions and problems please contact

your Lenze representative.

• At the time of delivery the drive system meets the state of the art and ensures basically safe
operation.

• The indications given in these Operating Instructions refer to the stated hardware and software
versions of the controller.

• The controller is hazerdous if:

 - unqualified personnel works on and with the controller.

 - the controller is used inappropriately.

• Ensure by appropriate measures that neither personal injury nor damage to property may occur in
the event of failure of the drive system.

• The drive system must only be operated when no faults occur.

• Retrofitting, modifications, or redesigns are basically prohibited. Lenze must be contacted in all
cases.

3ENGLISH 3ENGLISH

Technical Data

3 Technical data

3.1 Related documents

• MODBUS Application Protocol Specification V1.1
It can be found at: http://www.modbus.org/default.htm

• MODBUS over Serial Line Specification & Implementation guide V1.0

3.2 General Modbus protocol description

The MODBUS protocol defines a simple protocol data unit (PDU) independent of the underlying
communication layers.
There are some additional data unit (ADU) fields introduced by the network layer

ADU

1 Byte Address 1 Byte Function Code Data 2 Bytes CRC

PDU

Figure 3: RS485 Network MODBUS frame

The client (also named Master) that initiates a MODBUS transaction builds the MODBUS application
data unit. The function indicates to the server what kind of action to perform. The MODBUS
application protocol establishes the format of a request initiated by a client.

The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the range of
1...255 decimal (128...255 reserved for exception responses). When a message is sent from a Client
to a Server device the function code field tells the server what kind of action to perform.

Sub-function codes are added to some function codes to define multiple actions.

The data field of messages sent from a client to server devices contains additional information that the
server uses to take the action defined by the function code. This can include items like discrete and
register addresses, the quantity of items to be handled, and the count of actual data bytes in the field.

The data field may be nonexistent (of zero length) in certain kinds request, in this case the server
does not require any additional information. The function code alone specifies the action. If no error
occurs related to the MODBUS function requested in a properly received MODBUS ADU the data field
of a response from a server to a client contains the data requested. If an error related to the MODBUS
function requested occurs, the field contains an exception code that the server application can use to
determine the next action to be taken.

For example a client can read the ON / OFF states of a group of discrete outputs or inputs or it can
read/write the data contents of a group of registers.

When the server responds to the client, it uses the function code field to indicate either a normal
(error-free) response or that some kind of error occurred (called an exception response). For a normal
response, the server simply echoes the original function code.

4ENGLISH 4ENGLISH

Technical Data

3.3 Configuration

Drive 94 supports Modbus communication protocol through its RS485 optional card.

The following Communication parameters are available:

RS485 configuration – If the value of this parameter is ‘Modbus slave’ the modbus slave protocol is
enabled on the RS485 port. If the value is ‘Normal’ the RS485 works in PPP mode.

Modbus baud rate – the RS485 baud rate in modbus mode. Note that modbus requires 2 stop bits
and no parity.

Modbus reply delay – The delay introduced after receiving modbus request and before sending a
reply. Note that this delay will always be >= 3.5 characters as required by the modbus specification.
Some modbus master devices are slow and an increase of the ‘Modbus reply delay’ value might be
required to successfully work with these devices.

Each device in the Modbus network must have its own unique network address.

The ‘Addr’ submenu on the drive display and the front panel buttons can be used to set the Modbus
network address.

Drive 94 is Modbus slave devices in a single master multiple (or one) slaves network.
(Sometimes Slave devices are named servers because they wait for requests.)

Drive 94 communicates on the other end with Modbus Master.

Most Terminals can be configured as Masters with a Modbus Generic driver.

3.4 Supported Modbus features

Drive 94 uses the Modbus protocol delay of 3.5 characters time between packets to determine the
end of packet.

The following ModBus functions are supported:

• 01 (0x01) Read Coils

• 02 (0x02) Read Discrete Inputs

• 03 (0x03) Read Holding Registers

• 04 (0x04) Read Input Registers

• 05 (0x05) Write Single Coil

• 06 (0x06) Write Single Register

• 15 (0x0F) Write Multiple Coils

• 16 (0x10) Write Multiple Registers

When the drive receives ModBus function it executes it and replies with Normal message, Exception
Message or No message as described by the Modbus Application protocol Specification V1.1.

Modbus broadcast address is supported by the drive 94 also. In this case after receiving correct
Modbus request the drive executes it but does not send any reply back.

The DWORD (double word) and FLOAT numbers are send with the LOW WORD FIRST convention
by the 94 drive.
Note that some Terminals may have to be configured appropriately in order to accept such a WORD
order.

5ENGLISH

Parameter Setting

4 Parameter setting

4.1 Register Memory

4.1.1 Read Only or Input Registers

The following read only ModBus registers (drive variables) accessible only through the ModBus
function

• 03 (0x03) Read Holding Registers

4.1.2 Read/Write or Holding Registers

The following read/write ModBus registers (drive variables) accessible only through the ModBus
functions

• 04 (0x04) Read Input Registers

• 06 (0x06) Write Single Register

• 16 (0x10) Write Multiple Registers

For all ModBus registers that are denoted in description field as ‘W: EPROM & memory’ exist another
register with address+200 (203 for CurrentLimit, for example) to write only runtime memory location
of that variable, without affecting EEPROM value. Read command returns the same result for both
addresses.

Parameter changes in EEPROM and memory using first set of addresses are permanent, however
parameter changes in memory only using second set of addresses are valid only for one session.
Session ends by powering the drive down.

Remember, when changing double word or float parameters, the change is applied to the drive only
after second word is written.

ModBus Register
16 bit address

Type Controller Variable Description

1 16 bit word DriveMode See Drive 94 manual
W: EPROM & memory.

2 16 bit word PwmIndex See Drive 94 manual
W: EPROM & memory.

3 32 bit float CurrentLimit See Drive 94 manual
W: EPROM & memory.
Low word starts first

5 32 bit float PeakCurrentLimit See Drive 94 manual
W: EPROM & memory.
Low word starts first

7 32 bit float LowPeakCurrentLimit See Drive 94 manual
W: EPROM & memory.
Low word starts first

9 16 bit word InvertAnalogInput See Drive 94 manual
W: EPROM & memory.

10 32 bit float CurrentAnalogInput See Drive 94 manual
W: EPROM & memory.
Low word starts first

6ENGLISH

Parameter Setting

ModBus Register
16 bit address

Type Controller Variable Description

12 32 bit float VelocityAnalogInput See Drive 94 manual
W: EPROM & memory.
Low word starts first

14 16 bit word AccDecFlag See Drive 94 manual
W: EPROM & memory.

15 32 bit float AccelLimit See Drive 94 manual
W: EPROM & memory.
Low word starts first

17 32 bit float DecelLimit See Drive 94 manual
W: EPROM & memory.
Low word starts first

19 16 bit int GearRatioTop See Drive 94 manual
W: EPROM & memory.

20 16 bit word GearRatioBottom See Drive 94 manual
W: EPROM & memory.

21 16 bit word StepInputType See Drive 94 manual
W: EPROM & memory.

22 16 bit word FaultReset See Drive 94 manual
W: EPROM & memory.

23 16 bit word FeedbackLoss See Drive 94 manual
W: EPROM & memory.

24 16 bit word ReferenceType See Drive 94 manual
W: EPROM & memory.

25 16 bit word MotorTempSensorRes See Drive 94 manual
W: EPROM & memory.

26 16 bit word MotorTempSensorEnable See Drive 94 manual
W: EPROM & memory.

27 16 bit word RegenDutyCycle See Drive 94 manual
W: EPROM & memory.

28 16 bit word EncoderRepeatSource See Drive 94 manual
W: EPROM & memory.

29 32 bit float TorqueVelocityLimit See Drive 94 manual
W: EPROM & memory.
Low word starts first

31 16 bit int SeGearRatioTop See Drive 94 manual
W: EPROM & memory.

32 16 bit word SeGearRatioBottom See Drive 94 manual
W: EPROM & memory.

33 16 bit word SecondEncoderEnable See Drive 94 manual
W: EPROM & memory.

34 32 bit float SeIGain See Drive 94 manual
W: EPROM & memory.
Low word starts first

36 16 bit word SePosErr See Drive 94 manual
W: EPROM & memory.

7ENGLISH

Parameter Setting

ModBus Register
16 bit address

Type Controller Variable Description

37 32 bit float SeMaxErrTime See Drive 94 manual
W: EPROM & memory.
Low word starts first

39 16 bit word AnalogOutput See Drive 94 manual
W: EPROM & memory.

40 32 bit float CurrentScale See Drive 94 manual
W: EPROM & memory.
Low word starts first

42 32 bit float VelocityScale See Drive 94 manual
W: EPROM & memory.
Low word starts first

44 16 bit word AnalogBand See Drive 94 manual
W: EPROM & memory.

45 16 bit word AnalogOffset See Drive 94 manual
W: EPROM & memory.

46 16 bit word ZeroSpeed See Drive 94 manual
W: EPROM & memory.

47 16 bit word SpeedWindow See Drive 94 manual
W: EPROM & memory.

48 16 bit word AtSpeed See Drive 94 manual
W: EPROM & memory.

49 16 bit word PosErr See Drive 94 manual
W: EPROM & memory.

50 32 bit float MaxErrTime See Drive 94 manual
W: EPROM & memory.
Low word starts first

52 32 bit float VelPGain See Drive 94 manual
W: EPROM & memory.

54 32 bit float VelIGain See Drive 94 manual
W: EPROM & memory.

56 32 bit float PosPGain See Drive 94 manual
W: EPROM & memory.

58 32 bit float PosIGain See Drive 94 manual
W: EPROM & memory.
Low word starts first

60 32 bit float DGain See Drive 94 manual
W: EPROM & memory.

62 32 bit float ILimit See Drive 94 manual
W: EPROM & memory.

63 16 bit word VelocityRegWnd See Drive 94 manual
W: EPROM & memory.

65 16 bit word In2Func See Drive 94 manual
W: EPROM & memory.

66 16 bit word In2Polarity See Drive 94 manual
W: EPROM & memory.

67 16 bit word InBounceDelay for input 1 See Drive 94 manual
W: EPROM & memory.

8ENGLISH

Parameter Setting

ModBus Register
16 bit address

Type Controller Variable Description

68 16 bit word InBounceDelay for input 2 See Drive 94 manual
W: EPROM & memory.

69 16 bit word OutFunc for output 1 See Drive 94 manual
W: EPROM & memory.

70 16 bit word OutFunc for output 2 See Drive 94 manual
W: EPROM & memory.

71 16 bit word OutPolarity for
output 1

See Drive 94 manual
W: EPROM & memory.

72 16 bit word OutPolarity for
output 2

See Drive 94 manual
W: EPROM & memory.

73 16 bit word ControlWord 2 – Quick Stop
3 – Enable Drive
4 – Disable Drive
5 – Fault Reset
6 - Continue
W: Memory only

75 32 bit dword TargetVelocity This register could provide the
Target Velocity when the drive is
in normal velocity mode.
W: Memory only.
Low word starts first

77 16 bit word TargetTorque This register could provide the
Target Torque when the drive is
in normal velocity mode.
W: Memory only.
Low word starts first

4.2 Discrete Memory

4.2.1 Discrete Inputs (Read Only Bits)

The following read only ModBus bit registers (drive bit variables) accessible only through the ModBus
function

• 02 (0x02) Read Discrete Inputs

4.2.2 Coils (Read/Write Bits)

The following read/write ModBus bit registers (drive bit variables) accessible only through the ModBus
functions

• 01 (0x01) Read Coils

• 05 (0x05) Write Single Coil

• 15 (0x0F) Write Multiple Coils

Modbus Register
16 bit address

Type Description

1 (0x0001) BIT Digital OUT1

2 (0x0002) BIT Digital OUT2

L AC Technology Corporation • 630 Douglas Street • Uxbridge, MA 01569 • USA
 +1 (508) 278-9100

	Users Manual - PositionServo (MVCD)
	Users Manual - PositionServo with MVOB
	Users Manual - PositionServo with RS-232
	1	Introduction
	1.1	About These Instructions
	1.2	Scope of Supply
	1.3	Legal Regulations

	2	Technical Data
	2.1	Electrical Characteristics
	2.2	Environment
	2.3	Operating Modes
	2.4	Connections and I/O
	2.5	Digital I/O Ratings
	2.6	Power Ratings
	2.7	Dimensions
	2.8	Clearance for Cooling Air Circulation

	3	Installation
	3.1	Wiring
	3.2	Shielding and Grounding
	3.2.1	General Guidelines
	3.2.2	EMI Protection
	3.2.3	Enclosure

	3.3	Line Filtering
	3.4	Heat Sinking
	3.5	Line (Mains) Fusing
	3.6	Fuse Recommendations

	4	Interface
	4.1	External Connectors
	4.1.1	P1 & P7 - Input Power and Output Power Connections
	4.1.2	P2 - Serial Communications Port
	4.1.3	P3 - Controller Interface
	4.1.4	P4 - Motor Feedback / Second Loop Encoder Input
	4.1.5	P5 - 24 VDC Back-up Power Input
	4.1.6	P6 - Braking Resistor and DC Bus
	4.1.7	Connector and Wiring Notes
	4.1.8	P11 - Resolver Interface Module (option)
	4.1.9	P12 - Second Encoder Interface Module (option)

	4.2	Digital I/O Details
	4.2.1	Step & Direction / Master Encoder Inputs (P3, pins 1-4)
	4.2.2	Digital Outputs
	4.2.3	Digital Inputs

	4.3	Analog I/O Details
	4.3.1	Analog Reference Input
	4.3.2	Analog Output

	4.4	Communication Interfaces
	4.4.1	RS232 Interface (standard)
	4.4.2	RS485 Interface (option)
	4.4.3	Using RS232 and RS485 Interfaces Simultaneously
	4.4.4	MODBUS RTU Support

	4.5	Motor Selection
	4.5.1	Motor Connection
	4.5.2	Motor Over-Temperature Protection
	4.5.3	Motor Set-up

	4.6	Using a Custom Motor
	4.6.1	Creating Custom Motor Parameters
	4.6.2	Autophasing
	4.6.3	Custom Motor Data Entry

	5	Parameters
	5.1	Parameter Storage and EPM Operation
	5.1.1	Parameter Storage
	5.1.2	EPM Operation
	5.1.3	EPM Fault

	5.2	Motor Group
	5.3	Parameters
	5.3.1	Drive Operating Modes
	5.3.2	Drive PWM Frequency
	5.3.3	Current Limit
	5.3.4	Peak Current Limit (8kHz and 16 kHz)
	5.3.5	Analog Input Scale (Current)
	5.3.6	Analog Input Scale (Velocity)
	5.3.7	ACCEL/DECEL Limits (Velocity Mode Only)
	5.3.8	Reference
	5.3.9	Step Input Type (Position Mode Only)
	5.3.10	Fault Reset Option
	5.3.11	Motor Temperature Sensor
	5.3.12	Motor PTC Cut-off Resistance
	5.3.13	Second Encoder
	5.3.14	Regen Duty Cycle
	5.3.15	Encoder Repeat Source
	5.3.16	System to Master Ratio
	5.3.17	Second to Prime Encoder Ratio
	5.3.18	Autoboot
	5.3.19	Group ID
	5.3.20	Enable Switch Function
	5.3.21	User Units

	5.4	Communication
	5.4.1	IP Setup
	5.4.2	RS-485 Configuration
	5.4.3	Modbus Baud Rate
	5.4.4	Modbus Reply Delay

	5.5	Analog I/O
	5.5.1	Analog Output
	5.5.2	Analog Output Current Scale (Volt / amps)
	5.5.3	Analog Output Velocity Scale (mV/RPM)
	5.5.4	Analog Input Dead Band
	5.5.5	Analog Input Offset Parameter
	5.5.6	Adjust Analog Voltage Offset

	5.6	Digital I/O
	5.6.1	Digital Input De-bounce Time
	5.6.2	Hard Limit Switch Action

	5.7	Velocity Limits
	5.7.1	Zero Speed
	5.7.2	Speed Window
	5.7.3	At Speed

	5.8	Position Limits
	5.8.1	Position Error
	5.8.2	Max Error Time
	5.8.3	Second Encoder Position Error
	5.8.4	Second Encoder Max Error Time

	5.9	Compensation
	5.9.1	Velocity P-gain (Proportional)
	5.9.2	Velocity I-gain (Integral)
	5.9.3	Position P-gain (Proportional)
	5.9.4	Position I-gain (Integral)
	5.9.5	Position D-gain (Differential)
	5.9.6	Position I-limit
	5.9.7	Gain Scaling Window

	5.10	Tools
	5.10.1	Oscilloscope Tool
	5.10.2	Run Panels

	5.11	Faults Group

	6	Operation
	6.1	Minimum Connections
	6.2	Configuration of the PositionServo
	6.3	Position Mode Operation (gearing)
	6.4	Dual-loop Feedback
	6.5	Enabling the PositionServo
	6.6	Drive Tuning
	6.6.1	Tuning the Drive in Velocity Mode
	6.6.2	Tuning the Drive in Position Mode

	7	Quick Start Reference
	7.1	Quick Start - External Torque Mode
	7.2	Quick Start - External Velocity Mode
	7.3	Quick Start - External Positioning Mode

	8	Diagnostics
	8.1	Display
	8.2	LEDs
	8.3	Faults
	8.3.1	Fault Codes
	8.3.2	Fault Event
	8.3.3	Fault Reset

	8.4	Troubleshooting

	Users Manual - MotionView
	Programming Manual - PC-based MotionView
	1.	Introduction
	1.1	Definitions
	1.2	Programming Flowchart
	1.3	MotionView / MotionView Studio
	1.3.1	Main Toolbar
	1.3.2	Program Toolbar
	1.3.3	MotionView Studio - Indexer Program

	1.4	Programming Basics
	1.5	Using Advanced Debugging Features
	1.6	Inputs and Outputs
	1.7	Events
	1.8	Variables and Define Statement
	1.9	IF/ELSE Statements
	1.10	Motion
	1.10.1	Drive Operating Modes
	1.10.2	Point To Point Moves
	1.10.3	Segment Moves
	1.10.4	Registration
	1.10.5	S-Curve Acceleration
	1.10.6	Motion Queue

	1.11	Subroutines and Loops
	1.11.1	Subroutines
	1.11.2	Loops

	2.	Programming
	2.1	Program Structure
	2.2	Variables
	2.3	Arithmetic Expressions
	2.4	Logical Expressions and Operators
	2.4.1	Bitwise Operators
	2.4.2	Boolean Operators

	2.5	Comparison Operators
	2.6	System Variables and Flags
	2.7	System Variables Storage Organization
	2.7.1	RAM File for User’s Data Storage
	2.7.2	Memory Access Through Special System Variables
	2.7.3	Memory Access Through MEMSET, MEMGET Statements

	2.8	System Variables and Flags Summary
	2.8.1	System Variables
	2.8.2	System Flags

	2.9	Control Structures
	2.9.1	DO/UNTIL Structure
	2.9.2	WHILE Structure
	2.9.3	Subroutines
	2.9.4	IF Structure
	2.9.5	IF/ELSE Structure
	2.9.6	WAIT Statement
	2.9.7	GOTO Statement & Labels

	2.10	Scanned Event Statements
	2.11	Motion
	2.11.1	How Moves Work
	2.11.2	Incremental (MOVED) and Absolute (MOVEP) Motion
	2.11.3	Incremental (MOVED) Motion
	2.11.4	Absolute (MOVEP) Move
	2.11.5	Registration (MOVEDR MOVEPR) Moves
	2.11.6	Segment Moves
	2.11.7	MDV Segments
	2.11.8	S-curve Acceleration
	2.11.9	Motion SUSPEND/RESUME
	2.11.10	Conditional Moves (MOVE WHILE/UNTIL)
	2.11.11	Motion Queue and Statement Execution while in Motion

	2.12	System Status Register (DSTATUS register)
	2.13	Fault Codes (DFAULTS register)
	2.14	Limitations and Restrictions
	2.15	Homing
	2.15.1	What is Homing?
	2.15.2	The Homing Function
	2.15.3	Home Offset
	2.15.4	Homing Velocity
	2.15.5	Homing Acceleration
	2.15.6	Homing Switch
	2.15.7	Homing Start
	2.15.8	Homing Method
	2.15.9	Homing Methods
	2.15.9.1	Homing Method 1: Homing on the Negative Limit Switch
	2.15.9.2	Homing Method 2: Homing on the Positive Limit Switch
	2.15.9.3	Homing Method 3: Homing on the Positive Home Switch & Index Pulse
	2.15.9.4	Homing Method 4: Homing on the Positive Home Switch & Index Pulse
	2.15.9.5	Homing Method 5: Homing on the Negative Home Switch & Index Pulse
	2.15.9.6	Homing Method 6: Homing on the Negative Home Switch & Index Pulse
	2.15.9.7	Homing Method 7: Homing on the Home Switch & Index Pulse
	2.15.9.8	Homing Method 8: Homing on the Home Switch & Index Pulse
	2.15.9.9	Homing Method 9: Homing on the Home Switch & Index Pulse
	2.15.9.10	Homing Method 10: Homing on the Home Switch & Index Pulse
	2.15.9.11	Homing Method 11: Homing on the Home Switch & Index Pulse
	2.15.9.12	Homing Method 12: Homing on the Home Switch & Index Pulse
	2.15.9.13	Homing Method 13: Homing on the Home Switch & Index Pulse
	2.15.9.14	Homing Method 14: Homing on the Home Switch & Index Pulse
	2.15.9.15	Homing Method 17: Homing without an Index Pulse
	2.15.9.16	Homing Method 18: Homing without an Index Pulse
	2.15.9.17	Homing Method 19: Homing without an Index Pulse
	2.15.9.18	Homing Method 21: Homing without an Index Pulse
	2.15.9.19	Homing Method 23: Homing without an Index Pulse
	2.15.9.20	Homing Method 25: Homing without an Index Pulse
	2.15.9.21	Homing Method 27: Homing without an Index Pulse
	2.15.9.22	Homing Method 29: Homing without an Index Pulse
	2.15.9.23	Homing Method 33: Homing to an Index Pulse
	2.15.9.24	Homing Method 34: Homing to an Index Pulse
	2.15.9.25	Homing Method 35: Using Current Position as Home
	2.15.10	Homing Mode Operation example

	3.	Reference
	3.1	Program Statement Glossary
	3.2	Variable List
	3.3	Quick Start Examples
	3.3.1	Quick Start - External Torque/Velocity
	3.3.2	Quick Start - External Positioning
	3.3.3	Quick Start - Internal Torque/Velocity
	3.3.4	Quick Start - Internal Positioning

	3.4	PositionServo Reference Diagrams

	Programming Manual - PositionServo with MVOB
	Communication Reference Guides
	Dynamic Link Library (DLL)
	CANopen - P94CAN01B
	1.	Safety Information
	1.1	Warnings, Cautions & Notes
	1.2	Reference Documents
	1.3	Conventions for Object Descriptions
	1.4	Commonly Used Terms, Acronyms & Definitions

	2	Installation
	2.1	Mechanical Installation
	2.2	Electrical Installation

	3	Introduction
	3.1	CAN Overview
	3.2	PositionServo Drive Configuration
	3.3	CAN Protocol
	3.4	Accessing the Object Dictionary
	3.4.1	SDOs and PDOs
	3.4.2	SDOs: Description and Examples
	3.4.3	PDOs: Description and Examples
	3.4.4	SDO or PDO? Design Considerations
	3.4.5	Mapping a PDO

	3.5	Objects that Define SDO’s and PDO’s

	4	Network Management
	4.1	Network Management Overview
	4.1.1	Network Management Services and Objects
	4.1.2	General Device State Control
	4.1.3	Device Monitoring
	4.1.4	Time Stamp PDOs
	4.1.5	Emergency Messages

	4.2	Network Management Objects

	5	Device Configuration and Control through Native Variables List
	5.1	Native Control
	5.2	Objects to Access the Drive’s RAM Variables

	6	Device Control, Configuration and Status
	6.1	Device Control and Status Overview
	6.1.1	Control Word, Status Word, and Device Control Function
	6.1.2	State Changes Diagram

	6.2	Device Control and Status Objects
	6.3	Error Management Objects
	6.4	Basic Amplifier Configuration Objects
	6.5	Basic Motor Configuration Objects

	7	Control Loops
	7.1	Control Loop Configuration
	7.1.1	Nested Control Loops
	7.1.2	The Position Loop
	7.1.3	The Velocity Loop
	7.1.4	The Current Loop

	7.2	Position Loop Configuration Objects
	7.3	Velocity Loop Configuration Objects
	7.4	Current Loop Configuration Objects

	8	Non Profiled Operating Modes
	8.1	Current Follower Mode
	8.2	Velocity Follower Mode

	9	Homing Mode
	9.1	Homing Mode Operation
	9.1.1	Homing Overview
	9.1.2	Homing Methods
	9.1.3	Homing Method 1: Homing on the Negative Limit Switch
	9.1.4	Homing Method 2: Homing on the Positive Limit Switch
	9.1.5	Homing Method 3 and 4: Homing on the Positive Home Switch and Index Pulse
	9.1.6	Homing Methods 5 and 6: Homing on the Negative Home Switch and Index Pulse
	9.1.7	Homing Methods 7-14: Homing on the Home Switch and Index Pulse
	9.1.8	Homing Methods 15, 16, 20, 22, 24, 26, 28, and 30: Reserved
	9.1.9	Homing Methods 17 and 18: Homing without an Index Pulse
	9.1.10	Homing Methods 19, 21, 23, 25, 27, and 29: Homing without an Index Pulse
	9.1.11	Homing Methods 31 and 32: Reserved
	9.1.12	Homing Methods 33 and 34: Homing on the Index Pulse
	9.1.13	Homing Method 35: Homing on the Current Position

	9.2	Homing Mode Operation Objects

	10	Profile Position and Profile Velocity Mode Operation
	10.1	Profile Position Mode Operation Overview
	10.1.1	Point-to-Point Motion Profiles
	10.1.2	Handling a Series of Point-to-Point Moves
	10.1.3	Point-to-Point Move Parameters and Related Data
	10.1.4	Point-To-Point Move Sequence Examples

	10.2	Profile Velocity Mode Operation
	10.2.1	Position and Velocity Loops

	10.3	Profile Position, Profile Velocity Mode Objects.

	CANopen - P94CAN01C
	1	Safety Information
	1.1	Warnings, Cautions and Notes
	1.1.1	General
	1.1.2	Application
	1.1.3	Installation
	1.1.4	Electrical Connection
	1.1.5	Operation

	2	Introduction
	2.1	Fieldbus Overview
	2.2	Module Specification
	2.3	Module Identification Label

	3	Installation
	3.3	Electrical Installation
	3.3.1	Cable Types
	3.3.2	Network Limitations
	3.3.3	Connections and Shielding
	3.3.4	Network Termination
	3.3.5	Network Schematic

	4	Commissioning
	4.1	Overview
	4.2	Configuring the Network
	4.2.1	Master Support Files
	4.2.2	CANopen Master Setup Procedure

	4.3	Configuring the PositionServo CANopen Module
	4.3.1	Connecting
	4.3.2	Connect to the Drive with MotionView OnBoard
	4.3.3	Communication Module Selection
	4.3.4	CANopen Node Settings
	4.3.5	Node Address
	4.3.6	Baud / Data Rate
	4.3.7	CAN Bootup Mode
	4.3.8	CAN Bootup Delay
	4.3.9	Data Mapping
	4.3.10	Re-Initialising
	4.3.11	Non-Module Parameter Settings

	5.	CANopen Object Dictionary
	5.1	What is the CANopen Object Dictionary?
	5.1.1	Object Format
	5.1.2	Object Dictionary Layout
	5.1.3	Accessing the Object Dictionary

	5.2	Communication Profile Area
	5.2.1	Device Type
	5.2.2	Error Register
	5.2.3	Pre-defined Error Field
	5.2.4	SYNC COB ID
	5.2.5	Manufacture Device Name
	5.2.6	Manufacture Hardware Version
	5.2.7	Manufacture Software Version
	5.2.8	Emergency Message COB ID
	5.2.9	Inhibit Time EMCY
	5.2.10	Producer Heartbeat Time
	5.2.11	Identity Object
	5.2.12	RxPDO 1 to 8 Communication Parameters
	5.2.13	RxPDO Mapping Parameters
	5.2.14	TxPDO 1 to 8 Communication Parameters
	5.2.15	TxPDO Mapping Parameters

	5.3	Manufacture Specific Profile Area
	5.3.1	Data Format, Size and Memory Area

	5.4	Endian Format
	5.5	Object Access

	6.	Service Data Objects
	6.1	What are Service Data Objects?
	6.2	SDO Message Identifiers
	6.3	PID Access
	6.4	SDO Abort Codes
	6.5	SDO Message Frame
	6.5.1	Specifier
	6.5.2	Multiplexor
	6.5.3	Data

	6.6	SDO Access Examples
	6.6.1	Example 1: Read Velocity Accel Limit
	6.6.2	Example 2: Write to Velocity Accel Limit
	6.6.3	Example 3: Read User Variable V0 Least Significant Byte (LSB)
	6.6.4	Example 4: Write to User Variable V0 Least Significant Byte (LSB)
	6.6.5	Example 5: Read APOS
	6.6.6	Example 6: Write to APOS

	7	Process Data Objects
	7.1	What are Process Data Objects?
	7.2	PDO Configuration in MotionView
	7.2.1	COB ID and Mode
	7.2.2	Transmission Type
	7.2.3	Event Time
	7.2.4	Inhibit Time

	7.3	Mapping PDOs
	7.3.1	Amount and Size of PDOs
	7.3.2	Receive (Rx) PDOs
	7.3.3	Transmit (Tx) PDOs

	8	Emergency Objects
	8.1	What is an Emergency Object?
	8.2	Emergency Object format
	8.2.1	Error Code
	8.2.2	Error Register
	8.2.3	Manufacture Specific Error Field

	8.3	Emergency Object Examples
	8.3.1	Example 1: Hardware Disable
	8.3.2	Example 2: Limit Switch
	8.3.3	Example 3: CAN Receive buffer overrun

	9	Drive Control and Status
	9.1	Overview
	9.2	Control BITs
	9.2.1	Software Enable/Disable
	9.2.2	Drive Reset (Cold Boot)
	9.2.3	Suspend Motion
	9.2.4	Stop Motion

	9.3	Status Word
	9.3.1	Status Flags Register
	9.3.2	Extended Status Bits

	10	Advanced Features
	10.1	CAN Baud Rate
	10.2	CAN Node Address
	10.3	CAN Boot-up Mode
	10.4	CAN Boot-up Delay
	10.5	Communication Module Selection
	10.6	PDO Configuration
	10.6.1	PDO COB-ID, Activation and Transmission Type
	10.6.2	PDO Mapping
	10.6.3	TPDO Event Time and Inhibit Time

	11	Reference
	11.1	PID List with CANopen Values

	DeviceNet
	1.	Safety Information
	1.1	Warnings, Cautions & Notes
	1.1.1	General
	1.1.2	Application
	1.1.3	Installation
	1.1.4	Electrical Connection
	1.1.5	Operation

	2.	Introduction
	2.1	Fieldbus Overview
	2.2	Module Specification
	2.3	Module Identification Label

	3.	Installation
	3.1	Mechanical Installation
	3.2	DeviceNet Terminal Block
	3.3	Electrical Installation
	3.3.1	Cable Types
	3.3.2	Network Limitations
	3.3.3	Connections and Shielding
	3.3.4	Network Termination

	4.	Configuring Drive for DeviceNet Communication
	4.1	Connect to the Drive with MotionView OnBoard
	4.2	Set up the CAN network
	4.2.1	Enable DeviceNet Communication
	4.2.2	Set CAN Parameters
	4.2.3	Set CANOpen Parameters
	4.2.4	Set DeviceNet Parameters

	4.3	Configuration Parameters
	4.4	Drive-Specific Error Codes

	5.	Polled I/O
	5.1	Command Output Assembly
	5.1.1	Byte 0 – Control Word
	5.1.2	Byte 2 - Command Type
	5.1.3	Byte 3 - Response Type
	5.1.4	Bytes 4 through 7 - Data

	5.2	Response Input Assembly
	5.2.1	Byte 0 - Status Byte 1
	5.2.2	Byte 1 - Data Scale Factor
	5.2.3	Byte 2 - Status Byte 2
	5.2.4	Byte 3 - Response Type
	5.2.5	Bytes 4 through 7 - Data

	6	Explicit Messaging
	6.1	Objects 64h and 65h
	6.2	Example Explicit Message

	7.	Reference
	7.1	Reference Documents
	7.2	Common Terms
	7.3	Parameter Quick Reference

	Ethernet/IP
	PROFIBUS-DP
	1	Safety Information
	1.1	Warnings, Cautions and Notes
	1.1.1	General
	1.1.2	Application
	1.1.3	Installation
	1.1.4	Electrical Connection
	1.1.5	Operation

	2	Introduction
	2.1	Fieldbus Overview
	2.2	Module Specification
	2.3	Module Identification Label

	3	Installation
	3.1	Mechanical Installation
	3.2	PROFIBUS DP Connector
	3.3	Electrical Installation
	3.3.1	Cable Types
	3.3.2	Network Limitations
	3.3.3	Connections and Shielding
	3.3.4	Network Termination

	4	Commissioning
	4.1	Overview
	4.2	Configuring the Network Master
	4.2.1	Master Support Files
	4.2.2	PROFIBUS-DP Master Setup Procedure

	4.3	Configuring the PositionServo PROFIBUS DP Module
	4.3.1	Connecting
	4.3.2	Connect to the Drive with MotionView OnBoard
	4.3.3	Setting the Network Protocol
	4.3.4	PROFIBUS-DP Node Settings
	4.3.5	Node Address
	4.3.6	Baud / Data Rate
	4.3.7	Data Mapping
	4.3.8	Re-Initialising
	4.3.9	Non-Module Parameter Settings

	5.	Cyclic Data Access
	5.1	What is Cyclic Data?
	5.2	Channel Data Sizes
	5.3	Mapping Cyclic Data
	5.3.1	Data IN (Din) Channels
	5.3.2	Data OUT (Dout) Channels

	6.	Acyclic Parameter Access
	6.1	What is Acyclic Data?
	6.2	 Setting the Acyclic Mode
	6.2.1	Acyclic Modes
	6.2.2	Acyclic Mode 1
	6.2.3	Acyclic Mode 2

	6.3	Modes 1 & 2 – 8BAD Format
	6.3.1	8BAD - Function Code (Byte 0)
	6.3.2	8BAD – Access Control and Status (Byte 1)
	6.3.3	8BAD – PID Index (Bytes 2 and 3)
	6.3.4	8BAD – Data (Bytes 4 to 7)

	6.4	Acyclic Parameter Access Examples
	6.4.1	Example 1: Read Velocity Accel Limit
	6.4.2	Example 2: Write to Velocity Accel Limit

	7	Drive Control and Status
	7.1	Overview
	7.2	Control BITs
	7.2.1	Software Enable/Disable
	7.2.2	Drive Reset (Cold Boot)
	7.2.3	Suspend Motion
	7.2.4	Stop Motion

	7.3	Status Word
	7.3.1	Status Flags Register
	7.3.2	Extened Status Bits

	8	Advanced Features
	8.1	Module Firmware
	8.2	Node Address Lock
	8.3	PROFIBUS Status
	8.4	PROFIBUS DP Timeout Action
	8.4.1	Module Timeout Action
	8.4.2	Master Monitor Timeout Action
	8.4.3	Data Exchange Timeout Action

	8.5	Sync and Freeze
	8.5.1	Sync and Freeze Overview
	8.5.2	Sync and Freeze Status

	9	Diagnostics
	9.1	Faults
	9.2	Troubleshooting

	10	Parameter Quick Reference

	Modbus

	RS-485 module Modbus

