PowerFlex® 700L **TECHNICAL DATA** LIQUID-COOLED ADJUSTABLE FREQUENCY AC DRIVES # PowerFlex 700L Technical Data # **Table of Contents** | <u>Description</u> | <u>Page</u> | |---|-------------| | Product Overview | <u>3</u> | | Key Features/Benefits | | | Easy to Use Communication and Human Interface Options | 4 | | Catalog Number Explanation | <u>6</u> | | Standard Drive Product Selection | <u>8</u> | | Factory Installed Options | 9 | | User Installed Options | 10 | | Product Dimensions | | | Installation Considerations | 14 | | Cable Recommendations | <u>20</u> | | Power Ratings and Branch Circuit Protection | 21 | | Maximum Motor Cable Lengths | 23 | | DPI Connections | 26 | | Control Connections | 29 | | Control Highlights | 32 | | Standard Drive Specifications | 37 | | Derating Guidelines | 40 | | Watts Loss (@ Rated Load, Speed, and PWM Carrier Frequency) | <u>40</u> | | Cooling Loop Options | 41 | # Reference Materials For additional PowerFlex 700L data and general drive information, refer to the following publications: | Title | Publication | Available Online at | |--|--------------|----------------------------| | PowerFlex 700L Liquid-Cooled Adjustable Frequency AC Drive User Manual | 20L-UM001 | www.rockwellautomation.com | | PowerFlex 700L Active Converter Power Module User Manual | PFLEX-UM002 | /literature | | PowerFlex 700 Adjustable Frequency AC Drive User Manual — Series B (for standard vector control information) | 20B-UM002 | | | PowerFlex 700S High Performance AC Drive — Phase II Control User Manual (for Phase II control information) | 20D-UM006 | | | PowerFlex 70/700 Reference Manual | PFLEX-RM001 | | | PowerFlex 700L Liquid-to-Liquid Heat Exchanger User Manual | 20L-UM002 | | | Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives | DRIVES-IN001 | | | Preventive Maintenance of Industrial Control and Drive System Equipment | DRIVES-TD001 | | | Safety Guidelines for the Application, Installation and Maintenance of Solid State Control | SGI-1.1 | | For other information, contact Allen-Bradley Drives Technical Support: | Title | Online at | |--|-----------------------------| | Allen-Bradley Drives Technical Support | www.ab.com/support/abdrives | #### **Product Overview** PowerFlex 700L Liquid-Cooled AC drives are responsive, high performance, regenerative industrial drives for installations requiring a compact footprint. The PowerFlex 700L drive offers two versions of control: either the PowerFlex 700 Vector Control or the PowerFlex 700S Phase II Control. This provides the PowerFlex 700L drive with exceptional and proven performance as well as the same interface, communications capabilities and programming tools of the air-cooled drives. The many features allow the user to easily configure the drive for most application needs. Ratings currently available include: - 268 to 960 Hp (200 to 715 kW) at 400V AC - 300 to 1150 Hp (224 to 860 kW) at 480V AC - 465 to 870 Hp (345 to 650 kW) at 600V AC - 475 to 881 Hp (355 to 657 kW) at 690V AC Frame 2 Frame 3B shown (with cabinet doors open) ### Key Features/Benefits #### **Space Saving Features** • The PowerFlex 700L AC drive features a patented liquid-cooled heatsink design to transfer over 80% of the drive heat loss to the liquid coolant, resulting in the best drive power-to-size ratio in the market. The integral active converter and line filter translate to a fully regenerative drive that's over 60% smaller than typical air-cooled units. #### Integrated Line Regenerative Braking For Precise Control and Energy Savings - The Liquid-Cooled AC drive features regenerative braking which is ideal for precise, high-response speed and position control, continuous holdback, rapid deceleration and stopping of high inertia loads. Instead of wasting energy with resistor braking technology, regenerative braking actually puts the energy back into the system to be used by other equipment. - Regenerative braking eliminates the need for large resistor banks. These resistors banks can create a lot of heat and must frequently be cleaned. #### Improved Power Quality with Regenerative Rectifier - Compact and cost-effective means to achieve compliance with CE and IEEE 519 harmonic limits. - Actively controls power factor regardless of motor speed which reduces input line currents and minimizes the size of upstream devices. #### **Input Voltage Boost** - Integrated active converter and line-side filter allow "input voltage boost" protect your system from power disturbances. - Maintains consistent system performance in the event of power dips or other power quality issues. - Provides full 480V AC to the motor even when operating on 380V AC power lines. #### **Flexible Control Platforms** - Designed for applications with requirements ranging from the simplest speed control to the most demanding torque control, the PowerFlex 700L drive is available with either PowerFlex 700 Vector Control or PowerFlex 700S Control. - Outstanding open or closed loop speed regulation for applications ranging from fans and pumps to precise winder control. - Excellent torque production and tight torque regulation for demanding applications like extruders, web process and test stands. - Fast update times of torque inputs are suitable for high performance applications. - All of this flexibility is possible through multiple control modes: V/Hz control, Sensorless Vector, Vector Control with FORCE™ Technology, and Permanent Magnet Control (700S control only). - Safe Off Option (1), the first offering available within the DriveGuard™ series of safety solutions, prevents a drive from delivering rotational energy to motors by integrating a safety circuit with the drive's power switching signals. This solution meets EN 954-1, Category 3. - (1) At time of publication, the Safe Off Option is available with the PowerFlex 700S Control Option in Frame 3A and 3B PowerFlex 700L drives. #### **Packaging Options** - The PowerFlex 700L Frame 2 is an IP00 (Open Style) panel mount drive that can be mounted in a variety of enclosures. - The PowerFlex 700L Frame 3A and 3B are available in a IP20 (NEMA 1) Rittal enclosure that includes the input circuit breaker. - The majority of heat lost from the drive is transferred to the liquid coolant. Therefore, other enclosure options such as IP54 (NEMA/UL Type 12) or IP66 (NEMA/UL Type 4X) can be utilized and placed directly into dusty, dirty and outdoor environments. Contact your local Rockwell Automation drive center for these packaging options. #### **Cooling Loop Options** - The PowerFlex 700L Liquid-to-Liquid Heat Exchanger provides customers a cost effective, standard cooling loop solution for use with the PowerFlex 700L drive. The liquid to liquid heat exchanger utilizes a heat transfer plate to transfer heat from one liquid to another and does require a stable water supply from the user. - A chiller or liquid to air heat exchanger can also be used with the PowerFlex 700L drive. See page 41 for details. # Easy to Use Communication and Human Interface Options #### Premier Integration with PowerFlex Drives and RSLogix 5000 For simplified AC drive start-up and reduced development time, we've integrated Allen-Bradley PowerFlex drive configuration with $RSLogix^{TM}$ 5000 software. This single-software approach simplifies parameter and tag programming while still allowing stand-alone drive software tool use on the factory floor. #### **Communication Modules** DPI communication modules provide fast and efficient control and/or data exchange over the following interfaces: - DeviceNetTM - ControlNetTM - EtherNet/IPTM - Remote I/OTM - Serial Communications - Other open control and communication networks #### **Unsurpassed Capability in Network Communications** PowerFlex drives are fully compatible with the wide variety of Allen-Bradley DPI^{TM} communication adapters, offering the following benefits: | BACnet [®] | DeviceNet™ | ControlNet™ | EtherNet/IP™ | Remote I/O | RS485 DF1 | PROFIBUS DP | Interbus™ | LonWorks [™] | Modbus RTU | Modbus TCP | Metasys N2 | Siemens P1 FLN | Bluetooth® | Description | | |---------------------|------------|-------------|--------------|-------------|-----------|-------------|-----------|-----------------------|------------|------------|------------|----------------|------------|---|--| | | ~ | > | ~ | | | | | | | | | | | Unconnected Messaging permits other network devices (e.g. PanelView™) to communicate directly to a drive without routing the communication through the network scanner. | | | ~ | ~ | / | < | | < | | | | ~ | | | | ~ | Adapter Routing – Plug PC into one drive and talk to all other Allen-Bradley drives on same network, without being routed through the network scanner. | | | ~ | ~ | > | ~ | \ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | Access to 100% of all parameters over the network. | | | ~ | ~ | | < | | | < | | | | | | | | AutoBaud capability makes initial connections less problematic. | | | | ~ | | | | | | | | | | | | | Change of State significantly reduces network traffic by configuring control messages to be sent only upon customer defined states. Very flexible configuration for each node (Example: "reference must change by more than 5%"). | | | | ~ | | < | | | | | | | | | | | Peer Control provides master-slave type control between drives, where one or more slave drives (consumers) can run based on the status of a
master drive (producer), which can also significantly reduce network traffic. | | | | ~ | | | | | | | | | | | | | Automatic Device Replacement (ADR) saves significant time and effort when replacing a drive, by allowing the scanner to be configured to automatically detect a new drive and download the required parameter settings. | | | V | ~ | ~ | • | > | ~ | ~ | ′ | ~ | ~ | ~ | ~ | ~ | ~ | Flexible Fault Configuration – Adapters can be programmed to take fault based actions such as ramp to stop, coast-to-stop, and hold last state, as well as send user configurable logic control and speed reference values. In addition, different actions can be taken based on whether the network experienced a serious problem (broken cable, etc.) versus a network idle condition (PLC set to "Program"). | | #### PowerFlex Architecture-Class LCD Human Interface Modules - An LCD Human Interface Module (also used with the PowerFlex 70, PowerFlex 700, PowerFlex 700S, and PowerFlex 700H) provides multilingual text for startup, metering, programming, and troubleshooting. - Large and easy to read 7 line x 21 character backlit display - Alternate function keys for shortcuts to common tasks - "Calculator-like" number pad for fast and easy data entry (Full Numeric version only) - Control keys for local start, stop, speed, and direction - Remote versions for panel mount applications #### **PC-based Configuration Tools** - DriveExplorer[™] and DriveExplorer Lite. Simple and flexible "On-line" tools for monitoring and configuring while connected to a drive. - DriveTools[™] SP. A suite of software tools which provide an intuitive means for programming, troubleshooting, and maintaining Allen-Bradley AC and DC drives. # **Catalog Number Explanation** To interpret the meaning of a catalog number, match the values of the catalog number code in positions **a**, **b**, **c**, etc. with the tables labeled **a**, **b**, **c**, etc. below. | ć | 3 | |------|----------------| | Dr | ive | | Code | Туре | | 20L | PowerFlex 700L | | | | | | D | | |------|----------------|-----| | | Voltage Rating | | | Code | Voltage | Ph. | | С | 400V AC | 3 | | D | 480V AC | 3 | | Е | 600V AC | 3 | | F | 690V AC | 3 | | | | CI | | | | | | |------|-----------|-------------|------|-------|--|--|--| | | ND Rating | | | | | | | | | 400 | V, 60 Hz Ir | nput | | | | | | Code | Amps | kW | Нр | Frame | | | | | 360 | 360 | 200 | 268 | 2 | | | | | 650 | 650 | 370 | 500 | 3A | | | | | 1K2 | 1250 | 715 | 960 | 3B | | | | | | | C2 | | | |------|------|-------------|------|-------| | | | ND Rating | ı | | | | 480 | V, 60 Hz Ir | nput | | | Code | Amps | kW | Нр | Frame | | 360 | 360 | 224 | 300 | 2 | | 650 | 650 | 445 | 600 | 3A | | 1K2 | 1250 | 860 | 1150 | 3B | | | | c3 | | | | | |------|-------------------|-----|-----|-------|--|--| | | ND Rating | | | | | | | | 600V, 60 Hz Input | | | | | | | Code | Amps | kW | Нр | Frame | | | | 425 | 425 | 345 | 465 | 3A | | | | 800 | 800 | 650 | 870 | 3B | | | | | C4 | | | | | | | |------|-------------------|-----|-----|-------|--|--|--| | | ND Rating | | | | | | | | | 690V, 60 Hz Input | | | | | | | | Code | Amps | kW | Нр | Frame | | | | | 380 | 380 | 355 | 475 | 3A | | | | | 705 | 705 | 657 | 881 | 3B | | | | | | | | | - | | | | | | d | | | | | | | | | |----------------------------------|---------------------------|----------------------|--|--|--|--|--|--|--| | | Enclosure | | | | | | | | | | Code | Enclosure | Conformal
Coating | | | | | | | | | А | IP20, NEMA/UL
Type 1 § | No | | | | | | | | | N | IP00, Open
Chassis * | No | | | | | | | | | § Frames 3A & 3B complete drive. | | | | | | | | | | | # Frame 2 only. | | | | | | | | | | | е | | | | | | |------|---|--|--|--|--| | HIM | | | | | | | Code | Operator Interface | | | | | | 0 | No HIM/Blank Cover | | | | | | 3 | Full Numeric LCD (Frame 2 Only) | | | | | | С | Full Numeric LCD, Door Mount
(Frames 3A & 3B Only) | | | | | | | f | | | | | | | | | | |---------------------------|------------------|-----|--|--|--|--|--|--|--|--| | Documentation | | | | | | | | | | | | Code Documents Ship Carto | | | | | | | | | | | | Е | English Doc Set | Yes | | | | | | | | | | N | No Documentation | Yes | g | |------|--------------| | | Brake | | Code | w/Brake IGBT | | N | No | | | | | | h | | |------|----------------|--| | | Brake Resistor | | | Code | w/Resistor | | | N | No | | | | | | | Equipment Type | | | | | | | | | | | |----------------|--------------------------------|------------|--|--|--|--|--|--|--|--| | Code | Description | Frame | | | | | | | | | | Α | Complete
Regenerative Drive | 2, 3A & 3B | | | | | | | | | | | j | | |------|---|--| | | Comm Slot | | | Code | Communication
Option | DPI™ User
Installed Kit
Cat. No. ‡ | | N | None | N | | С | DPI ControlNet (Coax) * | 20-Comm-C | | D | DPI DeviceNet * | 20-Comm-D | | Е | DPI EtherNet/IP * | 20-Comm-E | | R | DPI RIO * | 20-Comm-R | | S | DPI RS-485 DF1 * | 20-Comm-S | | 1 | DriveLogix™
ControlNet (Coax) ® | - | | 2 | DriveLogix ControlNet Redundant (Coax) * | - | | 3 | DriveLogix ControlNet
(Fiber) * | - | | 4 | DriveLogix ControlNet Redundant (Fiber) * | - | | 5 | DriveLogix DeviceNet
(Open Conn.) * | - | | 6 | DriveLogix EtherNet/IP | - | - * 700 Vector Control uses DPI comm. slot options only. - DriveLogix comm. slot options require 700S Phase II Control with DriveLogix5730. - ‡ For 700S Phase II Control with DriveLogix5730, comm. slot option selections are mutually exclusive. For two communication adapters, (DPI and DriveLogix), select the DriveLogix comm. slot option and order the DPI user installed kit catalog number separately. Code W Е | | | | k | | | | | | | | | | |----------|---|----------|-----|-------|--|--|--|--|--|--|--|--| | | Control Options | | | | | | | | | | | | | Code | Code Control Cassette Logic Expansion Synch-L | | | | | | | | | | | | | 1 | 700VC 24V
I/O | Base | N/A | N/A | | | | | | | | | | 2 | 700VC 120V
I/O | Base | N/A | N/A | | | | | | | | | | Α | 700S Phase II | Expanded | No | No | | | | | | | | | | В | 700S Phase II | Expanded | No | Yes | | | | | | | | | | С | 700S Phase II | Expanded | Yes | No § | | | | | | | | | | D | 700S Phase II | Expanded | Yes | Yes § | | | | | | | | | | § Requir | es DriveLogix57 | 30. | • | | | | | | | | | | | K | Phase II Control w/DriveLogix5730 | No | | | | | | | | | |--------------|-----------------------------------|-------------|--|--|--|--|--|--|--|--| | L | Phase II Control w/DriveLogix5730 | EtherNet/IP | n | | | | | | | | | | | Coolant Type | | | | | | | | | | | | Code | Coolant Frame | | | | | | | | | | Water m Additional Config. Logix Option None Phase II Control Embedded Comm. No All | | I | | | | | | | | | | | |-------------------|-------------|----------------------------------|--|--|--|--|--|--|--|--|--| | | Feedback | | | | | | | | | | | | Code Control Type | | | | | | | | | | | | | 0 | All | None | | | | | | | | | | | 1 | 700VC | Encoder 5V/12V | | | | | | | | | | | Α | 700S Ph. II | Resolver * | | | | | | | | | | | В | 700S Ph. II | Stegmann Hi-Resolution Encoder * | | | | | | | | | | | С | 700S Ph. II | Multi-Device Interface ♣≻ | | | | | | | | | | | Е | 700S Ph. II | 2nd Encoder ♣ | | | | | | | | | | ^{*} Expanded cassette required. Multi-Device Interface allows the connection of the Stegmann and Temposonics linear sensors. The Temposonics sensor cannot be used to close motor control or speed loops. #### Standard Drive Product Selection #### 400V AC Three-Phase Drives | Out | Output Amps (with 400V AC Induction Motor) (1) | | | | | | ominal Po | wer Rating | gs | IP20, NEMA/UL Type 1 (2) | Frame | PWM
Freg. | |-------|--|----------------|------------|----------------|----------------|-------------|-----------|------------|-----|--------------------------|-------|--------------| | 1 | Normal Duty | | Heavy Duty | | | Normal Duty | | Heavy Duty | | | | | | Cont. | 110%
1 Min. | 150%
3 sec. | Cont. | 150%
1 Min. | 200%
3 sec. | kW | НР | kW | НР | Catalog No. | Size | (kHz) | | 360 | 396 | 540 | 264 | 396 | 540 | 200 | 268 | 150 | 200 | 20LC360N0ENNAN10WA | 2 | 4 | | 650 | 715 | 975 | 475 | 715 | 975 | 370 | 500 | 270 | 365 | 20LC650A0ENNAN10WA | 3A | 4 | | 1250 | 1375 | 1875 | 915 | 1375 | 1875 | 715 | 960 | 525 | 700 | 20LC1K2A0ENNAN10WA | 3B | 4 | ⁽¹⁾ Frame 2 ratings are based on 50°C ambient and 50°C coolant. Frame 3A and 3B ratings are based on 40°C ambient and 40°C coolant. #### 480V AC Three-Phase Drives | Out | Output Amps (with 480V AC Induction Motor) (1) | | | | | | ominal Po | wer Rating | gs | IP20, NEMA/UL Type 1 (2) | | DWM | |-------------|--|----------------|-------|----------------|----------------|-------------|-----------|------------|-----|--------------------------|--------------|-------| | Normal Duty | | Heavy Duty | | | Norma | Normal Duty | | y Duty | | Frame | PWM
Frea. | | | Cont. | 110%
1 Min. | 150%
3 sec. | Cont. | 150%
1 Min. | 200%
3 sec. | kW | HP | kW | HP | Catalog No. | Size | (kHz) | | 360 | 396 | 540 | 264 | 396 | 540 | 224 | 300 | 175 | 235 | 20LD360N0ENNAN10WA | 2 | 4 | | 650 | 715 | 975 | 475 | 715 | 975 | 445 | 600 | 325 | 440 | 20LD650A0ENNAN10WA | 3A | 4 | | 1250 | 1375 | 1875 | 915 | 1375 | 1875 | 860 | 1150 | 630 | 845 | 20LD1K2A0ENNAN10WA | 3B | 4 | $^{^{(1)} \}quad \text{Frame 2 ratings are based on } 50^{\circ}\text{C ambient and } 50^{\circ}\text{C coolant. Frame 3A and 3B ratings are based on } 40^{\circ}\text{C ambient and } 40^{\circ}\text{C coolant.}$ #### 600V AC Three-Phase Drives | Out | Output Amps (with 600V AC Induction
Motor) (1) | | | | | | | wer Ratin | gs | IP20, NEMA/UL Type 1 | | DWA | |-------------|--|----------------|-------|----------------|------------------------|-----|------|-----------|-----|----------------------|--------------|-------| | Normal Duty | | Heavy Duty | | | Normal Duty Heavy Duty | | | y Duty | | Frame | PWM
Frea. | | | Cont. | 110%
1 Min. | 150%
3 sec. | Cont. | 150%
1 Min. | 200%
3 sec. | kW | HP | kW | НР | Catalog No. | Size | (kHz) | | 425 | 470 | 640 | 315 | 470 | 640 | 345 | 465 | 255 | 345 | 20LE425A0ENNAN10WA | 3A | 4 | | 800 | 885 | 1200 | 590 | 885 | 1200 | 650 | 870 | 480 | 640 | 20LE800A0ENNAN10WA | 3B | 4 | | 1175 | 1295 | 1765 | 860 | 1295 | 1765 | 955 | 1275 | 695 | 935 | 20LE1K1A0ENNAN10WA | 3B | 2 (2) | ⁽¹⁾ Frame 3A and 3B ratings are based on 40°C ambient and 40°C coolant. #### 690V AC Three-Phase Drives | Out | Output Amps (with 690V AC Induction Motor) (1) | | | | | | ominal Po | ower Ratin | gs | IP20, NEMA/UL Type 1 | | DWA | |-------------|--|----------------|-------|----------------|----------------|-----|------------|------------|-----|----------------------|--------------|-------| | Normal Duty | | Heavy Duty | | | Normal Duty | | Heavy Duty | | | Frame | PWM
Frea. | | | Cont. | 110%
1 Min. | 150%
3 sec. | Cont. | 150%
1 Min. | 200%
3 sec. | kW | HP | kW | HP | Catalog No. | Size | (kHz) | | 380 | 420 | 570 | 280 | 420 | 570 | 355 | 475 | 260 | 350 | 20LF380A0ENNAN10WA | 3A | 4 | | 705 | 780 | 1060 | 520 | 780 | 1060 | 657 | 881 | 485 | 650 | 20LF705A0ENNAN10WA | 3B | 4 | | 1050 | 1155 | 1575 | 770 | 1155 | 1575 | 980 | 1315 | 720 | 965 | 20LF1K0A0ENNAN10WA | | 2 (2) | ⁽¹⁾ Frame 3A and 3B ratings are based on 40°C ambient and 40°C coolant. ⁽²⁾ Frames 3A and 3B only. Frame 2 drives are IP00, NEMA/UL Type Open. ⁽²⁾ Frames 3A and 3B only. Frame 2 drives are IP00, NEMA/UL Type Open. ⁽²⁾ Must operate at 2 kHz PWM only, and only as a stand-alone inverter module ("K" in catalog string position 13). ⁽²⁾ Must operate at 2 kHz PWM only, and only as a stand-alone inverter module ("K" in catalog string position 13). # **Factory Installed Options** # Human Interface and Wireless Interface Modules IP20, NEMA/UL Type 1 (Position e) Cat. Code: 3 LCD Display, Full Numeric Keypad Cat. Code: C Door Mounted Bezel LCD Display, Full Numeric Keypad NEMA/UL Type 1 #### Documentation | | Cat. Code | |---------------------------|--------------| | Description | (Position f) | | English Documentation Set | Е | | No Documentation | N | #### **Internal Communication Adapters** | | Cat. Code | |--|--------------| | Description | (Position j) | | None | N | | ControlNet™ Communication Adapter (Coax) ‡ | С | | DeviceNet™ Communication Adapter ‡ | D | | EtherNet/IP™ Communication Adapter ‡ | Е | | Remote I/O Communication Adapter ‡ | R | | RS485 DF1 Communication Adapter ‡ | S | | DriveLogix Comm Option, ControlNet (Coax) § | 1 | | DriveLogix Comm Option, ControlNet Redundant (Coax) § | 2 | | DriveLogix Comm Option, ControlNet (Fiber) § | 3 | | DriveLogix Comm Option, ControlNet Redundant (Fiber) § | 4 | | DriveLogix Comm Option, DeviceNet (Open Conn.) § | 5 | | DriveLogix Comm Option, EtherNet/IP (Twisted Pair) § | 6 | - \ddagger 700 Vector Control uses DPI comm. slot options only. - S DriveLogix comm. slot option requires 700S Phase II Control with DriveLogix5730. #### **Control Options** | | | Cat. Code | |--------------------|---|--------------| | Control Option | Description | (Position k) | | 700VC - 24V I/O | Base Cassette | 1 | | 700VC - 115V I/O | Base Cassette | 2 | | | Expanded Cassette Only | Α | | Phase II Control | Expanded Cassette w/SynchLink | В | | Phase II Control * | Expanded Cassette w/Logix Expansion Board | С | | rnase ii Control * | Expanded Cassette w/Logix Expansion Board & SynchLink | D | ^{*} Requires DriveLogix5730. #### **Feedback Options** | Control | | Cat. Code | |------------------|---|--------------| | Туре | Description | (Position I) | | All | No Encoder | 0 | | 700VC | 12V/5V Encoder | 1 | | | Resolver, 1026V, 10 kHz, 1016 bit | А | | | Stegmann - High Resolution Encoder Hyperface, 8.5V dc, 20 bit, 100k/r § | В | | 700S
Phase II | Multi-Device Interface - for Stegmann or Linear Temposonics § | С | | | 2nd Encoder, 5V or 12V Configurable by the Drive § | E | | | DriveGuard Safe-Off (w/2nd Encoder) § | S | [§] Requires Expanded Cassette. #### Additional 700S Configurations | | Embedded | Cat. Code | |--|-------------------|--------------| | Description | Communica
tion | (Position m) | | None | _ | W | | Phase II Control | No | Е | | Phase II Control, with DriveLogix5730 Controller | No | K | | Phase II Control, with DriveLogix5730 Controller & EtherNet/IP | EtherNet/IP | L | #### **Coolant Options** | | | Cat. Code | |-------------|-------|--------------| | Description | Frame | (Position n) | | Water | All | А | # **User Installed Options** #### **Human Interface and Wireless Interface Modules** No HIM (Blank Plate) 20-HIM-A0 LCD Display, Full Numeric Keypad 20-HIM-A3 LCD Display, Programmer Only 20-HIM-A5 Wireless Interface Module 20-WIM-N1 Remote (Panel Mount) LCD Display, Full Numeric Keypad 20-HIM-C3S Remote (Panel Mount) LCD Display, Programmer Only 20-HIM-C5S Remote (Panel Mount) Wireless Interface Module 20-WIM-N4S | | Handheld/Local
(Drive Mount) | Remote (Panel
Mount) IP66,
NEMA/UL Type
4x/12 * | |----------------------------------|---------------------------------|--| | Description | Cat. No. | Cat. No. | | No HIM (Blank Plate) | 20-HIM-A0 | - | | LCD Display, Full Numeric Keypad | 20-HIM-A3 | 20-HIM-C3S § | | LCD Display, Programmer Only | 20-HIM-A5 | 20-HIM-C5S § | | Wireless Interface Module | 20-WIM-N1 | 20-WIM-N4S | ^{*} For indoor use only. #### **Human Interface Module Accessories** | Description | Cat. No. | |--|------------| | Bezel Kit for LCD HIMs, NEMA/UL Type 1 § | 20-HIM-B1 | | PowerFlex HIM Interface Cable, 1 m (39 in) * | 20-HIM-H10 | | Cable Kit (Male-Female) ➤ | • | | 0.33 Meters (1.1 Feet) | 1202-H03 | | 1 Meter (3.3 Feet) | 1202-H10 | | 3 Meter (9.8 Feet) | 1202-H30 | | 9 Meter (29.5 Feet) | 1202-H90 | | DPI/SCANport™ One to Two Port Splitter Cable | 1203-S03 | [§] Includes a 1202-C30 interface cable (3 meters) for connection to drive - * Required only when HIM is used as handheld or remote. - ➤ Required in addition to 20-HIM-H10 for distances up to a total maximum of 10 Meters (32.8 Feet). [§] Includes a 1202-C30 interface cable (3 meters) for connection to drive. #### **Communication Option Kits** | Description | Cat No | |---|----------------------| | ControlNet™ Communication Adapter (Coax) | 20-COMM-C | | DeviceNet™ Communication Adapter | 20-COMM-D | | EtherNet/IP™ Communication Adapter | 20-COMM-E | | Interbus™ Communication Adapter | 20-COMM-I | | CANopen® Communication Adapter | 20-COMM-K | | Modbus/TCP Communication Adapter | 20-COMM-M | | PROFIBUS™ DP Communication Adapter | 20-COMM-P | | ControlNet™ Communication Adapter (Fiber) | 20-COMM-Q | | | 20-COMM-R | | Remote I/O Communication Adapter | 20-COMM-S | | RS485 DF1 Communication Adapter | | | DriveLogix ControlNet Communication Adapter (Coax) ★❖ | 1788-CNC | | DriveLogix Comm Option, ControlNet Redundant (Coax) ★❖ | 1788-CNCR | | DriveLogix Comm Option, ControlNet (Fiber) ★❖ | 1788-CNF | | DriveLogix Comm Option, ControlNet Redundant (Fiber) ★❖ | 1788-CNFR | | DriveLogix Comm Option, DeviceNet (Open Conn.) ★❖ | 1788-DNBO | | DriveLogix Comm Option, EtherNet/IP (Twisted Pair) ★❖ | 1788-ENBT | | DriveLogix5730 Comm Option, Embedded EtherNet/IP | 20D-DL2-
ENET0 | | External Communications Kit Power Supply | 20-XCOMM-
AC-PS1 | | DPI External Communications Kit | 20-XCOMM-
DC-BASE | | External DPI I/O Option Board + | 20-XCOMM-
IO-OPT1 | | Compact I/O Module (3 Channel) | 1769-SM1 | - * For use with DriveLogix option only. - + For use only with External DPI Communications Kits 20-XCOMM-DC-BASE. - ❖ Requires Logix Expansion Board (20D-DL2-LEB0). #### **Communication Accessories** | Description | Cat. No. | |---|----------| | Serial Null Modem Adapter | 1203-SNM | | Smart Self-powered Serial Converter (RS232) includes 1203-
SFC and 1202-C10 Cables | 1203-SSS | | Universal Serial Bus™ (USB) Converter includes 2m USB, 20-HIM-H10 & 22-HIM-H10 Cables | 1203-USB | | ControlNet Ex Right-Angle T-Tap 1 Meter Coax Cable Assembly | 1786-TPR | #### **PC Programming Software** | Description | | | |---|---|--| | DriveTools™ SP Software + | | | | DriveExplorer™ Software (Lite/Full) + ❖ | See publication PFLEX-SG002 for further information | | | Pocket DriveExplorer™ Software | | | - → Set-up wizards are available for use with DriveTools SP and DriveExplorer (Lite/Full) only. - DriveExplorer Lite is available for free download at: http://www.ab.com/drives/driveexplorer/free_download.html. #### Accessories **Note:** Please refer to publication number <u>1756-TD008</u> for details on SynchLink. | Description | Cat. No. | |--|-------------| | SynchLink Board | 20D-P2-SLB0 | | SynchLink Fiber Base Block | 1751-SLBA | | SynchLink 4-port Fiber Splitter Block | 1751-SL4SP | | SynchLink Fiber Bypass Switch Block | 1751-SLBP | | 2x1 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF001 | | 2x3 Meter Fiber Link for Power Monitor/SynchLink |
1403-CF003 | | 2x5 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF005 | | 10 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF010 | | 20 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF020 | | 50 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF050 | | 100 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF100 | | 250 Meter Fiber Link for Power Monitor/SynchLink | 1403-CF250 | #### Feedback Option Kits | Description | Cat. No. | |--|-------------| | Multi-Device Interface ➤ | 20D-MDI-C2 | | DriveGuard Safe-Off (w/2nd Encoder) ➤ | 20D-P2-DG01 | | 2nd Encoder, 5V/12V ➤ | 20D-P2-ENC0 | | Resolver > | 20D-RES-A1 | | Stegmann High Resolution Hyperface Encoder ➤ | 20D-STEG-B1 | ➤ Requires Expanded Cassette. #### **DriveLogix Option Kits** | Description | Cat. No. | |--|--------------| | Logix Expansion board for DriveLogix5730 ➤ | 20D-DL2-LEB0 | | Industrial Compact Flash 64K Memory Card | 1784-CF64 | ➤ Requires Expanded Cassette. #### DriveLogix I/O Cables | Description | Cat. No. | |--|-------------| | DriveLogix5730 - Compact I/O cable, 3.28 ft. (1 meter), Left Bus Cap≻§ | 20D-DL2-CL3 | | DriveLogix5730 - Compact I/O cable, 3.28 ft. (1 meter), Right Bus Cap ≻§ | 20D-DL2-CR3 | | Logix5000 RS-232 Programming Cable | 1756-CP3 | - ➤ Requires Expanded Cassette. - § Refer to Publication 1769-SG001 for details and selection of Compact I/O. #### **Product Dimensions** #### Frame 2 Drive # BACK VIEW SIDE VIEW FRONT VIEW 4x Ø 8.5 (0.33) 15.0 (0.59) DETAIL A DETAIL B Weight: 186 kg (410 lbs.) #### Frame 3A/3B Drive Dimensions are in millimeters and (inches). | Frame | Dimensions | | | | | | | | | Weight kg (lbs.) | | | |-------|-------------------|-------------|------------|-------------|-------------|-----------|------------|------------|------------|-----------------------|--|--| | Size | Α | В | С | D | E | F | G | Н | J | Complete Drive | | | | 3A | 1200 (47.2) | 2000 (78.7) | 600 (23.6) | 2078 (81.9) | 1500 (59.1) | 233 (9.2) | 542 (21.3) | 542 (21.3) | 535 (21.1) | 950 (2090) | | | | 3B | 1600 (63.0) | 2200 (86.6) | 800 (31.5) | 2278 (89.8) | 1500 (59.1) | 233 (9.2) | 542 (21.3) | 942 (37.1) | 735 (28.9) | 1361 (3000) | | | #### Installation Considerations #### **Power Wiring** The PowerFlex 700L has the following built in protective features to help simplify installation: - Ground fault protection during start up and running ensures reliable operation - Electronic motor overload protection increases motor life #### **AC Supply Source Considerations** PowerFlex 700L Liquid-Cooled AC drives are suitable for use on a circuit capable of delivering up to a maximum of 200,000 rms symmetrical amperes. PowerFlex 700L Liquid Cooled AC drives should not be used on undersized or high-impedance supply systems. The supply system kVA should be equal to or greater than the drive-rated kW, and the system impedance should be less than 10%. Operation outside these limits could cause instability resulting in drive shutdown. PowerFlex 700L Liquid Cooled AC drives have a built-in LCL filter which includes a 3% input line reactor. Additional input line reactors are not recommended. #### Unbalanced, Ungrounded or Resistive Grounded Distribution Systems Removable MOV to ground and common mode capacitors to ground ensure compatibility with ungrounded systems. These devices must be disconnected if the drive is installed on a resistive grounded distribution system, an ungrounded distribution system, or a B phase grounded distribution system. These devices must also be disconnected if a regenerative unit is used as a bus supply or brake. #### Input Power Conditioning Certain events on the power system supplying a drive can cause component damage or shortened product life. They are: - The power system has power factor correction capacitors switched in and out of the system, either by the user or by the power company. - The power source has intermittent voltage spikes in excess of 6000 volts. These spikes could be caused by other equipment on the line or by events such as lightning strikes. - The power source has frequent interruptions. There are many other factors that must be considered for optimal performance in any given application. The block diagram below highlights the primary installation considerations. For detailed recommendations on input power conditioning, reflected wave protection, and motor cable types, refer to *Wiring and Grounding Guidelines for AC Drives* (publication DRIVES-IN001) available online at www.rockwellautomation.com/literature. #### **EMC** Requirements The 700VC control option for Frame 2 comes with two common mode chokes — one for input and one for output. The 700S control option for Frame 2 requires a field-installed kit SK-L1-CHK2-F2. See the *PowerFlex 700L User Manual* (publication 20L-UM001) for other CE requirements. PowerFlex 700L Frame 3A and 3B drives do not require common mode chokes for CE compliance. #### Frame 2 Drive #### **Recommended Mounting Clearances** Specified vertical clearance requirements are intended to be from drive to drive. Other objects can occupy this space; however, reduced air flow may cause protection circuits to fault the drive. In addition, inlet air temperature must not exceed the product specification. #### Mounting Requirements The PowerFlex700L Frame 2 drive is a single integrated assembly consisting of a filter section and a power section. The filter section provides the mounting feet and represents greater than 50% of the approximately 186 kg (410 lb.) total weight. - The Frame 2 drive should be mounted into an enclosure that is designed according to Electrical Equipment Pollution Degree 2 requirements. - Any enclosure mounting panel needs to be sized and fastened appropriately to accommodate for the weight of the drive. - The Frame 2 drive is designed to use eight M8 x 1.25 fasteners in mounting slots shown in Detail A and Detail B of the drawing on page 12. - The M8 x 1.25 fasteners shall be class 5.8 or greater. - The fasteners shall use a lock washer or similar mechanism to prevent loosening after mounting. Frame 2 Drive Clearances - All M8 x 1.25 fastener threads shall engage a steel panel with 6 to 7 full threads or a permanent backing nut such as a weld nut or a self-clinching PEM[®](1) nut with 4 full threads. - M8 x 1.25 fasteners shall be tightened to 11.3 ± 2.8 N•m (100 ± 25 lb•in) unless the lock washer mechanism requires a different torque. If this is the case, the holding force shall be equivalent. Determining Wire Routing for Control, Ground, Drive Input, and Motor Output All wiring should be installed in conformance with the applicable local, national, and international codes (e.g., NEC/CEC). Signal wiring, control wiring, and power wiring must be routed in separate conduits to prevent interference with drive operation. Use grommets, when hubs are not provided, to guard against wire chafing. Do not route signal and control wiring with power wiring in the same conduit. This can cause interference with drive operation. Failure to observe this precaution could result in damage to, or destruction of, the equipment. Do not route more than three sets of motor leads through a single conduit. This will minimize cross-talk that could reduce the effectiveness of noise reduction methods. If more than three drive/motor connections per conduit are required, shielded cable must be used. If possible, each conduit should contain only one set of motor leads. Frame 2 Locations for Control Wire Routing, DPI Communications Port, and Coolant Connections. (1) PEM is a registered trademark of PennEngineering. Frame 2 Power Terminal Locations Frame 2 Power Terminal Specifications | Item | Name | Description | Recommended Tightening Torque (±10%) | Terminal
Bolt Size (1) | | | |------|---|--|--------------------------------------|---------------------------|--|--| | 0 | Input Power Bus Bar (2)
R/L1, S/L2, T/L3 | Input power | 40 N∙m (354 lb•in) | M8 | | | | 0 | Output Power Bus Bar (2)
U/T1, V/T2, W/T3 | Motor connections | 40 N∙m (354 lb•in) | M8 | | | | 0 | PE, Motor Ground Bus Bar (2) | Terminating point for wiring shields and grounds | 40 N∙m (354 lb•in) | M8 | | | | 4 | DC Bus Test Point Socket (3)
(2 Terminals; DC+, DC-) | 4 mm socket for DC bus voltage measurement only | _ | _ | | | ⁽¹⁾ Apply counter torque to the nut on the other side of terminations when tightening or loosening the terminal bolt to avoid damage to the terminal. $^{^{(2)}}$ These connections are bus bar type terminations and require the use of lug connectors. ⁽³⁾ Use only to verify that DC bus capacitors are discharged before servicing the Power Module. No other external use is permitted. #### Frame 3A/3B Drive #### **Recommended Mounting Clearances** Be sure there is adequate clearance for air circulation around the drive enclosures. A 15 cm (6-in.) minimum clearance is required wherever vents are located in the cabinet. Determining Wire Routing for Control, Ground, Drive Input, and Motor Output All wiring should be installed in conformance with the applicable local, national, and international codes (e.g., NEC/CEC). Signal wiring, control wiring, and power wiring must be routed in separate conduits to prevent interference with drive operation. Use grommets, when hubs are not provided, to guard against wire chafing. Do not route signal and control wiring with power wiring in the same conduit. This can cause interference with drive operation. Failure to observe this precaution could result in damage to, or destruction of, the equipment. Do not route more than three sets of motor leads through a single conduit. This will minimize cross-talk
that could reduce the effectiveness of noise reduction methods. If more than three drive/motor connections per conduit are required, shielded cable must be used. If possible, each conduit should contain only one set of motor leads. Frame 3A Power Terminal Locations Frame 3B Power Terminal Locations Frame 3A/3B Power Terminal Specifications | | | | Frame | Wire Size Ra | ange (1) | Recommended Tightening
Torque (±10%) | | | |------|--|---|----------|--------------|----------|---|--|--| | Item | Name | Description | Size | Maximum | Minimum | | | | | 0 | Input Power Wire Lugs | Input power connections on drive | 3A | 400 MCM | 3/0 | 42 N•m (375 lb•in) | | | | | R/L1, S/L2, T/L3 | | 3B | 1000 MCM | 500 MCM | 62 N•m (550 lb•in) | | | | 0 | PE Wire Lug | Terminating point for ground wires | 3A or 3B | 600 MCM | # 2 AWG | 34 N∙m (300 lb•in) | | | | 0 | Output Power Bus Bar (2)
U/T1, V/T2, W/T3 | Motor connections | 3A or 3B | | | 62 N∙m (550 lb•in) | | | | 4 | DC Bus Test Point Socket (3) (2 Terminals; DC+, DC-) | 4 mm socket for DC bus voltage measurement only | 3A or 3B | _ | _ | _ | | | | • | DC Power Bus Bar (2) (4) (2 Terminals; DC+, DC-) | DC power from Converter Power Module to Inverter Power Module | 3B | | | 62 N∙m (550 lb•in) | | | ⁽¹⁾ Maximum/minimum sizes that the terminals will accept - these are not recommendations. ⁽²⁾ These connections are bus bar type terminations and require the use of lug connectors. ⁽³⁾ Use only to verify that DC bus capacitors are discharged before servicing the Power Module. No other external use is permitted. $^{^{(4)}}$ Size DC power conductors for current carrying capacity as follows: 400/480V, 1000 Amps; 600/690V, 800 Amps. #### Cable Recommendations #### Cable Types Acceptable for 200-600 Volt Installations A variety of cable types are acceptable for drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of 0.3 meters (1 foot) for every 10 meters (32.8 feet) of length. In all cases, long parallel runs must be avoided. Do not use cable with an insulation thickness less than or equal to 15 mils (0.4 mm/0.015 in.). Use Copper wire only. Wire gauge requirements and recommendations are based on 75°C (167°F). Do not reduce wire gauge when using higher temperature wire. See table below. #### **Unshielded Cable** THHN, THWN or similar wire is acceptable for drive installation in dry environments provided adequate free air space and/or conduit fill rates limits are provided. **Do not use THHN or similarly coated wire in wet areas**. Any wire chosen must have a minimum insulation thickness of 15 mils (0.4mm/0.015 in.) and should not have large variations in insulation concentricity. #### Shielded Cable Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC drive. Strong consideration for shielded cable should be given in installations with sensitive equipment such as weigh scales, capacitive proximity switches, and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations or a high degree of communications/networking are also good candidates for shielded cable. Shielded cable may also help reduce shaft voltage and induced bearing currents for some applications. In addition, the increased impedance of shielded cable may help extend the distance that the motor can be located from the drive without the addition of motor protective devices such as terminator networks. Refer to "Reflected Wave" in *Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-IN001*. Consideration should be given to all of the general specifications dictated by the environment of the installation, including temperature, flexibility, moisture characteristics, and chemical resistance. In addition, a braided shield should be included and be specified by the cable manufacturer as having coverage of at least 75%. An additional foil shield can greatly improve noise containment. A good example of recommended cable is Belden® 29528-29532 (AWG-1 through AWG-410). This cable has 3 XLPE insulated conductors plus ground with a spiral copper shield surrounded by a PVC jacket. Other types of shielded cable are available, but the selection of these types may limit the allowable cable length. Particularly, some of the newer cables twist 4 conductors of THHN wire and wrap them tightly with a foil shield. This construction can greatly increase the cable charging current required and reduce the overall drive performance. These cables are not recommended. #### **Armored Cable** Cable with continuous aluminum armor is often recommended in drive system applications or specific industries. It offers most of the advantages of standard shielded cable and also combines considerable mechanical strength and resistance to moisture. It can be installed in concealed and exposed manners and removes the requirement for conduit (EMT) in the installation. It can also be directly buried or embedded in concrete. Because noise containment can be affected by incidental grounding of the armor to building steel (see "Wire Types" in Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-IN001) when the cable is mounted, it is recommended the armor cable have an overall PVC jacket. Interlocked armor is acceptable for shorter cable runs, but continuous welded armor is preferred. Best performance is achieved with three spaced ground conductors, but acceptable performance below 200 HP is provided via a single ground conductor. | Location | Cable Rating/Type | Description | |----------------------------------|---|---| | Standard (Option 1) | 1000V, 90°C (194°F) XHHW2/RHW-2 | Four tinned copper conductors with XLPE insulation. | | | Anixter B29528-B29532, Belden 29528-29532, or | Copper braid/aluminum foil combination shield and tinned copper drain wire. | | | equivalent | PVC jacket. | | Standard (Option 2) | Tray rated 1000V, 90°C (194°F) RHH/RHW-2 | Three tinned copper conductors with XLPE insulation. | | | Anixter OLFLEX-76xxx03 or equivalent | Corrugated copper tape with three bare copper grounds in contact with shield. | | | | PVC jacket. | | Class I & II;
Division I & II | Tray rated 1000V, 90°C (194°F) RHH/RHW-2
Anixter 7VFD-xxxx or equivalent | Three bare copper conductors with XLPE insulation and impervious corrugated
continuously welded aluminum armor. | | | | Black sunlight resistant PVC jacket overall. | | | | Three copper grounds. | #### **Cable Trays and Conduit** If cable trays or large conduits are to be used, refer to guidelines presented in the Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives, publication DRIVES-IN001. #### Power Ratings and Branch Circuit Protection #### Frame 2 Drive Most codes require that upstream branch circuit protection be provided to protect input power wiring. The Frame 2 drive does not provide input power short circuit protection. The tables below provide drive ratings and recommended AC line input fuse and circuit breaker information. Both types of short circuit protection are acceptable for UL and IEC requirements. Sizes listed are the recommended sizes <u>based on 40°C and the U.S. N.E.C.</u> Other country, state or local codes may require different ratings. #### Fusing **If fuses are chosen as the desired protection method**, refer to the recommended types listed below. If available amp ratings do not match the tables provided, the <u>closest</u> fuse rating that exceeds the drive rating should be chosen. - IEC BS88 (British Standard) Parts 1 & 2 (1), EN60269-1, Parts 1 & 2, type gG or equivalent should be used. - UL UL Class T, J or L must be used. ⁽¹⁾ Typical designations include, but may not be limited to the following; Parts 1 & 2: AC, AD, BC, BD, CD, DD, ED, EFS, EF, FF, FG, GF, GG, GH. #### Circuit Breakers The "non-fuse" listings in the tables below include both circuit breakers (inverse time or instantaneous trip). **If one of these is chosen as the desired protection method**, the following requirements apply. • IEC and UL – Both types of devices are acceptable for IEC and UL installations. #### 400 Volt AC Input Protection Devices | Drive | | HP (kW) Rat | \ | | | | Dual Elem
Time Dela | | Non-Time I | Delay Fuse | Circuit Breaker (3) | Motor Circuit Protector (5) | | | |----------|-------|-------------|-----------|------|---------------------|----------|------------------------|------|------------|------------|---------------------|-----------------------------|--|--| | Cat. No. | Frame | ND | HD | Amps | Min. ⁽¹⁾ | Max. (2) | Min. | Max. | Max. (4) | Max. | | | | | | 20LC360 | 2 | 268 (200) | _ | 360 | 500 | 750 | 500 900 | | 900 | 600 | | | | | | | | _ | 200 (150) | 264 | 400 | 650 | 450 | 900 | 900 | 400 | | | | | ⁽¹⁾ Minimum protection device size is the lowest rated device that supplies maximum protection without nuisance tripping. #### 480 Volt AC Input Protection Devices | Drive | | (, | | Input Rating Dual Element Time Delay Fuse | | | Non-Time [| Delay Fuse | Circuit Breaker (3) | Motor Circuit Protector (5) | | | |----------|-------|-----------|-----------|---|----------|----------|------------|------------|---------------------|-----------------------------|--|--| | Cat. No. | Frame | ND | HD | Amps
| Min. (1) | Max. (2) | Min. | Max. | Max. (4) | Max. | | | | 20LD360 | 2 | 300 (224) | _ | 360 | 500 | 750 | 500 | 900 | 900 | 600 | | | | | | _ | 235 (175) | 264 | 400 | 650 | 450 | 900 | 900 | 400 | | | ⁽¹⁾ Minimum protection device size is the lowest rated device that supplies maximum protection without nuisance tripping. #### Frame 3A/3B Drive Frame 3A/3B Complete Drives include an input power circuit breaker. The value of the circuit breaker provided with the drive is listed in the table below. | Frame Size | Input Voltage | Circuit Breaker Provided | Shunt Trip Rating | |------------|---------------|--------------------------|-------------------| | 3A | 400-480V AC | 800 A | 65 kAIC | | | 575-690V AC | 800 A | 35 kAIC | | 3B | 400-480V AC | 1500 A | 100 kAIC | | | 575-690V AC | 1500 A | 35 kAIC | ⁽²⁾ Maximum protection device size is the highest rated device that supplies drive protection. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum. ⁽³⁾ Circuit Breaker - inverse time breaker. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum ⁽⁴⁾ Maximum allowable rating by US NEC. Exact size must be chosen for each installation. ⁽⁵⁾ Motor Circuit Protector - instantaneous trip circuit breaker. For US NEC minimum size is 125% of motor FLA. Ratings shown are maximum ⁽²⁾ Maximum protection device size is the highest rated device that supplies drive protection. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum. ⁽³⁾ Circuit Breaker - inverse time breaker. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum ⁽⁴⁾ Maximum allowable rating by US NEC. Exact size must be chosen for each installation. ⁽⁵⁾ Motor Circuit Protector - instantaneous trip circuit breaker. For US NEC minimum size is 125% of motor FLA. Ratings shown are maximum # Maximum Motor Cable Lengths In the following tables, a "•" in any of the latter columns will indicate that this drive rating can be used with an Allen-Bradley Terminator (1204-TFA1/1204-TFB2) and/or Reflected Wave Reduction Device with Common Mode Choke (1204-RWC-17) or without choke (1204-RWR2). For the Terminator, the maximum cable length is 182.9 meters (600 feet) for 400/480/600V drives (not 690V). The PWM frequency must be 2 kHz. The 1321-RWR is a complete reflected wave reduction solution available for many of the PowerFlex drives. If available, a 1321-RWR catalog number will be indicated in the "Reactor/RWR" column. When not available, use the reactor and resistor information provided to build a solution. | For Further Information on | See Publication | |----------------------------|-----------------| | 1204-TFxx | 1204-IN002 | #### PowerFlex 700L with 700VC Control, 400V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | | | Reactor Only | | | Reactor + Damping Resistor | | | Reactor | Resistor | | Available Options | | | | | | |-------|--------------|-----|--------------|---------------|----------------|----------------|---------------|---------------|----------------|----------------------------|----------------|----------------|-----------------|-----------------|------------------------------------|-------------------|-------|------|------|------|-----| | Frame | HP
(kW) | kHz | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 2 | 268
(200) | 2 | 24.4
(80) | 91.4
(300) | 152.4
(500) | 213.4
(700) | 30.5
(100) | 76.2
(250) | 228.6
(750) | 365.8
(1200) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 1321-3R400-B ⁽¹⁾ | 20 | 495 | | • | | | | | | 4 | 24.4
(80) | 91.4
(300) | 121.9
(400) | 152.4
(500) | 18.3
(60) | 76.2
(250) | 137.2
(450) | 182.9
(600) | 76.2
(250) | 137.2
(450) | 274.3
(900) | 365.8
(1200) | 1321-3R400-B(1) | 20 | 990 | | | | | | 3A | 500
(370) | 2 | 24.4
(80) | 91.4
(300) | 152.4
(500) | 213.4
(700) | 30.5
(100) | 76.2
(250) | 228.6
(750) | 365.8
(1200) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 1321-3R750-B ⁽¹⁾ | 20 | 735 | | • | | | | | | 4 | 24.4
(80) | 91.4
(300) | 121.9
(400) | 152.4
(500) | 18.3
(60) | 76.2
(250) | 137.2
(450) | 182.9
(600) | 76.2
(250) | 137.2
(450) | 274.3
(900) | 365.8
(1200) | 1321-3R750-B ⁽¹⁾ | 20 | 1470 | | | | | | 3B | 960
(715) | 2 | 24.4
(80) | 76.2
(250) | 129.5
(425) | 160.0
(525) | 91.4
(80) | 76.2
(250) | 152.4
(500) | 228.6
(750) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 2 x
1321-3R600-B ⁽²⁾ | 20 | 525 | | | | | | | | 4 | 18.3
(60) | 76.2
(250) | 121.9
(400) | 152.4
(500) | 18.3
(60) | 76.2
(250) | 121.9
(400) | 152.4
(500) | 76.2
(250) | 137.2
(450) | 274.3
(900) | 365.8
(1200) | 2 x
1321-3R600-B ⁽²⁾ | 20 | 1050 | | | | | ⁽¹⁾ Requires two parallel cables. #### PowerFlex 700L with 700VC Control, 480V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | | | Reacto | or Only | | | Reacto | r + Dan | nping R | esistor | Reactor | Resist | or | | ailab
tion: | | | |-------|---------------|-----|--------------|---------------|---------------|----------------|--------------|---------------|---------------|----------------|---------------|----------------|----------------|-----------------|------------------------------------|--------|-------|------|----------------|------|-----| | Frame | HP
(kW) | kHz | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 2 | 300
(224) | 2 | 12.2
(40) | 30.5
(100) | 91.4
(300) | 121.9
(400) | 12.2
(40) | 36.6
(120) | 99.1
(325) | 137.2
(450) | 61.0
(200) | 137.2
(450) | 274.3
(900) | 365.8
(1200) | 1321-3R400-B(1) | 20 | 495 | | • | | | | | | 4 | 7.6
(25) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 7.6
(25) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 30.5
(100) | 61.0
(200) | 152.4
(500) | 213.4
(700) | 1321-3R400-B(1) | 20 | 990 | | | | | | 3A | 600
(445) | 2 | 12.2
(40) | 30.5
(100) | 91.4
(300) | 121.9
(400) | 12.2
(40) | 36.6
(120) | 99.1
(325) | 137.2
(450) | 61.0
(200) | 137.2
(450) | 274.3
(900) | 365.8
(1200) | 1321-3R750-B ⁽¹⁾ | 20 | 735 | | • | | | | | | 4 | 7.6
(25) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 7.6
(25) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 30.5
(100) | 61.0
(200) | 152.4
(500) | 213.4
(700) | 1321-3R750-B(1) | 20 | 1470 | | | | | | 3B | 1150
(860) | 2 | 12.2
(40) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 12.2
(40) | 30.5
(100) | 91.4
(300) | 121.9
(400) | 61.0
(200) | 137.2
(450) | 274.3
(900) | 365.8
(1200) | 2 x
1321-3R600-B(2) | 20 | 525 | | | | | | | | 4 | 7.6
(25) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 7.6
(25) | 24.4
(80) | 83.8
(275) | 114.3
(375) | 30.5
(100) | 61.0
(200) | 152.4
(500) | 213.4
(700) | 2 x
1321-3R600-B ⁽²⁾ | 20 | 1050 | | | | | ⁽¹⁾ Requires two parallel cables. ⁽²⁾ Requires four parallel cables. ⁽²⁾ Requires four parallel cables. # PowerFlex 700L with 700VC Control, 600V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | Reacto | or Only | Reacto
Dampi
Resiste | ng | Reactor | Resist | or | | ilable
ions | е | | |-------|---------------|-----|--------------|----------------|--------------|----------------|----------------------------|-----------------|------------------------------------|--------|-------|------|----------------|------|-----| | Frame | HP
(kW) | kHz | 1488V | 1850V | 1488V | 1850V | 1488V | 1850V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 3A | 465
(345) | 2 | 24.4
(80) | 106.7
(350) | 24.4
(80) | 365.8
(350) | 182.9
(600) | 365.8
(1200) | 1321-3R500-B ⁽¹⁾ | 20 | 585 | | • | | | | | | 4 | 18.3
(60) | 61.0
(200) | 18.3
(60) | 61.0
(200) | 76.2
(250) | 190.5
(625) | 1321-3R500-B(1) | 20 | 1170 | | | | Ì | | 3B | 870
(650) | 2 | 18.3
(60) | 91.4
(300) | 18.3
(60) | 91.4
(300) | 152.4
(500) | 274.3
(900) | 1321-3R850-B ⁽²⁾ | 20 | 960 | | | | | | | | 4 | 18.3
(60) | 61.0
(200) | 18.3
(60) | 61.0
(200) | 53.3
(175) | 137.2
(450) | 1321-3R850-B(2) | 20 | 1920 | | | | | | 3B | 1275
(955) | 2 | 18.3
(60) | 83.8
(275) | 18.3
(60) | 83.8
(275) | 137.2
(450) | 274.3
(900) | 2 x
1321-3R600-B ⁽³⁾ | 20 | 720 | | | | | ⁽¹⁾ Requires two parallel cables. # PowerFlex 700L with 700VC Control, 690V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | Reacto | or Only | Reacto
Dampi
Resiste | ng | Reactor | Resist | or | | ilable | ; | | |-------|---------------|-----|--------------|---------------|--------------|---------------|----------------------------|-----------------|------------------------------------|--------|-------|------|--------|------|-----| | Frame | HP
(kW) | kHz | 1488V | 1850V | 1488V | 1850V | 1488V | 1850V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 3A | 475
(355) | 2 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 228.6
(750) | 304.8
(1000) | 1321-3R500-C(1) | 20 | 960 | | | | | | | | 4 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 76.2
(250) | 121.9
(400) | 1321-3R500-C ⁽¹⁾ | 20 | 1920 | | | | | | 3B | 881
(657) | 2 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 182.9
(600) | 228.6
(750) | 1321-3R850-C(2) | 20 | 1290 | | No | ne | | | | | 4 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 76.2
(250) | 121.9
(400) | 1321-3R850-C(2) | 20 | 2580 | | | | | | 3B | 1315
(980) | 2 | 24.4
(80) | 45.7
(150) |
24.4
(80) | 45.7
(150) | 182.9
(600) | 228.6
(750) | 2 x
1321-3R600-C ⁽³⁾ | 20 | 840 | | | | | ⁽¹⁾ Requires two parallel cables. # PowerFlex 700L with 700S Control, 400V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | | | Reacto | r Only | | | Reacto | or + Dan | nping Re | esistor | Reactor | Resist | or | | ailat
tion | | | |-------|--------------|-----|--------------|---------------|---------------|----------------|---------------|---------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|------------------------------------|--------|-------|------|---------------|------|-----| | Frame | HP
(kW) | kHz | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 2 | 268
(200) | 2 | 18.3
(60) | 68.6
(225) | 99.1
(325) | 167.6
(550) | 36.6
(120) | 68.6
(225) | 274.3
(900) | 335.3
(1100) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 1321-3R400-B ⁽¹⁾ | 20 | 495 | | • | | | | | , , | 4 | 18.3 (60) | 68.6
(225) | 99.1
(325) | 167.6
(550) | 36.6
(120) | 68.6
(225) | 274.3
(900) | 335.3
(1100) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 1321-3R400-B ⁽¹⁾ | 20 | 990 | | | | | | 3A | 500
(370) | 2 | 18.3
(60) | 68.6
(225) | 99.1
(325) | 167.6
(550) | 36.6
(120) | 68.6
(225) | 274.3
(900) | 335.3
(1100) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 1321-3R750-B ⁽¹⁾ | 20 | 735 | | • | | | | | | 4 | 18.3
(60) | 68.6
(225) | 99.1
(325) | 167.6
(550) | 36.6
(120) | 68.6
(225) | 274.3
(900) | 335.3
(1100) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 1321-3R750-B ⁽¹⁾ | 20 | 1470 | | | | | | 3B | 960
(715) | 2 | 12.2
(40) | 68.6
(225) | 99.1
(325) | 167.6
(550) | 36.6
(120) | 68.6
(225) | 274.3
(900) | 335.3
(1100) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 2 x
1321-3R600-B ⁽²⁾ | 20 | 525 | | | | | | | | 4 | 12.2
(40) | 68.6
(225) | 99.1
(325) | 167.6
(550) | 36.6
(120) | 68.6
(225) | 274.3
(900) | 335.3
(1100) | 152.4
(500) | 274.3
(900) | 365.8
(1200) | 365.8
(1200) | 2 x
1321-3R600-B ⁽²⁾ | 20 | 1050 | | | | | ⁽¹⁾ Requires two parallel cables. ⁽²⁾ Requires three parallel cables. ⁽³⁾ Requires four parallel cables. ⁽²⁾ Requires three parallel cables. ⁽³⁾ Requires four parallel cables. ⁽²⁾ Requires four parallel cables. # PowerFlex 700L with 700S Control, 480V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | | | Reacto | r Only | | | Reacto | or + Dam | nping Re | esistor | Reactor | Resist | or | | ailab
tion: | | | |-------|---------------|-----|--------------|---------------|---------------|----------------|--------------|---------------|---------------|----------------|---------------|----------------|-----------------|-----------------|------------------------------------|--------|-------|------|----------------|------|-----| | Frame | HP
(kW) | kHz | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | 1000V | 1200V | 1488V | 1600V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 2 | 300
(224) | 2 | 12.2
(40) | 30.5
(100) | 61.0
(200) | 121.9
(400) | 12.2
(40) | 45.7
(150) | 61.0
(200) | 121.9
(400) | 61.0
(200) | 213.4
(700) | 304.8
(1000) | 365.8
(1200) | 1321-3R400-B(1) | 20 | 495 | | • | | | | | | 4 | 12.2
(40) | 30.5
(100) | 61.0
(200) | 121.9
(400) | 12.2
(40) | 45.7
(150) | 61.0
(200) | 121.9
(400) | 61.0
(200) | 213.4
(700) | 304.8
(1000) | 365.8
(1200) | 1321-3R400-B(1) | 20 | 990 | | | | | | 3A | 600
(445) | 2 | 12.2
(40) | 30.5
(100) | 61.0
(200) | 121.9
(400) | 12.2
(40) | 45.7
(150) | 61.0
(200) | 121.9
(400) | 61.0
(200) | 213.4
(700) | 304.8
(1000) | 365.8
(1200) | 1321-3R750-B ⁽¹⁾ | 20 | 735 | | • | | | | | | 4 | 12.2
(40) | 30.5
(100) | 61.0
(200) | 121.9
(400) | 12.2
(40) | 45.7
(150) | 61.0
(200) | 121.9
(400) | 61.0
(200) | 213.4
(700) | 304.8
(1000) | 365.8
(1200) | 1321-3R750-B(1) | 20 | 1470 | | | | | | 3B | 1150
(860) | 2 | 12.2
(40) | 30.5
(100) | 61.0
(200) | 121.9
(400) | 12.2
(40) | 45.7
(150) | 61.0
(200) | 121.9
(400) | 45.7
(150) | 152.4
(500) | 304.8
(1000) | 365.8
(1200) | 2 x
1321-3R600-B(2) | 20 | 525 | | | | | | | | 4 | 12.2
(40) | 30.5
(100) | 61.0
(200) | 121.9
(400) | 12.2
(40) | 45.7
(150) | 61.0
(200) | 121.9
(400) | 45.7
(150) | 152.4
(500) | 304.8
(1000) | 365.8
(1200) | 2 x
1321-3R600-B ⁽²⁾ | 20 | 1050 | | | | | ⁽¹⁾ Requires two parallel cables. # PowerFlex 700L with 700S Control, 600V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | Reacto | or Only | Reacto
Dampi
Resiste | ng | Reactor | Resist | or | Ava
Opti | ilable
ions | Э | | |-------|---------------|-----|--------------|---------------|--------------|---------------|----------------------------|-----------------|------------------------------------|--------|-------|-------------|----------------|------|-----| | Frame | HP
(kW) | kHz | 1488V | 1850V | 1488V | 1850V | 1488V | 1850V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 3A | 465
(345) | 2 | 18.3
(60) | 76.2
(250) | 18.3
(60) | 76.2
(250) | 182.9
(600) | 304.8
(1000) | 1321-3R500-B ⁽¹⁾ | 20 | 585 | | • | | | | | | 4 | 18.3
(60) | 76.2
(250) | 18.3
(60) | 76.2
(250) | 182.9
(600) | 304.8
(1000) | 1321-3R500-B(1) | 20 | 1170 | | | | | | 3B | 870
(650) | 2 | 18.3
(60) | 61.0
(200) | 18.3
(60) | 61.0
(200) | 152.4
(500) | 228.6
(750) | 1321-3R850-B(2) | 20 | 960 | | | | | | | | 4 | 18.3
(60) | 61.0
(200) | 18.3
(60) | 61.0
(200) | 152.4
(500) | 228.6
(750) | 1321-3R850-B ⁽²⁾ | 20 | 1920 | | | | | | 3B | 1275
(955) | 2 | 12.2
(40) | 45.7
(150) | 12.2
(40) | 45.7
(150) | 121.9
(400) | 228.6
(750) | 2 x
1321-3R600-B ⁽³⁾ | 20 | 720 | | | | | ⁽¹⁾ Requires two parallel cables. # PowerFlex 700L with 700S Control, 690V Shielded/Unshielded Cable - Meters (Feet) | Drive | | | No Sol | ution | Reacto | or Only | Reacto
Dampi
Resist | ng | Reactor | Resist | or | Avai
Opti | |) | | |-------|---------------|-----|--------------|---------------|--------------|---------------|---------------------------|-----------------|------------------------------------|--------|-------|--------------|------|------|-----| | Frame | HP
(kW) | kHz | 1488V | 1850V | 1488V | 1850V | 1488V | 1850V | Cat. No. | Ohms | Watts | TFA1 | TFB2 | RWR2 | RWC | | 3A | 475
(355) | 2 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 228.6
(750) | 304.8
(1000) | 1321-3R500-C(1) | 20 | 960 | | | | | | | | 4 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 182.9
(600) | 228.6
(750) | 1321-3R500-C(1) | 20 | 1920 | | | | | | 3B | 881
(657) | 2 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 182.9
(600) | 228.6
(750) | 1321-3R850-C ⁽²⁾ | 20 | 1290 | | No | ne | | | | | 4 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 182.9
(600) | 228.6
(750) | 1321-3R850-C(2) | 20 | 2580 | | | | | | 3B | 1315
(980) | 2 | 24.4
(80) | 45.7
(150) | 24.4
(80) | 45.7
(150) | 182.9
(600) | 228.6
(750) | 2 x
1321-3R600-C ⁽³⁾ | 20 | 840 | | | | | ⁽¹⁾ Requires two parallel cables. ⁽²⁾ Requires four parallel cables. ⁽²⁾ Requires three parallel cables. ⁽³⁾ Requires four parallel cables. ⁽²⁾ Requires three parallel cables. ⁽³⁾ Requires four parallel cables. #### **DPI Connections** #### Frame 2 #### **Drive Connection Points** The PowerFlex 700L Frame 2 drive provides a number of cable connection points as shown in the drawing below. If an additional external HIM is required for the application, the HIM can be connected to the DPI port on the bottom of the drive. Only one additional external HIM device may be connected. The use of two external HIM devices is not supported. If multiple external HIM devices are required, then install a user-supplied splitter cable or splitter box. | Item | Connector | Description | |------|-----------------|---| | 0 | DPI Port 1 | HIM connection when installed in the drive. | | 0 | DPI Port 2 | Cable connection for handheld and remote options. | | 8 | DPI Port 3 or 2 | Splitter cable connection to DPI Port 2 provides additional port. | | 4 | DPI Port 5 | Cable connection for communications adapter. | | • | DPI Port 6 | Internal DPI connection to Active Converter pcb. | #### External Door-Mounted HIM Connection (optional) For a Frame 2 drive installed in a user-supplied enclosure, an optional external door-mounted HIM may be connected as an alternative to the external HIM option. The cable supplied with the door-mount HIM option kit connects to the DPI port on the bottom of the drive (see drawing above). For additional installation information, refer to the instructions provided with the door-mount HIM option kit. #### Frame 3A #### **Drive Connection Points** The PowerFlex 700L provides a number of cable connection points as shown in the drawings below. If an additional external HIM is required for the application, the HIM can be connected to the DPI port on the bottom of the Power Module. Only one additional external HIM device may be connected. The use of two external HIM devices is not supported. If multiple external HIM devices are required, then install a user-supplied splitter cable or splitter box. | Item | Connector | Description | |------|-----------------
---| | 0 | DPI Port 1 | HIM connection when installed in Power Module. | | 2 | DPI Port 2 | Cable connection for handheld and remote options. | | 8 | DPI Port 3 or 2 | Splitter cable connected to DPI Port 2 provides an additional port. | | 4 | DPI Port 5 | Cable connection for communications adapter. | | 0 | DPI Port 6 | Internal DPI connection to Active Converter PCB. | External Door-Mounted HIM Connection (optional) For complete drives, the door-mounted HIM is standard equipment. It is located in the door mount bezel on the door of the Power Module Bay. #### Frame 3B #### **Drive Connection Points** The PowerFlex 700L provides a number of cable connection points as shown in the drawings below. If an additional external HIM is required for the application, the HIM can be connected to the DPI port on the bottom of the Power Module. Only one additional external HIM device may be connected. The use of two external HIM devices is not supported. If multiple external HIM devices are required, then install a user-supplied splitter cable or splitter box. | Item | Connector | Description | |------|-----------------|---| | 0 | DPI Port 1 | HIM connection when installed in Power Module. | | 2 | DPI Port 2 | Cable connection for handheld and remote options. | | 8 | DPI Port 3 or 2 | Splitter cable connected to DPI Port 2 provides an additional port. | | 4 | DPI Port 5 | Cable connection for communications adapter. | | 0 | DPI Port 6 | Internal DPI connection to Active Converter PCB. | #### External Door-Mounted HIM Connection (optional) For complete drives, the door-mounted HIM is standard equipment. It is located in the door mount bezel on the door of the Power Module Bay. # **Control Connections** #### Frame 2 Frame 2 Control Terminal Locations Frame 2 Control Terminal Specifications | | | | Wire Size R | ange ⁽¹⁾ | Recommended Tightening | Wire Strip | |------|--|--|----------------------------------|----------------------------------|------------------------|---------------------| | Item | Name | Description | Maximum | Minimum | Torque (<u>+</u> 10%) | Length | | 0 | PowerFlex 700 Vector Control or
PowerFlex 700S Phase II Control
Cassette Terminal Blocks | See PowerFlex 700 Series B Tech Data (publication PowerFlex 700S Tech Data (publication 20D-TD0 | | | | | | 0 | Active Converter Cassette Terminal Blocks — P1 & P2 | Active Converter AC power and control wiring | 3.3 mm ²
(#12 AWG) | 0.3 mm ²
(#22 AWG) | 0.8 N•m (7 lb•in) | 8 mm
(0.31 in.) | | 8 | SHLD Terminal | Terminating point for control wiring shields on the drive | 2.1 mm ²
(#14 AWG) | 0.3 mm ²
(#22 AWG) | 1.4 N•m (12 lb•in) | 10 mm
(0.39 in.) | | 4 | Terminal Block — TB1 1b 5: +12/+24V Cooling Loop 1b 6: Cooling Loop Return | Drive control wiring: Output dry contact (12V dc/24V dc, 2 Amps max.) indicating the drive is powered and has completed precharge. | 4.0 mm ²
(#10 AWG) | 0.2 mm ²
(#24 AWG) | 0.9 N∙m (8 lb•in) | 8 mm
(0.31 in.) | | | 1b 7: +24V (digin) | Drive-supplied +24V dc | | | | | | | 1b 8: Gate Enable | Enables the firing of the IGBTs. Factory-
installed jumper from terminal 1b 7 to terminal
1b 8 allows firing of the IGBTs. | | | | | | 6 | PS- Terminal
PS+ Terminal | 300V dc Auxiliary Control voltage | 4.0 mm ² (#12 AWG) | 0.5 mm ²
(#22 AWG) | 0.6 N∙m (5.3 lb•in) | 10 mm
(0.39 in.) | $[\]begin{tabular}{ll} \begin{tabular}{ll} \beg$ #### Frame 3 #### Frame 3A Control Terminal Locations #### Frame 3B Control Terminal Locations Frame 3A/3B Control Terminal Specifications | | | | Wire Size Ra | ange (1) | Recommended Tightening | Wire Strip | Wire | |------|--|--|----------------------------------|----------------------------------|------------------------|---------------------|-------------------| | Item | Name | Description | Maximum | Minimum | Torque (±10%) | Length | Terminal | | 0 | PowerFlex 700 Vector Control or
PowerFlex 700S Phase II Control
Cassette Terminal Blocks | See PowerFlex 700 Series B Tecl
PowerFlex 700S Tech Data (publi | | | | | | | 0 | Active Converter Cassette
Terminal Blocks — P1 & P2 | Active Converter AC power and control wiring | 3.3 mm ²
(#12 AWG) | 0.3 mm ²
(#22 AWG) | 0.8 N∙m (7 lb•in) | 8 mm
(0.31 in.) | not
applicable | | 0 | SHLD Terminal | Terminating point for control wiring shields on Power Module | 2.1 mm ²
(#14 AWG) | 0.3 mm ²
(#22 AWG) | 1.4 N∙m (12 lb•in) | 10 mm
(0.39 in.) | not
applicable | | 4 | Terminal Blocks — TB5 and TB6 | Power Module control wiring | 4.0 mm ² (#10 AWG) | 0.2 mm ²
(#24 AWG) | 1.4 N∙m (12 lb•in) | 8 mm
(0.31 in.) | not
applicable | $[\]begin{tabular}{ll} \begin{tabular}{ll} \beg$ # Control Highlights # **Active Converter Control** | File | Group | Parameters | | | | | | | | |------------------|-----------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|--|--------------------------| | Monitor | Current | Rated Amps
Input Current R
Input Current S | 001
002
003 | Input Current T
Ground Current
Active Current | 004
005
006 | Reactive Current
I Imbalance
IT Overload | 007
008
009 | | | | | Voltage | Rated Volts
Input Voltage RS | 010
011 | Input Voltage ST
Input Voltage TR | 012
013 | DcLink Voltage
DcLink Ripple | 014
015 | V Imbalance | 016 | | | Power & Time | Rated Power
AC Line kW
Motoring kWh | 020
021
022 | Regen kWh
Lifetime kWh
Elapsed Run Time | 023
024
025 | Life Run Time
Life Power Time
Life Pwr Cycles | 026
027
028 | | | | | Temperature | Ambient Temp | 030 | IGBT Base Temp | 031 | IGBT Junct Temp | 032 | | | | | Frequency | Line Frequency
Min Line Freq | 040
041 | Max Line Freq
Min Max Persist | 042
043 | Change Line Freq | 044 | | | | Command | Start/Stop | Start Config | 050 | Option Select | 051 | Manual Control | 052 | Turn Off Delay | 053 | | Comans | Setpoints | DcLink Reference kVAR Reference | 060
061 | Extern Cml Ref
Modulation Index | 062
063 | Modulation Freq | 064 | | | | | Data Exchange | Converter Control | 070 | Converter Status | 071 | Converter Min Vdc | 072 | Converter Fault | 073 | | Limit Config | Current | Active I Lmt
Active OL I Lmt | 100
101 | Reactive RateLmt
I Imbalance Lmt | 102
103 | I Imbalance Time
Regen I Lmt | 104
105 | | | | | AC Line Voltage | Ride Through Ena
Ride Through Sec | 110
111 | Low Vac Lmt
Low Vac Time | 112
113 | High Vac Lmt
High Vac Time | 114
115 | V Imbalance Lmt
V Imbalance Time | 116
117 | | | Temperature | Ambnt Temp Alrm
Ambnt Temp Trip | 120
121 | Base Temp Alrm
Base Temp Trip | 122
123 | Junct Temp Alrm
Junct Temp Trip | 124
125 | CldPlt Temp Alrm | 126 | | | Frequency | PWM Frequency
AC Low Freq Lmt | 130
131 | AC Low Freq Time
AC High Freq Lmt | 132
133 | AC High Freq Time
AC Maximum dF/dt | 134
135 | | | | Dynamic Control | Current Loop | Reduce IImt Sel
Active I Cmd
Inductance | 150
151
152 | CML Bandwidth
CML Damping
CML Ki | 153
154
155 | CML Kp
PF Bandwidth
Reactive I Lmt | 156
157
158 | Reactive I Cmd | 159 | | | Voltage Loop | Voltage Loop Sel
DcLink Command
Capacitance | 160
161
162 | VML Bandwidth
VML Damping
VML Ki | 163
164
165 | VML Kp
VML Kf
VML Reset Level | 166
167
168 | Parallel Config
Bus Capacitance | 169
170 | | Utility | Drive Memory | Param Access Lvl
Reset to Defaults | 196
197 | Reset Meters
Language | 200
201 | Drive Checksum
Control SW Ver | 203
204 | Password | 205 | | | Diagnostics | Alarm Status
Start Inhibit
Fault Frequency
Fault Amps R
Fault Amps S | 211
214
220
221
222 | Fault Amps T
Fault Amps Q
Fault Amps D
Fault Volts RS
Fault Volts ST | 223
224
225
226
227 | Fault VoltsTR Fault Volts Vdc Fault Base Temp Testpoint 1 Sel Testpoint 1 Data | 228
229
230
234
235 | Testpoint 2 Sel
Testpoint 2 Data | 236
237 | | | Fault Queue | Fault Config
Fault Clear
Power Up Marker | 238
239
242 | Fault 1 Code
Fault 1 Time
Fault 2 Code | 243
244
245 | Fault 2 Time
Fault 3 Code
Fault 3 Time | 246
247
248 | Fault 4 Code
Fault 4 Time
Alarm Config | 249
250
260 | | Communication | Datalinks | Data In A1
Data In A2
Data In B1
Data In B2 | 300
301
302
303 | Data In C1
Data In C2
Data In D1
Data In D2 | 304
305
306
307 | Data Out A1
Data Out A2
Data Out B1
Data Out B2 | 310
311
312
313 | Data Out C1
Data Out C2
Data Out D1
Data Out D2 | 314
315
316
317 | | | DPI Status | Connect Status
DPI Error Out
CS Msg Rx Cnt | 320
321
322 | CS Msg Tx Cnt
CS Timeout Cnt
CS Msg Bad Cnt | 323
324
325 | PC Msg Rx Cnt
PC Msg Tx Cnt
PC Timeout Cnt | 326
327
328 | CAN Bus Off Cnt | 329 | | | Masks & Owners | Logic Mask
Start Mask | 340
341 | Fault Clr Mask
Stop Owner | 342
343 | Start Owner
Fault Clr Owner | 344
345 | | | | | Security | Port Mask Act | 346 |
Write Mask Cfg | 347 | Write Mask Act | 348 | Logic Mask Act | 349 | | Inputs & Outputs | Mux'ed Temps | IGBT NTC Temp1
IGBT NTC Temp2
IGBT NTC Temp3 | 330
331
332 | IGBT NTC Temp4
Coldplate Temp1
IGBT NTC Temp5 | 333
334
335 | IGBT NTC Temp6
IGBT NTC Temp7
IGBT NTC Temp8 | 336
337
338 | Coldplate Temp2 | 339 | | | Digital Inputs | Dig In Status | 350 | Dig In Frc Mask | 351 | Dig In Frc Data | 352 | | | | | Digital Outputs | Dig Out Status | 360 | Dig Out Frc Mask | 361 | Dig Out Frc Data | 362 | · | | #### **PowerFlex 700 Vector Control** | File | Group | Parameters | | | | | | | | |-----------------|----------------------|--|--|--|--|---|--|---|--------------------------| | Monitor | Metering | Output Freq
Commanded Speed
Ramped Speed
Speed Reference
Commanded Torque
Speed Feedback | 001
002
022
023
024
025 | Output Current Torque Current Flux Current Output Voltage Output Power Output Powr Fctr | 003
004
005
006
007
008 | Elapsed MWh Elapsed Run Time MOP Reference DC Bus Voltage DC Bus Memory Analog In1 Value | 009
010
011
012
013
016 | Analog In2 Value
Elapsed kWh
PTC HW Value
Spd Fdbk No Filt | 017
014
018
021 | | | Drive Data | Rated kW | 026 | Rated Volts | 027 | Rated Amps | 028 | Control SW Ver | 029 | | Motor Control | Motor Data | Motor Type
Motor NP Volts
Motor NP FLA | 040
041
042 | Motor NP Hertz
Motor NP RPM
Motor NP Power | 043
044
045 | Mtr NP Pwr Units
Motor OL Hertz
Motor OL Factor | 046
047
048 | Motor Poles | 049 | | | Torq Attributes | Motor Cntl Sel
Maximum Voltage
Maximum Freq
Compensation
Flux Up Mode
Flux Up Time
SV Boost Filter
Autotune | 053
054
055
056
057
058
059
061 | IR Voltage Drop
Flux Current Ref
IXo Voltage Drop
Autotune Torque
Inertia Autotune
Torque Ref A Sel
Torque Ref A Hi
Torque Ref A Lo | 062
063
064
066
067
427
428
429 | Torq Ref A Div
Torque Ref B Sel
Torque Ref B Hi
Torque Ref B Lo
Torq Ref B Mult
Torque Setpoint 1
Torque Setpoint 2
Pos Torque Limit | 430
431
432
433
434
435
438
436 | Neg Torque Limit
Control Status
Mtr Tor Cur Ref | 437
440
441 | | | Volts per Hertz | Start/Acc Boost | 069 | Run Boost | 070 | Break Voltage | 071 | Break Frequency | 072 | | | Speed Feedback | Motor Fdbk Type
Encoder PPR
Enc Position Fdbk | 412
413
414 | Encoder Speed
Fdbk Filter Sel
Notch Filter Freq | 415
416
419 | Notch Filter K
Marker Pulse
Pulse In Scale | 420
421
422 | Encoder Z Chan | 423 | | Speed Command | Spd Mode &
Limits | Speed Units
Feedback Select
Minimum Speed | 079
080
081 | Maximum Speed
Overspeed Limit
Skip Frequency 1 | 082
083
084 | Skip Frequency 2
Skip Frequency 3
Skip Freq Band | 085
086
087 | Speed/Torque Mod
Rev Speed Limit | 088
454 | | | Speed
References | Speed Ref A Sel
Speed Ref A Hi
Speed Ref A Lo | 090
091
092 | Speed Ref B Sel
Speed Ref B Hi
Speed Ref B Lo | 093
094
095 | TB Man Ref Sel
TB Man Ref Hi
TB Man Ref Lo | 096
097
098 | Pulse Input Ref | 099 | | | Discrete Speeds | Jog Speed 1
Preset Speed 1
Preset Speed 2 | 100
101
102 | Preset Speed 3
Preset Speed 4
Preset Speed 5 | 103
104
105 | Preset Speed 6
Preset Speed 7
Jog Speed 2 | 106
107
108 | | | | | Speed Trim | Trim In Select
Trim Out Select | 117
118 | Trim Hi
Trim Lo | 119
120 | Trim % Setpoint | 116 | | | | | Slip Comp | Slip RPM @ FLA | 121 | Slip Comp Gain | 122 | Slip RPM Meter | 123 | | | | | Process PI | PI Configuration
PI Control
PI Reference Sel
PI Setpoint
PI Feedback Sel
PI Integral Time | 124
125
126
127
128
129 | PI Prop Gain PI Lower Limit PI Upper Limit PI Preload PI Status PI Ref Meter | 130
131
132
133
134
135 | PI Fdback Meter
PI Error Meter
PI Output Meter
PI Reference Hi
PI Reference Lo
PI Feedback Hi | 136
137
138
460
461
462 | PI Feedback Lo
PI BW Filter
PI Deriv Time
PI Output Gain | 463
139
459
464 | | | Speed Regulator | Ki Speed Loop
Kp Speed Loop | 445
446 | Kf Speed Loop
Speed Desired BW | 447
449 | Total Inertia
Speed Loop Meter | 450
451 | | | | Dynamic Control | Ramp Rates | Accel Time 1
Accel Time 2 | 140
141 | Decel Time 1
Decel Time 2 | 142
143 | S Curve % | 146 | | | | | Load Limits | Current Lmt Sel
Current Lmt Val | 147
148 | Current Lmt Gain
Drive OL Mode | 149
150 | PWM Frequency
Droop RPM @ FLA | 151
152 | Regen Power Limit
Current Rate Limit | 153
154 | | | Stop/Brake
Modes | Stop Mode A
Stop Mode B
DC Brk Lvl Sel
DC Brake Level | 155
156
157
158 | DC Brake Time
Bus Reg Ki
Bus Reg Mode A
Bus Reg Mode B | 159
160
161
162 | DB Resistor Type
Bus Reg Kp
Bus Reg Kd
Flux Braking | 163
164
165
166 | DB While Stopped | 145 | | | Restart Modes | Start At PowerUp
Flying Start En
Flying StartGain | 168
169
170 | Auto Rstrt Tries
Auto Rstrt Delay
Sleep-Wake Mode | 174
175
178 | Sleep-Wake Ref
Wake Level
Wake Time | 179
180
181 | Sleep Level
Sleep Time
Powerup Delay | 182
183
167 | | | Power Loss | Power Loss Mode
Power Loss Time | 184
185 | Power Loss Level
Load Loss Level | 186
187 | Load Loss Time
Shear Pin Time | 188
189 | Gnd Warn Level | 177 | # PowerFlex 700L Technical Data | File | Group | Parameters | | | | | | | | |------------------|------------------|---|--|---|--|---|--|---|--| | Utility | Direction Config | Direction Mode | 190 | | | | | | | | | HIM Ref Config | Save HIM Ref | 192 | Man Ref Preload | 193 | | | | | | | MOP Config | Save MOP Ref | 194 | MOP Rate | 195 | | | | | | | Drive Memory | Param Access Lvl
Reset To Defalts
Load Frm Usr Set | 196
197
198 | Save To User Set
Reset Meters
Language | 199
200
201 | Voltage Class
Drive Checksum
Dyn UserSet Cnfg | 202
203
204 | Dyn UserSet Sel
Dyn UserSet Actv | 205
206 | | | Diagnostics | Drive Status 1 Drive Status 2 Drive Alarm 1 Drive Alarm 2 Speed Ref Source Start Inhibits | 209
210
211
212
213
214 | Last Stop Source Dig In Status Dig Out Status Drive Temp Drive OL Count Motor OL Count | 215
216
217
218
219
220 | Fault Speed
Fault Amps
Fault Bus Volts
Status 1 @ Fault
Status 2 @ Fault
Alarm 1 @ Fault | 224
225
226
227
228
229 | Alarm 2 @ Fault
Testpoint 1 Sel
Testpoint 2 Sel
Testpoint 1 Data
Testpoint 2 Data
Mtr OL Trip Time | 230
234
236
235
237
221 | | | Faults | Fault Config 1 Fault Clear Fault Clear Mode Power Up Marker Fault 1 Code | 238
240
241
242
243 | Fault 1 Time Fault 2 Code Fault 2 Time Fault 3 Code Fault 3 Time | 244
245
246
247
248 | Fault 4 Code
Fault 4 Time
Fault 5 Code
Fault 5 Time
Fault 6 Code | 249
250
251
252
253 | Fault 6 Time
Fault 7 Code
Fault 7 Time
Fault 8 Code
Fault 8 Time | 254
255
256
257
258 | | | Alarms | Alarm Config 1
Alarm Clear
Alarm 1 Code | 259
261
262 | Alarm 2 Code
Alarm 3 Code
Alarm 4 Code | 263
264
265 | Alarm 5 Code
Alarm 6 Code
Alarm 7 Code | 266
267
268 | Alarm 8 Code | 269 | | | Scaled Blocks | Scale1 In Value
Scale1 In Hi
Scale1 In Lo
Scale1 Out Hi
Scale1 Out Lo
Scale1 Out Value | 476
477
478
479
480
481 | Scale2 In Value
Scale2 In Hi
Scale2 In Lo
Scale2 Out Hi
Scale2 Out Lo
Scale2 Out Value | 482
483
484
485
486
487 | Scale3 In Value
Scale3 In Hi
Scale3 In Lo
Scale3 Out Hi
Scale3 Out Lo
Scale3 Out Value | 488
489
490
491
492
493 | Scale4 In Value
Scale4 In Hi
Scale4 In Lo
Scale4 Out Hi
Scale4 Out Lo
Scale4 Out Value | 494
495
496
497
498
499 | | Communication | Comm Control | DPI Baud Rate
Drive Logic RsIt | 270
271 | Drive Ref Rslt
Drive Ramp Rslt | 272
273 | DPI Port Sel
DPI Port Value | 274
275 | DPI Ref Select
DPI Fdbk Select | 298
299 | | | Masks & Owners | Logic Mask
Start Mask
Jog Mask
Direction Mask
Reference Mask | 276
277
278
279
280 | Accel Mask
Decel Mask
Fault Cir Mask
MOP Mask
Local Mask | 281
282
283
284
285 | Stop Owner
Start Owner
Jog Owner
Direction Owner
Reference Owner | 288
289
290
291
292 | Accel Owner
Decel Owner
Fault Cir Owner
MOP Owner
Local Owner |
293
294
295
296
297 | | | Datalinks | Data In A1
Data In A2
Data In B1
Data In B2 | 300
301
302
303 | Data In C1
Data In C2
Data In D1
Data In D2 | 304
305
306
307 | Data Out A1
Data Out A2
Data Out B1
Data Out B2 | 310
311
312
313 | Data Out C1
Data Out C2
Data Out D1
Data Out D2 | 314
315
316
317 | | | Security | Port Mask Act
Write Mask Cfg | 595
596 | Write Mask Act
Logic Mask | 597
276 | Logic Mask Act | 598 | | | | Inputs & Outputs | Analog Inputs | Anlg In Config
Anlg In Sqr Root | 320
321 | Analog In1 Hi
Analog In1 Lo | 322
323 | Analog In1 Loss
Analog In2 Hi | 324
325 | Analog In2 Lo
Analog In2 Loss | 326
327 | | | Analog Outputs | Anlg Out Config
Anlg Out Absolut
Analog Out1 Sel | 340
341
342 | Analog Out1 Hi
Analog Out1 Lo
Analog Out2 Sel | 343
344
345 | Analog Out2 Hi
Analog Out2 Lo
Anlg Out1 Scale | 346
347
354 | Anlg Out2 Scale
Anlg1 Out Setpt
Anlg2 Out Setpt | 355
377
378 | | | Digital Inputs | Digital In1 Sel
Digital In2 Sel | 361
362 | Digital In3 Sel
Digital In4 Sel | 363
364 | Digital In5 Sel
Digital In6 Sel | 365
366 | | | | | Digital Outputs | Dig Out Setpt
Digital Out1 Sel
Dig Out1 Level
Dig Out1 OnTime | 379
380
381
382 | Dig Out1 OffTime
Digital Out2 Sel
Dig Out2 Level
Dig Out2 OnTime | 383
384
385
386 | Dig Out2 OffTime
Digital Out3 Sel
Dig Out3 Level
Dig Out3 OnTime | 387
388
389
390 | Dig Out3 OffTime
Dig Out Invert
Dig Out Param
Dig Out Mask | 391
392
393
394 | #### PowerFlex 700S Phase II Control **Digital Current Regulator** outperforms older style analog regulators in speed, repeatability and drift. **Negative Feed Forward** reduces or eliminates overshoot during step speed changes. Helpful in preventing backup during stopping. Coarse-to-Fine interpolation for **DriveLogix Motion**, direct positioning for precise control and point-to-point for indexing are all features of the **Integral Position Loop.** The loop easily handles applications such as simple indexing and electronic line shaft. Advanced **Edge-to-Edge Algorithms** and pulse position averaging provides extremely accurate speed measurement and excellent performance at very low speed. **Servo Lock** compensates for lost position during step loads to the velocity regulator. Offers optimum performance for draw applications and others. #### High Speed Analog & Digital I/O execute in 0.5 mSec or less to provide fast response and fast capture for registration information and position data. Output relays, optically isolated and differentially isolated I/O are supplied. **Inertia Adaptation** stabilizes inertia disconnect due to gear boxes or flexible couplings. It also provides broadband resonance compensation, allowing up to 4 times improvement to speed regulator bandwidth. An **Enhanced Process Loop** executes six times faster than previous loops, providing greatly improved dynamic response in tension control applications. The **Control Loops** within each drive are **Synchronized**. In addition, the control loops for all drives on SynchLink are synchronized within micro-seconds. This provides exceptional link coordination and tracking for critical applications. The **Enhanced Bus Regulator** reacts four times faster than previous products, providing quicker stops without overvoltage issues and outstanding performance in other regenerative applications. # Standard Drive Specifications | | Specificati | on | | |-------------------------|-------------------------------|--|---| | Category | | Frame 2 | Frame 3A/3B | | Agency
Certification | c UL us | Listed to UL508C and CAN/CSA-C2.2 No. 14-05. UL Listing for Fran applicable up to 600V AC. | me 2 is applicable up to 480V AC. UL Listing for Frame 3A and 3B is | | | CE | Marked for all applicable European Directives (1) EMC Directive (89/336/EEC) EN 61800-3 Adjustable Speed electrical power drive systems Low Voltage Directive (73/23/EEC) EN 50178 Electronic Equipment for use in Power Installations | | | | C
N223 | Certified to AS/NZS, 1997 Group 1, Class A. | | | | NFPA 70
NEMA IC
IEC 146 | s are also designed to meet the following specifications: - US National Electrical Code S 3.1 - Safety standards for Construction and Guide for Selection, In International Electrical Code. Decification #70 (Crane Manufacturers of America Association) | stallation and Operation of Adjustable Speed Drive Systems. | ⁽¹⁾ Applied noise impulses may be counted in addition to the standard pulse train causing erroneously high [Pulse Freq] readings. The following specifications, unless otherwise noted, pertain to PowerFlex 700L drives equipped with 700 Vector Control or 700S Phase II Control. | | Specification | | | | | | | | | | | | | | |-------------|---|--|-----------------------------|------------|-------------|----------|--|--|--|--|--|--|--|--| | Category | | Frame 2 | | Frame 3A/3 | Frame 3A/3B | | | | | | | | | | | Protection | | 400V | 480V | 400V | 480V | 600V | 690V | | | | | | | | | | AC Input Overvoltage Trip: | 528V AC | 528V AC | 528V AC | 528V AC | 760V AC | 760V AC | | | | | | | | | | AC Input Undervoltage Trip: | 340V AC | | | | | | | | | | Bus Overvoltage Trip: | 815V DC | 815V DC | 815V DC | 815V DC | 1168V DC | 1168V DC | | | | | | | | | | Bus Undervoltage Shutoff/Fault: | 300V DC | | | | | | | | | | Nominal Bus Voltage: | 600V DC | 700V DC | 600V DC | 700V DC | 900V DC | 1000V DC | | | | | | | | | | Heat Sink Thermistor: | Monitored by microproc | essor overtemp trip | | | | | | | | | | | | | | Drive Overcurrent Trip Software Overcurrent Trip: Hardware Overcurrent Trip: | 200% of rated current (typical) 220-300% of rated current (dependent on drive rating) | | | | | | | | | | | | | | | Line Transients: | Up to 6000 volts peak per IEEE C62.41-1991 | | | | | | | | | | | | | | | Control Logic Noise Immunity: | Showering arc transients up to 1500V peak | | | | | | | | | | | | | | | Logic Control Ride-Thru
Vector Control: | 0.5 seconds minimum, 2 seconds typical | | | | | | | | | | | | | | | 700S Phase II Control: | 0.25 seconds, drive not running | | | | | | | | | | | | | | | Ground Fault Trip: | Phase-to-ground on drive output | | | | | | | | | | | | | | | Short Circuit Trip: | Phase-to-phase on driv | | | | | | | | | | | | | | Environment | Altitude: | 1000 m (3280 ft.) at rated current. See Derating Guidelines on page 40 for operation above 1000 m (3280 ft.). | | | | | | | | | | | | | | | Maximum Surrounding Air
Temperature w/o Derating:
IP20, NEMA/UL Type 1: | 0 to 50°C (32 to 122°F) 0 to 40°C (32 to 104°F) | | | | | | | | | | | | | | | Storage Temperature (all constructions): | -40 to 85°C (-40 to 185°F) | | | | | | | | | | | | | | | Atmosphere: | Important: Drive <u>must not</u> be installed in an area where the ambient atmosphere contains volatile or corrosive gas, vapors or dust. If the drive is not going to be installed for a period of time, it must be stored in an area where it will not be exposed to a corrosive atmosphere. | | | | | | | | | | | | | | | Relative Humidity: | 5 to 95% non-condensing | | | | | | | | | | | | | | | Shock: | 10G peak for 11 milliseconds duration (±1.0 ms) | | | | | | | | | | | | | | | Vibration: | 0.152 mm (0.006 in.) di | splacement, 1G peak, 5.5 Hz | | | | 0.152 mm (0.006 in.) displacement, 1G peak, 5.5 Hz | | | | | | | | | | Specification | | | | | | | | |------------|---|---|---|--|--|--|--|--| | Category | | Frame 2 | Frame 3A/3B | | | | | | | Electrical | Voltage Tolerance
Vector Control: | For full power and operating range, see the <i>PowerFlex 70</i> (publication 20B-UM002), Appendix C. | 00 Adjustable Frequency AC Drive — Series B User Manual | | | | | | | | 700S Phase II Control: | For full power and operating range, see the <i>PowerFlex 70 Manual (publication 20D-UM006), Appendix C.</i> | 00S High Performance AC Drive — Phase II Control User | | | | | | | | Input Frequency Tolerance: | 27-93 Hz. | | | | | | | | | Input Phases: | Three-phase input provides full rating for all drives. | | | | | | | | | Displacement Power Factor: | 0.98 across entire speed range. | | | | | | | | | Efficiency: | 96.2% at rated amps, nominal line volts. | 97.5% at rated amps, nominal line volts. | | | | | | | | Maximum Short Circuit Current Rating: | To match specified circuit breaker capability, ≤200,000 A | | | | | | | | | Actual Short Circuit Rating: | Determined by AIC rating of installed circuit breaker. | F | | | | | | | | Motor Lead Lengths: | 76 meters (250 feet) total | | | | | | | | Control | Method: | Sine coded PWM with programmable carrier frequency. | | | | | | | | Control | Carrier Frequency: | 4, or 8 kHz. Drive rating based on 4 kHz. See
<u>Derating Guidelines on page 40</u> for more information | 2 or 4 kHz. Drive rating based on 4 kHz. | | | | | | | | Output Voltage Range: | 0 to rated motor voltage | | | | | | | | | Output Frequency Range Vector Control: | 0 to 420 Hz | | | | | | | | | 700S Phase II Control: | 0 to 350 Hz | | | | | | | | | | 0 to 350 Hz | | | | | | | | | Frequency Accuracy (Vector Control only) Digital Input: | Within ± 0.01% of set output frequency. | Within ± 0.01% of set output frequency. | | | | | | | | Analog Input: | Within ± 0.4% of maximum output frequency | | | | | | | | | Frequency Control
(Vector Control only): | Speed Regulation - w/Slip Compensation (Volts per Hertz Mode) 0.5% of base speed across 40:1 speed range 40:1 operating range 10 rad/sec bandwidth Speed Regulation - w/Slip Compensation (Sensorless Vector Mode) 0.5% of base speed across 80:1 speed range 80:1 operating range 20 rad/sec bandwidth | | | | | | | | | Speed Control
Vector Control: | Speed Regulation - without feedback (Vector Control Mod 0.1% of base speed across 120:1 speed range | de) | | | | | | | | | 120:1 operating range
50 rad/sec bandwidth
Speed Regulation - with feedback (Vector Control Mode)
0.001% of base speed across 120:1 speed range
1000:1 operating range
250 rad/sec bandwidth | | | | | | | | | 700S Phase II Control: | Speed Regulation - without feedback 0.1% of base speed across 120:1 speed range 120:1 operating range 50 rad/sec bandwidth Speed Regulation - with feedback 0.001% of base speed across 120:1 speed range 1000:1 operating range 740 rad/sec bandwidth | | | | | | | | | Torque Regulation
Vector Control: | Torque regulation without Feedback; ± 5%, 600 rad/sec language Torque regulation with Feedback; ± 2%, 2500 rad/sec back; | | | | | | | | | 700S Phase II Control: | Torque regulation without Feedback; ± 10%, 600 rad/sec Torque regulation with Feedback; ± 5%, 4400 rad/sec ba | | | | | | | | | Selectable Motor Control
Vector Control: | Sensorless Vector with full tuning. Standard V/Hz with full Technology (with and without feedback). | Il custom capability and Vector Control with Force | | | | | | | | 700S Phase II Control: | Vector Control with Force Technology (with and without feedback), V/Hz Control, and permanent magnet motor control. | | | | | | | | | Specification | | | | |---|---|---|---|--| | Category | | Frame 2 | Frame 3A/3B | | | Control | Stop Modes | | 1.1 | | | (continued) | Vector Control: | Multiple programmable stop modes including Ramp, Coas | st, DC-Brake, Ramp-to-Hold, and S-curve. | | | | 700S Ph. II Control: | Multiple programmable stop modes including Ramp, Coas | st, and Current Limit. | | | | Accel/Decel
Vector Control: | Two independently programmable accel and decel times. Each time may be programmed from 0-3600 seconds in 0.1 second increments. | | | | | 700S Phase II Control: | Independently programmable accel and decel times, adju- | stable from 0-6553.5 seconds in 0.01 second increments. | | | | Intermittent Overload: | 110% Overload capability for up to 1 minute 150% Overlo | pad capability for up to 3 seconds | | | | Current Limit Capability
Vector Control: | Proactive Current Limit programmable from 20 to 160% of proportional and integral gain. | f rated output current. Independently programmable | | | | 700S Phase II Control: | Independent Motoring and Regenerative Power Limits pro | ogrammable to 800% of rated output current. | | | | Electronic Motor Overload Protection: | Class 10 protection with speed sensitive response. Invest E59272, volume 12. | · | | | Encoder | Type: | Incremental, dual channel | | | | (Vector Control | Supply: | 12V or 5V, 250 mA. 12V or 5V, 10 mA minimum inputs iso | plated with differential transmitter, 250 kHz maximum. | | | only) | Quadrature: | 90°, ± 27° at 25°C | ,, | | | | Duty Cycle: | 50%, ± 10% | | | | | Requirements: | | nel) or pulse (single channel), 8-15V DC output (3.5-6V DC | | | | Tiequirements. | for 5V encoder), single-ended or differential, and capable input frequency is 250 kHz. The Encoder Interface Board high state of 7.0V DC (12 volt encoder) or 3.1V DC (5 volt | of supplying a minimum of 10 mA per channel. Maximum accepts 12V DC or 5V DC square-wave with a minimum | | | Feedback
(700S Phase II
Control only) | Encoder Input: Encoder Voltage Supply: Maximum Input Freq: | Dual Channel Plus Marker, Isolated with differential transr
Quadrature type
5V DC or 12V DC (5V DC requires an external power sup
400 kHz | mitter Output (Line Drive) Incremental, Dual Channel | | | | Stegmann Hi-Resolution Option
Encoder Voltage Supply:
Hi-Resolution Feedback:
Maximum Cable Length:
RS-485 Interface: | 11.5V DC @ 130 mA
Sine/Cosine 1V P-P Offset 2.5
182 m (600 ft.) | information via the Hiperface RS-485 interface shortly after r of Turns, Number of Sine/Cos cycles, and Checksum. | | | | Customer-I/O Plug (P1) - Hi
Res: | Allen-Bradley PN: S94262912
Weidmuller PN: BL3.50/90/12BK | | | | | Resolver Option Excitation Frequency: Excitation Voltage: Operating Freq. Range: Resolver Fdbk. Voltage: Maximum Cable Length: | 2400 Hz
4.25-26 Vrms
1-10 kHz
2V ±300mV
304.8 m (1000 ft.) | | | | DriveLogix | User Available Memory Base: | 1.5 megabytes | | | | (700S Phase II | Battery: | 1756-BA1 (Allen-Bradley P/N 94194801) 0.59g lithium | | | | Control only) | Serial Cable: | 1761-CBLPM02 to 1761-NET-AIC
1761-CBLPA00 to 1761-NET-AIC
1756-CP3 directly to controller
1747-CP3 directly to controller
Category 3 (2) | | | | | Compact I/O Connection: | Up to (30) modules | | | | | Cable: | 20D-DL2-CL3
20D-DL2-CR3 | | | # **Derating Guidelines** ### **Altitude** Above 1000 m (3280 ft.), derate the output current by 1% for every 100 additional meters (328 additional feet). This is applicable to filters and power modules. PowerFlex 700L 600/690V drives should not be used above 2000 m (6562 ft.) due to voltage spacing requirements. #### **Ambient** Frame 2 drives have a maximum ambient of 50°C (122°F). Frame 3A and 3B drives have a maximum ambient of 40°C (104°F). PowerFlex 700L drives cannot be derated to operate at higher ambients. # **Carrier Frequency** For Frame 2 drives, refer to the carrier frequency derating table below. PowerFlex 700L Frame 3A and 3B drives cannot be run above 4 kHz. PowerFlex 700L Frame 2 Drive # Watts Loss (@ Rated Load, Speed, and PWM Carrier Frequency) | | | | Watts Loss | | | | | | |--------|---------|-------|----------------|------------------------------|-------------|--------|----------------|---------------------| | Frame | | PWM | Filter Section | Filter Section Power Section | | | Complete Drive | | | Size | Voltage | Freq. | Into Air | Into Air | Into Liquid | Total | Total Air | Total Liquid | | 2 | 400V | 4 kHz | | Not App | olicable | | 1500 | 7900 | | | 480V | 4 kHz | | Not App | olicable | | 1500 | 7900 | | 3A | 400V | 4 kHz | 4000 | 1000 | 10,500 | 11,500 | 5000 | 10,500 | | | 480V | 4 kHz | 4000 | 1000 | 11,500 | 12,500 | 5000 | 11,500 | | | 600V | 4 kHz | 4000 | 1200 | 10,500 | 11,700 | 5200 | 10,500 | | | 690V | 4 kHz | 4000 | 1200 | 12,000 | 13,200 | 5200 | 12,000 | | 3B (1) | 400V | 4 kHz | 7800 | 2000 | 21,000 | 23,000 | 9800 | 21,000 | | | 480V | 4 kHz | 7800 | 2000 | 23,000 | 25,000 | 9800 | 23,000 | | | 600V | 4 kHz | 7800 | 2400 | 21,000 | 23,400 | 10,200 | 21,000 | | | 690V | 4 kHz | 7800 | 2400 | 24,000 | 26,400 | 10,200 | 24,000 | ⁽¹⁾ Frame 3B power section consists of two (2) power modules. Each module dissipates half (½) of the watts shown in this table. # **Cooling Loop Options** This section provides information about the various types of cooling loops. # Liquid-to-Liquid Heat Exchanger The liquid-to-liquid heat exchanger utilizes a heat transfer plate to transfer heat from one liquid to another. This method requires a stable water supply from the user. The drawing below shows a cooling loop diagram for a typical liquid-to-liquid heat exchanger. The main components of the liquid-to-liquid heat exchanger cooling loop include: | Part | Description | |----------------------------------|--| | Strainer | Filters particles from the supply water. | | Control Valve | Controls the supply loop water flow. | | Heat Exchanger Plate | Transfers heat from the drive loop to the supply loop. | | Ambient Sensor | Senses the ambient temperature used for the dew point control. | | Drive Coolant Temperature Sensor | Senses the drive coolant temperature used for the dew point control. | | Drive Coolant Flow Switch | Measures the drive coolant flow rate. | | Level Switch | Senses the level of coolant in the reservoir. | | Reservoir | Stores drive coolant. | | Pump and Motor | Circulates drive coolant. | ## Liquid-to-Air Heat Exchanger The liquid-to-air heat exchanger utilizes radiator technology to transfer heat from a liquid to surrounding air. This is a simple closed loop system — it does not require a water supply from the user. However, this system requires surrounding air 5 to 10° C below the maximum operating temperature of the drive. The drawing below shows a cooling loop diagram for a typical liquid-to-air heat exchanger. The main components of the liquid-to-air heat exchanger cooling loop include: | Part | Description | |----------------------------------|--| | Fan | Blows air across the radiator. | | Radiator | Transfers heat from liquid to
air. | | Ambient Sensor | Senses the ambient temperature used for the dew point control. | | Drive Coolant Temperature Sensor | Senses the drive coolant temperature used for the dew point control. | | Drive Coolant Flow Switch | Measures the drive coolant flow rate. | | Level Switch | Senses the level of coolant in the reservoir. | | Reservoir | Allows for expansion of coolant. | | Pump and Motor | Circulates drive coolant. | ## Chiller The chiller utilizes refrigerant to transfer heat from a liquid to air. This is a simple closed loop system — it does not require a water supply from the user. A chiller can achieve almost any coolant temperature required. Coolant temperature should be at or above ambient temperature to avoid condensation on drive components. The drawing below shows a cooling loop diagram for a typical chiller. The main components of the chiller cooling loop include: | Part | Description | |----------------------------------|--| | Compressor | Forces the refrigerant into a smaller space. | | Fan | Blows air across the condenser/subcooler. | | Condenser/Subcooler | Cools the refrigerant. | | Filter-Drier | Filters the refrigerant. | | Sight Glass | Allows viewing of the level of drive coolant in the reservoir. | | Thermostatic Expansion Valve | Allows for expansion of the refrigerant. | | Level Switch | Senses the level of coolant in the reservoir. | | Reservoir | Allows for expansion of coolant. | | Pump and Motor | Circulates drive coolant. | | Drive Coolant Temperature Sensor | Senses the drive coolant temperature used for the dew point control. | | Drive Coolant Flow Switch | Measures the drive coolant flow rate. | | Ambient Sensor | Senses the ambient temperature used for the dew point control. | ## **Recommended Cooling Loops** ## Liquid-to-Liquid Heat Exchanger Selection | | Supply Loop Requirements (1) | | | | | | | | |-------------------------|---------------------------------------|--------------------|-------------------|------------------------|--|--|--|--| | Drive Frame Size | Minimum Flow @ Pressure (2) | Maximum Pressure | Temperature Range | Exchanger Cat. No. (3) | | | | | | 2 | 15.1 LPM @ 0.83 bar (4 GPM @ 12 PSI) | 8.62 bar (125 PSI) | 0-40°C (32-104°F) | 20L-LL13K-P75A | | | | | | 3A | 22.7 LPM @ 0.83 bar (6 GPM @ 12 PSI) | 8.62 bar (125 PSI) | 0-35°C (32-95°F) | 20L-LL13K-P75A | | | | | | 3B | 56.8 LPM @ 0.83 bar (15 GPM @ 12 PSI) | 8.62 bar (125 PSi) | 0-35°C (32-95°F) | 20L-LL24K-1P0A | | | | | ⁽¹⁾ Supply loop requirements are for the input to the heat exchanger. These are not requirements for the drive. The output of the heat exchanger is designed to meet the flow and pressure requirements of the drive. For the flow and pressure requirements of the drive, see the table on page 46. ## Estimated Amount of Coolant for the Drive Loop | Drive Frame Size | Estimated Amount of Coolant (1) | |------------------|---------------------------------| | 2 | 15.1 liters (4 gal.) | | 3A | 19 liters (5 gal.) | | 3B | 19 liters (5 gal.) | ⁽¹⁾ The estimated amount of coolant is based on the heat exchanger using 1.2 m (4 ft.) hoses. Longer hoses require more coolant. The maximum hose length of 9.1 m (30 ft.) would require up to an additional 2.8 liters (3/4 gal.). #### Hose Kits | Hose Length | Hoses
per Kit | Drive Side(1)
Coupling Size | Heat Exchanger Side
Coupling Size | Used With | Hose Kit (2) Cat. No. | |----------------|------------------|--------------------------------|--------------------------------------|-----------------------------------|-----------------------| | 3 m (10 ft.) | 2 | 0.75 inch | 0.75 inch | Frame 2 and 13 kW heat exchanger | 20L-GH10-B1 | | 9.1 m (30 ft.) | 2 | 0.75 inch | 0.75 inch | Frame 2 and 13 kW heat exchanger | 20L-GH30-B1 | | 3 m (10 ft.) | 2 | 1 inch | 1 inch with 90° elbow | Frame 3A and 13 kW heat exchanger | 20L-GH10-A2 | | 9.1 m (30 ft.) | 2 | 1 inch | 1 inch with 90° elbow | Frame 3A and 13 kW heat exchanger | 20L-GH30-A2 | | 3 m (10 ft.) | 2 | 1 inch | 1 inch | Frame 3B and 24 kW heat exchanger | 20L-GH10-A1 | | 9.1 m (30 ft.) | 2 | 1 inch | 1 inch | Frame 3B and 24 kW heat exchanger | 20L-GH30-A1 | ⁽¹⁾ All drive side hose kit fittings are 37 degree flare. When a chiller or liquid-to-air heat exchanger is preferred, we recommend consulting with a cooling loop supplier such as Dimplex Thermal Solutions. The following are recommended chillers. ## Recommended Chillers (from Dimplex Thermal Solutions) | Drive Frame Size | Capacity | Flow Rate | Pressure | Reservoir Size | Piping (Inlet and Outlet) | Chiller Model (1) | |-------------------------|--------------|--------------------|-------------------|------------------|---------------------------|-------------------| | 2 and 3A | 16,983 watts | 94.6 LPM (25 GPM) | 3.44 bar (50 PSI) | 117.3 L (31 gal) | 1-1/4 in. NPT | KV5000 | | 3B | 28,110 watts | 151.4 LPM (40 GPM) | 3.44 bar (50 PSI) | 181.7 L (48 gal) | 1-1/4 in. NPT | KV7500 | ⁽¹⁾ Each chiller is designed for single drive cooling for indoor installation only. For applications requiring multiple drives using one chiller or outdoor use, contact Dimplex Thermal Solutions. #### **Chiller Specifications** | Chiller Model | Electrical Line Input (1) | Rated Load | Dimensions | Weight | |---------------|---------------------------|------------|----------------------------------|------------| | KV5000 | 230V, 3 phase, 60 Hz | 29 Amp | 1067 mm L x 711 mm W x 1676 mm H | 249.5 kg | | | 460V, 3 phase, 60 Hz | 17 Amp | (42 in. L x 28 in. W x 66 in. H) | (550 lbs.) | | KV7500 | 230V, 3 phase, 60 Hz | 40 Amp | 1270 mm L x 914 mm W x 1676 mm H | 340 kg | | | 460V, 3 phase, 60 Hz | 22 Amp | (50 in. L x 36 in. W x 66 in. H) | (750 lbs.) | ⁽¹⁾ Desired Line Voltage must be specified upon ordering. For chiller pricing/ordering, contact Dimplex Thermal Solutions: USA and Canada: 1-800-968-5665 Elsewhere: 1-269-349-6800 ⁽²⁾ The minimum pressure applies to the pressure drop across the heat exchanger and does not take into account additional pressure drop in the system such as piping or hosing. ⁽³⁾ Recommended cooling loops shown are based on a single drive per cooling loop. Consult the factory for use of multiple drives on one cooling loop. ⁽²⁾ Each hose kit contains two (2) hoses and the appropriate connectors. ### **Drive Coolant Requirements** ### **Recommended Coolants** The table below lists approved sources and recommended coolants with appropriate corrosion inhibitors for the drive loop: | Source | Coolant | | | |--|---|--|--| | Interstate Chemical http://www.interstatechemical.com/contact.htm | NFP-50 (1); a 50/50 premix of propylene glycol and distilled water NFE-50 (1); a 50/50 premix of ethylene glycol and distilled water | | | | Koolant Koolers/Dimplex Thermal Solutions
http://www.koolantkoolers.com/index.php/nic=contact | K-Kool-E (1); ethylene glycol (available premixed with distilled water) Propylene glycol (1) also available | | | | Dow Chemical
http://www.dow.com | Dowtherm® SR-1 (2); ethylene glycol
Dowfrost® (2); propylene glycol
Dowtherm and Dowfrost are registered trademarks of the Dow Chemical Company | | | ⁽¹⁾ Available in 5 gallon pails. Non-premixed coolants require a coolant-to-water mix ratio of 50% by volume. **Important:** Since coolant performance slowly degrades over time, the drive loop coolant should be replaced every two years and/or whenever the loop is drained for servicing. #### Corrosion Inhibitor If an approved coolant is not used, the drive coolant must consist of clean water *with a corrosion inhibitor*. An approved corrosion inhibitor is Chemtool, Inc. (www.chemtool.com) part number Watertool 4435-C. The recommended concentration of the inhibitor is 8-10% by volume. Deionized water is prohibited. Use distilled water or water with less than 50 ppm concentrations of: - · Sulfate and chloride - Hard water ions such as Mg++ and Ca++ Ethylene and propylene glycols must be inhibited and silicate free. Use of common silicate-containing, automotive-type ethylene glycol solutions is prohibited as they may damage the heat exchanger and/or drive and cooling module equipment. The drive coolant must be compatible with the following materials: - Copper - Brass - Aluminum - Arimid fiber gasket with nitrile binder (Garlock, Inc. Blue-Gard 3000®) Blue-Gard 3000 is a registered trademark of Garlock, Inc. - Synthetic rubber hose (Parker Hannifan Corp 801 General Purpose Hose) - Viton seal (Complete Drive only) #### Biocide A biocide may be needed to control biological growth. Use of a biocide is permitted. For specific recommendations, consult a reputable water treatment company. ⁽²⁾ Not premixed with distilled water, and may not be available in 5 gallon quantities. #### Coolant Requirements for One Frame 2, 3A or 3B Drive | Drive Frame Size | Coolant Temperature Range | | Pressure Drop (2) From Drive Inlet to Drive Outlet at Minimum Coolant Flow Rate | Coolant Type | |------------------|---------------------------|-----------------------|---|---| | 2 | 0-50°C (32-122°F) | 30.3 LPM (8 GPM) | 1.58 bar (23 PSI) | MEOEO (2) | | 3A | 0-40°C (32-104°F) | 30.3 LPM (8 GPM) | 0.35 bar (5 PSI) | WEG50 ⁽³⁾ or
WPG50 ⁽⁴⁾ | | 3B | 0-40°C (32-104°F) | 56.8 LPM (15 GPM) (1) | 0.48 bar (7 PSI) (1) | WFG50 (1) | ⁽¹⁾ Frame 3B includes separate converter and inverter power modules. A single inverter or converter power module requires a minimum flow rate of 30.3 LPM (8 GPM) at 0.35 bar (5 PSI). # **Cooling Loop Application Guidelines** Do not use ferrous and plated-ferrous materials for
pipe-treated water to the power modules and drive. Use of ferrous materials will degrade the performance of the power module chillplate. Use the following guidelines for applying cooling loops other than those recommended. • The allowable drive coolant temperature range is: Frame 2 Drive: 0°C to 50°C (32°F to 122°F) Frame 3A/3B Drive: 0°C to 40°C (32°F to 105°F) When using coolant at a temperature below the dew point of the surrounding air, condensation could accumulate on the drive heatsink and/or circuit boards and damage the drive. In this situation, install a coolant flow regulating device and tube/hose insulation. A flow regulating device modulates the coolant flow rate to a level that permits the drive heatsink temperature to rise above the dew point. Insulation for customer side tube or hose may be closed-cell foam insulation with minimum 12.7 mm (0.50 in.) wall thickness. - The cooling loop should include a flow switch on the connection to the drive inlet to turn off the drive if coolant flow drops below the minimum flow required by the drive (see table above). - Circulate coolant through the drive only when the drive is also powered. Failure to do this may result in condensation accumulating on the drive heatsink and/or circuit boards, which could damage the drive. - An interlock from the cooling loop should be used to stop the drive when the cooling loop is faulted. - For applications requiring a closed loop coolant system, ensure the system is vented to remove air that would otherwise degrade the performance of the drive heatsink. - Install a flow measuring device at the inlet of each Converter and each Inverter Power Module. Note that flow measuring devices are included in the PF700L Frame 3A/3B Complete Drive cabinets (13th position in catalog number = A). The coolant flow rate (GPM) must meet the requirements in the table above. - The following types of pipe are recommended for cooling loop connections: - Copper tubing, type L - Brass pipe - Stainless steel, 300 series **Important:** Do not use galvanized pipe. • The cooling loop should have a method for draining and replacing the coolant. ⁽²⁾ Pressure drop does not include any system connections such as hoses or piping. Cooling systems must be sized to provide minimum flow considering entire system pressure drop. ⁽³⁾ WEG50 equals good quality or distilled water with approved inhibited* ethylene glycol, 50% glycol by volume. ⁽⁴⁾ WPG50 equals good quality or distilled water with approved *inhibited** propylene glycol, 50% glycol by volume. ^{*} Inhibited ethylene glycol or propylene glycol must contain a corrosion inhibitor. See Corrosion Inhibitor on page 45 for an approved source. ### **Drive Coolant Connections** ### Frame 2 Drive Coolant connections for a Frame 2 drive are made using 37 degree flare fittings which have a: - 3/4-inch nominal size - "-12" SAE dash size - 1 1/16-12 UN/UNF-2B external thread size ### Frame 3A/3B Complete Drive Frame 3A/3B Complete Drive coolant connections are made using 37 degree flare fittings which have a: - 1-inch nominal size - "-16" SAE dash size - 1 5/16-12 UN/UNF-2B external thread size | PowerFlex, Force Technology, DriveGuard, RSLogix, DriveExplorer, DriveTools SP, and DPI are trademarks of Rockwell Automation. | |---| | Frademarks not belonging to Rockwell Automation are property of their respective companies. | | | | | | | | | | | | www.rockwellautomation.com | | Power, Control and Information Solutions Headquarters | | Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846 |